Library ClosestProp
Require Export FroundProp.
Require Export Closest.
Section Fclosestp2.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
Theorem ClosestOpp :
forall (p : float) (r : R),
Closest b radix r p -> Closest b radix (- r) (Fopp p).
Theorem ClosestFabs :
forall (p : float) (r : R),
Closest b radix r p -> Closest b radix (Rabs r) (Fabs p).
Theorem ClosestUlp :
forall (p : R) (q : float),
Closest b radix p q -> (2%nat * Rabs (p - q) <= Fulp b radix precision q)%R.
Theorem ClosestExp :
forall (p : R) (q : float),
Closest b radix p q -> (2%nat * Rabs (p - q) <= powerRZ radix (Fexp q))%R.
Theorem ClosestErrorExpStrict :
forall (p q : float) (x : R),
Fbounded b p ->
Fbounded b q ->
Closest b radix x p ->
q = (x - p)%R :>R -> q <> 0%R :>R -> (Fexp q < Fexp p)%Z.
Theorem ClosestIdem :
forall p q : float, Fbounded b p -> Closest b radix p q -> p = q :>R.
Theorem ClosestM1 :
forall (r1 r2 : R) (min max p q : float),
isMin b radix r1 min ->
isMax b radix r1 max ->
(min + max < 2%nat * r2)%R ->
Closest b radix r1 p -> Closest b radix r2 q -> (p <= q)%R.
Theorem FmultRadixInv :
forall (x z : float) (y : R),
Fbounded b x ->
Closest b radix y z -> (/ 2%nat * x < y)%R -> (/ 2%nat * x <= z)%R.
Theorem ClosestErrorBound :
forall (p q : float) (x : R),
Fbounded b p ->
Closest b radix x p ->
q = (x - p)%R :>R -> (Rabs q <= Float 1%nat (Fexp p) * / 2%nat)%R.
Theorem ClosestErrorExp :
forall (p q : float) (x : R),
Fbounded b p ->
Fbounded b q ->
Closest b radix x p ->
q = (x - p)%R :>R ->
exists error : float,
Fbounded b error /\
error = q :>R /\ (Fexp error <= Zmax (Fexp p - precision) (- dExp b))%Z.
Theorem ClosestErrorBoundNormal_aux :
forall (x : R) (p : float),
Closest b radix x p ->
Fnormal radix b (Fnormalize radix b precision p) ->
(Rabs (x - p) <= Rabs p * (/ 2%nat * (radix * / Zpos (vNum b))))%R.
Theorem ClosestErrorBound2 :
forall (x : R) (p : float),
Closest b radix x p ->
(Rabs (x - p) <=
Rmax (Rabs p * (/ 2%nat * (radix * / Zpos (vNum b))))
(/ 2%nat * powerRZ radix (- dExp b)))%R.
Theorem ClosestErrorBoundNormal :
forall (x : R) (p : float),
Closest b radix x p ->
Fnormal radix b (Fnormalize radix b precision p) ->
(Rabs (x - p) <= Rabs p * (/ 2%nat * powerRZ radix (Zsucc (- precision))))%R.
Theorem ClosestPropHigham25 :
forall (x : R) (p : float),
Closest b radix x p ->
exists delta : R,
(exists nu : R,
(x / (1 + delta) + nu)%R = FtoRradix p /\
(Rabs delta <= / 2%nat * powerRZ radix (Zsucc (- precision)))%R /\
(Rabs nu <= / 2%nat * powerRZ radix (- dExp b))%R /\
(delta * nu)%R = 0%R /\
(Fnormal radix b (Fnormalize radix b precision p) -> nu = 0%R) /\
(Fsubnormal radix b (Fnormalize radix b precision p) -> delta = 0%R)).
Theorem FpredUlpPos :
forall x : float,
Fcanonic radix b x ->
(0 < x)%R ->
(FPred b radix precision x +
Fulp b radix precision (FPred b radix precision x))%R = x.
Theorem FulpFPredLe :
forall f : float,
Fbounded b f ->
Fcanonic radix b f ->
(Fulp b radix precision f <=
radix * Fulp b radix precision (FPred b radix precision f))%R.
Theorem ClosestErrorBoundNormal2_aux :
forall (x : R) (p : float),
Closest b radix x p ->
Fnormal radix b p ->
Fnormal radix b (Fnormalize radix b precision (FPred b radix precision p)) ->
(0 < x)%R ->
(x < p)%R ->
(Rabs (x - p) <= Rabs x * (/ 2%nat * powerRZ radix (Zsucc (- precision))))%R.
End Fclosestp2.
Hint Resolve ClosestOpp ClosestFabs ClosestUlp: float.