
SunExpert Magazine ■ January 1998 57

Q&AIX
by Jim Fox

Q: Your October 1997 article
(“Virtual Windows,” Page 75)

mentioned two ways to customize the rc
file used by the fvwm2 window manager.
One was cpp and the other was M4. Would
I be better off going straight to M4?

Beverly Rhodes
City University

A:Last month, we looked at the cpp

preprocessor, which is simple and
very easy to work with. This time, we’ll
take a look at a much more powerful macro
language, M4. Will M4 be the right tool?
That depends on how much processing you
would like to do.

A macro processor can be defined quite
easily–it copies input to output, expanding
macros as it encounters them. Expanding a
macro means to replace it with its definition.
How it goes about that macro expansion
defines the character of the macro language.
Some languages, like TeX, are very compli-
cated; others, like cpp , are simple; M4 is
somewhere in between.

M4 was written quite a while ago–in
computer years. It was originally the macro
preprocessor for RATFOR, the rational
FORTRAN compiler, which, I think, no

longer exists. Its preprocessor, however, has
enjoyed something of a revival. It is used by
fvwm and by the program that generates the
GNU Configure files.

The Free Software Foundation
(http://www.gnu.ai.mit.edu) has
made some enhancements to M4; some of
which are very useful. The M4 you get
with AIX is the original version. If you
find you like the program and want to do
more with it, you should consider getting
hold of the FSF’s version.

M4 Macros
M4 normally uses the pound sign “#” to

indicate comments. Oddly enough, M4 pass-
es comments into the output stream. I have
no idea why it does this, but it will certainly
cause trouble if your target program doesn’t
recognize comments the same way. Fortu-
nately, it is possible to define comments that
are not output. We’ll see in a moment how
to do that. M4 macros can appear anywhere
in the input line, not just at the front like
cpp . They don’t have any introductory sym-
bol. A macro name appearing anywhere trig-
gers macro expansion.

Although we always use the term macro
to indicate a special word that is not simply

M4 – A More
Powerful Macro

Jim Fox works as a
systems programmer for the
University of Washington.
He writes and maintains
distributed applications
that run on a variety of
UNIX systems–and some
non-UNIX ones. He is
also the deputy manager
for the Interoperability
Project for SHARE’s
Open Systems Group.
Email: fox@cac.
washington.edu.

wizard’s apprentice

super user

wizard

RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine
Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement
RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine
Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement

RS/Magazine SupplementRS/Magazine Supplement

Q&AIX

58 SunExpert Magazine ■ January 1998

passed to the output stream, some of these macros could right-
fully be considered commands. We use the term expand to
mean the action of a macro, even those that are internal and
appear to have spurious functions. In general, an M4 macro
invocation has the following syntax:

macroname(arguments)

where arguments is a comma-separated list of arguments to
the macro. The opening parenthesis must follow immediately
after the macroname. M4 is very sensitive about spaces, which
are almost always significant. Text strings are delimited by
quote marks: a single left-quote to start a string and a single
right-quote to end it. Macros found in the argument list will
be expanded unless they are quoted.

Because M4 is interactive, you can
type into it and see the results of any
macro expansions immediately. This is
a good way to learn the language. Here
are some of M4’s most useful macros:

• define(` name’, value) –
Defines a new macro, name, giving it
the expansion of value. The value string
can contain these symbols to make use
of arguments:

$n – Will expand to the n th
argument of the invocation.

$0 – Is the macro’s name.
$# – Will expand to the number

of arguments.
$* – Will expand to a comma-

separated list of all arguments.
$@– Will expand to a quoted, comma-separated list

of all arguments.
Note: The quoting prevents name from being expanded

before it is defined.
• dnl – Deletes all characters until the new line. This is

often a convenient way to avoid new lines in the output
stream. Here’s a way to use dnl to define a comment that
does not get passed on to the output:

define(`C’,`dnl’)

Now any text after a `C’ will be ignored. Actually, the `C’

must appear as a word. Text such as `Chapter’ , for example,
will not invoke the macro. The dnl is quoted to avoid having
it expanded, which would have the unfortunate consequence
of deleting the rest of the definition.

• pushdef(` name’, value) – Also defines a new
macro, but saves the old definition on a stack. This is useful
for defining temporary variables in complex macros.

• popdef(` name’) – Recovers a pushed macro definition.
• ifdef(` name’, true_text , false_text) – If the

macro, name, is defined, this expands to true_text ; otherwise,
it expands to false_text.

• ifelse(string1 , string2 , true_text ,

false_text) – If string1 is equal to string2, this expands
to true_text ; otherwise, it expands to false_text.

Note: The false_text may be omitted.
• ifelse(string1 , string2 , true_text ,

more args) – ifelse can be invoked with more than four
arguments. If the strings are equal, it expands to true_text;
otherwise, it discards the first three arguments and repeats
the ifelse with what’s left:

ifelse(arg4 , arg5 ,...)

• include(filename) – Expands to the contents of
the named file. This allows you to conveniently include
macro libraries.

M4 also has predefined macros
designed to work with numbers and
strings:

• incr(number) – Expands to the
argument plus one.

• decr(number) – Expands to the
argument minus one.

• eval(expression) – Expands
to the integer value of the expression.
The expression can contain numbers,
macros and the usual set of operators.
It’s very similar to C programming. For
example, eval(45*3) expands to 135 .

• len(string) – Expands to the
length of string.

• index(string , substring) –
Expands to the index of the first occur-

rence of substring in string. It returns -1 , if there are no
occurrences. Note: The first character of a string is at index
zero.

• substr(string , index , length) – Expands to the
substring of string, which starts at index and is length characters
long. If the length is missing, the substring contains characters
to the end of string.

• translit(string , chars , replacement) –
Expands to string with characters in chars replaced by the
corresponding characters in replacement.

There are a few more commands in AIX’s M4, and quite a
few more in GNU’s M4, but these will give us something to
work with to explore the power of the language. For more
information, consult the M4 man page. Also, check out one
of the M4 Web documentation sites. One is http://www.

stat.ucla.edu/develop/gnu/m4_toc.html . These
sites describe the GNU M4, but most commands that also
exist on the AIX M4 work the same way. I don’t know of any
books dedicated to M4.

Using M4
Here’s an example of how we can use M4’s language to

write a macro to do loops. We’ll define the macro

for(var ,

60 SunExpert Magazine ■ January 1998

Q&AIX

start , end ,

procedure)

such that the procedure is expanded for each value of var from
start to end. For example,

for(`x’,1,5,`

x squared = eval(x**2)’)

would expand to

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

5 squared = 25

Notice a couple of fine points: The first x is quot-
ed, which prevents it from being expanded too
soon; and there is a new line in the procedure part,
which gives us a new line at the start of each
iteration.

Figure 1 shows the definition of the for macro.
In Figure 1 and in Figure 2, I have included line
breaks and leading spaces in the definitions. This
is only to help show the structure of the macros.
Actual M4 macro definitions almost never have
spaces or line breaks. Also, note that I have made
use of the `C’ comment macro.

In Figure 1, we have added a break macro to
provide an escape from the loop. See if you can fig-
ure out how this macro works. It uses a couple of
techniques common to macro programming. The
public for macro just sets up some parameters and
then calls the private _for macro to do all the
work. The private _for macro performs the loop
function by conditionally re-expanding to itself.

Let’s demonstrate use of this new loop function,
in a sublime sort of way, by writing a prime num-
ber macro. All real programmers write prime num-
ber programs in every language. It also demon-
strates the use of the for loop and complex macro
programming, and it could conceivably be useful.
Many programs, M4 included, allow you to specify
a hash size on the command line. This hash size is
supposed to be prime. How do you find a prime?
Use the nextprime M4 macro. It expands to the
next higher prime number from the argument. For
example,

cmd -H nextprime(50000)

will expand to

cmd -H 50021

Figure 2 shows the definition of nextprime . Once
more, the indentation is illustrative only. Don’t include
spaces in a real M4 macro unless you mean them.

The macro in Figure 2 uses the same recursive technique
as Figure 1. See if you can figure out how it works. We break
out of the for loop if we find a factor (the `t’ test) or we

Figure 1. M4 Loop Macro Definition

C
C *** for loop ***
C
C usage: for(var,start,end,procedure)
C
define(for,`undefine(`_break’)

define(`$1’,`$2’)
_for(`$1’,`$2’,`$3’,`$4’)’)dnl

C
define(_for,`$4`’ifelse($1,`$3’,,

`ifdef(`_break’,,
`define(`$1’,incr($1))

_for(`$1’,`$2’,`$3’,`$4’)’)’)’)dnl
define(`break’,`define(`_break’)’)dnl

Figure 2. M4 nextprime Macro

C *** M4 prime number finder ***
C
C usage: nextprime(number)
C
C expands to: next prime >= number
C
define(nextprime,`undefine(`_done’)

for(`j’,2,$1,
`define(`t’,eval($1%j))

ifelse(t,0,`break()’)
define(`s’,eval($1-j*j))
ifelse(substr(s,0,1),`-’,

`define(`_done’,`d’)break’)’)
ifdef(`_done’,$1,

`nextprime(incr($1))’)’)dnl
C

Figure 3. Useful Definitions Passed from
fvwm2 to the M4 Preprocessor

WIDTH Width of screen in pixels
HEIGHT Height of screen in pixels
BITS_PER_RGB Number of colors available
COLOR “Yes” or “No”
USER User name
OSTYPE Operating system (“AIX” for all

versions of AIX)

SunExpert Magazine ■ January 1998 61

Q&AIX

go past the square root of the number. Recall from your
number theory studies that a composite number must have a
factor less than or equal to its square root.

Using M4 with fvwm
Now that you’ve become accustomed to the M4 macro

languages, writing that .fvwm2rc file in M4 will be a piece
of cake. When fvwm2 runs the M4 preprocessor, it defines
several names, which you can use in your file. The most use-
ful of these are shown in Figure 3. See the FvwmM4 man
page for the rest.

Here is how we would use M4 to do the simple task shown
last month. Suppose you work at various locations, where there
are different size X terminals, maybe a large-screen terminal at
your office and a smaller one at home. You might want to use
different fonts, depending on the size of your screen. You could
make some definitions related to screen size at the start of your
rc file. We’ll do things slightly differently this time.

Define screen sizes

ifelse(eval(WIDTH/1500),1,

`define(`BIG_SCREEN’)

define(`FONT’,7x13)’,

eval(WIDTH/1200),1,

`define(`MID_SCREEN’)

define(`FONT’,6x12)’,

eval(WIDTH/1000),1,

`define(`SMALL_SCREEN’)

define(`FONT’,6x10)’,

`define(`TINY_SREEN’)

define(`FONT’,6x10)’)

Now we can make direct use of the FONTmacro

WindowFont FONT

Be sure to start fvwm2 with the M4 option:

fvwm2 -cmd "FvwmM4 rc_file "

Some documentation tells you to use the -f option for this
command, but that won’t work–you have to use -cmd , you
have to use the quotes and you have to specify the rc file.
Also, a couple of documented options work only if you have
the GNU version of M4, notably the “-m4-prefix” option.

* * * * *

There are probably other good uses of M4. Perhaps you
can think of something. Let me know.

If you would like to try these macros, you can find them all
at http://weber.u.washington.edu/ ~fox/M4/ . ✒

	M4 - A More Powerful Macro
	M4 Macros
	Using M4
	Figure 1. M4 Loop Macro Definition
	Figure 2. M4 nextprime Macro

	Using M4 with fvwm
	Figure 3. Useful Definitions Passed from fvwm2 to the M4 Preprocessor

