pyspark.sql.functions.log¶
-
pyspark.sql.functions.
log
(arg1: Union[ColumnOrName, float], arg2: Optional[ColumnOrName] = None) → pyspark.sql.column.Column[source]¶ Returns the first argument-based logarithm of the second argument.
If there is only one argument, then this takes the natural logarithm of the argument.
New in version 1.5.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- Returns
Column
logariphm of given value.
Examples
>>> df = spark.createDataFrame([10, 100, 1000], "INT") >>> df.select(log(10.0, df.value).alias('ten')).show() +---+ |ten| +---+ |1.0| |2.0| |3.0| +---+
And Natural logarithm
>>> df.select(log(df.value)).show() +-----------------+ | ln(value)| +-----------------+ |2.302585092994046| |4.605170185988092| |4.605170185988092| +-----------------+