IPNetwork Components for Delphi 32

Do not be fooled by the simplicity of what you are about to read. The components contained within IPNetwork are very sophisticated pieces of software. They are based on over four months of development and designed to work on large scale industrial based networks. There interface is fully automated, after some initial set-up they take care of them selves.

Summary

Most large scale databases employ a Client / Server methodology in one form or another. It gives the means to a very efficient way of storing and retrieving data. The IPNetwork components achieve much more than just networked data transfer - Automatic connection recovery which is transparent to the user and when data is sent it is guaranteed to get there.

Introduction

These components were designed to work on a Windows® 95 Peer to Peer TCP/IP network using the Paradox database format. They will run on any Windows® 95 network which uses the TCP/IP protocol driven by WSOCK32.DLL supplied by Microsoft with Windows® 95. Indeed this is what the components are presently running ‘live’ on industrial based customer sites.

Why?

This network set-up was chosen because:

Windows® 95 has peer-to-peer networking capabilities already build in to it’s operating system. This allows for an inexpensive network.

The Paradox engine is royalty free and very quick.

TCP/IP is a very widely used protocol for good reasons. The Internet is based upon it.

Networking

A typical network set-up would involve one or more servers and one or more clients. One server is usually the dominant database. Each client and server is wired into the network where they can pass data, files and messages to one another.

The problem arises when the server or nodes are disconnected. This could be due to cable faults, server failure, network devices failing or nodes are just not powered on. Data can not be transferred to a machine which is not on-line.

One solution to this problem is to cache the data and wait until the destination node is on-line. That’s what these components do, without the need for you to writing any code.

One major difference between a standard Client / Server network and the IPNetwork components is multiple server technology (figure 1.0). In a normal situation when your server fails a client would usually wait for the server to come back on-line. The IPNetwork components are designed to work on a multiple server / multiple client connection. A server and a client can inhabit the same network node and many servers can coexist on the same network with many clients.

� EMBED MSDraw.1.01 ���figure 1.0

All data is passed and shared equally among all servers. So, if one or more servers are disconnected the client would not see any difference in data access, as long as at least one server is still active. When servers and clients come on-line they are automatically updated.

IPNetwork

The programming interface to these components is very simple, requiring very little knowledge of TCP/IP to achieve data and file transfers. Figure 1.1 show the object model for the IPNetwork components.

�figure 1.1

The TIPServer and TIPClient components are the only two you need to understand and use to achieve a networked application.

Data is transferred between nodes in a very secure fashion. A live cached copy of the data to be transferred is held locally and only removed when the destination node has responded with a message to say that the data was received and committed to disk. All BDE caches are flush and committed to disk upon each write. This is to ensure that power failures will not corrupt data transfers.

Windows® 95 also caches data before writing to disk. This is nice to speed up writing to disk, but very bad if the power fails, due to any data left in memory is lost for ever. There are two ways round this problem. The first is to provide a UPS. The second is to turn off this caching function. To do this select System from the control panel, select the Performance tab, select the File System button, followed by the Troubleshooting tab and finally check the box for Disable write-behind caching for all drives. This does slow down the system slightly, but does make your data much safer. In an environment where data integrity is vital, a data guarantor is much more important than speed.

�TIPServer

Simply drop this component onto the from and set the list of IP addresses for all the clients and all the servers on the network. These addresses can be set at runtime or design time. In your code call the BootServer procedure, this will cause the server to start listening for clients.

{ list }

Properties

ClientIPAddrList: TStrings;

ServerIPAddrList: TStrings;

ThisIPAddr: String;

Methods

procedure BootServer;

procedure GetClientLiveList(var lstAddress: TStringList);

procedure GetServerLiveList(var lstAddress: TStringList);

procedure SendFileToServer(IPAddress: String; sDestFilename, sSrcFilename: String);

procedure SendDataToServer(IPAddress: String; pData: PChar; DataLen: Integer);

procedure SendFileToClient(IPAddress: String; sDestFilename, sSrcFilename: String);

procedure SendDataToClient(IPAddress: String; pData: PChar; DataLen: Integer);

procedure BroadcastDataToAllClients(pData: PChar; DataLen: Integer);

procedure BroadcastDataToAllServers(pData: PChar; DataLen: Integer);

Events

OnClientClosed(Sender: TObject; IPAddress: String);

OnClientConnect(Sender: TObject; IPAddress: String);

OnClientError(Sender: TObject; IPAddress: String; ErrorNo: Integer; ErrorMsg: String);

OnClientMessage(Sender: TObject; IPAddress: String; MsgNo: Integer; Msg: String);

OnDataReceived(Sender: TObject; IPAddress: String; pData: PChar; Size: Integer);

OnDataSend(Sender: TObject; pData: PChar; Size, Socket, BlockID, TotalProgress: Integer);

OnProgress(Sender: TObject; ProgressNo: Integer);

OnFileReceived(Sender: TObject; Filename, IPAddress: String);

OnFileSend(Sender: TObject; Filename, IPAddress: String; TotalProgress: Integer);

OnServerClosed(Sender: TObject; IPAddress: String);

OnServerConnect(Sender: TObject; IPAddress: String);

OnServerError(Sender: TObject; IPAddress: String; ErrorNo: Integer; ErrorMsg: String);

OnServerMessage(Sender: TObject; IPAddress: String; MsgNo: Integer; Msg: String);

{ explanation }

Properties

ClientIPAddrList: TStrings;

A string list of all Client addresses which will attach to this Server. This list can be set at design time or runtime. Do not alter this list after the server has been booted.

ServerIPAddrList: TStrings;

A string list of all Server addresses which will attach to this Server. This list can be set at design time or runtime. Do not alter this list after the server has been booted.

ThisIPAddr: String;

(new to version 1.1) A problem can arise if more than one TCP/IP protocol has been set up within Windows. The components have a choice of two address to choose from. ThisIPAddr can be used to override the default address before boot up.

Methods

procedure BootServer;

After the IP addresses have been set-up for both clients and servers, this procedure should be the first to be called. The server will start listening for clients and servers which want to connect. When a connection is established any data updates the server has for the connecting node are sent.

function GetThisServerIPAddr: String;

(new to version 1.1) Prior to Server boot up, the IP address can be overridden using the ThisIPAddr property in conjunction with GetThisServerIPAddr which will return the TCP/IP address selected by TIPServer.

procedure GetClientLiveList(var lstAddress: TStringList);

Call this procedure to acquire a list of all currently active and connected clients. After calling, lstAddress will contain a list of all the connected client’s IP addresses.

procedure GetServerLiveList(var lstAddress: TStringList);

Call this procedure to acquire a list of all currently active and connected servers. When a network is configured to use multiple servers each server connects to each other. After calling lstAddress will contain a list of all the connected server’s IP addresses.

procedure SendFileToServer(IPAddress: String; sDestFilename, sSrcFilename: String);

IPAddress contains the destination server IP address. Both sDestFilename and sSrcFilename are fully qualified drive, path and filenames.

NOTE: If the destination node is not on-line only the filenames are cached. The procedure will fail if the files are moved or delete before the transfer is complete.

procedure SendDataToServer(IPAddress: String; pData: PChar; DataLen: Integer);

IPAddress contains the destination server IP address. pData contains a pointer to a block of data and DataLen is how long, in bytes, the block is.

NOTE: Do not use this procedure to passed data which is to be stored, that’s the job of BroadcastDataToAllServers. By doing so you will disrupt the consistency of data between all the servers on the network.

procedure SendFileToClient(IPAddress: String; sDestFilename, sSrcFilename: String);

IP address contains the destination client IP address. Both sDestFilename and sSrcFilename are fully qualified drive, path and filenames.

NOTE: If the destination node is not on-line only the filenames are cached. The procedure will fail if the files are moved or delete before the transfer is complete.

procedure SendDataToClient(IPAddress: String; pData: PChar; DataLen: Integer);

IPAddress contains the destination server IP address. pData contains a pointer to a block of data and DataLen is how long, in bytes, the block is.

procedure BroadcastDataToAllClients(pData: PChar; DataLen: Integer);

pData contains a pointer to a block of data and DataLen is how long, in bytes, the block is.

No IP addresses are required. The data is sent to all clients contained in the client list in the properties whether they are connected or not. If a client is off-line they will be updated as and when the log into the network.

procedure BroadcastDataToAllServers(pData: PChar; DataLen: Integer);

pData contains a pointer to a block of data and DataLen is how long, in bytes, the block is. No IP addresses are required. The data is sent to all servers contained in the server list in the properties whether they are connected or not.

Events

OnClientClosed(Sender: TObject; IPAddress: String);

A client has been disconnected. The IPAddress contains the disconnected client. This IP address is stricken from the live list.

OnClientConnect(Sender: TObject; IPAddress: String);

A client has connected to this server. The IPAddress contains the new client’s IP address which is added to the live list.

OnClientError(Sender: TObject; IPAddress: String; ErrorNo: Integer; ErrorMsg: String);

The IPAddress contains the IP address of the client which is in error. The ErrorMsg is a string which explains the error. An error could be either preceeded or followed by an OnClientClosed event. The ErrorNo is for future enhancement. The error message will be one of the following standard WinSock error descriptors;

�'Interrupted system call';

'Bad file number';

'Permission denied';

'Bad address';

'Invalid argument';

'Too many open files';

'Operation would block';

'Operation now in progress';

'Operation already in progress';

'Socket operation on non-socket';

'Destination address required';

'Message too long';

'Protocol wrong type for socket';

'Protocol not available';

'Protocol not supported';

'Socket type not supported';

'Operation not supported on socket';

'Protocol family not supported';

'Address family not supported by protocol family';

'Address already in use';

'Can't assign requested address';

'Network is down';

'Network is unreachable';

'Network dropped connection on reset';

'Software caused connection abort';

'Connection reset by peer';

'No buffer space available';

'Socket is already connected';

'Socket is not connected';

'Can't send after socket shutdown';

'Too many references: can't splice';

'Connection timed out';

'Connection refused';

'Too many levels of symbolic links';

'File name too long';

'Host is down';

'No route to host';

'Directory not empty';

'Too many processes';

'Too many users';

'Disc quota exceeded';

'Stale NFS file handle';

'Too many levels of remote in path';

'Network sub-system is unusable';

'WinSock DLL cannot support this application';

'WinSock not initialized';

'Host not found';

'Non-authoritative host not found';

'Non-recoverable error';

'No Data';

'Not a WinSock error’

�OnClientMessage(Sender: TObject; IPAddress: String; MsgNo: Integer; Msg: String);

The IPAddress contains the IP address of the client which caused the message. The Msg is a string which explains the message. The message will be one of the following;

'Node is turned on but not communicating, will try to connect',

'Node is not switched on, will wait',

'Node has stop communicating, will try to reconnect',

'Message was blocked, will wait for clearance'

These messages are not fatal and can be recovered from automatically by the components.

OnDataReceived(Sender: TObject; IPAddress: String; pData: PChar; Size: Integer);

IPAddress contains the IP address of a client or server which has sent data. pData points to a block of memory which holds the data and Size is the length of the data block. The data should be copied somewhere safe before leaving the event’s procedure.

OnDataSend(Sender: TObject; pData: PChar; Size, Socket, BlockID, TotalProgress: Integer);

pData points to a block memory which holds the data. Size is the length of the data block. BlockID is the unique ID for this block of data for this session. TotalProgress is the number of packets the block contains.

This event is triggered just before the data is sent. The TotalProgress value can be used to set a progress bar’s maximum. When each packet is sent an OnProgress event is triggered which holds the number of the last packet sent.

OnProgress(Sender: TObject; ProgressNo: Integer);

ProgressNo is the packet number of the last packet sent. It is triggered when either data or files are in the process of being sent. A progress bar can be updated with this value. The initial progress bar’s maximum value is set from the OnDataSend and OnFileSend events.

OnFileReceived(Sender: TObject; Filename, IPAddress: String);

Filename is a fully qualified drive, path and filename which contains the name and location of the newly transferred file. IPAddress is the IP address from where the file came.

When all the packets of a file have been transferred and committed to disk this event is triggered to signify that the transfer is complete.

OnFileSend(Sender: TObject; Filename, IPAddress: String; TotalProgress: Integer);

Filename is fully qualified drive, path and filename. TotalProgress is the number of packets the file contains.

This event is triggered just before the file is sent. The TotalProgress value can be used to set a progress bar’s maximum. When each packet is sent an OnProgress event is triggered which holds the number of the last packet sent.

OnServerClosed(Sender: TObject; IPAddress: String);

IPAddress is the IP address of another server which has just disconnected. A OnServerMessage or OnServerError event could proceed or follow this event. The IP address is stricken from the live server list.

OnServerConnect(Sender: TObject; IPAddress: String);

IPAddress is the IP address of another server on the network which has just connected to this server.

OnServerError(Sender: TObject; IPAddress: String; ErrorNo: Integer; ErrorMsg: String);

The IPAddress contains the IP address of the server which is in error. The ErrorMsg is a string which explains the error. An error could be either preceeded or followed by an OnServerClosed event. The ErrorNo is for future enhancement. The error message will be one of the following standard WinSock error descriptors as listed on the OnClientError section of this file.

OnServerMessage(Sender: TObject; IPAddress: String; MsgNo: Integer; Msg: String);

The IPAddress contains the IP address of the server which caused the message. The Msg is a string which explains the message. The message will be one of the following;

'Node is turned on but not communicating, will try to connect',

'Node is not switched on, will wait',

'Node has stop communicating, will try to reconnect',

'Message was blocked, will wait for clearance'

These messages are not fatal and can be recovered from automatically by the components.

�TIPClient

Simply drop this component onto the from and set the list of IP addresses for all the servers on the network. This address list can be set at runtime or design time. In the code call the EstablishConnection procedure, this will cause the client to connect to all the servers listed in the ServerIPAddrList. The connection attempt will be repeated every two seconds until a successful connection has been established.

{ list }

Properties

ServerIPAddrList: TStrings

Methods

procedure EstablishConnection;

procedure DisconnectFromAllServers;

function GetOneConnectedServer: String;

procedure SendDataToOneServer(IPAddress: String; pData: PChar; DataLen: Integer);

procedure BroadcastDataToAllServers(pData: PChar; DataLen: Integer);

procedure SendFileToOneServer(IPAddress, sDestFilename, sSrcFilename: String);

Events

OnClientError(Sender: TObject; IPAddress: String; ErrorNo: Integer; ErrorMsg: String);

OnClientMessage(Sender: TObject; IPAddress: String; MsgNo: Integer; Msg: String);

OnDataReceived(Sender: TObject; IPAddress: String; pData: PChar; Size: Integer);

OnDataSend(Sender: TObject; pData: PChar; Size, Socket, BlockID, TotalProgress: Integer);

OnProgress(Sender: TObject; ProgressNo: Integer);

OnFileReceived(Sender: TObject; Filename, IPAddress: String);

OnFileSend(Sender: TObject; Filename, IPAddress: String; TotalProgress: Integer);

OnServerClosed(Sender: TObject; IPAddress: String);

OnServerConnect(Sender: TObject; IPAddress: String);

{ explanation }

Properties

ServerIPAddrList: TStrings

A string list of all Server addresses which will attach to this Client. This list can be set at design time or runtime. Do not alter this list after EstablishConnection has been called.

Methods

procedure EstablishConnection;

This is the first procedure to be called. The client will attempt to connect to all the servers contained in the Server IP Address List. If any of the connection attempts fail they will be retried every two seconds.

procedure DisconnectFromAllServers;

(new to version 1.2) This will disconnect from all servers and not try to auto-reconnect. This procedure complements EstablishConnection.

HINT: If you wish the server to disconnect from the client then simply broadcast a message to all client instructing them to disconnect.

function GetOneConnectedServer: String;

When a request for information from a server is made only one server on the network is required. It is unnecessary for all the servers to respond with the same information. This function will return the first live and connected server’s IP address on the network contained in the list.

procedure SendDataToOneServer(IPAddress: String; pData: PChar; DataLen: Integer);

IPAddress contains the destination server’s IP Address. pData points to a block of memory which holds the data. DataLen is the length of the data block in bytes.

You can use this procedure in-conjunction with GetOneConnectedServer to send a request for data from a single server rather than requesting the same data from all servers.

procedure BroadcastDataToAllServers(pData: PChar; DataLen: Integer);

pData points to a block of memory. DataLen is the length of the data block.

To update the servers with data this is the procedure to use. It will transmit the data to all servers contained in the list. If any of the servers are off-line they will be updated as and when they log into the network.

procedure SendFileToOneServer(IPAddress, sDestFilename, sSrcFilename: String);

IP address contains the destination server IP address. Both sDestFilename and sSrcFilename are fully qualified drive, path and filenames.

NOTE: If the destination node is not on-line only the filenames are cached. The procedure will fail if the files are moved or delete before the transfer is complete.

Events

OnClientError(Sender: TObject; IPAddress: String; ErrorNo: Integer; ErrorMsg: String);

The IPAddress contains the IP address of the server which is in error. The ErrorMsg is a string which explains the error. An error could be either preceeded or followed by an OnServerClosed event. The ErrorNo is for future enhancement. The error message will be one of the following standard WinSock error descriptors;

�'Interrupted system call';

'Bad file number';

'Permission denied';

'Bad address';

'Invalid argument';

'Too many open files';

'Operation would block';

'Operation now in progress';

'Operation already in progress';

'Socket operation on non-socket';

'Destination address required';

'Message too long';

'Protocol wrong type for socket';

'Protocol not available';

'Protocol not supported';

'Socket type not supported';

'Operation not supported on socket';

'Protocol family not supported';

'Address family not supported by protocol family';

'Address already in use';

'Can't assign requested address';

'Network is down';

'Network is unreachable';

'Network dropped connection on reset';

'Software caused connection abort';

'Connection reset by peer';

'No buffer space available';

'Socket is already connected';

'Socket is not connected';

'Can't send after socket shutdown';

'Too many references: can't splice';

'Connection timed out';

'Connection refused';

'Too many levels of symbolic links';

'File name too long';

'Host is down';

'No route to host';

'Directory not empty';

'Too many processes';

'Too many users';

'Disc quota exceeded';

'Stale NFS file handle';

'Too many levels of remote in path';

'Network sub-system is unusable';

'WinSock DLL cannot support this application';

'WinSock not initialized';

'Host not found';

'Non-authoritative host not found';

'Non-recoverable error';

'No Data';

'Not a WinSock error’

�OnClientMessage(Sender: TObject; IPAddress: String; MsgNo: Integer; Msg: String);

The IPAddress contains the IP address of the server which caused the message. The Msg is a string which explains the message. The message will be one of the following;

'Node is turned on but not communicating, will try to connect',

'Node is not switched on, will wait',

'Node has stop communicating, will try to reconnect',

'Message was blocked, will wait for clearance'

These messages are not fatal and can be recovered from automatically by the components.

OnDataReceived(Sender: TObject; IPAddress: String; pData: PChar; Size: Integer);

IPAddress contains the IP address of a server which has sent data. pData points to a block of memory which holds the data and Size is the length of the data block. The data should be copied somewhere safe before leaving the event’s procedure.

OnDataSend(Sender: TObject; pData: PChar; Size, Socket, BlockID, TotalProgress: Integer);

pData points to a block memory which holds the data. Size is the length of the data block. BlockID is the unique ID for this block of data for this session. TotalProgress is the number of packets the block contains.

This event is triggered just before the data is sent. The TotalProgress value can be used to set a progress bar’s maximum. When each packet is sent an OnProgress event is triggered which holds the number of the last packet sent.

OnProgress(Sender: TObject; ProgressNo: Integer);

ProgressNo is the packet number of the last packet sent. It is triggered when either data or files are in the process of being sent. A progress bar can be updated with this value. The initial progress bar’s maximum value is set from the OnDataSend and OnFileSend events.

OnFileReceived(Sender: TObject; Filename, IPAddress: String);

Filename is a fully qualified drive, path and filename which contains the name and location of the newly transferred file. IPAddress is the IP address from where the file came.

When all the packets of a file have been transferred and committed to disk this event is triggered to signify that the transfer is complete.

OnFileSend(Sender: TObject; Filename, IPAddress: String; TotalProgress: Integer);

Filename is fully qualified drive, path and filename. TotalProgress is the number of packets the file contains.

This event is triggered just before the file is sent. The TotalProgress value can be used to set a progress bar’s maximum. When each packet is sent an OnProgress event is triggered which holds the number of the last packet sent.

OnServerClosed(Sender: TObject; IPAddress: String);

IPAddress is the IP address of a server which has just disconnected. A OnClientMessage or OnClientError event could proceed or follow this event. The IP address is stricken from the live server list.

OnServerConnect(Sender: TObject; IPAddress: String);

IPAddress is the IP address of a server on the network which has just connected to this client.

� PAGE �7�

IPNetwork

© 1997 Stewart James Limited

