Arithmetic Routines for Floats Category

Various Routines for Manipulating Floating Point types

Routines
AdjustAngleDegreeAdjusts a value in Degrees, so that it lies in between 0 and 360.
AdjustAngleRadAdjusts a value in Radians, so that it lies in between 0 and 2 * Pi.
BetaReturns Beta(X,Y) using a Series Expansion for 1/Gamma (X) as defined in Abramowitz & Stegun.
BuildFromPartsReturns an Extended constructed from a Mantissa and Exponent base 10.
Deg2DMSConverts Degrees as Decimal into Degrees/Minutes/Seconds.
Deg2GradConverts Degrees into Gradients.
Deg2RadConverts Degrees into Radians.
DMS2DegConverts Degrees/Minutes/Seconds into Degrees as Decimal.
ESBArcCosGiven a Value returns the Angle whose Cosine it is, in Radians.
ESBArcCosDegGiven a Value returns the Angle whose Cosine it is, in Degrees.
ESBArcCosecGiven a Value returns the Angle whose Cosecant it is, in Radians.
ESBArcCosecDegGiven a Value returns the Angle whose Cosecant it is, in Degrees.
ESBArCosechReturns the inverse hyperbolic cosecant of X.
ESBArCoshReturns the inverse hyperbolic cosine of X.
ESBArCothReturns the inverse hyperbolic cotangent of X.
ESBArcSecGiven a Value returns the Angle whose Secant it is, in Radians.
ESBArcSecDegGiven a Value returns the Angle whose Secant it is, in Degrees.
ESBArcSinGiven a Value returns the Angle whose Sine it is, in Radians.
ESBArcSinDegGiven a Value returns the Angle whose Sine it is, in Degrees.
ESBArcTanReturns the ArcTangent of Y / X - Result is in Radians.
ESBArcTanDegReturns the ArcTangent of Y / X - Result is in Degrees.
ESBArcTanDeg2Given a Value returns the Angle whose Tangent it is, in Degrees.
ESBArSechReturns the inverse hyperbolic secant of X.
ESBArSinhReturns the inverse hyperbolic sine of X.
ESBArTanhReturns the inverse hyperbolic tangent of X.
ESBCosDegReturns Cosine of Angle given in Degrees.
ESBCosecReturns CoSecant of the Angle given in Radians.
ESBCosecDegReturns Cosecant of Angle given in Degrees.
ESBCosechReturns the hyperbolic cosecant of X.
ESBCoshReturns the hyperbolic cosine of X.
ESBCotReturns CoTangent of the Angle given in Radians.
ESBCotDegReturns Cotangent of Angle given in Degrees.
ESBCothReturns the hyperbolic cotangent of X.
ESBFloorReturns the Floor of X, ie Integral Value Below.
ESBIntPowerRaises Values to an Integer Power.
ESBLog10Returns Logarithm of X to Base 10.
ESBLog2Returns Logarithm of X to Base 2.
ESBLogBaseReturns Logarithm of X to Given Base.
ESBModReturns Floating Point Modulus, given as X - ESBFloor ( X / Y ) * Y.
ESBRemReturns Floating Point Remainder, given as X - Int ( X / Y ) * Y.
ESBSecReturns Secant of the Angle given in Radians.
ESBSecDegReturns Secant of Angle given in Degrees.
ESBSechReturns the hyperbolic secant of X.
ESBSignReturns the Sign of the Value.
ESBSinCosFast Computation of Sin and Cos, where Angle is in Radians.
ESBSinCosDegFast Computation of Sin and Cos, where Angle is in Degrees.
ESBSinDegReturns Sine of Angle given in Degrees.
ESBSinhReturns the hyperbolic sine of X.
ESBTanReturns Tangent of Angle given in Radians.
ESBTanDegReturns Tangent of Angle given in Degrees.
ESBTanhReturns the hyperbolic tangent of X.
ExtractPartsReturns an Extended as its Mantissa and Exponent base 10.
GammaReturns Gamma(X) using a Series Expansion for 1/Gamma (X) as defined in Abramowitz & Stegun.
GetRoundingTypeGet the Current Rounding Type.
Grad2DegConverts Gradients into Degrees.
Grad2RadConverts Gradients into Radians.
HermiteReturns a Hermite Polynomial of order N evaluated at X.
IncompleteBetaReturns the Incomplete Beta Ix(P, Q), where 0 <= X <= 1 and P and Q are positive.
InverseGammaReturns 1/Gamma(X) using a Series Expansion as defined in Abramowitz & Stegun.
LnBetaReturns the Natural Logarithm of Beta(X,Y) using a LnGamma (X) as defined above.
LnGammaLogarithm to base e of the gamma function.
MaxWXYZReturns the Maximum of 4 Values.
MaxXYReturns the Maximum of 2 Values.
MinWXYZReturns the Minimum of 4 Values.
MinXYZReturns the Minimum of 3 Values.
Rad2DegConverts Radians into Degrees.
Rad2GradConverts Radians into Gradients.
RoundDPReturns X rounded to the given number of Decimal Places.
SetRoundingTypeAllows you to change the Current Rounding Type.
SignXYReturns the FORTRAN type SIGN of the Values - basically it returns a value with the Magnitude of X and the Sign of Y.
SolveQuadraticSolves a Quadratic Equation of the form AX^2 + BX + C = 0.
TenToYReturns 10^Y - handles all cases.
TwoToYReturns 2^Y - handles all cases.
XtoYReturns X^Y - handles all cases (except those mentioned below).
Random_BetaFunction generates a Random variate in [0,1] from a Beta Distribution with density proportional to BETA**(AA-1) * (1-BETA)**(BB-1).
Random_Binomial1Function generates a Random Binomial Variate using C D Kemp's method.
Random_Binomial2Generates a single random deviate from a binomial distribution whose number of trials is N and whose probability of an event in each trial is P.
Random_CauchyGenerate a random variant from the standard Cauchy distribution.
Random_ChiSqGenerates a random variate from the Chi-Squared Distribution with given degrees of freedom.
Random_ExponentialFunction generates a Random Variate in [0, Infinity) from a negative exponential distribution with density proportional to EXP (-random_exponential), using Inversion.
Random_GammaFunction generates a Random Gamma Variate.
Random_Inv_GaussFunction generates a Random Variate in [0, Infinity) from a reparameterised generalised inverse Gaussian (GIG) Distribution with Density proportional to GIG**(H-1) * EXP(-0.5*B*(GIG+1/GIG)) using a ratio method.
Random_MVNormRoutine to generate an N-Variate Random Normal Vector using a Cholesky Decomposition.
Random_Neg_BinomialFunction generates a Random Negative Binomial variate.
Random_NormalThe function random_normal() returns a normally distributed pseudo-random number with zero mean and unit variance.
Random_PoissonGenerates a single random deviate from a Poisson distribution with mean mu.
Random_TFunction generates a random variate from a Student T Distribution using Kinderman and Monahan;s Ratio Method.
Random_von_MisesFunction generates a Random von Mises Variate.
Random_WeibullGenerates a random variate from the Weibull distribution with probability density: a a-1 -x f(x) = a.x e
iffPerforms an if that can be used in Expressions.
SwapXYSwap 2 Values using a Temp Value.


HTML generated by Time2HELP
http://www.time2help.com