Python Library Reference
Release 2.4.2

Guido van Rossum
Fred L. Drake, Jr., editor

28 September 2005

Python Software Foundation
Email: docs@python.org

Copyright(© 2001-2004 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manudéscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file 1/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuemains the highest authority on syntactic and semantic questions.
Finally, the manual entitleExtending and Embedding the Python Interpretescribes how to add new extensions

to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCLioNS L e e e 3
2.2 Non-essential Built-in Functions. 14
2.3 BUIlt-iNTypes e e 15
2.4 BUIlt-INEXCEPLIONS o o e e e e e e e 33
25 Built-inConstants. 38

3 Python Runtime Services 41
3.1 sys — System-specific parameters and functions. 41
3.2 gc — Garbage Collectorinterface. e 47
3.3 weakref —Weakreferences. 49
3.4 fpectl — Floating pointexceptioncontrol 54
3.5 atexit —Exithandlers. 55
3.6 types — Namesforbuilt-intypes. e 56
3.7 UserDict — Class wrapper for dictionaryobjects 58
3.8 UserList — Classwrapperforlistobjects 59
3.9 UserString — Class wrapper forstringobjects. 59
3.10 operator — Standard operatorsasfunctions. Lo 60
3.11 inspect —Inspectliveobjects. 64
3.12 traceback — Printorretrieve astacktraceback. L. 69
3.13 linecache — Randomaccesstotextlines., 71
3.14 pickle — Python object serialization oL 72
3.15 cPickle — Afasterpickle 81
3.16 copy _reg — Registempickle supportfunctions. 81
3.17 shelve — Python objectpersistence. e 82
3.18 copy — Shallow anddeep copyoperations e 84
3.19 marshal — Internal Python object serialization. 85
3.20 warnings —Warningcontrol. e 86
3.21 imp — Accessthemport internals. 89
3.22 zipimport — Import modules from Ziparchives. 91
3.23 pkgutii — Package extension utility 93
3.24 modulefinder = —Find modulesusedbyascript 93
3.25 code — Interpreterbaseclasses 94
3.26 codeop — Compile Pythoncode e 95
3.27 pprint —Dataprettyprinter e 97
3.28 repr — Alternaterepr() implementation. 99
3.29 new — Creation of runtime internal objects. L. 100
3.30 site — Site-specific configurationhook Lo 101
3.31 user — User-specific configurationhook 102
3.32 __builtin __—Built-inobjects 102
3.33 __main __ — Top-level scriptenvironment., 103

3.34 __future __—Future statementdefinitions o L. 103
String Services 105
4.1 string —Commonstringoperations 105
4.2 re — Regularexpressionoperations. e e e 110
4.3 struct — Interpretstrings as packed binarydata, . 120
4.4 difflib — Helpers for computingdeltas L 122
45 fpformat — Floating pointconversions. o e 130
4.6 Stringl0 — Read and write stringsasfiles. 131
4.7 cStringl0O — Fasterversion oBtringlO 131
4.8 textwrap — Textwrappingandfilling., 131
4.9 codecs — Codecregistryandbaseclasses. 133
4.10 unicodedata —Unicode Database. 142
4.11 stringprep — Internet String Preparation. 143
Miscellaneous Services 145
5.1 pydoc — Documentation generator and online help system. 145
5.2 doctest — Testinteractive Pythonexamples. 146
5.3 unittest —Unittestingframework. 170
5.4 test — Regressiontests package forPython. 180
5.5 test.test _support — Utility functionsfortests. 182
5.6 decimal — Decimal floating point arithmetic 183
5.7 math — Mathematical functions. 199
5.8 cmath — Mathematical functions for complexnumbers 201
5.9 random — Generate pseudo-randomnumbers. oo 202
5.10 whrandom — Pseudo-random number generator. 205
5.11 bhisect — Array bisectionalgorithm 206
5.12 collections — High-performance container datatypes 206
5.13 heapq — Heap queue algorithm. 210
5.14 array — Efficientarraysofnumericvalues., 212
5.15 sets — Unordered collections of uniqueelements. 214
5.16 itertools — Functions creating iterators for efficient looping. 217
5.17 ConfigParser = — Configurationfileparser. 226
5.18 fileinput — lterate over lines from multiple inputstreams 229
5.19 calendar — General calendar-related functions. 230
5.20 cmd— Support for line-oriented command interpretets. 231
5.21 shlex —Simplelexicalanalysis 233
Generic Operating System Services 237
6.1 o0s — Miscellaneous operating systeminterfaces. 237
6.2 os.path — Common pathname manipulations. 255
6.3 dircache — Cacheddirectorylistings. 258
6.4 stat — Interpretingstat() results. 258
6.5 statcache — Anoptimizationofos.stat), 260
6.6 statvfs — Constants used withs.statvfs() oo L 261
6.7 fileemp — File and Directory Comparisons v i i i e 261
6.8 subprocess — Subprocessmanagemento 263
6.9 popen2 — Subprocesses with accessible l/Ostreams. 268
6.10 datetime —Basicdateandtimetypes. 270
6.11 time —Timeaccessand CoNVErSIONS v v v v v v i i e e e 286
6.12 sched —Eventscheduler. e 291
6.13 mutex — Mutual exclusion Support. e 292
6.14 getpass — Portable passwordinput. 293
6.15 curses — Terminal handling for character-celldisplays. 293
6.16 curses.textpad — Text input widget for curses programs 307
6.17 curses.wrapper — Terminal handler for curses programs 308
6.18 curses.ascii — Utilities for ASCllcharacters 309
6.19 curses.panel — A panel stack extensionforcurses.. 311
6.20 getopt — Parser forcommand lineoptions. 312

6.21 optparse — More powerful command lineoptionparser. 314
6.22 tempfile — Generate temporary files and directories. 338
6.23 errno — Standard errnosystemsymbols. oL 340
6.24 glob — UNIX style pathname patternexpansion 346
6.25 fnmatch — UNix filename patternmatching 346
6.26 shutii —High-levelfileoperations 347
6.27 locale — Internationalizationservices 348
6.28 gettext — Multilingual internationalization services. 353
6.29 logging — Logging facility for Python. 362
6.30 platform — Access to underlying platform’s identifyingdata. 382
7 Optional Operating System Services 385
7.1 signal — Sethandlers forasynchronousevents. 385
7.2 socket — Low-level networkinginterface. 387
7.3 select — Waiting for I/O completion. 396
7.4 thread — Multiplethreadsofcontrol. 397
7.5 threading — Higher-level threadinginterface. 398
7.6 dummy_thread — Drop-inreplacement for thétaread module 405
7.7 dummy_threading — Drop-in replacement for théareading module 406
7.8 Queue —Asynchronizedqueueclass. 406
7.9 mmap— Memory-mapped filesupport L 407
7.10 anydbm — Generic access to DBM-style databases L. 409
7.11 dbhash — DBM-style interface to the BSD database libraty. 409
7.12 whichdb — Guess which DBM module created adatabase. 410
7.13 bsddb — Interface to Berkeley DB library 410
7.14 dumbdbm— Portable DBM implementation, 413
7.15 zlib — Compression compatiblewithzipo 413
7.16 gzip — Supportforgzipfiles 415
7.17 bz2 — Compression compatible witheip2 o oo oo 416
7.18 zipfile — Workwith ZIP archives. 418
7.19 tarfile — Read and write tar archivefiles. L 421
7.20 readline —GNUreadlineinterface. 426
7.21 rlcompleter — Completion function for GNU readline. 428
8 Unix Specific Services 431
8.1 posix — The most common POSIXsystemecalls. 431
8.2 pwd—Thepassworddatabase. 432
8.3 grp —Thegroupdatabase L 433
8.4 crypt —Functiontocheck MiX passwords. o e 433
8.5 dl —CallCfunctionsinsharedobjects, 434
8.6 dbm— Simple “database”interface. 435
8.7 gdbm— GNU'sreinterpretationofdbm. L 436
8.8 termios —POSIXstylettycontrol. 437
8.9 tty — Terminalcontrolfunctions. 438
8.10 pty — Pseudo-terminal utilities e 438
8.11 fentl — Thefentl() andioctl() systemcalls., 439
8.12 pipes — Interfacetoshellpipelines 441
8.13 posixfile — File-like objects with locking support 442
8.14 resource — Resource usage information.o 443
8.15 nis — Interfaceto Sun’s NIS (YellowPages) 446
8.16 syslog — UNiIx sysloglibraryroutines. 446
8.17 commands— Utilities for runningcommands o, 447
9 The Python Debugger 449
9.1 DebuggerCommands e 450
9.2 HOWItWOrKS o 452
10 The Python Profiler 455
10.1 Introductiontothe profiler e 455

11

12

10.2 How Is This Profiler Different From The Old Profiler?. 455

10.3 InstantUsers Manual. 456
10.4 What Is Deterministic Profiling?. 458
10.5 Reference Manual e 458
10.6 Limitations. e e 461
10.7 Calibration. 461
10.8 Extensions — Deriving Better Profilers.o 462
10.9 hotshot — High performance logging profiler 462
10.10timeit — Measure execution time of small code snippets 464
Internet Protocols and Support 469
11.1 webbrowser — Convenient Web-browser controller. 469
11.2 cgi — Common Gateway Interface support.. L L 471
11.3 cgitb — Traceback managerforCGlscripts. 478
11.4 urlib —OpenarbitraryresourcesbyURL 478
11.5 urllib2 —extensible library foropeningURLs 483
11.6 httplib — HTTP protocolclient. 492
11.7 ftplib —FTP protocol client. 496
11.8 gopherlib — Gopher protocolclient o 499
11.9 poplib —POP3protocolclient. 499
11.10imaplib — IMAP4 protocolclient 501
11.11nntplib — NNTP protocol client. 506
11.12smtplib — SMTP protocolclient. 510
11.13smtpd — SMTP Server. o o e e 513
11.14telnetlib — Telnetclient 514
11.15urlparse — Parse URLsintocomponents. v i 516
11.16SocketServer — A framework for network servers. L 518
11.17BaseHTTPServer —BasicHTTPserver it i 521
11.18SimpleHTTPServer — Simple HTTP requesthandler 523
11.19CGIHTTPServer — CGl-capable HTTPrequesthandler 524
11.20cookielib — Cookie handling for HTTP clients. 524
11.21Cookie — HTTP state management. o 0 v i i it et e e e e 532
11.22xmlrpclib — XML-RPCclientaccess o it 536
11.23SimpleXMLRPCServer — Basic XML-RPCserver. 539
11.24DocXMLRPCServer — Self-documenting XML-RPC server. 541
11.25asyncore — Asynchronous sockethandler. 542
11.26asynchat — Asynchronous socket command/response handler. 545
Internet Data Handling 549
12.1 formatter = — Genericoutputformatting 549
12.2 email — Anemail and MIME handlingpackage 553
12.3 mailcap — Mailcapfile handling.. 579
12.4 mailbox — Read various mailboxformats o Lo 580
12.5 mhlib — Accessto MH mailboxes 582
12.6 mimetools — Tools for parsing MIMEmessages v v i ... 584
12.7 mimetypes — Map filenamesto MIME types. 585
12.8 MimeWriter — Generic MIME filewriter o o 587
12.9 mimify — MIME processingof mailmessages. 588
12.10multifile — Support for files containing distinctparts. 589
12.11rfc822 — Parse RFC 2822 mailheaders. 591
12.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 595
12.13binascii — Convert between binaryamdscii o 596
12.14binhex — Encode and decode binhex4files 598
12.15quopri — Encode and decode MIME quoted-printabledata 598
12.16uu — Encode and decode uuencodefiles oL L Lo 599
12.17xdrlib — Encode and decode XDRdata. 600
12.18netrc —netrcfile processing. e 602
12.19robotparser — Parserforrobots.txt oL o 603

13

14

15

16

17

18

12.20csv — CSV File Readingand Writing. o i i i e 604

Structured Markup Processing Tools 609
13.1 HTMLParser — Simple HTML and XHTML parser. 609
13.2 sgmllib — Simple SGML parser. i e e 611
13.3 htmllib — AparserforHTMLdocuments, 613
13.4 htmlentitydefs — Definitions of HTML general entities 615
13.5 xml.parsers.expat — Fast XML parsingusingExpat 615
13.6 xml.dom — The Document Object Model APL. 623
13.7 xml.dom.minidom — Lightweight DOM implementation. 633
13.8 xml.dom.pulldom — Support for building partial DOMtrees 637
13.9 xml.sax — Supportfor SAX2 parsers. o o i 638
13.10xml.sax.handler — Baseclassesfor SAX handlers 639
13.11 xml.sax.saxutils — SAXUtilities L 643
13.12xml.sax.xmlreader — Interface for XML parsers. 644
13.13xmllib — A parserfor XML documents. 648
Multimedia Services 651
14.1 audioop — Manipulaterawaudiodata 651
14.2 imageop — Manipulaterawimagedata.o 654
14.3 aifc — Read and write AIFFand AIFCfiles. 655
14.4 sunau — Read and write Sun AUfiles L L 657
14.5 wave — Read and write WAV files. 659
14.6 chunk —Read IFFchunkeddata. 661
14.7 colorsys — Conversions betweencolorsystems. 662
14.8 rghimg — Read and write “SGIRGB"files o o 663
14.9 imghdr — Determine thetypeofanimage 663
14.10sndhdr — Determine type of soundfile L oo Lo 664
14.11ossaudiodev — Access to OSS-compatible audio devices. 664
Cryptographic Services 669
15.1 hmac — Keyed-Hashing for Message Authentication. 669
15.2 md5— MD5 message digestalgorithm. L 669
15.3 sha — SHA-1 message digestalgorithm. 670
Graphical User Interfaces with Tk 673
16.1 Tkinter — Pythoninterfaceto Tcl/Tk., 673
16.2 Tix —ExtensionwidgetsforTK. e 684
16.3 ScrolledText =~ — Scrolled TextWidget. 689
16.4 turtle —Turtle graphicsforTK o o 689
165 Idle e 690
16.6 Other Graphical User Interface Packages 694
Restricted Execution 695
17.1 rexec — Restricted executionframework L o Lo 695
17.2 Bastion — Restrictingaccesstoobjects 698
Python Language Services 701
18.1 parser — Access Pythonparsetrees. e 701
18.2 symbol — Constants used with Python parsetrees 710
18.3 token — Constants used with Pythonparsetrees 710
18.4 keyword — Testing for Pythonkeywords oo 711
18.5 tokenize — Tokenizer for Pythonsource.o o 711
18.6 tabnanny — Detection of ambiguous indentation 712
18.7 pyclbr — Pythonclass browsersupport e 712
18.8 py_compile — Compile Pythonsourcefiles. 713
18.9 compileall ~— Byte-compile Pythonlibraries 714
18.10dis — Disassembler for Python bytecode. 714
18.11 pickletools — Tools for pickle developers.. o L 721

18.12distutils — Building and installing Python modules. 722
19 Python compiler package 723
19.1 Thebasicinterface 723
19.2 LIimitationS. . . . o o o e e 724
19.3 Python Abstract Syntax. e 724
19.4 Using Visitorsto Walk ASTS o o e 728
19.5 Bytecode Generation. e e e 729
20 SGI IRIX Specific Services 731
20.1 al —Audiofunctionsonthe SGI L 731
20.2 AL —Constants used withthed module 733
20.3 cd — CD-ROM access on SGISystems v v i v i e e e e e e 733
20.4 fl — FORMS library for graphical userinterfaces. 736
20.5 FL — Constantsused withtife module 741
20.6 flp — Functions for loading stored FORMS designs. 741
20.7 fm — Font Managelinterface. L 741
20.8 gl — Graphics Libraryinterface e 742
20.9 DEVICE— Constants used withttgd module 744
20.10GL— Constants used withtlgg module 744
20.11imgfile — Support for SGlimglibfiles o o oo 744
20.12jpeg —Read andwrite JPEGfiles. 745
21 SunOS Specific Services 747
21.1 sunaudiodev — AccesstoSunaudiohardware. 747
21.2 SUNAUDIODEWV- Constants used witbunaudiodev 748
22 MS Windows Specific Services 749
22.1 msvert —Useful routines from the MS VE€rruntime 749
22.2 _winreg —WIiNdows registry @CCeSS v v v v v i i e 750
22.3 winsound — Sound-playing interface for Windows. 754
A Undocumented Modules 757
Al Frameworks e 757
A.2 Miscellaneous useful utilities. L 757
A.3 Platformspecificmodules 757
Ad Multimedia. e e e e 757
A5 Obsolete e 758
A.6 SGl-specific Extensionmodules. L L 759
B Reporting Bugs 761
C History and License 763
C.1 Historyofthesoftware e 763
C.2 Terms and conditions for accessing or otherwise using Python 764
C.3 Licenses and Acknowledgements for Incorporated Software. 766
Module Index 775
Index 779

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as nhumbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see randale) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thamport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semanticsiofgbe statement. For
examples of why and how you would do this, see the standard library motolelss andrexec . See
also the built-in modulémp, which defines some useful operations out of which you can build your own
__import __() function.

For example, the statemeritmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) ". Note that even though

locals() and['eggs’] are passed in as arguments, themport __() function does not set the
local variable nameeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not uséoitals argument at all, and uses iggobalsonly to
determine the package context of ihgport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpotthe module named bhyame However, when a non-empfsomlistargument

is given, the module named mameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when usingpbrt spam.ham.eggs ', the top-level
packagespam must be placed in the importing namespace, but when uioig‘ spam.ham import

eggs’, the spam.ham subpackage must be used to find #ggs variable. As a workaround for this
behavior, usgetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass$or andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instancgof or unicode . isinstance(obj, basestring)
is equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing proceduis félise or omitted, this returns
False ; otherwise it returndrue . bool is also a class, which is a subclasgrdf . Classbool cannot
be subclassed further. Its only instanceskakse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingpbjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they havesdl __() method.

chr (i)
Return a string of one character whesgcii code is the integar For examplechr(97) returns the string
'a’ . Thisis the inverse afrd() . The argument must be in the range [0..255], inclusikedueError
will be raised ifi is outside that range.

classmethod (function
Return a class method function

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...): ...

The @classmethod form is a function decorator — see the description of function definitions in chapter 7
of the Python Reference Manufdr details.

It can be called either on the class (suclCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, segicmethod() in
this section. New in version 2.2. Changed in version 2.4: Function decorator syntax added.
cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative
if Xx < vy, zeroifx == yand strictly positive ifx > .

compile (string, filename, kinEi flags[, donLinherit]])
Compile thestringinto a code object. Code objects can be executed lexan statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some

recognizable value if it wasn’t read from a filegtring>’ is commonly used). Thikind argument spec-
ifies what kind of code must be compiled; it can’erec’ if string consists of a sequence of statements,
‘eval’ if it consists of a single expression, @ingle’ if it consists of a single interactive statement

(in the latter case, expression statements that evaluate to something elSetieanill be printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character\py’), and the input must be terminated by at least one newline character. If line
endings are represented gn’ , use the stringeplace() = method to change them intm’

The optional argument$agsanddont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilatiorstwing. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compileflabthergu-
ment is given andlont_inherit is not (or is zero) then the future statements specified bfldlgsargument

4 Chapter 2. Built-In Objects

are used in addition to those that would be used anywalonf_inheritis a non-zero integer then tiflags
argument is it — the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found asonepiler _flag attribute on the
Feature instance inthe _future __ module.

complex ([real[, imag]])
Create a complex number with the vakgal + imag¥j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). fimagis omitted, it defaults to zero and the function serves as a
numeric conversion function likimt() ,long() andfloat() . If both arguments are omitted, returns
0j .

delattr (object, namg
This is a relative oketattr() . The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(x, ' foobar) is equivalenttadel x. foobar.

dict ([mapping-or-sequende}
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key's value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one™: 2, "two": 3}

edict({'one 2, 'two 3})

edict({one”: 2, 'two: 3}.items())
edict({'one: 2, 'two: 3}.iteritems())
edict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], [one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the objeatfict __
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the object is a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[_builtins_ ', ' doc_', ’__name__’, ’struct’]

>>> dir(struct)

[__doc_’, ' _name__’, ’calcsize’, ’error’, 'pack’, 'unpack’]

2.1. Built-in Functions 5

Note: Becauselir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the san{feaag b, a % b) . For floating point numbers
theresultig g, a % b), whereq is usuallymath.floor(a / b) but may be 1 less than that. In any
caseg * b + a % bisverycloseta, if a % bis non-zero it has the same signtaand0 <= abs(a
% b) < abs(b).
Changed in version 2.3: Usirdivmod() with complex humbers is deprecated.

enumerate (iterable)
Return an enumerate objedterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned numerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iteratingit®rable enumerate() is
useful for obtaining an indexed serig§, seq[0]) , (1, seq[1]) , (2, seq[2]) ,.... Newin
version 2.3.

eval (expressio[I, globals[, Iocals]])
The arguments are a string and optional globals and locals. If provigielolals must be a dictionary. If
provided,localscan be any mapping object. Changed in version 2.4: forntecigis was required to be a
dictionary.

Theexpressiorargument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using theglobalsandlocals dictionaries as global and local name space. Ifdlodalsdictionary is
present and lacks_'_builtins__’, the current globals are copied intpobals beforeexpressioris parsed.

This means thagxpressiomormally has full access to the standardouiltin -~ __ module and restricted
environments are propagated. If ioealsdictionary is omitted it defaults to thgdobalsdictionary. If both
dictionaries are omitted, the expression is executed in the environment eadreis called. The return

value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creategi®()). In
this case pass a code object instead of a string. The code object must have been compiletepabksing
as thekind argument.

Hints: dynamic execution of statements is supported bekee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around forexa®y or
execfile()

execfile (filenam({, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new moddle.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using gih@balsandlocals dictionaries as global and local
namespace. If providethcalscan be any mapping object. Changed in version 2.4: fornledgls was

required to be a dictionary. If thHecalsdictionary is omitted it defaults to thglobalsdictionary. If both
dictionaries are omitted, the expression is executed in the environment exesride() is called. The

return value isNone.

Warning: The defauliocalsact as described for functidacals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbicidls dictionary if you need to see effects of
the code orocals after functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

2|t is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-In Objects

file (filenamd, modd, bufsizd])
Return a new file object (described in section 2.3FMIe' Objects). The first two arguments are the same
as forstdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be
opened:'r' for reading,’w’ for writing (truncating an existing file), an@ opens it for appending
(which onsomeUNIx systems means thall writes append to the end of the file, regardless of the current
seek position).
Modes'r+' ,’'w+’ and’a+’ open the file for updating (note that+ truncates the file). Appent’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opend@Error s raised.

In addition to the standarpen() valuesmodemay be’U’ or’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any of

the Unix end-of-line conventiori\r’ , the Macintosh convention dr\n” , the Windows convention.

All of these external representations are seetmas by the Python program. If Python is built without
universal newline suppomode’U’ is the same as normal text mode. Note that file objects so opened also
have an attribute callegewlines which has a value dflone (if no newlines have yet been seetw),

\r . \\n” | or atuple containing all the newline types seen.

If modeis omitted, it defaults tor’ . When opening a binary file, you should appébd to themode

value for improved portability. (It's useful even on systems which don't treat binary and text files differently,
where it serves as documentation.) The optidndsizeargument specifies the file’s desired buffer size:

0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativeufsizemeans to use the system default, which is usually line buffered for tty devices
and fully buffered for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2 and is an aliasdpen() . Both spellings are equivalent.
The intent is foropen() to continue to be preferred for use as a factory function which returns a new
file object. The spellingfile is more suited to type testing (for example, writinginstance(f,
file)).

filter (function, lis)
Construct a list from those elementslist for which functionreturns true list may be either a sequence,
a container which supports iteration, or an iteratolisifis a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementgsof
that are false (zero or empty) are removed.

Note that filter(function, list)y is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

float ([x])

Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. Otherwise, the argument may be a
plain or long integer or a floating point number, and a floating point number with the same value (within
Python'’s floating point precision) is returned. If no argument is given, refufhs

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

frozenset ([iterable])
Return a frozenset object whose elements are taken itienable Frozensets are sets that have no up-
date methods but can be hashed and used as members of other sets or as dictionary keys. The elements
of a frozenset must be immutable themselves. To represent sets of sets, the inner sets should also be
frozenset objects. Ifiterable is not specified, returns a new empty devzenset([]) . New
in version 2.4.

getattr (object, nam[a, default])
Return the value of the named attributedobject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exageikfr(x, 'foobar’)

3Specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The restiluie if the string is the name of one of the object’s
attributes False if not. (This is implemented by callingetattr(object namg and seeing whether
it raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal..

id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically vaigntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw _input() function for general input from users.

int ([x[radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaeéixlferameter
gives the base for the conversion and may be any integer in the range [2, 36], or zachx I§ zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified and is not a string;TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, return®.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tledassinfoargument, or of a (direct or indirect)
subclass thereof. Also return truecifaissinfois a type object andbjectis an object of that type. Ibbject
is not a class instance or an object of the given type, the function always returns falassififois neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted)asifinfois not a class, type, or tuple of classes,
types, and such tuples,T¢peError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfp

8 Chapter 2. Built-In Objects

Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entriagsinfowill be checked. In any other
case, aypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentineﬂ)
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumemhust be a collection object which supports the iteration
protocol (the__iter __() method), or it must support the sequence protocol (thgetitem __()
method with integer arguments startingdat If it does not support either of those protocdlgpeError
is raised. If the second argumeségntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to iext() method; if the value returned is equal to
sentine] Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequencé)
Return a list whose items are the same and in the same ordegasncs items. sequencenay be either
a sequence, a container that supports iteration, or an iterator objeegjuéncés already a list, a copy is

made and returned, similar sequende] . For instancelist('abc’) returns['a’, 'b’, 'c’]
andlist((1, 2, 3)) returns[1, 2, 3] . If no argumentis given, returns a new empty Ijkt,
locals ()

Update and return a dictionary representing the current local symbol t&##ening: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed

number of arbitrary size, possibly embedded in whitespace.rddiig argument is interpreted in the same

way as forint() , and may only be given whenis a string. Otherwise, the argument may be a plain or
long integer or a floating point number, and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no arguments are given,@&turns

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additiorat arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended \Wtne items. If functionis None, the identity function
is assumed; if there are multiple list argumemsp() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). lifharguments may be any kind of
sequence; the result is always a list.

max(s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumers, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeobject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed
in version 2.4: Formerly only returned an unsigned literal..

open (filenam{, mode{, bufsizd])
An alias for thefile() function above.

2.1. Built-in Functions 9

ord (¢)

Given a string of length one, return an integer representing the Unicode code point of the character when
the argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord(’'a’) returns the intege®7, ord(u'\u2020’) returns8224. This is the inverse othr() for

8-bit strings and ofinichr() for unicode objects. If a unicode argument is given and Python was built
with UCS2 Unicode, then the character’'s code point must be in the range [0..65535] inclusive; otherwise
the string length is two, andBypeError will be raised.

pow(X, y[z])

Returnx to the powely; if zis present, returm to the powely, moduloz (computed more efficiently than

pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the coercion rules
for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For examfil@x*2 returns100, but10**-2 returns0.01 . (This

last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. #is presentx andy must be of integer types, arydmust be non-negative.

(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argpove)t returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derivobjeat).

fgetis a function for getting an attribute value, likewisetis a function for setting, anfilel a function for
del'ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def __init_ (self): self.__x = None
def getx(self): return self.
def setx(self, value): self.__
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'X’ property.")

x

= value

x

New in version 2.2.

range ([start,] stod, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often dised in
loops. The arguments must be plain integers. Ifdtemargument is omitted, it defaults th If the start
argument is omitted, it defaults . The full form returns a list of plain integefsstart, start + step
start + 2 * step ...] . If stepis positive, the last element is the largetdrt + i * stepless than
stop if stepis negative, the last element is the smalksrt + i * stepgreater tharstop stepmust not
be zero (or els&alueError s raised). Example:

>>> range(10)

[0, 1, 2 3, 4,5, 6,7, 8 9]
>>> range(1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns thatE@ien

10

Chapter 2. Built-In Objects

is read EOFError is raised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python's Flying Circus"

Ifthereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen({einitializer])
Apply functionof two arguments cumulatively to the itemss#quencefrom left to right, so as to reduce
the sequence to a single value. For examgléuce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateg(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
y, is the update value from theequencelf the optionalinitializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is amiyjizér is not
given andsequenceontains only one item, the first item is returned.

reload (modulg
Reload a previously importetiodule The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as timoduleargument).

Whenreload(module) is executed:

ePython modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary.ifiihe function of extension modules
is not called a second time.

eAs with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

eThe names in the module namespace are updated to point to any new or changed objects.

oOther references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the fimport statement for it does not bind
its name locally, but does store a (partially initialized) module objedysimodules . To reload the
module you must firsitmport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a hame that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NamekError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for

sys, __main __and__builtin __. In many cases, however, extension modules are not designed to be
initialized more than once, and may falil in arbitrary ways when reloaded.
If a module imports objects from another module usirgn ... import ..., callingreload() for

the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to ugeport and qualified namesr(odulenamég instead.

2.1. Built-in Functions 11

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval()

reversed (seq
Return a reverse iteratorseqmust be an object which supports the sequence protocol_(then__()
method and the _getitem __() method with integer arguments startingdat New in version 2.4,

round (x[, n])
Return the floating point value rounded ton digits after the decimal point. ki is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examglad(0.5)
is1.0 andround(-0.5) is-1.0).

set ([iterable])
Return a set whose elements are taken fi@mable The elements must be immutable. To represent sets
of sets, the inner sets should ftezenset objects. Ifiterableis not specified, returns a new empty set,
set([]) . Newin version 2.4.

setattr (object, name, valye
This is the counterpart ajetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For exampgstattr(x, ' foobar, 123) is equivalent tox. foobar =
123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifieaige(start, stop step . Thestartand
steparguments default thione. Slice objects have read-only data attribugest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For examméstart:stop:step] " or ‘a[start:stop, i] '

sorted (iterable[, cmr{, ke;[, reverse]]])
Return a new sorted list from the itemsiiarable The optional argumentamp key, andreversehave the
same meaning as those for tis.sort() method. New in version 2.4.

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ..): ...

The @staticmethod form is a function decorator — see the description of function definitions in chapter
7 of thePython Reference Manufdr details.

It can be called either on the class (suctCaf§)) or on an instance (such &%).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java+or. -or a more advanced concept, see
classmethod() in this section. New in version 2.2. Changed in version 2.4: Function decorator
syntax added.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference withrepr(objec) is thatstr(objec) does not always attempt to return a string
that is acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the

12 Chapter 2. Built-In Objects

empty string,”

sum(sequench start])
Sumsstart and the items of aequencefrom left to right, and returns the totadtart defaults to0. These-
quencés items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callifgoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New inversion 2.3.

super (type[, object—or-typd)
Return the superclass tfpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objeidinstance(obj, type must be true. If the second argument is a type,
issubclass(type2 typd must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

Note thatsuper is implemented as part of the binding process for explicit dotted attribute lookups such as
‘super(C, self). __getitem __(name) '. Accordingly, super is undefined for implicit lookups
using statements or operators suchsaper(C, self)[name] . New in version 2.2.

tuple ([sequenc}e)
Return a tuple whose items are the same and in the same ordegasncs items. sequencanay be

a sequence, a container that supports iteration, or an iterator objesgguénces already a tuple, it is
returned unchanged. For instantugle(’abc’) returns(’a’, 'b’, 'c’) andtuple([1, 2,
3]) returns(l, 2, 3) . Ifnoargumentis given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. Ttenstance() built-in function is
recommended for testing the type of an object.

With three argumentsype functions as a constructor as detailed below.

type (name, bases, dict
Return a new type object. This is essentially a dynamic form otthgs statement. Theamestring is
the class name and becomes theame__ attribute; thebaseduple itemizes the base classes and becomes
the __bases __ attribute; and thelict dictionary is the namespace containing definitions for class body
and becomes the_dict __ attribute. For example, the following two statements create iderttipal
objects:

>>> class X(object):
a=1

>>> X = type('’X’, (object,), dict(a=1))
New in version 2.2.

unichr (1)
Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)
returns the string'a’ . This is the inverse obrd() for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError s raised otherwise. New in version 2.0.

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowlngokupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encodirgroi$ is
'strict’ (the default), a/alueError is raised on errors, while a value ‘@nore’ causes errors to
be silently ignored, and a value ‘oéplace’ causes the official Unicode replacement charatteEFFD

to be used to replace input characters which cannot be decoded. See alsdete module.

2.1. Built-in Functions 13

If no optional parameters are givamicode() will mimic the behaviour obtr() except that it returns
Unicode strings instead of 8-bit strings. More preciselyohfectis a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encodistyiot’ mode.

New in version 2.0. Changed in version 2.2: Support faunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet __ attribute), returns a dictionary
corresponding to the object’'s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefified.

xrange ([start,] sto;{, step])
This function is very similar taange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage>sfinge() overrange() is minimal (sincexrange() still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

Note: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve
this. The C implementation of Python restricts all arguments to native C longs ("short” Python integers),
and also requires that the number of elements fit in a native C long.

zip ([iterable,])
This function returns a list of tuples, where thth tuple contains théth element from each of the argu-
ment sequences or iterables. The returned list is truncated in length to the length of the shortest argument
sequence. When there are multiple arguments which are all of the same Bpfth, is similar tomap()
with an initial argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no
arguments, it returns an empty list. New in version 2.0.

Changed in version 2.4: Formerlip() required at least one argument aigl) raised arypeError
instead of returning an empty list..

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatibility with programs written for older versions of
Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, argi, keywordg)
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and the@rgsargument must be a sequence. Timgctionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optidegivordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Calling apply() is different from just callingunction(args) , since in that case there is always exactly
one argument. The use apply() is equivalent tdunction(* args ** keyword$. Use ofapply() is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.8Ise the extended call syntax instead, as described above.
buffer (objec{, offse[, size]])

The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesdbjectargument. The buffer object will

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

14 Chapter 2. Built-In Objects

be a slice from the beginning @bject(or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by thgizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, TgigeError

intern (' string)
Enterstringin the table of “interned” strings and return the interned string — whislriggitself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuargern() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-
in types have differed from user-defined types because it was not possible to use the built-in types as the basis
for object-oriented inheritance. With the 2.2 release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with‘the‘ notation, the equivalemepr() function, or the

slightly differentstr() function). The latter function is implicitly used when an object is written byptiet

statement. (Information gorint statemenand other language statements can be found iRjtieon Reference
Manualand thePython Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use inifanor while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl&,OL, 0.0 , 0j .

e any empty sequence, for examgle,,) ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when

that method returns the integer zerdoool valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always rétarrFalse for false andl or True
for true, unless otherwise stated. (Important exception: the Boolean operatidrand ‘and’ always return one
of their operands.)

5Additional information on these special methods may be found ifPthieon Reference Manual

2.3. Built-in Types 15

2.3.2 Boolean Operations — and, or , not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therTrue , elseFalse (2

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsnsd a == bis interpreted agot (a == b),
anda == not bis a syntax error.

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for examgley <= zis equivalent tox <

y and y <= z except thay is evaluated only once (but in both cases not evaluated at all whex < yis

found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently<¥he and

>= operators will raise &ypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe () method. Refer to
the Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority,”and ‘not in ’, are supported only by sequence types
(below).

2.3.4 Numeric Types —int , float ,long , complex

There are four distinct numeric typgdain integerslong integersfloating point numbersandcomplex numbers
In addition, Booleans are a subtype of plain integers. Plain integers (also justicédigerd are implemented

16 Chapter 2. Built-In Objects

usinglong in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating
point numbers are implemented usihguble in C. All bets on their precision are off unless you happen to know
the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementediosblg in C. To extract
these parts from a complex numleusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer. Integer literals vitloar * suffix yield

long integers (L’ is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appendingr ‘ J’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rufeThe constructorgit() ,long() ,float() , andcomplex() can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
X/ y guotient ofx andy Q)
X %y remainderok / vy 4)
-X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(x) x converted to long integer 2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pat, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x // 'y, X %Y) 3)(4)
pow(X, V) x to the powely
X ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, atiamod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

Bit-string Operations on Integer Types

6As a consequence, the g, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

2.3. Built-in Types 17

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the
comparisons; the unary operatioi has the same priority as the other unary numeric operatigiisuid ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

Operation | Result Notes
X| 'y bitwise or of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy
X << n | xshifted left byn bits D), (2
X >> n | xshifted right byn bits (D), (3)
~X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp _iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fteratibre
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for andin statements. This method corresponds tottheiter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raiStapéeration exception.
This method corresponds to ttpe _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoiext() method raiseStoplteration , it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

18 Chapter 2. Built-In Objects

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter __() method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the iter __() andnext() methods.

2.3.6 Sequence Types — str , unicode , list , tuple , buffer , xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotégyzzy’ , "frobozz" . See chapter 2 of thEBython
Reference Manudbr more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceding*character:.u’abc’ , u"def" . Lists are constructed with square brackets, separating
items with commas[a, b, c] . Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parenthesesa,siich as

c or () . Asingle item tuple must have a trailing comma, suclidgs .

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don't support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don’t support slicing, concatenation or repetition, and usingot in , min()
ormax() on them is inefficient.

Most sequence types support the following operations. théand ‘not in ' operations have the same priori-
ties as the comparison operations. Thegnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the tables andt are sequences of the same typg;andj are integers:

Operation Result Notes
X in s True if anitem ofsis equal tox, elseFalse Q)
X not in s | False ifanitem ofsis equal tox, elseTrue (1)
s+t the concatenation afandt (6)
s * n, n* s| nshallow copies of concatenated (2)
9 i] i'th item of s, origin O (€)
g i:] slice ofsfromitoj 3), (4)
gi:j: K slice ofsfromi toj with stepk 3), (5)
len() length ofs
min(s) smallest item of
max(s) largest item ob

Notes:

(1) Whensis a string or Unicode string object tive andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyoniehay be a string of any
length.

(2) Values ofn less tharD are treated a® (which yields an empty sequence of the same typs).ablote also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

i o m

>>> lists[0].append(3)
>>> lists

(3], 3], 31

“They must have since the parser can't tell the type of the operands.

2.3. Built-in Types 19

What has happened is th@f] is a one-element list containing an empty list, so all three elements of
[m* 3 are (pointers to) this single empty list. Modifying any of the elementstsf modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> |ists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(3], 18], [71

(3) If i orj is negative, the index is relative to the end of the strieg{ s) + iorlen(s) + |is substituted.
But note that0 is still 0.

(4) The slice ofsfromi toj is defined as the sequence of items with indlesuch thai <= k < j. Ifiorjis
greater thaen(s), uselen(s). If i is omitted, us®. If j is omitted, usden(). If i is greater than or
equal tgj, the slice is empty.

(5) The slice ofsfromi to j with stepk is defined as the sequence of items with index i + n*k such that
0<n< % In other words, the indices arei+k ,i+2*k ,i+3*k and so on, stopping wheiis reached
(but never including). If i orj is greater thaten(s), uselen(s). If i orj are omitted then they become
“end” values (which end depends on the sigrkpfNote,k cannot be zero.

(6) If sandt are both strings, some Python implementations such as CPython can usually perform an in-place op-
timization for assignments of the forexs+t or s+=t. When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For perfor-
mance sensitive code, it is preferable to use gtrgoin() method which assures consistent linear
concatenation performance across versions and implementations. Changed in version 2.4: Formerly, string
concatenation never occurred in-place.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.
center (width[, fillichar])

Return centered in a string of lengthdth. Padding is done using the speciffdithar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

count (sut{, starl[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart and
endare interpreted as in slice notation.

decode ([encodini, errors]])
Decodes the string using the codec registereémmoding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defalgtrist’ , meaning that
encoding errors raidgnicodeError . Other possible values aiignore’ |, 'replace’ and any other
name registered vieodecs.register _error . Newinversion2.2. Changed inversion 2.3: Support

for other error handling schemes added.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string enceding.
rors may be given to set a different error handling scheme. The defaulerfors is 'strict’ ,
meaning that encoding errors raise UnicodeError . Other possible values arignore’
replace’ , 'xmicharrefreplace’ , 'backslashreplace’ and any other name registered via
codecs.register _error . For a list of possible encodings, see section 4.9.2. New in version 2.0.
Changed in version 2.3: Support famicharrefreplace’ and’backslashreplace’ and other
error handling schemes added.

20 Chapter 2. Built-In Objects

endswith (suffi>{, starl[, end]])
ReturnTrue if the string ends with the specifiexiffix otherwise returfralse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using spéaiesizéis not given, a tab
size of8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsagis found, such thasubis contained in the range
[start, end. Optional argumentstart andendare interpreted as in slice notation. Retutnif subis not
found.

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.
isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle 0
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq
Return a string which is the concatenation of the strings in the seqeeqcEhe separator between elements
is the string providing this method.

ljust (width[, fillichar])
Return the string left justified in a string of lengtlidth. Padding is done using the specifféithar (default
is a space). The original string is returnedavifith is less tharen(s). Changed in version 2.4: Support
for thefillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

2.3. Built-in Types 21

Istrip ([chars])
Return a copy of the string with leading characters removed.chhesargument is a string specifying the
set of characters to be removed. If omitted\wne, thecharsargument defaults to removing whitespace.
Thecharsargument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " Istrip()

'spacious

>>> 'www.example.com’.Istrip('cmowz.")
‘example.com’

Changed in version 2.2.2: Support for ttlearsargument.

replace (old, nevs[, count])
Return a copy of the string with all occurrences of substdlityeplaced bynew If the optional argument
countis given, only the firstountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsng is found, such thasubis contained within
s[start,end]. Optional argumerdtart andendare interpreted as in slice notation. Retutnon failure.

rindex (sut{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width[, fillichar])
Return the string right justified in a string of lengtidth. Padding is done using the specifiéitthar
(default is a space). The original string is returnedidith is less thaen(s). Changed in version 2.4;
Support for thdillchar argument.

rsplit ([sep[,maxsplit]])
Return a list of the words in the string, usisgpas the delimiter string. Hnaxsplitis given, at mostaxsplit
splits are done, thaghtmostones. Ifsepis not specified oNone, any whitespace string is a separator.
Except for splitting from the right;split() behaves likesplit() which is described in detail below.
New in version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. dffte@sargument is a string specifying the
set of characters to be removed. If omitted\wne, the charsargument defaults to removing whitespace.
Thecharsargument is not a suffix; rather, all combinations of its values are stripped:

>>> ' gpacious .rstrip()
spacious’

>>> 'mississippi’.rstrip(ipz’)

'mississ’

Changed in version 2.2.2: Support for ttlearsargument.

split ([sep[,maxsplit]])
Return a list of the words in the string, usisgpas the delimiter string. Imaxsplitis given, at most
maxsplitsplits are done. (thus, the list will have at mosixsplitr1 elements). limaxsplitis not specified,
then there is no limit on the number of splits (all possible splits are made). Consecutive delimiters are not

grouped together and are deemed to delimit empty strings (for exariip)2’.split(’,") ' returns
‘1, 7, 27). The separgument may consist of multiple characters (for examplg, 2,
3.splitC,) ‘returns T'1’, '2’, '3). Splitting an empty string with a specified separator
returns ["] .

If sepis not specified or idNone, a different splitting algorithm is applied. First, whitespace characters
(spaces, tabs, newlines, returns, and formfeeds) are stripped from both ends. Then, words are separated by
arbitrary length strings of whitespace characters. Consecutive whitespace delimiters are treated as a single
delimiter ("1 2 3'.split() "returns 1’1, '2’, '3). Splitting an empty string or a string
consisting of just whitespace returns an empty list.

splitlines ([keepend];)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unles&eependss given and true.

22 Chapter 2. Built-In Objects

startswith (prefix[, starl[, end]])
ReturnTrue if string starts with therefix otherwise returiralse . With optionalstart, test string begin-
ning at that position. With optiona&nd stop comparing string at that position.

strip ([chars])
Return a copy of the string with the leading and trailing characters removedthingargument is a string
specifying the set of characters to be removed. If omittedare, thecharsargument defaults to removing
whitespace. Theharsargument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ' gpacious ’.strip()
'spacious’

>>> 'www.example.com’.strip('cmowz.")
‘example’

Changed in version 2.2.2: Support for ttlearsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

tittle ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argdeletgcharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, theanslate() method does not accept the optiodaletecharsargument. In-
stead, it returns a copy of tltewhere all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringsra. Unmapped
characters are left untouched. Characters mappétbi® are deleted. Note, a more flexible approach is

to create a custom character mapping codec usingdtiecs module (seencodings.cp1251 for an
example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill - (‘width)
Return the numeric string left filled with zeros in a string of lengitith. The original string is returned if
widthis less thaen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operatior¥bgerator (modulo). This is also known as the
string formattingor interpolationoperator. Giverformat %values(whereformatis a string or Unicode object),
%conversion specifications fiormatare replaced with zero or more elementwalues The effect is similar to
the usingsprintf() in the C language. Hormatis a Unicode object, or if any of the objects being converted
using thessconversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argumentaluesmay be a single non-tuple objéttOtherwise,valuesmust be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The % character, which marks the start of the specifier.

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

2.3. Built-in Types 23

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for efgnmeame)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an™ (asterisk), the actual width is read from the next
element of the tuple inalues and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a’* (dot) followed by the precision. If specified as’*(an asterisk), the
actual width is read from the next element of the tupleatues and the value to convert comes after the

precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in therstrgtonclude a
parenthesised mapping key into that dictionary inserted immediately aftevdloharacter. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \

{language’: "Python", "#": 2}

Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘# | The value conversion will use the “alternate form” (where defined below).
‘0’ | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides tieconversion if both are given).
(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

‘+’ | Asign character ¢’ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may bk, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning Notes
‘o’ Signed integer decimal.
i Signed integer decimal.
‘0’ Unsigned octal. (1)
‘u’ Unsigned decimal.
‘X’ Unsigned hexadecimal (lowercase). (2)
‘X Unsigned hexadecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘E Floating point exponential format (uppercase).
“f’ Floating point decimal format.
‘F Floating point decimal format.
‘9’ Same asé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisiy()). (4)

Notes:

No argument is converted, results in% tharacter in the result.

24

Chapter 2. Built-In Objects

(1) The alternate form causes a leading ze®) (o be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadig’ or’0X’ (depending on whether the"or ‘ X' format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is@anicode string, the resulting string will also henicode .

Since Python strings have an explicit lengtbs conversions do not assume thi@t is the end of the string.

For safety reasons, floating point precisions are clipped t&@&&Gonversions for numbers whose absolute value
is over 1e25 are replaced Bygconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésg andre .

XRange Type

Thexrange type is an immutable sequence which is commonly used for looping. The advantagemiithe
type is that arxrange object will always take the same amount of memory, no matter the size of the range it
represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aheitf)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
guence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromitoj is replaced by
del g i:]j] same as i: j] = []
gi:j:k = t the elements off i: j: k] are replaced by those bf (1)
del di:j: K] removes the elements gfi: j: k] from the list
s.append(X) same agllen(s)len(9] = [X (2
sextend(X) same agllen(s)len(9] = X)
scount(X) return number of's for whichg[i] == x
s.index(x[, i[, j]]) return smallesk such thag[k] == xandi <= k < j (4)
sinsert(i, X) sameag|i:i] = [X (5)
s.pop([i]) sameax = di]; del di]; return X (6)
sremove(X) same agslel 9 sindex(X)] 4)
s.reverse() reverses the items afin place @)
s.sort([cm;{, ke>[, reversei]]) sort the items o in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The Cimplementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

2.3. Built-in Types 25

(3) xcan be any iterable object.

(4) RaisesValueError whenx is not found ins. When a negative index is passed as the second or third
parameter to thendex() method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previmd#y() didn’t have arguments
for specifying start and stop positions.

(5) When a negative index is passed as the first parameter tngée() method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so
that by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don't return the sorted or reversed
list.

(8) Thesort() method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (list items) which should return a negative,
zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argumeramp=lambda %, y: cmp(x.lower(), y.lower()) '

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower ’

reverseis a boolean value. If set tdrue , then the list elements are sorted as if each comparison were
reversed.

In general, the&key andreverseconversion processes are much faster than specifying an equicatent
function. This is becausampis called multiple times for each list element whideyandreversetouch each
element only once.

Changed in version 2.3: Support fidone as an equivalent to omittingmpwas added.
Changed in version 2.4: Support feeyandreversewas added.

(9) Starting with Python 2.3, theort() method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes
(for example, sort by department, then by salary grade).

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined.
The C implementation of Python 2.3 and newer makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a sort.

2.3.7 Set Types — set , frozenset

A setobject is an unordered collection of immutable values. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. New in version 2.4,

Like other collections, sets supportin - set len(se) , andfor x in set Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two builtin set typeset andfrozenset . Theset type is mutable — the contents can be
changed using methods likeld() andremove() . Since itis mutable, it has no hash value and cannot be used

as either a dictionary key or as an element of another setfrdhenset type is immutable and hashable — its
contents cannot be altered after is created; however, it can be used as a dictionary key or as an element of another
set.

Instances ofet andfrozenset provide the following operations:

26 Chapter 2. Built-In Objects

Operation Equivalent | Result
len(9 cardinality of se
Xin s testx for membership irs
X not in s testx for non-membership is
sissubset(t) s<=t test whether every elementdis int
s.issuperset(t) s>=t test whether every elementtinis in s
s.union(t) s—t new set with elements from boffandt
s.intersection(t) s&t new set with elements commongandt
s.difference(t) s-t new set with elements isbut not int
s.symmetric _difference(t) s™t new set with elements in eithsior t but not both
s.copy() new set with a shallow copy &f
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() , issubset() , and issuperset() methods will accept any iter-
able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions liket('abc’) & ’cbs’ in favor of the more readable

set(’'abc’).intersection(’chs’)

Both set andfrozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first
setis a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).

Instances ofset are compared to instances @rfozenset based on their members. For example,
‘set('abc’) == frozenset('abc’) "returnsTrue .

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each othat,afdhe following returnFalse : a<b, a==b, or
a>b. Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output lidtthert() method is unde-
fined for lists of sets.

Set elements are like dictionary keys; they need to define bottash __ and__eq__ methods.

Binary operations that miget instances wittfrozenset return the type of the first operand. For example:
‘frozenset(’ab’) | set(’bc’) " returns an instance dfozenset

The following table lists operations available &&t that do not apply to immutable instancediaizenset

Operation Equivalent | Result
s.update(t) s—=t return ses with elements added fromn
s.intersection _update(t) s&=1t return ses keeping only elements also foundtin
s.difference _update(t) s-=t return set after removing elements foundin
ssymmetric _difference _update(t) s™=t return seswith elements frons or t but not both
sadd(x) add elemenx to sets
sremove(X) removex from sets; raises KeyError if not present
sdiscard(X) remove from setsif present
s.pop() remove and return an arbitrary element frgmaisesKeyError
s.clear() remove all elements from sst
Note, the non-operator versions of tingdate() , intersection _update() ,difference _update() ,
andsymmetric _difference _update() methods will accept any iterable as an argument.

The design of the set types was based on lessons learned fragtshemodule.
See Also:

Modulesets (section??):
Differences between treets module and the built-in set types.

2.3. Built-in Types 27

2.3.8 Mapping Types — classdict

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, ttetionary. A dictionary’s keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two
numbers compare equal (suchlaand1.0) then they can be used interchangeably to index the same dictionary
entry.

Dictionaries are created by placing a comma-separated likeyf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wlaexedb are mappings is a key, and/ andx are arbitrary
objects):

Operation Result Notes
len(a) the number of items ia
al K the item ofa with key k 0}
akl = v seta[k] tov
del a K] removea] k] froma 1)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has _key(K) (2)
k notin a Equivalent tonot a.has key(K) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys)
a.update(b]) updates (and overwrites) key/value pairs from 9)
afromkeys(sedq, value]) Creates a new dictionary with keys frasagand values set tealue @)
a.values() a copy ofa’s list of values ©)
a.get(k[, x|) a[K] ifk in a,elsex (4)
a.setdefault(K|, x]) a[K] if k in a, elsex (also setting it) (5)
a.pop(k[, x|) a[K] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargey, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises &eyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletiorigents() , keys() , values() ,

iteritems() , iterkeys() , anditervalues() are called with no intervening modifications to the
dictionary, the lists will directly correspond. This allows the creatiofwdlue key) pairs usingzip()

‘pairs = zip(a.values(), akeys()) . The same relationship holds for theerkeys()

and itervalues() methods: pairs = zip(a.itervalues(), a.iterkeys()) ' provides

the same value fgpairs . Another way to create the same listpairs = [(v, k) for (k, V)
in a.iteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and
kis not in the mapNone is returned.

(5) setdefault() is like get() , exceptthatikis missingxis both returned and inserted into the dictionary
as the value ok. x defaults toNone

28 Chapter 2. Built-In Objects

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, callingpopitem() raises &KeyError

(7) fromkeys() s a class method that returns a new dictionagyuedefaults toNone. New in version 2.3.
(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

(9) update() accepts either another mapping object or an iterable of key/value pairs (as a tuple or other iterable
of length two). If keyword arguments are specified, the mapping is then is updated with those key/value
pairs: ‘d.update(red=1, blue=2) ". Changed in version 2.4: Allowed the argument to be an iterable
of key/value pairs and allowed keyword arguments.

2.3.9 File Objects

File objects are implemented using Gislio package and can be created with the built-in constrded)
described in section 2.1, “Built-in Function¥’File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0-related reason, the excep@&rror is raised. This includes situations
where the operation is not defined for some reason,déek() on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise &alueError after the file has been closed. Callidgse() = more than once is
allowed.

flush ()
Flush the internal buffer, likstdio ’s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.Note: File-like objects which do not have a real file
descriptor shouldot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elalse . Note: If a file-like object is not
associated with a real file, this method shoudd be implemented.

next ()
A file object is its own iterator, for exampleer() returnsf (unlessf is closed). When a file is used
as an iterator, typically in gor loop (for examplefor line in f: print line), thenext()
method is called repeatedly. This method returns the next input line, or Btigei$eration wheneoF
is hit. In order to make #or loop the most efficient way of looping over the lines of a file (a very common
operation), thaext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combiningnext() with other file methods (likeeadline()) does not work right. However,
usingseek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

read ([size])
Read at mossizebytes from the file (less if the read hieoF before obtainingsizebytes). If thesize
argument is negative or omitted, read all data uik is reached. The bytes are returned as a string object.
An empty string is returned whemoF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after mar is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as clossimebytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, eveizdparameter was
given.

1%file() is new in Python 2.2. The older built-bpen() is an alias foffile()

2.3. Built-in Types 29

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete liné).If the sizeargument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
onlywheneoFris encountered immediateljote: Unlike stdio s fgets() , the returned string contains
null characters’{0') if they occurred in the input.

readlines ([sizehint])
Read untilEoF usingreadline() and return a list containing the lines thus read. If the optisizahint
argument is present, instead of reading ug¢®, whole lines totalling approximatekizehintbytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignoreizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingtes(f) . New in version 2.1.Deprecated since release 2.8Ise
‘for line in file’ instead.

seek (offse{, whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults@o
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (aloder 'a+’),
anyseek() operations will be undone at the next write. If the file is only opened for writing in append
mode (modea’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (moda+’). If the file is opened in text mode (mode), only offsets returned by
tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file’s size. If the optionaizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, manyNUx variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to mesxhines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same reéildtreadline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributegltise() = method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may dlende

11The advantage of leaving the newline on is that returning an empty string is then an unamtsigedngication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

30 Chapter 2. Built-In Objects

in which case the file uses the system default encoding for converting Unicode strings.
New in version 2.3.

mode
The 1/0 mode for the file. If the file was created using ¢ipen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirmpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the--with-universal-newlines option to configure (the default) this read-only
attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can také\are , \n’ , \r\n’ , None (unknown,
no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline
conventions were encountered. For files not opened in universal newline read mode the value of this attribute
will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a veofédpace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute. Note: This attribute is not used to control tipgint statement, but to
allow the implementation gfrint to keep track of its internal state.

2.3.10 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute accessiame wherem is a module anchameaccesses a
name defined im's symbol table. Module attributes can be assigned to. (Note thatihert statement is not,
strictly speaking, an operation on a module objaofport foo does not require a module object nanfedto
exist, rather it requires an (externdgfinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignmenttathet __
attribute is not possible (you can write __dict __['a] = 1 , which defineam.a to bel, but you can’t
writem. __dict __ = {}). Modifying __dict __ directly is not recommended.

Modules built into the interpreter are written like thianodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.4/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manutdr these.

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

2.3. Built-in Types 31

See thePython Reference Manufdr more information.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance mettiods:self is the object on
which the method operates, anmdm _func is the function implementing the method. Callim§arg-1, arg-
2, ..., arg-n) is completely equivalent to callingn.im _func(m.im _self, arg-1, arg-2, ..., arg-
n.

Class instance methods are eitheundor unbound referring to whether the method was accessed through an
instance or a class, respectively. When a method is unboumah, itself ~ attribute will beNone and if called, an
explicitself object must be passed as the first argument. In this safe, must be an instance of the unbound
method’s class (or a subclass of that class), otherwisgaError s raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objetigth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulByipedrror being raised. In

order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c = C()
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the buitteimpile() function and can be extracted from function
objects through theifiunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringdxecthgtatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypet{dn .
There are no special operations on types. The standard moee defines names for all standard built-in

types.
Types are written like thisstype ’int’>

The Null Object

This object is returned by functions that don'’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédone (a built-in name).

It is written asNone.

32 Chapter 2. Built-In Objects

The Ellipsis Object

This object is used by extended slice notation (se@ttieon Reference Manyalt supports no special operations.
There is exactly one ellipsis object, nanteldpsis (a built-in name).

It is written asEllipsis

Boolean Values

Boolean values are the two constant objéatse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in flbadiGn can be

used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manufor this information. It describes stack frame objects, traceback objects, and
slice objects.

2.3.11 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by tda() built-in function.

__dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the ragdeions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wethaeiti®ns
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of

2.4. Built-in Exceptions 33

all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, intey statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes front istdehived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string explaining the code). The associated value
is the second argument to thaise statement. For string exceptions, the associated value itself will be stored

in the variable named as the second argument oéxeept clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard roBkctgston , the
associated value is present as the exception instaaiggss attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from tHexception base class. More information on defining exceptions is available in
thePython Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsfff)e function, when applied to
an instance of this class (or most derived classes) returns the string value of the argument or arguments, or
an empty string if no arguments were given to the constructor. When used as a sequence, this accesses the
arguments given to the constructor (handy for backward compatibility with old code). The arguments are
also available on the instanceisgs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exc8fuiplteration andSystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @werowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syi€@&mor , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the instmnice’s attribute
(it is assumed to be an error number), and the second item is available stetrer attribute (it is
usually the associated error message). The tuple itself is also available argtheattribute. New in
version 1.5.2.

When arEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tllename attribute. However, for backwards compatibility,
theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentseirne
andstrerror attributes are alsblone when the instance was created with other than 2 or 3 arguments.
In this last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when amssert statement fails.

exceptionAttributeError

34 Chapter 2. Built-In Objects

Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functioriggut() orraw _input()) hits an end-of-file conditiorgoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty
string when they hiEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERYmbol is defined in
the ‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a
file object) fails for an 1/0O-related reason, e.g., “file not found” or “disk full”.

This class is derived fronEnvironmentError . See the discussion above for more information on
exception instance attributes.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefneen ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@tytrol-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in fundtipoit() orraw _input() s
waiting for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecturm@litec() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frorkEnvironmentError and is used primarily as thes module’sos.error
exception. Se&nvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddéemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created bydh&ref .proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-

2.4. Built-in Exceptions 35

tion on weak references, see theakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iterator'sext() method to signal that there are no further values. This is derived from
Exception rather tharStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuiritpart statement, in aexec
statement, in a call to the built-in functieval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have attribufdsname , lineno , offset andtext for easier access to the
details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpretersys.version ; it is also printed at the start of an interactive Python session),

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by tisys.exit() function. When itis not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C'exit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly froException and notStandardError , since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handiee!y clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately

(for example, in the child process after a calfook()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclassMameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subdlabgedrror . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subcldsgofieError . Newin
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subcldsikofieError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldegcofieError . New

36 Chapter 2. Built-In Objects

in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegError

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspoadrtio an
value. Theerrno andstrerror values are created from the return values of@etLastError()
and FormatMessage() functions from the Windows Platform API. This is a subclassO&Error .
New in version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedirengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

2.4. Built-in Exceptions 37

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- I0Error

| +-- OSError

| +-- WindowsError
+-- EOFETrror

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotlmplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning (not generated in 2.4; won't exist in 2.5)
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

True
The true value of theool type. New in version 2.3.

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

38 Chapter 2. Built-In Objects

Notlmplemented
Special value which can be returned by the “rich comparison” special methodg (() , It __() ,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

2.5. Built-in Constants 39

40

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.

types Names for built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

UserString Class wrapper for string objects.

operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.

linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version gpickle , but not subclassable.

copy _reg Registempickle support functions.

shelve Python object persistence.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of tiraport statement.
zipimport support for importing Python modules from ZIP archives.
pkgutil Utilities to support extension of packages.

modulefinder Find modules used by a script.

code Base classes for interactive Python interpreters.

codeop Compile (possibly incomplete) Python code.

pprint Data pretty printer.

repr Alternaterepr() implementation with size limits.

new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.

user A standard way to reference user-specific modules.
__builtin - __ The module that provides the built-in namespace.
__main __ The environment where the top-level script is run.
__future __ Future statement definitions

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

41

The list of command line arguments passed to a Python sanigt[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the
command line option to the interpretargv[0] is set to the stringc’ . If no script name was passed

to the Python interpreteargv has zero length.

byteorder

An indicator of the native byte order. This will have the valoig' on big-endian (most-signigicant byte
first) platforms, andittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value

If valueis notNone, this function prints it tesys.stdout , and saves itin_builtin __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk

This function prints out a given traceback and exceptiosywstderr

When an exception is raised and uncaught, the interpretersyallexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook
__excepthook

These objects contain the original valueslsiplayhook andexcepthook at the start of the program.
They are saved so thdisplayhook andexcepthook can be restored in case they happen to get
replaced with broken objects.

exc _info ()

This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing or having executed an except clause.” For any stack frame, only information about
the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNtbreevalues is returned.
Otherwise, the values returned &rype valueg tracebach . Their meaning istypegets the exception

type of the exception being handled (a class objeet)jegets the exception parameter @issociated value

or the second argument taise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

If exc _clear() is called, this function will return threBlone values until either another exception is
raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

Warning: Assigning theracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something liggctype, value = sys.exc _info()[:2] to extract

only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with ary ... finally statement) or to caktxc _info() in a function that does not itself handle

42

Chapter 3. Python Runtime Services

an exception.Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage
collection is enabled and they become unreachable, but it remains more efficient to avoid creating cycles.

exc _clear ()
This function clears all information relating to the current or last exception that occurred in the current
thread. After calling this functiongexc _info() will return threeNone values until another exception
is raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

This function is only needed in only a few obscure situations. These include logging and error handling
systems that report information on the last or current exception. This function can also be used to try to free
resources and trigger object finalization, though no guarantee is made as to what objects will be freed, if
any. New in version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%seexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handied, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is als&/usr/local . This can be set at build time with theexec-prefixargument
to theconfigure script. Specifically, all configuration files (e.g. th®¢onfig.h’ header file) are installed
in the directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are
installed inexec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal to
version[:3]

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified
by finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer
level. The optional argumeradrg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127,
and produce undefined results otherwise. Some systems have a convention for assigning specific meanings
to specific exit codes, but these are generally underdeveloped; pfograms generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is padseé,is equivalent to
passing zero, and any other object is printegyte.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify
a clean-up action at program exit. When set, it should be a parameterless function. This function will be
called when the interpreter exits. Only one function may be installed in this way; to allow multiple functions
which will be called at termination, use tl¢exit module. Note: The exit function is not called when
the program is killed by a signal, when a Python fatal internal error is detected, orogherexit() is
called.Deprecated since release 2.4Jseatexit instead.

getcheckinterval 0
Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.
getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in
version 2.0.

getdlopenflags 0
Return the current value of the flags that are usedlfopen() calls. The flag constants are defined in

3.1. sys — System-specific parameters and functions 43

thedl andDLFCNmodules. Availability: Wix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naNw drthe

system default encoding is used. The result value depends on the operating system:

¢On Windows 9x, the encoding is “mbcs”.
¢On Mac OS X, the encoding is “utf-8".

¢On Unix, the encoding is the user’s preference according to the resultlaiginfo(CODESET), or
None if the nLlanginfo(CODESET) failed.

eOn Windows NT+, file names are Unicode natively, so no conversion is performed.

getfilesystemencoding still returns “mbcs”, as this is the encoding that applications should
use when they explicitly want to convert Unicode strings to byte strings that are equivalent when used
as file names.

New in version 2.3.

getrefcount (objec)
Return the reference count of thbject The count returned is generally one higher than you might expect,

because it includes the (temporary) reference as an argumgseitréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This

limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set
by setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that
many calls below the top of the stack. If that is deeper than the call statkeError s raised. The
default fordepthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements

aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

Constant | Platform
VER_PLATFORMWIN32s Win32s on Windows 3.1
VER_PLATFORMWIN32_WINDOWS Windows 95/98/ME
VER_PLATFORMWIN32_NT Windows NT/2000/XP
VER_PLATFORMWIN32_CE Windows CE

This function wraps the Win3&GetVersionEx() function; see the Microsoft documentation for more
information about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including

proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing
it to the built-inhex() function. Theversion _info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

44 Chapter 3. Python Runtime Services

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the inter-
preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to
import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical useimmport pdb; pdb.pm() ' to enter the post-mortem debugger; see
chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valueskonminfo() above. (Since
there is only one interactive thread, thread-safety is not a concern for these variables, uriice foype

etc.)
maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be ma-
nipulated to force reloading of modules and other tricks. Note that removing a module from this dictionary
is notthe same as callinggload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this Igth[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard inpp#th[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is inserted
beforethe entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored.

platform
This string contains a platform identifier, e.¢gsunos5’ or’linux1’ . This can be used to append
platform-specific components path , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
theconfigure script. The main collection of Python library modules is installed in the direqiaefix +
"llib/python versiori while the platform independent header files (all exceptonfig.h’) are stored
in prefix + ’/include/python version , whereversionis equal toversion[:3]

psi

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the inter-
preter is in interactive mode. Their initial values in this case’arse * and’... ' . If a hon-string

object is assigned to either variable,sts() is re-evaluated each time the interpreter prepares to read a
new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’'s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The defa0ld janeaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for
programs using threads. Setting it to a vadwe0 checks every virtual instruction, maximizing responsive-
ness as well as overhead.

setdefaultencoding (namg

3.1. sys — System-specific parameters and functions 45

Set the current default string encoding used by the Unicode implementatinamiédoes not match any
available encodind,ookupError israised. This function is only intended to be used bysitee module
implementation and, where needed difecustomize . Once used by theite module, it is removed
from thesys module’s namespace. New in version 2.0.

setdlopenflags (n
Set the flags used by the interpreter @open() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag mod-
ules can be either found in tli2 module, or in theDLFCNmodule. IfDLFCNis not available, it can be
generated fromv/usr/include/dlfcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See chapter 10 for more information on the Python profiler. The system'’s profile function is called similarly
to the system’s trace function (sseettrace()), but it isn’t called for each executed line of code (only
on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it
does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it
can simply returiNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stadkrtiv. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific;
for a debugger to support multiple threads, it must be registered settrgce() for each thread being
debugged. Note: The settrace() function is intended only for implementing debuggers, profilers,
coverage tools and the like. Its behavior is part of the implementation platform, rather than part of the
language definition, and thus may not be available in all Python implementations.

settscdump (on_flag)
Activate dumping of VM measurements using the Pentium timestamp courgarfidgis true. Deactivate
these dumps ibn_flag is off. The function is available only if Python was compiled witwvith-tsc. To
understand the output of this dump, re>hon/ceval.c’ in the Python sources. New in version 2.4.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stsédims. is used for all
interpreter input except for scripts but including callsrtput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the prompiispaft() andraw _input()
The interpreter’'s own prompts and (almost all of) its error messagessidér . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hage) method that takes a
string argument. (Changing these objects doesn't affect the standard I/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr
These objects contain the original valuestfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in
case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback

46 Chapter 3. Python Runtime Services

information printed when an unhandled exception occurs. The defal®Md8. When set td or less, all
traceback information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the fowersion (# build_number build_date
build_time) [compilef]’ . The first three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:

>>> import sys
>>> gys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
A tuple containing the five components of the version numbajor, minor, micro, releaselevelandse-

rial. All values excepteleaselevebre integers; the release levelaipha’ |, ’beta’ |, 'candidate’ ,
or 'final’ . Theversion _info value corresponding to the Python version 2.04s 0, O,
‘final’, 0) . New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three charactex®isfion . It is provided in
thesys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

See Also:

Modulesite (section 3.30):
This describes how to use .pth files to extasyd.path

3.2 gc — Garbage Collector interface

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by callingyc.disable() . To debug a leaking program cagjt.set _debug(gc.DEBUG _LEAK).

Notice that this includegc. DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for
inspection.

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writteystetderr . See

3.2. gc — Garbage Collector interface 47

below for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(f, threshold{, threshoIdZ]])
Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-
vived. New objects are placed in the youngest generation (genefgtidhan object survives a collection

it is moved into the next older generation. Since gener&i@the oldest generation, objects in that gener-

ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceettisesholdQ collection starts. Initially only generatidh is examined. If
generatiorD has been examined more thdmeshold1times since generatioh has been examined, then
generatiortl is examined as well. Similarlyhreshold2controls the number of collections of generatibn

before collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, calkollect() before callingget _referrers()

Care must be taken when using objects returnegety._referrers() because some of them could still
be under construction and hence in a temporarily invalid state. Avoid ggihgreferrers() for any
purpose other than debugging.

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-levéh _traverse methods (if any), and may not be all objects actually
directly reachabletp _traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with_del __() methods. Objects that have _del __()
methods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including
objects not necessarily in the cycle but reachable only from it. Python doesn't collect such cycles automati-
cally because, in general, it isn’t possible for Python to guess a safe order in which to rurdigle __()
methods. If you know a safe order, you can force the issue by examinirgathagelist, and explicitly
breaking cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of
being in thegarbagelist, so they should be removed fragarbagetoo. For example, after breaking cycles,
dodel gc.garbagel:] to empty the list. It's generally better to avoid the issue by not creating cycles
containing objects with._del __() methods, angarbagecan be examined in that case to verify that no
such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.

Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thasedeith__() methods.

48 Chapter 3. Python Runtime Services

The following constants are provided for use wstit _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to terbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIES set, print information about instance ob-
jects found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, printinformation about objects other
than instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendeggitbagerather than being freed. This can be
useful for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking pro-
gram (equal toDEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES |
DEBUGOBJECTS | DEBUGSAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to creaéak reference objects.
In the following, the ternteferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it's
desired that a large object not be kept alive solely because it appears in a cache or mapping. For example, if you
have a number of large binary image objects, you may wish to associate a name with each. If you used a Python
dictionary to map names to images, or images to names, the image objects would remain alive just because they
appeared as values or keys in the dictionaries. WaakKeyDictionary and WeakValueDictionary

classes supplied by theeakref module are an alternative, using weak references to construct mappings that
don't keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a
value in aWeakValueDictionary , then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in
weak mappings are simply deleted.

WeakKeyDictionary ~ and WeakValueDictionary use weak references in their implementation, setting

up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it's not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed byitbakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type ob-
jects, DBcursor objects from thesddb module, sockets, arrays, deques, and regular expression pattern objects.
Changed in version 2.4: Added support for files, sockets, arrays, and patterns.

Several builtin types such &ist anddict do not directly support weak references but can add support through
subclassing:

3.3. weakref — Weak references 49

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referencable

Extension types can easily be made to support weak references; see section 3.3.3, “Weak References in Extension
Types,” for more information.

classref (objec{, callback])
Return a weak reference tvject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will ddaee to be
returned. Ifcallbackis provided and naione, it will be called when the object is about to be finalized; the
weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

Itis allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an objed€s __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even after the
objectwas deleted. Ihash() is called the first time only after thebjectwas deleted, the call will raise
TypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardlessaaliitck). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derives from
object

proxy (objec{, caIIback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitheProxyType or CallableProxyType , depending on whethabjectis callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionarydailzackis the same as the parameter
of the same name to thef() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refarjext

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure deakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

50 Chapter 3. Python Runtime Services

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes

Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError

Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standariteferenceError ~ exception.

See Also:

PEP 0205, Weak Referencés

The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
pass

>>> 0 = Object()
>>> r = weakref.ref(o)
>>> 02 = r()

>>> 0 is 02

True

If the referent no longer exists, calling the reference object retlome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresijoris not None
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
0 =r()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can't frobnicate."
else:
print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

3.3. weakref — Weak references 51

Specialized versions a&f objects can be created through subclassing. This is used in the implementation of
theWeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclasseff can be used to store additional information about an object and affect
the value that's returned when the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):
def __init__(self, ob, callback=None, **annotations):
super(ExtendedRef, self).__init_ (ob, callback)
self.__counter = 0
for k, v in annotations.iteritems():
setattr(self, k, v)

def __call__(self):
""Return a pair containing the referent and the number of
times the reference has been called.

ob = super(ExtendedRef, self).__call__ ()
if ob is not None:

self.__counter += 1

ob = (ob, self.__counter)
return ob

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incleg©hject* field in the instance structure
for the use of the weak reference mechanism; it must be initializédiol by the object’s constructor. It must
also set thép _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs
to addPy_TPFLAGS HAVE_.WEAKREF® the tp_flags slot. For example, the instance type is defined with the
following structure:

52 Chapter 3. Python Runtime Services

typedef struct {
PyObject HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject_ HEAD_INIT(&PyType_Type)
0,
"module.instance",

[* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, [* tp_richcompare */

offsetof(PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference ItioL:

static PyObject *
instance_new() {
[* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is noNRULL:

static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObiject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

3.3. weakref — Weak references 53

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any
real computer, some floating point operations produce results that cannot be expressed as a hormal floating point
value. For example, try

>>> jmport math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf’ is a special, non-
numeric value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Thgectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generaBt@RRPE whenever

any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair

of wrapper macros that are inserted into the C code comprising your python sY&I&FPE is trapped and
converted into the PythdRloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation &IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation fpieitte module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

54 Chapter 3. Python Runtime Services

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modifectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PYyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fashion.
Python itself has been modified to support fhectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The in-
clude file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengtbddles/fpetestmodule.c’
gives several examples of use. Many additional examples can be founbjésts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are auto-
matically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystymexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thasgstsxitfunc . In partic-
ular, other core Python modules are free to aexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usg¢exit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit and register the function that had been bounshymexitfunc

register (func{, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed to
funcmust be passed as argumentsagister()

At normal program termination (for instance,sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed @yde=sEXit
is raised) and the exception information is saved. After all exit handlers have had a chance to run the last
exception to be raised is re-raised.

See Also:

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

3.5. atexit — Exit handlers 55

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passedgister() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.' % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name="Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such thigstiterator type. It is safe to useffom types import * " — the module does

not export any names besides the ones listed here. New names exported by future versions of this module will all
end in Type'.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchis$§) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usitgpt®®e module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

56 Chapter 3. Python Runtime Services

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

BooleanType
The type of thébool valuesTrue andFalse ; this is an alias of the built-ibool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.4.0).

ComplexType
The type of complex numbers (e30j). Thisis not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eigSpam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’: 0}).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

3.6. types — Names for built-in types 57

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foungyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only containd&JnicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

The module defines a miximictMixin , defining all dictionary methods for classes that already have a mini-
mum mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such
as the shelve module).

This also module defines a classserDict |, that acts as a wrapper around dictionary objects. The need for this
class has been largely supplanted by the ability to subclass directlydicim (a feature that became available
starting with Python version 2.2). Prior to the introductiondadt , the UserDict class was used to create
dictionary-like sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. lfinitialdata is provided,data is initialized with its
contents; note that a referenceidialdata will not be kept, allowing it be used for other purposskate:
For backward compatibility, instancesdéerDict are not iterable.

classlterableUserDict ([initialdata])
Subclass oserDict that supports direct iteration (e.fipr key in myDict).

In addition to supporting the methods and operations of mappings (see section RIS&8pict and
IterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents oftleerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() , __setitem __() ,__delitem __() , andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more

58 Chapter 3. Python Runtime Services

functionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from
the full interface.

In addition to the four base methods, progressively more efficiency comes with defining
__contains __() , __iter __() , anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not defivie __() orcopy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from thellstilt-in

type.

This module defines a class that acts as a wrapper around list objects. Itis a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thBserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessibléatia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtpéiefaulting to the
empty list[] . list can be either a regular Python list, or an instancgsdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiobseB &t in-
stances provide the following attribute:

data
A real Python list object used to store the contents oltkerList class.

Subclassing requirements:Subclasses dfiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutaldata attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-istr type instead of usin@yserString (there is no built-in equivalent to
MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case fdutableString

TheUserString module defines the following classes:

classUserString ([sequenc}e)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible viadlaga attribute ofUserString instances. The instance’s

3.8. UserList — Class wrapper for list objects 59

contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode
string, an instance dfiserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-irstr() ~ function.

classMutableString ([sequenc]e)
This class is derived from thdserString above and redefines strings to meitable Mutable strings
can't be used as dictionary keys, because dictionaries requinatableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash __() method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String
Methods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For examplegperator.add(x, Y) is equivalent to the expressiorty . The function names are
those used for special class methods; variants without leading and trailihgre also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a,b)

eq(a, b

ne(a,b)

ge(a, b

gt (a, b

_It __(a,b

_le __(a,b

__eq__(a,b

__ne__(ab

__ge__(ab

gt(a/b
Perform “rich comparisons” betweerandb. Specificallylt(a, b) isequivalentt@a < b,le(a, b)
isequivalentta <= b,eq(a, b) isequivalentt@ == b,ne(a, b) isequivalentt@a != b, gt(a,
b) is equivalenttea > bandge(a, b) is equivalentta >= b. Note that unlike the built-ikmp() ,
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manufdr more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the
interpreter core defines this operation. The result is affected by thenzero __() and__len __()

methods.)
truth (0)

ReturnTrue if oistrue, and=alse otherwise. This is equivalent to using theol constructor.
is _(a, b

Returna is b. Tests object identity. New in version 2.3.

60 Chapter 3. Python Runtime Services

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

and _(a, b
__and__(a,b
Return the bitwise and af andb.

div (a, b
_div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (a, b)
__floordiv. __(a,b)
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent td"0o. The namesnvert() and
__invert __() were added in Python 2.0.

Ishift (a, b)
__Ishift __(a, b
Returna shifted left byb.

mod(a, b)
__mod__(a, b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

neg(o)
__neg__(0)
Returno negated.

or _(a,b
_or__(ab
Return the bitwise or oh andb.

pos (0)
__pos__(0)
Returno positive.

pow(a, b)
__pow__(a,b
Returna** b, for aandb numbers. New in version 2.3.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b

3.10. operator — Standard operators as functions. 61

Returna- b.

truediv (a, b

__truediv __(a, b
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version
2.2.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a, b
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the telstin a. Note the reversed operands. The nameontains __() was
added in Python 2.0.

countOf (a,b)
Return the number of occurrencestah a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b
Return the index of the first of occurrenceloi a.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artlis an integer.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a, b, 9
__setitem __(a,b,9
Set the value o at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objRct®: Be careful not to misin-
terpret the results of these functions; ordZallable() has any measure of reliability with instance objects.
For example:

62 Chapter 3. Python Runtime Services

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objeat can be called like a function, otherwise it returns false. True is returned for func-
tions, bound and unbound methods, class objects, and instance objects which suppadathe __()
method.

isMappingType (0)
Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance
objects defining__getitem __. Warning: There is no reliable way to test if an instance supports the
complete mapping protocol since the interface itself is ill-defined. This makes this test less useful than it
otherwise might be.

isNumberType (0)
Returns true if the objead represents a number. This is true for all numeric types implemented in C.
Warning: There is no reliable way to test if an instance supports the complete numeric interface since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define
sequence methods in C, and for all instance objects definiggtitem __. Warning: There is no reliable
way to test if an instance supports the complete sequence interface since the interface itself is ill-defined.
This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@ro 255 to their character equivalents.

>>> jmport operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

Theoperator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments foap() , sorted() , itertools.groupby() , or other functions that
expect a function argument.

attrgetter (attr)
Return a callable object that fetchatr from its operand. After,f=attrgetter('name’) ’, the call
‘f(b) ’returns b.name’. New in version 2.4.

itemgetter (item)
Return a callable object that fetchigmmfrom its operand. After,f=itemgetter(2) ’, the call 'f(b) ’
returns b[2] . New in version 2.4.

Examples:

3.10. operator — Standard operators as functions. 63

>>>
>>>
>>>
>>>
[3, 2, 5 1]

from operator import *
inventory = [(apple’, 3), (banana’, 2), ('pear’, 5), (‘orange’, 1)]
getcount = itemgetter(1)
map(getcount, inventory)

>>> sorted(inventory, key=getcount)
[Corange’, 1), (banana’, 2), (‘apple’, 3), (pear’, 5)]

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions

in theoperator module.
Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq o)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b
Bitwise And aé&hb and _(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion " a invert(a)
Bitwise Or al b or (a b)
Exponentiation a*™ b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment okl = v setitem(o, Kk, V)
Indexed Deletion del o[K] delitem(o, K)
Indexing of K] getitem(o, K)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshiftf(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, valueg
Slice Deletion del seqdi:j] delslice(seq i, j)
Slicing seq i: j] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<bhb It(a b
Ordering a<=b le(a, b)
Equality a==>b eq(a, b)
Difference al=»b ne(a, b)
Ordering a>=ob ge(a, b)
Ordering a>hb ogt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

64

Chapter 3. Python Runtime Services

Theinspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The eleven
functions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers() . They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 65

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,NMone
function | __doc__ documentation string
__nhame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opteatichte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifiguhthf it is a module,

66 Chapter 3. Python Runtime Services

or None if it would not be identified as a module. The return tuplé ame suffix mode mtypg,
wherenameis the name of the module without the name of any enclosing pacgafiixis the trailing part

of the file name (which may not be a dot-delimited extensiom)deis theopen() mode that would be
used ' or’rb’), andmtypeis an integer giving the type of the modulatypewill have a value which
can be compared to the constants defined inirtie module; see the documentation for that module for
more information on module types.

getmodulename (path)
Return the name of the module named by theddéh, without including the names of enclosing packages.
This uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be
matched according to the interpreter’s ruldsne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objec)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of inhdd__. An object passing this test has a
__get__ attribute but not a__set__ attribute, but beyond that the set of attributes varieshame__ is
usually sensible, and_doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethod-
descriptor() test, simply because the other tests promise more — you can, e.g., count on havinfutine im
attribute (etc) when an object passes ismethod().

isdatadescriptor (objech
Return true if the object is a data descriptor.

Data descriptors have both aget _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa hasene__and__doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New
in version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second
line onwards is removed.

getcomments (objec)

3.11. inspect — Inspect live objects 67

Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail vilisipaError
if the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError
if the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. AnOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Emar s raised if
the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. Ifuh@ueargument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is ret(argd;
varargs varkw, defaultd . argsis a list of the argument names (it may contain nested ligtsjrgsand
varkware the names of tifeand** arguments oNone. defaultsis a tuple of default argument values or
None if there are no default arguments; if this tuple hatements, they correspond to the lagtlements
listed inargs.

getargvalues (framé
Get information about arguments passed into a particular frame. A tuple of four things is reiuangs:
varargs varkw, localg) . argsis a list of the argument names (it may contain nested lisejargsand
varkware the names of theand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}pnat
Format a pretty argument spec from the four values returnegtargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valuefoﬂmat

Format a pretty argument spec from the four values returnegebgrgvalues() . The other four ar-
guments are the corresponding optional formatting functions that are called to turn names and values into
strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

68 Chapter 3. Python Runtime Services

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records thede func-
tions return, can cause your program to create reference cycles. Once a reference cycle has been crgated, the
lifespan of all objects which can be accessed from the objects which form the cycle can become mucly longer
even if Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure
they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption
which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deter-
ministic by removing the cycle infinally clause. This is also important if the cycle detector was disaljled
when Python was compiled or using .disable() . For example:
def handle_stackframe_without_leak():
frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionalcontextargument supported by most of these functions specifies the number of lines of context to
return, which are centered around the current line.

getframeinfo (framd:, contexl])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame{, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefngsne the last entry represents the outermost
call onframes stack.

getinnerframes (tracebacl[, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fshme The first entry in the list represerttmceback the last entry represents where
the exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)
Return a list of frame records for the caller’'s stack. The first entry in the returned list represents the caller;
the last entry represents the outermost call on the stack.

trace ([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayaldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

3.12. traceback — Print or retrieve a stack traceback 69

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries fromnaceback If limit is omitted orNone, all entries are printed. ffle
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object
to receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tonit stack trace entries fromracebackto file. This differs from
print _tb() inthe following ways: (1) itracebackis notNone, it prints a headerTraceback (most
recent call last): "+ (2) it prints the exceptiortype andvalue after the stack trace; (3) tiypeis
SyntaxError andvalue has the appropriate format, it prints the line where the syntax error occurred
with a caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

format _exc ([limit[, file]])
This is likeprint _exc(limit) but returns a string instead of printing to a file. New in version 2.4.

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, imit[, file]]])
This function prints a stack trace from its invocation point. The optiéreeilgument can be used to spec-
ify an alternate stack frame to start. The optiolmalt andfile arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback thjthack
It is useful for alternate formatting of stack traceslidfit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilenameline numberfunction nametexi) representing the
information that is usually printed for a stack trace. Téetis a string with leading and trailing whitespace
stripped; if the source is not available ithne.

extract _stack ([f[Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _th() . The optionaF andlimit arguments have the same meaning apfoit _stack()

format _list (list)
Given a list of tuples as returned bytract _tb() orextract _stack() ,returnalistof strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is ndilone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given
by sys.last _type andsys.last _value . The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however,SgntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred. The
message indicating which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments fwrint _exception() . The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as dopent _exception()

format _tb (tb[, limit]
A shorthand foformat _list(extract _tb(tb, limit)) .

format _stack ([f[, Iimit]])

70 Chapter 3. Python Runtime Services

A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This function was necessary
because in versions of Python prior to 2.3 when-tBdlag was passed to Python ttietb _lineno was
not updated correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refetdo¢henodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> "

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is usettdoyettweck module
to retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth
on errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyetling()

checkcache ([filename})
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version.flilenameis omitted, it will check the whole cache entries.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.13. linecache = — Random access to text lines 71

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-

chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalltngy™flattening”, however,
to avoid confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both fliekle module and thePickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called ttieickle module. As its name impliegPickle

is written in C, so it can be up to 1000 times faster tipckle . However it does not support subclassing

of the Pickler() and Unpickler() classes, because @Pickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performacieieldé

Other than that, the interfaces of the two modules are nearly identical; the common interface is described in this
manual and differences are pointed out where necessary. In the following discussions, we use the term “pickle” to
collectively describe thpickle andcPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caftemtshal , but in generapickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python’spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn't do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same obiject in different places in the object hierarchy being serializiellle stores such objects only

once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

e marshal cannotbe used to serialize user-defined classes and their instpickés. can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support.pyc’ files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arisquidiie serialization format
is guaranteed to be backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constjucted
data. Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpicgle reads and writes file objects,

it does not handle the issue of nhaming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. Tgiekle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The modsleslve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

2Don't confuse this with thenarshal module

72 Chapter 3. Python Runtime Services

3.14.2 Data stream format

The data format used lpickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printabdecii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtal (and of some other characteristicpitkle ’'s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0O is the original ASCII protocol and is backwards compatible with earlier versions of
Python.

e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. [rotocol is specified as a negative value or
HIGHEST_PROTOCAQLthe highest protocol version available will be used.

Changed in version 2.3: THain parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtleegument
to thePickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a
binary format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picllerip() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpitddel(3 method. Theickle
module provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passepra®aolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(obj, file[, protoco[, bin]])
Write a pickled representation abj to the open file objectile. This is equivalent tdPickler(file,
protocol bin).dump(obj) .
If the protocol parameter is omitted, protocol O is used. ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]Lthe highest protocol version will be used.
Changed in version 2.3: Tharotocol parameter was added. Tlbén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.
If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() ~ method that accepts a single string argument. It can thus be a file object opened
for writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdile and interpret it as a pickle data stream, reconstructing and
returning the original object hierarchy. This is equivalenttwickler(file).load()

file must have two methodsyead() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildnoan be a file object opened for
reading, eéStringlO object, or any other custom object that meets this interface.

3.14. pickle — Python object serialization 73

This function automatically determines whether the data stream was written in binary mode or not.

dumps(obj[, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is omitted, protocol O is used. ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]lthe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representa-

tion are ignored.
Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherité&ikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may also
be raised during unpickling, including (but not necessarily limited&tiibuteError , EOFError
ImportError , andindexError

Thepickle module also exports two callabfe®ickler andUnpickler
classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is omitted, protocol 0 is used.ptbtocol is specified as a negative value, the
highest protocol version will be used.

Changed in version 2.3: THan parameter is deprecated and only provided for backwards compatibility.
You should use thprotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwiseniw|
format is used (this is the default).

file must have avrite() method that accepts a single string argument. It can thus be an open file object,
aStringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(obj)
Write a pickled representation obj to the open file object given in the constructor. Either the binary or
Ascli format will be used, depending on the value of teflag passed to the constructor.

clear _memq)
Clears the pickler’'s “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3clear _memo() was only available on the picklers createdd®ickle . In
thepickle module, picklers have an instance variable caitegmowhich is a Python dictionary. So to
clear the memo for pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaliease _memo() .

3In the pickle module these callables are classes, which you could subclass to customize the behavior. HoweveRiikithe
module these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can
actually be unpickled. See section 3.14.6 for more details.

74 Chapter 3. Python Runtime Services

It is possible to make multiple calls to tlleemp() method of the samBickler instance. These must then be
matched to the same number of calls to fibed() method of the correspondingnpickler instance. If the
same object is pickled by multipump() calls, theload() will all yield references to the same objéct.

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag aBioklie
factory.

file must have two methodsyaad() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildhaan be a file object opened for
reading, eStringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the recon-
stituted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for
finding what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5
below for more details.

Note: the noload() method is currently only available obdnpickler objects created with the
cPickle module.pickle moduleUnpickler s do not have theoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex humbers

e normal and Unicode strings

e tuples, lists, sets, and dictionaries containing only picklable objects
¢ functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whosedict __ or __setstate __() is picklable (see section 3.14.5 for
details)
Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspec-

ified number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable
in the unpickling environment, and the module must contain the named object, otherwise an exception will be
raised®

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the sdPiekler instance, the object is not pickled again — a reference to it is pickled and the
Unpickler will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a
minimal set of changes. Garbage Collection may also become a problem here.

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 75

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class aiftibutes not
restored in the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class'setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the ob-
jects that are being serialized. This protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations
that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see
section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. If it is
desirable that the__init __() method be called on unpickling, an old-style class can define a method
__getinitargs __() , which should return a&uple containing the arguments to be passed to the class con-
structor (i.e.__init __()). The__getinitargs __() method is called at pickle time; the tuple it returns is
incorporated in the pickle for the instance.

New-style types can provide a_getnewargs __() method that is used for protocol 2. Implementing this
method is needed if the type establishes some internal invariants when the instance is created, or if the memory
allocation is affected by the values passed to_theew__() method for the type (as it is for tuples and strings).
Instances of a new-style tyfigare created using

obj = C._new_ (C, * arg9

where args is the result of calling__getnewargs __() on the original object; if there is no
__getnewargs __() , an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the megbistate __() ,
it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s
dictionary. If there is na__getstate __() method, the instance’s_dict __is pickled.

Upon unpickling, if the class also defines the methagetstate __() , it is called with the unpickled stafe.

If there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the
new instance’s dictionary. If a class defines baotlgetstate __() and__setstate __() , the state object
needn’t be a dictionary and these methods can do what they’want.

Warning: For new-style classes, if_getstate __() returns a false value, the_setstate __()
method will not be called.

8These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedimpthenodule.

76 Chapter 3. Python Runtime Services

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks
in two places for a hint of how to pickle it. One alternative is for the object to implementraduce __()
method. If provided, at pickling time_reduce __() will be called with no arguments, and it must return either

a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by
__reduce __ should be the object’s local name relative to its module; the pickle module searches the module
namespace to determine the object’s module.

When a tuple is returned, it must be between two and five elements long. Optional elements can either be omitted,
or None can be provided as their value. The semantics of each element are:

e A callable object that will be called to create the initial version of the object. The next element of the tuple
will provide arguments for this callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled date.

In the unpickling environment this object must be either a class, a callable registered as a “safe constructor”
(see below), or it must have an attributesafe _for _unpickling __ with a true value. Otherwise, an
UnpicklingError will be raised in the unpickling environment. Note that as usual, the callable itself is
pickled by name.

e A tuple of arguments for the callable object,Mone. Deprecated since release 2.3 this item isNone,
then instead of calling the callable directly, its basicnew __() method is called without arguments;
this method should also return the unpickled object. Provitlioge is deprecated, however; return a tuple
of arguments instead.

e Optionally, the object’s state, which will be passed to the objectsetstate __() method as described
in section 3.14.5. If the object has nosetstate __() method, then, as above, the value must be a
dictionary and it will be added to the object'sdict __.

e Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled,
and appended to the object using eitlobj.append(item) or obj.extend(list_of_itemg. This
is primarily used for list subclasses, but may be used by other classes as long as thapgend()
andextend() methods with the appropriate signature. (Whethgpend() or extend() is used
depends on which pickle protocol version is used as well as the number of items to append, so both must be
supported.)

e Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of the
form (key, valug . These items will be pickled and stored to the object using key| = value This
is primarily used for dictionary subclasses, but may be used by other classes as long as they implement

__setitem __.
It is sometimes useful to know the protocol version when implementingduce __. This can be done by
implementing a method named reduce _ex__instead of _reduce __. __reduce _ex __, whenitexists,

is called in preference over_reduce __ (you may still provide__reduce __ for backwards compatibility).
The__reduce _ex__ method will be called with a single integer argument, the protocol version.

The object class implements both _reduce __ and __reduce _ex__; however, if a subclass over-
rides __reduce __ but not__reduce _ex__, the __reduce _ex__ implementation detects this and calls
__reduce __.

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable

with the copy _reg module. This module provides a way for programs to register “reduction functions”

and constructors for user-defined types. Reduction functions have the same semantics and interface as the
__reduce __() method described above, except that they are called with a single argument, the object to be
pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

3.14. pickle — Python object serialization 77

Pickling and unpickling external objects

For the benefit of object persistence, fliekle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of
printableAscii characters. The resolution of such names is not defined hpitckle module; it will delegate

this resolution to user defined functions on the pickler and unpiékler.

To define external persistent id resolution, you need to sgpéhgistent _id attribute of the pickler object
and thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a @essistent _id() method

that takes an object as an argument and returns ditbee or the persistent id for that object. Whélone is
returned, the pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will
pickle that string, along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugiersistent _load() function that takes a
persistent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

8The actual mechanism for associating these user defined functions is slightly differgickfer andcPickle . The description given
here works the same for both implementations. Users gbitide module could also use subclassing to effect the same results, overriding
thepersistent _id() andpersistent _load() methods in the derived classes.

78 Chapter 3. Python Runtime Services

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = x
def __str__ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def _ str_ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpicklerpersistent _load attribute can also be set to a Python list, in

which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this
list. This functionality exists so that a pickle data stream can be “sniffed” for object references without actually
instantiating all the objects in a pickleSettingpersistent _load to a list is usually used in conjunction with
thenoload() method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets
unpickled and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

3.14. pickle — Python object serialization 79

depending on whether you're usipigkle or cPickle .19

In the pickle module, you need to derive a subclass frompickler , overriding theload _global()
method.load _global() should read two lines from the pickle data stream where the first line will the name

of the module containing the class and the second line will be the name of the instance’s class. It then looks up the
class, possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler’s
stack. Later on, this class will be assigned to thelass __ attribute of an empty class, as a way of magically
creating an instance without calling its class’sinit __() . Your job (should you choose to accept it), would

be to havdoad _global() push onto the unpickler’s stack, a known safe version of any class you deem safe to
unpickle. It is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling
of instances. If this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner withPickle , but not by much. To control what gets unpickled, you can set the
unpicklersfind _global attribute to a function oNone. If it is None then any attempts to unpickle instances

will raise anUnpicklingError . If it is a function, then it should accept a module name and a class name,
and return the corresponding class object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file,
and returns the line number and line contents each tintedtdline() method is called. If &extReader
instance is pickled, all attribute=xceptthe file object member are saved. When the instance is unpickled, the
file is reopened, and reading resumes from the last location_Thketstate __() and__getstate __()
methods are used to implement this behavior.

class TextReader:
""Print and number lines in a text file."™"
def __init__(self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __ getstate__ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__ (self,dict):

fh = open(dict[‘file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of
Python. We intend to someday provide a common interface for controlling this behavior, which will work inpgitkler or cPickle

80 Chapter 3. Python Runtime Services

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thapickle works across Python processes, start another Python session, before continuing.
What follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and
functionality nearly identical to theickle module. There are several differences, the most important being
performance and subclassability.

First,cPickle can be up to 1000 times faster thgickle because the former is implemented in C. Second, in
thecPickle module the callableBickler() andUnpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pigkle andcPickle are identical, so it is possible to up&ekle and
cPickle interchangeably with existing picklés.

There are additional minor differences in API betwegickle andpickle , however for most applications,
they are interchangeable. More documentation is provided ipithkée module documentation, which includes
a list of the documented differences.

3.16 copy _reg — Register pickle support functions

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will
always be able to read each other’s data streams.

3.15. cPickle — A faster pickle 81

Thecopy _reg module provides support for theckle andcPickle modules. Theopy module is likely
to use this in the future as well. It provides configuration information about object constructors which are not
classes. Such constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. kbbjectis not callable (and hence not valid as a constructor),
raisesTypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunctionshould be used as a “reduction” function for objects of tiygee typemust not be
a “classic” class object. (Classic classes are handled differently; see the documentationpfokithe
module for details.Junctionshould return either a string or a tuple containing two or three elements.

The optionalconstructorparameter, if provided, is a callable object which can be used to reconstruct the
object when called with the tuple of arguments returnedumgtionat pickling time. TypeError will be
raised ifobjectis a class oconstructoris not callable.

See thepickle module for more details on the interface expecteflinttionandconstructor

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the
keys!) in a shelf can be essentially arbitrary Python objects — anything thaictkie module can handle. This

includes most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings.

open (filenam{,flag:’c' [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The opfilagglarameter has the same
interpretation as thitag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: Tvetocol parameter was added. Théaary
parameter is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the
optionalwritebackparameter is set torue, all entries accessed are cached in memory, and written back at
close time; this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to determine which accessed entries
are mutable, nor which ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based
scripts to those requiring persistent storage.

One additional method is supported:

sync ()
Write back all entries in the cache if the shelf was opened wiitebackset toTrue. Also empty the cache
and synchronize the persistent dictionary on disk, if feasible. This is called automatically when the shelf is
closed withclose()

3.17.1 Restrictions

e The choice of which database package will be used (suctbas gdbm or bsddb) depends on which
interface is available. Therefore it is not safe to open the database directlydising he database is also
(unfortunately) subject to the limitations dbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush
changes to disk. The_del __ method of theShelf class calls thelose method, so the programmer

82 Chapter 3. Python Runtime Services

generally need not do this explicitly.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simulta-

neous read accesses are safe.) When a program has a shelf open for writing, no other program should have

it open for reading or writing. Wix file locking can be used to solve this, but this differs acrossxU
versions and requires knowledge about the database implementation used.

classShelf (dict[, protocoI:None{, Writeback:FaIsé, binary:None]]])
A subclass ofJserDict.DictMixin which stores pickled values in tlafict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be speci-
fied with theprotocol parameter. See thgckle documentation for a discussion of the pickle protocols.
Changed in version 2.3: Thgrotocol parameter was added. Thaary parameter is deprecated and pro-
vided for backwards compatibility only.

If the writebackparameter iFrue , the object will hold a cache of all entries accessed and write them back

to thedict at sync and close times. This allows natural operations on mutable entries, but can consume much

more memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocoI=None{, writeback=FaIs<£, binary=None]]])
A subclass oShelf which expose$irst |, next , previous ,last andset _location which are
available in thédosddb module but not in other database modules. @it object passed to the construc-
tor must support those methods. This is generally accomplished by calling drseldif.hashopen
bsddb.btopen or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the
same interpretation as for tihelf class.

classDbfilenameShelf (filenam{, flag:’c’[, protocoI:None[, Writeback:FaIs{, binary:None]]]])
A subclass ofShelf which accepts dilenameinstead of a dict-like object. The underlying file will be
opened usinganydbm.open . By default, the file will be created and opened for both read and write.
The optionalflag parameter has the same interpretation as fooffen function. The optionaprotocol,
writeback andbinary parameters have the same interpretation as fosbedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

3.17. shelve — Python object persistence 83

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx] = range(4) # this works as expected, but...

d'xx’].append(5) # *this doesn’t’* -- d['xx] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
d['xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

Modulebsddb (section 7.13):
BSD db database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondlbeninterface.

Modulepickle (section 3.14):
Object serialization used tshelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

84 Chapter 3. Python Runtime Services

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error s raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

¢ A shallow copyconstructs a new compound object and then (to the extent possible) irderésicesnto
it to the objects found in the original.

e A deep copyconstructs a new compound object and then, recursively, insgpissinto it of the objects
found in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

e Because deep copy copiegerythingt may copy too much, e.g., administrative data structures that should
be shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket,
window, array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
modulepickle for information on these methods. Thepy module does not use tlwpy _reg registration
module.

In order for a class to define its own copy implementation, it can define special methadpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the__deepcopy __() implementation needs to make a deep copy of a component, it should call
thedeepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific
to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may
change between Python versions (although it rarely ddes).

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “mar-
shalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to
external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.19. marshal — Internal Python object serialization 85

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules of¢’ files. Therefore, the Python maintainers reserve the

right to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and
de-serializing Python objects, use thiekle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constjucted
data. Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppdotes:integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein
are themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible

to create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a
machine where C'®ong int type has only 32 bits, a Python long integer object is returned instead. While of a
different type, the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, file[, version])
Write the value on the open file. The value must be a supported type. The file must be an open file object
such assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode
(wb’ or'w+b’).
If the value has (or contains an object that has) an unsupported tyjady@Error exception is raised —
but garbage data will also be written to the file. The object will not be properly read bdokdh)

New in version 2.4: Theersionargument indicates the data format tdamp should use (see below).

load (file)
Read one value from the open file and return it. If no valid value is read, E&$€Error , ValueError
or TypeError . The file must be an open file object opened in binary maté (or'r+b’).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substi-
tute None for the unmarshallable type.

dumps(value{, version])
Return the string that would be written to a file bymp(valug file) . The value must be a supported
type. Raise &alueError exception if value has (or contains an object that has) an unsupported type.

New in version 2.4: Theersionargument indicates the data format tdamps should use (see below).

loads (string)
Convert the string to a value. If no valid value is found, rat€~Error , ValueError or TypeError
Extra characters in the string are ignored.

In addition, the following constants are defined:

version
Indicates the format that the module uses. Version 0 is the historical format, version 1 (added in Python 2.4)
shares interned strings. The current version is 1.

New in version 2.4.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a

86 Chapter 3. Python Runtime Services

program, where that condition (normally) doesn’t warrant raising an exception and terminating the program. For
example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwlaen() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manufalr detalls).

Warning messages are normally writtensigs.stderr , but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning
category (see below), the text of the warning message, and the source location where it is issued. Repetitions of a
particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its
default state by callingesetwarnings()

The printing of warning messages is done by calkhgwwarning() , which may be overridden; the default
implementation of this function formats the message by caftngatwarning() , Which is also available for
use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be
able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclesseyfition
UserWarning The default category fowarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to
the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A
warning category must always be a subclass ofttagning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of
the match. Each entry is a tuple of the forat{jon messagecategory module lineng), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

3.20. warnings — Warning control 87

e messagés a string containing a regular expression that the warning message must match (the match is
compiled to always be case-insensitive)

e categoryis a class (a subclass @farning) of which the warning category must be a subclass in order to
match

e moduleis a string containing a regular expression that the module name must match (the match is compiled
to be case-sensitive)

e linenois an integer that the line number where the warning occurred must matéhtoomatch all line
numbers

Since théNarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter
saves the arguments for allV options without interpretation isys.warnoptions ; thewarnings module
parses these when it is first imported (invalid options are ignored, after printing a messggstderr).

3.20.3 Available Functions

warn (messag[e, categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.calegoryargument, if given, must be a warn-
ing category class (see above); it defaultdJserWarning . Alternatively messagean be aVarning
instance, in which caseategorywill be ignored andnessage. __class __ will be used. In this case the
message text will bstr(message) . This function raises an exception if the particular warning issued
is changed into an error by the warnings filter see above.stdeklevelbrgument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer teprecation() 's caller, rather than to the sourceddprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit (message, category, filename, Iinénmodule[, registry]])
This is a low-level interface to the functionality efarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename with
.py stripped; if no registry is passed, the warning is never suppressessagenust be a string andat-
egorya subclass ofVarning or messagenay be awarning instance, in which caseategorywill be
ignored.

showwarning (message, category, filename, Iinénﬁie])
Write a warning to a file. The default implementation cédisnatwarning(message category file-
name lineng and writes the resulting string fde, which defaults tesys.stderr . You may replace
this function with an alternative implementation by assigning/&gnings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline.

filterwarnings (actior{, messag[a categor)[, modul({, Iinenc{, append]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaagipéndis true,
it is inserted at the end. This checks the types of the arguments, compiles the message and module regular
expressions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries
inserted earlier, if both match a particular warning. Omitted arguments default to a value that matches
everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous cafisgovarnings() , including
that of the-W command line options.

88 Chapter 3. Python Runtime Services

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implemeinighe statement. It defines the
following constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fggs {iles). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thedoffix mode
type , wheresuffixis a string to be appended to the module name to form the filename to seantiodiar,
is the mode string to pass to the builtépen() function to open the file (this can by for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCHY_COMPILED
or C_LEXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory nhames, each directory
is searched for files with any of the suffixes returnedyby _suffixes() above. Invalid names in the
list are silently ignored (but all list items must be strings)pdthis omitted orNone, the list of directory
names given bgys.path is searched, but first it searches a few special places: it tries to find a built-in
module with the given nameC(BUILTIN), then a frozen moduldP(Y_FROZEN, and on some systems
some other places are looked in as well (on the Mac, it looks for a res@®RYc&RESOURCEoN Windows,
it looks in the registry which may point to a specific file).

If search is successful, the return value is a tr{fiee, pathname description) wherefile is an open file

object positioned at the beginningathnames the pathname of the file found, addscriptionis a triple as
contained in the list returned met _suffixes() describing the kind of module found. If the module
does not live in a file, the returndde is None, filenameis the empty string, and théescriptiontuple
contains empty strings for its suffix and mode; the module type is as indicate in parentheses above. If the
search is unsuccessflimportError is raised. Other exceptions indicate problems with the arguments

or environment.

This function does not handle hierarchical module names (names containing dots). In ordePiiul fiticht
is, submoduléM of packageP, usefind _module() andload _module() to find and load packagde,
and then uséind _module() with thepathargument set t&. __path __. WhenP itself has a dotted
name, apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously found figd _module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was already
imported, it is equivalent to eeload() ! The nameargument indicates the full module name (including
the package name, if this is a submodule of a package).filEh@gument is an open file, ariitenameis
the corresponding file name; these carNome and” , respectively, when the module is not being loaded
from a file. Thedescriptionargument is a tuple, as would be returnedgey _suffixes() , describing
what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing tfike argument, if it was nolone, even when an excep-
tion is raised. This is best done usinga ... finally statement.

new_module (nam§
Return a new empty module object calleaime This object inotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, eldéalse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn
prevents other threads from seeing incomplete module objects constructed by the original thread while in
the process of completing its import (and the imports, if any, triggered by that).

3.21. imp — Access the import internals 89

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to
ensure thread-safety when importing modules. On platforms without threads, this function does nothing.
New in version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in
version 2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Mac OS 9 resource. This value can only be returned on a Mac OS 9 or earlier
Macintosh.

PKG.DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (ete _frozen()).

The following constant and functions are obsolete; their functionality is available thfondyh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (namg
Initialize the built-in module calledameand return its module object. If the module was already initialized,
it will be initialized again A few modules cannot be initialized twice — attempting to initialize these again
will raise animportError exception. If there is no built-in module calleame None is returned.

init _frozen (namg
Initialize the frozen module callesemeand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callathme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (nam§
Returnl if there is a built-in module calledamewhich can be initialized again. Returf if there is a
built-in module callechamewhich cannot be initialized again (se®t _builtin()). Returno if there
is no built-in module callechiame

is _frozen (namg
ReturnTrue if there is a frozen module (sé@t _frozen()) calledname orFalse if thereis no such
module.

load _compiled (name, pathname[;‘ile])
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializemhain The nameargument is used to create or access
a module object. Thpathnameargument points to the byte-compiled code file. Tikeargument is the
byte-compiled code file, open for reading in binary mode, from the beginning. It must currently be a real
file object, not a user-defined class emulating a file.

20 Chapter 3. Python Runtime Services

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module
object. If the module was already initialized, it will be initializagain Some modules don't like that and
may raise an exception. Thmathnameargument must point to the shared library. Themeargument is
used to construct the name of the initialization function: an external C function calied hamd) ' in
the shared library is called. The optiorfdé argument is ignored. (Note: using shared libraries is highly
system dependent, and not all systems support it.)

load _source (name, pathnan{e file])
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Tfie argument is the source file, open for
reading as text, from the beginning. It must currently be a real file object, not a user-defined class emulating
a file. Note that if a properly matching byte-compiled file (with suffpyt’ or ‘.pyo’) exists, it will be used
instead of parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical module
names). (Thismplementatiorwouldn’t work in that version, sincnd _module() has been extended and
load _module() has beenaddedin1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and inchatiesdf) function can be
found in the moduld&nee . Theknee module can be found irDemo/imputil/’ in the Python source distribution.

3.22 zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modules{’, ‘ *.py[co]’) and packages from ZIP-format archives.
It is usually not needed to use thipimport module explicitly; it is automatically used by the builimport
mechanism fosys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an itesypath to
be a string nhaming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package

3.22. zipimport — Import modules from Zip archives 91

imports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
‘ tmp/example.zip/lib/” would only import from the fib/’ subdirectory within the archive.

Any files may be present in the ZIP archive, but only filgs*and .py[co] are available for import. ZIP import
of dynamic modules (pyd’, ‘ .s0’) is disallowed. Note that if an archive only containgy’ files, Python will
not attempt to modify the archive by adding the corresponding™or ‘.pyo’ file, meaning that if a ZIP archive
doesn’t contain.pyc’ files, importing may be rather slow.

Using the built-inreload() function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload() would be needed, since this would imply that the ZIP has been altered during runtime.

The available attributes of this module are:

exceptionZiplmporterError
Exception raised by zipimporter objects. It's a subclasdnoportError , so it can be caught as
ImportError |, too.

classzipimporter
The class for importing ZIP files. Seeipimporter Objects(section 3.22.1) for constructor details.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

PEP 0273, Import Modules from Zip Archivés
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification
in PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in
PEP 302.

PEP 0302, New Import HooKs
The PEP to add the import hooks that help this module work.

3.22.1 zipimporter Objects

classzipimporter (‘archivepath
Create a new zipimporter instan@chivepathmust be a path to a zipfil&iplmportError is raised if
archivepathdoesn't point to a valid ZIP archive.

find _module (fullnamd, path])
Search for a module specified byllname fullnamemust be the fully qualified (dotted) module name. It
returns the zipimporter instance itself if the module was found\ame if it wasn’t. The optionalpath
argument is ignored—it’s there for compatibility with the importer protocol.

get _code (fullname
Return the code object for the specified module. R&igémportError if the module couldn’t be
found.

get _data (pathnamé
Return the data associated wighthname RaiselOError if the file wasn'’t found.

get _source (fullnam@
Return the source code for the specified module. RaAigamportError if the module couldn’t be
found, returnNone if the archive does contain the module, but has no source for it.

is _package (fullnamg
Return True if the module specified lfiylinameis a package. Rais@iplmportError if the module
couldn’t be found.

load _module (fullnamg
Load the module specified dullname fullnamemust be the fully qualified (dotted) module name. It
returns the imported module, or raiséglmportError if it wasn’t found.

92 Chapter 3. Python Runtime Services

3.22.2 Examples

Here is an example that imports a module from a ZIP archive - note thaigimeport module is not explicitly
used.

$ unzip -1 /tmp/example.zip
Archive: /tmp/example.zip
Length Date Time Name

8467 11-26-02 22:30 jwzthreading.py

8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading._ file_
‘ltmp/example.zip/jwzthreading.py’

3.23 pkgutii — Package extension utility

New in version 2.3.
This module provides a single function:

extend _path (path, namg
Extend the search path for the modules which comprise a package. Intended use is to place the following
code in a package’s_"init__.py":

from pkgutil import extend_path
__path__ = extend_path(__path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories a@ys.path named after the
package. This is useful if one wants to distribute different parts of a single logical package as multiple
directories.

It also looks for *.pkg’ files beginning wherer matches thenameargument. This feature is similar to
“* pth’ files (see thesite module for more information), except that it doesn’t special-case lines starting
with import . A “*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found in
a **.pkg’ file are added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is
not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed thadys.path is a sequence. Items ef/s.path that are not (Unicode or 8-bit) strings
referring to existing directories are ignored. Unicode itemsyspath that cause errors when used as
filenames may cause this function to raise an exception (in lineasiyath.isdir() behavior).

3.24 modulefinder = — Find modules used by a script

This module provides ModuleFinder class that can be used to determine the set of modules imported by a
script. modulefinder.py can also be run as a script, giving the filename of a Python script as its argument,
after which a report of the imported modules will be printed.

AddPackagePath (pkg_name, path
Record that the package nanmad)_namecan be found in the specifigzhth

3.23. pkgutil — Package extension utility 93

ReplacePackage (oldname, newnanye
Allows specifying that the module nameddnameis in fact the package nametwewname The most
common usage would be to handle how thenlplus package replaces thxenl package.

classModuleFinder ([path:None, debug=0, excludes=[], replacpathszﬂ])
This class providesun _script() andreport() methods to determine the set of modules imported
by a script. path can be a list of directories to search for modules; if not specifigd,path is used.
debugsets the debugging level; higher values make the class print debugging messages about what it's
doing. excludess a list of module names to exclude from the analysplace_pathsis a list of (oldpath
newpath tuples that will be replaced in module paths.

report ()
Print a report to standard output that lists the modules imported by the script and their paths, as well as
modules that are missing or seem to be missing.

run _script (pathnamg
Analyze the contents of theathnamdile, which must contain Python code.

3.25 code — Interpreter base classes

Thecode module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffer-
ing or prompting or input file naming (the filename is always passed in explicitly). The optmreb
argument specifies the dictionary in which code will be executed; it defaults to a newly created dictionary

with key’ __name__" setto’ __console __' andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filenamd])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familsys.psl andsys.ps2 , and in-
put buffering.

interact [bannel[, readfunc[, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and setsreadfuncto be used as theaw _input() method, if provided.
If local is provided, it is passed to thimteractiveConsole constructor for use as the default
namespace for the interpreter loop. Tihe&eract() method of the instance is then run witlanner

passed as the banner to use, if provided. The console object is discarded after use.

compile _command source[, fiIenam{, symboﬂ])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-
eval-print loop). The tricky part is to determine when the user has entered an incomplete command that can
be completed by entering more text (as opposed to a complete command or a syntax error). This function
almostalways makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>' ; andsymbolis the optional grammar start symbol, which should be eitiagle’ (the
default) oreval’

Returns a code object (the samecaspile(source filename symbo)) if the command is complete
and valid;None if the command is incomplete; rais&yntaxError if the command is complete and
contains a syntax error, or rais@serflowError or ValueError if the command contains an invalid
literal.

3.25.1 Interactive Interpreter Objects

runsource (source[, filenamt{, symboﬂ])
Compile and run some source in the interpreter. Arguments are the samecasfile _command() ;
the default forfilenameis '<input>’ , and forsymbolis single’ . One several things can happen:

94 Chapter 3. Python Runtime Services

eThe input is incorrect; compile _command() raised an exception SyntaxError or
OverflowError). A syntax traceback will be printed by calling tlslowsyntaxerror()
method.runsource() returnsFalse .

eThe input is incomplete, and more input is requirethmpile _command() returnedNone.
runsource() returnsTrue .

eThe input is completecompile _command() returned a code object. The code is executed
by calling theruncode() (which also handles run-time exceptions, except3gstemExit).
runsource() returnskalse .

The return value can be used to decide whether tesysgsl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocahewtraceback() is called to display a traceback.
All exceptions are caught excepystemExit , which is allowed to propagate.

A note aboutKeyboardinterrupt . this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamd)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for
syntax errors. Ifilenameis given, it is stuffed into the exception instead of the default filename provided
by Python’s parser, because it always usstring>’ when reading from a string. The output is written
by thewrite() method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by thate() method.

write (data)
Write a string to the standard error streasyg.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

3.25.2 Interactive Console Objects

ThelnteractiveConsole class is a subclass tfteractivelnterpreter , and so offers all the meth-
ods of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class name of the console object in parentheses (so as not to confuse this with
the real interpreter — since it's so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpraten'source() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valueTsue if more input is requiredfFalse if the line was dealt with in some
way (this is the same asnsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user
enters theeoF key sequencelzOFError is raised. The base implementation uses the built-in function
raw _input() ; a subclass may replace this with a different implementation.

3.26 codeop — Compile Python code

3.26. codeop — Compile Python code 95

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in
thecode module. As a result, you probably don’t want to use the module directly; if you want to include such a
loop in your program you probably want to use titeele module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to>print™
or'... " next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, filenam{, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objeciuifceis
valid Python code. In that case, the filename attribute of the code object Viilkbame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raisedSyntaxError is raised if there is invalid
Python syntax, an@verflowError orValueError ifthere is an invalid literal.

Thesymbolargument determines whettsurceis compiled as a statemersifigle’ , the default) or as
an expressiondval’). Any other value will caus®¥alueError to be raised.

Caveat: Itis possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the
API for the parser is better.

classCompile ()
Instances of this class have_call __() methods identical in signature to the built-in function
compile() , but with the difference that if the instance compiles program text containindugure __
statement, the instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class havecall __() methods identical in signature tompile _command() ; the
difference is that if the instance compiles program text containingfature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€ompile andCommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you

can either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

96 Chapter 3. Python Runtime Services

and then calCommandCompiler every time you need a fresh compiler object.

3.27 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can

be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don't fit within the allowed width. Constru@rettyPrinter objects explicitly if you need to adjust the width
constraint.

Thepprint module defines one class:

classPrettyPrinter (..)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using thieeamkeyword; the only method used on the stream object is the
file protocol'swrite() method. If not specified, thErettyPrinter adoptssys.stdout . Three
additional parameters may be used to control the formatted representation. The keywordsrgrdepth
andwidth. The amount of indentation added for each recursive level is specifigtibyt the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled lbgpth if the data structure being printed is too deep, the
next contained level is replaced by.' '. By default, there is no constraint on the depth of the objects
being formatted. The desired output width is constrained usingvitith parameter; the default is eighty
characters. If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[
'lusr/local/lib/python1.5’,
"lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...

The PrettyPrinter class supports several derivative functions:

pformat (objec{, inden{, width[, depth]]])
Return the formatted representationatfjectas a string.indent width and depthwill be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The paraimetens
width anddepthwere added.

pprint (objec{, strean[, inden{, width[, depth]]]])
Prints the formatted representation alfject on stream followed by a newline. Ifstreamis omitted,

3.27. pprint — Data pretty printer 97

sys.stdout s used. This may be used in the interactive interpreter insteagrifita statement for in-
specting valuesndent width anddepthwill be passed to therettyPrinter constructor as formatting
parameters.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

"lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl1.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

Changed in version 2.4: The parametedent width anddepthwere added.

isreadable (objec)
Determine if the formatted representationadifjectis “readable,” or can be used to reconstruct the value
usingeval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representationalfject protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representeldexsifsion on type-
name with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", ’/usr/local/lib/pythonl.5’, '/usr/loca
I/lib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, 'lusr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

3.27.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation @bject This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient sinceRrettyPrinter objects don't need to be
created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value usingeval() . Note that this returns false for recursive objects. If tepth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

98 Chapter 3. Python Runtime Services

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of shéerepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versiorobfectas a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which containddf)e of objects that are part of the current
presentation context (direct and indirect containerefijectthat are affecting the presentation) as the keys;
if an object needs to be presented which is already representazhiax} the third return value should
be true. Recursive calls to tHermat() = method should add additional entries for containers to this
dictionary. The fourth argumeninaxlevelsgives the requested limit to recursion; this will 8ef there
is no requested limit. This argument should be passed unmodified to recursive calls. The fourth argument,
levelgives the current level; recursive calls should be passed a value less than that of the current call. New
in version 2.3.

3.28 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brelpiif)
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

aRepr
This is an instance dRepr which is used to provide thepr() function described below. Changing the
attributes of this object will affect the size limits usedidepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

3.28.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The defadidtrisnaxdict , 5
for maxarray , and6 for the others. New in version 2.fhaxset , maxfrozenset , andset . .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may

3.28. repr — Alternate repr() implementation 99

be mangled when the representation is shortened. The def&0lt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
theRepr object. Itis applied in a similar manner aexstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used bgpr() . This uses the type adbj to determine which formatting
method to call, passing itbj andlevel The type-specific methods should a&prl() to perform recur-
sive formatting, withevel - 1 for the value oflevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method nameypeis replaced bystring.join(string.split(type(obj). __name__,
" ")) . Dispatch to these methods is handledrdgrl() . Type-specific methods which need to recur-
sively format a value should cakélf.repri(subobj level - 1) .

3.28.2 Subclassing Repr Objects

The use of dynamic dispatching ®epr.reprl() allows subclasses depr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.29 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily in
marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instanceotdsswith dictionarydict without calling the__init __() constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, clays
This function will return a method object, bounditstance or unbound ifinstances None. functionmust
be callable.

function (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsafheis given, it must be a string ddone.

100 Chapter 3. Python Runtime Services

If it is a string, the function will have the given name, otherwise the function name will be taken from
codeco _name. If argdefsis given, it must be a tuple and will be used to determine the default values of
parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,

Inotay =~ :
This function is an interface to tHeyCode_New() C function.

module (namg
This function returns a new module object with nana@ne namemust be a string.

classobj (name, baseclasses, dict
This function returns a new class object, with nanaene derived frombaseclasseéwvhich should be a
tuple of classes) and with namespaliet.

3.30 site — Site-specific configuration hook

This module is automatically imported during initialization. The automatic import can be suppressed using
the interpreter’sS option.

Importing this module will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsisupesfix
andsys.exec _prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Windows) or
‘lib/python2.4/site-packages’ (on UNIX and Macintosh) and thetid/site-python’. For each of the distinct head-

tail combinations, it sees if it refers to an existing directory, and if so, addsitdpath and also inspects the
newly added path for configuration files.

A path configuration file is a file whose name has the fopackagepth’ and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be adsigsigath . Non-existing items

are never added tgys.path , but no check is made that the item refers to a directory (rather than a file). No
item is added t@ys.path more than once. Blank lines and lines beginning witare skipped. Lines starting
with import are executed.

For example, supposys.prefix andsys.exec _prefix are setto/usr/local’. The Python 2.4.2 library
is then installed in/usr/local/lib/python2.4’ (where only the first three characters ofs.version are used to
form the installation path name). Suppose this has a subdiregt@myidcall/lib/python2.4/site-packages’ with
three subsubdirectoriespd’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume
‘foo.pth’ contains the following:

foo package configuration
foo

bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedslys.path , in this order:

Jusr/local/lib/python2.3/site-packages/bar
/usr/local/lib/python2.3/site-packages/foo

Note that bletch’ is omitted because it doesn'’t exist; thieal’ directory precedes thefdo’ directory because

3.30. site — Site-specific configuration hook 101

‘bar.pth’ comes alphabetically befordoo.pth’; and ‘spam’ is omitted because it is not mentioned in either path
configuration file.

After these path manipulations, an attempt is made to import a module nsiteedstomize , Which can
perform arbitrary site-specific customizations. If this import fails witHraportError ~ exception, it is silently
ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manip-
ulations are skipped; however the importsitecustomize is still attempted.

3.31 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions
execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use
the mechanism must execute the statement

import user

Theuser module looks for a file.pythonrc.py’ in the user's home directory and if it can be opened, executes it
(usingexecfile()) in its own (the moduleiser ’s) global namespace. Errors during this phase are not caught;
that's up to the program that imports theer module, if it wishes. The home directory is assumed to be named
by the HOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending
on the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know
which programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in theithonrc.py’ file that you test in your module. For example, a
modulespam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user

verbose = bool(getattr(user, "spam_verbose", 0))

(The three-argument form afetattr() is used in case the user has not defispdm_verbose in their
“.pythonrc.py’ file.)

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program
by placing arbitrary code in thepythonrc.py’ file.

Modules for general use shouft import this module; it may interfere with the operation of the importing
program.

See Also:

Modulesite (section 3.30):
Site-wide customization mechanism.

3.32 __builtin __ — Built-in objects

102 Chapter 3. Python Runtime Services

This module provides direct access to all ‘built-in’ identifiers of Python; for exampléyiltin -~ __.open is
the full name for the built-in functionpen() . See chapter 2, “Built-in Objects.”

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide
objects with the same name as a built-in value, but in which the built-in of that name is also needed. For example,
in a module that wants to implement apen() function that wraps the built-iopen() , this module can be

used directly:

import __ builtin__

def open(path):
f = _ builtin__.open(path, 'r’)
return UpperCaser(f)

class UpperCaser:
"Wrapper around a file that converts output to upper-case.”

def __init__ (self,):
self._f = f

def read(self, count=-1):
return self._f.read(count).upper()

As an implementation detail, most modules have the nantmuiltins __ (note the §”) made available as

part of their globals. The value of_builtins ~ __ is normally either this module or the value of this modules’s
__dict __ attribute. Since this is an implementation detail, it may not be used by alternate implementations of
Python.

3.33 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes —
commands read either from standard input, from a script file, or from an interactive prompt. It is this environment
in which the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "__main__"
main()
3.34 __future __ — Future statement definitions
__future __is areal module, and serves three purposes:

e To avoid confusing existing tools that analyze import statements and expect to find the modules they're
importing.

e To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import
of __future __ will fail, because there was no module of that name prior to 2.1).

e To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future __ and examining its contents.

Each statement in__future__.py’ is of the form:

3.33. __main __ — Top-level script environment 103

FeatureName = "_Feature(" OptionalRelease'," MandatoryReleasé',"
CompilerFlag ")"

where, normally,OptionalReleaseas less thanMandatoryReleaseand both are 5-tuples of the same form as
sys.version _info

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalReleaseecords the first release in which the feature was accepted.

In the case of &MandatoryReleasthat has not yet occurretYandatoryReleaspredicts the release in which the
feature will become part of the language.

ElseMandatoryReleaseecords when the feature became part of the language; in releases at or after that, modules
no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryReleasmay also béNone, meaning that a planned feature got dropped.

Instances of class_Feature have two corresponding methodsgetOptionalRelease() and
getMandatoryRelease()

CompilerFlagis the (bitfield) flag that should be passed in the fourth argument to the builtin furectiopile()

to enable the feature in dynamically compiled code. This flag is stored incimpiler _flag attribute on
_Future instances.

No feature description will ever be deleted framfuture

104 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string — Common string operations

The string module contains a number of useful constants and classes, as well as some deprecated legacy
functions that are also available as methods on strings. See the medtde string functions based on regular
expressions.

4.1.1 String constants

The constants defined in this module are:

ascii _letters
The concatenation of thescii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase
The lowercase letterabcdefghijkimnopgrstuvwxyz’ . This value is not locale-dependent and

will not change.

ascii _uppercase
The uppercase lette ’S BCDEFGHIJKLMNOPQRSTUVWXYZhis value is not locale-dependent and will
not change.
digits
The string'0123456789’
hexdigits
The string'0123456789abcdefABCDEF’

letters
The concatenation of the stringmwvercase anduppercase described below. The specific value is

105

locale-dependent, and will be updated wiacale.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string 'abcdefghijkimnopgrstuvwxyz’ . Do not change its definition — the effect on the routines
upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of Ascli characters which are considered punctuation characters ictlozale.

printable
String of characters which are considered printable. This is a combinatiatigité , letters

punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string’ABCDEFGHIJKLMNOPQRSTUVWXY Do not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on
the routinesstrip() andsplit() is undefined.

4.1.2 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the A&ilraaéd substitu-
tions, Templates suppoi$*-based substitutions, using the following rules:

e ‘3’is an escape; it is replaced with a sing®.

¢ ‘Sidentifier ' names a substitution placeholder matching a mapping key of "identifier”. By default,
"identifier” must spell a Python identifier. The first non-identifier character afteitheharacter terminates
this placeholder specification.

o ‘$fidentifier} " is equivalent to $identifier ". Itis required when valid identifier characters fol-
low the placeholder but are not part of the placeholder, such aoisification”.

Any other appearance 0$” in the string will result in avalueError being raised.
New in version 2.4.
Thestring module provides demplate class that implements these rules. The methodsaiplate are:

classTemplate (templaté
The constructor takes a single argument which is the template string.

substitute (mappind, **kws])
Performs the template substitution, returning a new strmgppingis any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When bo#ippingandkws are given and there are duplicates, the
placeholders fronkwstake precedence.

safe _substitute (mapping{, **kws])
Like substitute() , except that if placeholders are missing fromappingandkws instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute() , any other appearances of ti§e will simply return ‘$’ instead of raising/alueError

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another saise, substitute() may be

106 Chapter 4. String Services

anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructteimiplateargument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what’)

>>> s.substitute(who="tim’, what="kung pao’)
'tim likes kung pao’

>>> d = dict(who="tim’)

>>> Template('Give $who $100’).substitute(d)
Traceback (most recent call last):

[-]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what’).substitute(d)
Traceback (most recent call last):

[-]

KeyError: 'what'

>>> Template('$who likes $what’).safe_substitute(d)
‘tim likes $what’

Advanced usage: you can derive subclasseBeofiplate to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

e delimiter— This is the literal string describing a placeholder introducing delimiter. The default \&lue *
Note that this shouldhot be a regular expression, as the implementation will ealscape() on this
string as needed.

e idpattern — This is the regular expression describing the pattern for non-braced placeholders (the
braces will be added automatically as appropriate). The default value is the regular expression
‘[a-z][_—a-z0-9]* .

Alternatively, you can provide the entire regular expression pattern by overriding the class aptitbeite If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

e escaped- This group matches the escape sequence,%$g.ih the default pattern.

e named- This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced- This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

4.1.3 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

4.1. string — Common string operations 107

capwords (9)
Split the argument into words usirgglit() , capitalize each word usintppitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space,
and removes leading and trailing whitespace.

maketrans (from, to
Return a translation table suitable for passingrémslate() or regex.compile() , that will map
each character ifrominto the character at the same positiondnfrom andto must have the same length.

Warning: Don't use strings derived frodowercase anduppercase as arguments; in some locales,
these don't have the same length. For case conversions, alwalgswes€® andupper()

4.1.4 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see “String Methods”
(section 2.3.6) for more information on those. You should consider these functions as deprecated, although they
will not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since release 2.WUse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point
literal in Python, optionally preceded by a siga’(br ‘-). Note that this behaves identical to the built-in
functionfloat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s[, basﬂ)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-’). The basedefaults to 10. If it is 0, a default base is chosen depending
on the leading characters of the string (after stripping the sighy’ 6r ‘0X’ means 16, 0’ means 8,
anything else means 10. bfseis 16, a leadingOx’ or ‘ 0X’ is always accepted, though not required. This
behaves identically to the built-in functiant() when passed a string. (Also note: for a more flexible
interpretation of numeric literals, use the built-in functeval() .)

atol (s[, basd)
Deprecated since release 2.Qse thelong() built-in function.

Convert stringsto a long integer in the givelbase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- '). The baseargument has the same meaning asafoi() . A trailing ‘l * or
‘L"is not allowed, except if the base is 0. Note that when invoked withastor with baseset to 10, this
behaves identical to the built-in functideng() when passed a string.

capitalize ('word)
Return a copy ofvord with only its first character capitalized.

expandtabs (s[, tabsizd)
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t
understand other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, starl[,end]])
Return the lowest index i where the substringub is found such thasub is wholly contained in
9 start end . Return-1 on failure. Defaults foistart andend and interpretation of negative values is
the same as for slices.

rfind (s, suki, starl[, end]])
Like find() but find the highest index.

index (s, suk{, starl{, end]])
Like find() butraiseValueError when the substring is not found.

108 Chapter 4. String Services

rindex (s, suk{, starl[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk[, starl{, end]])
Return the number of (non-overlapping) occurrences of subsitibgn string § start end . Defaults for
startandendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgg If the optional second argumespis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argumerstepis present and ndtlone, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of non-overlapping occurrences of the separator
in the string. The optional third argumemiaxsplitdefaults to O. If it is nonzero, at mostaxsplithnumber
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at mostnaxsplit1l elements).

The behavior of split on an empty string depends on the valsepfif sepis not specified, or specified as
None, the result will be an empty list. Bepis specified as any string, the result will be a list containing
one element which is an empty string.

rsplit (s[, sep[, maxsplit]])
Return a list of the words of the strirgyscannings from the end. To all intents and purposes, the resulting
list of words is the same as returneddplit() , except when the optional third argumanmaxsplitis ex-
plicitly specified and nonzero. Whenaxsplitis nonzero, at moshaxsplithumber of splits — theghtmost
ones — occur, and the remainder of the string is returned as the first element of the list (thus, the list will
have at mosiaxsplitl elements). New in version 2.4,

splitfields (s[, se;{, maxspliﬂ])
This function behaves identically &plit() . (In the pastsplit() was only used with one argument,
while splitfields() was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrencesmfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields ~ (wordd, sep])
This function behaves identicallyjoin() . (Inthe pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there igoifields() method on
string objects; use thein() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removecthdfrsis omitted orNone, whitespace
characters are removed. If given and Matne, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.harke
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

rstrip (s[, chars])
Return a copy of the string with trailing characters removedchtrsis omitted orNone, whitespace
characters are removed. If given and iaine, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2 harsparameter
was added. Theharsparameter cannot be passed in earlier 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,
whitespace characters are removed. If given and\Noste, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
Thecharsparameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)

4.1. string — Common string operations 109

Delete all characters frosthat are indeletechargif present), and then translate the characters usibig,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper ()
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at leastidth characters wide, created by padding the stength spaces until the
given width on the right, left or both sides. The string is never truncated.

Zfill - (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (str, old, nev[, maxreplacé)
Return a copy of stringtr with all occurrences of substrirmjd replaced bynew If the optional argument
maxreplacds given, the firsmaxreplaceoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usingithmbemotation. Both patterns
and strings to be searched can be Unicode strings as well as 8-bit stringg Tiedule is always available.

Regular expressions use the backslash chara&tgrt¢' indicate special forms or to allow special characters to

be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have td\Write as the

pattern string, because the regular expression mudt beand each backslash must be expressed\ asihside

a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in
any special way in a string literal prefixed with’! So r"\n" is a two-character string containing’‘and ‘n’,

while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code
using this raw string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second edition of the book no
longer covers Python at all, but the first edition covered writing good regular expression patterns in great
detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expresstoenslB are both regular expressions,
thenABis also a regular expression. In general, if a stpmgatcheg\ and another string matche®, the stringpq

will match AB. This holds unles& or B contain low precedence operations; boundary conditions betiveedB;

or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

110 Chapter 4. String Services

Regular expressions can contain both special and ordinary characters. Most ordinary charactérs; dikeor

‘07, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
sollast jmatches the strinfast’ . (In the rest of this section, we'll write RE’s ithis special style I

usually without quotes, and strings to be matcliedsingle quotes’)

Some characters, likg * or ‘ (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

The special characters are:

*.7 (Dot.) In the default mode, this matches any character except a newline. D@F&ALLflag has been
specified, this matches any character including a newline.

‘“* (Caret.) Matches the start of the string, andMLTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, 8HdLRILINE mode
also matches before a newlin®oo ; matches both 'foo’ and 'foobar’, while the regular expressfon$ |
matches only 'foo’. More interestingly, searching fflmo.$ |in 'fool\nfoo2\n' matches 'foo2’ normally,
but 'fool’ in MULTILINE mode.

‘** Causes the resulting RE to match O or more repetitions of the preceding RE, as many repetitions as are
possible.ab* ; will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the precedingdREwill match 'a’ followed by
any non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedingiE will match either ’a’ or 'ab’.

*?,+7?,?? The ™', '+, and ?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> |is matched againstH1>title</H1>’ , itwill match the entire
string, and not jusikH1>' . Adding *?’ after the qualifier makes it perform the matchrion-greedyor
minimalfashion; adewcharacters as possible will be matched. Usit) ; in the previous expression will
match only'<H1>’

{ m} Specifies that exactlgn copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For exampl&{6} ;will match exactly six &’ characters, but not five.

{m, n} Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examf#¢3,5} ; will match from 3 to 5 &’ characters. Omittingn
specifies a lower bound of zero, and omittingpecifies an infinite upper bound. As an examjgigl,}b |
will match aaaab or a thousandd’ characters followed by &, but notaaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m, n}? Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character stringpaaaaa’ , 'a{3,5} will match 5 ‘a’ characters, whiléa{3,5}? will only match 3
characters.

‘\'* Either escapes special characters (permitting you to match characters |ike', and so forth), or signals a
special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it's highly recommended that you use raw strings for all but the simplest expressions.

[Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them by.aSpecial characters are not active inside
sets. For examplefakm$] ; will match any of the characterg”, ‘k’, ‘m, or ‘$"; Ta-z] ; will match
any lowercase letter, arfd-zA-20-9] matches any letter or digit. Character classes sudtvasr \S
(defined below) are also acceptable inside a range. If you want to incljdesd ‘- ' inside a set, precede
it with a backslash, or place it as the first character. The pafiprn will match’] , for example.

4.2. re — Regular expression operations 111

You can match the characters not within a rangedyplementinghe set. This is indicated by including a
‘* as the first character of the set; ‘elsewhere will simply match the ° character. For exampld;5] |
will match any character exce@” and[™] ;will match any character except”

‘| * A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by thén'this way. This can be used inside groups (see below)
as well. As the target string is scanned, REs separatef’laré tried from left to right. When one pattern
completely matches, that branch is accepted. This means thafanaéchesB will not be tested further,
even if it would produce a longer overall match. In other words, th@perator is never greedy. To match
aliteral {| ’, use\| ;, or enclose it inside a character class, afjn ;.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litefalsr*) ’, use \(; or
\) , or enclose them inside a character cldgk:[)] .

(?...) This is an extension notation (& following a ‘(’ is not meaningful otherwise). The first character
after the ?’ determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new grouf{(?P< name-...) ,is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsux) (One or more letters from the sét’; ‘L', ‘m, ‘s’, ‘u’, ‘x".) The group matches the empty string;
the letters set the corresponding flags.l(, re.L ,re.M ,re.S , re.U , re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile() function.

Note that the(?x) | flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the granpotbe retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group nam@ame Group names must be valid Python identifiers, and each group name must
be defined only once within a regular expression. A symbolic group is also a numbered group, just as if
the group were not named. So the group named 'id’ in the example above can also be referenced as the
numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name in
arguments to methods of match objects, suctmagoup(’id’) orm.end(’id") , and also by name
in pattern text (for examplé(?P=id))) and replacement text (such\gsid>).

(?P=name Matches whatever text was matched by the earlier group naeree

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=..) Matches if\... | matches next, but doesn’t consume any of the string. This is called a lookahead as-
sertion. For examplélsaac (?=Asimov) will match’lsaac ' only if it's followed by ’Asimov’

(?'..) Matches if’... ;doesn’t match next. This is a negative lookahead assertion. For exdsae,
(?'Asimov) jwillmatch’lsaac ' only if it's notfollowed by’Asimov’

(?<=..) Matches if the current position in the string is preceded by a match for that ends at the current
position. This is called @ositive lookbehind assertiof(?<=abc)def ; will find a match in abcdef °,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meanindahat or 'ajb are allowed, buia* | and
'a{3,4} ,are not. Note that patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to used¢laech() function rather than
thematch() function:

112 Chapter 4. String Services

>>> import re

>>> m = re.search((?<=abc)def’, 'abcdef’)
>>> m.group(0)

‘def’

This example looks for a word following a hyphen:

>>> m = re.search('(?<=-)\w+’, 'spam-egg’)
>>> m.group(0)
‘egg’

(?<L.) Matches if the current position in the string is not preceded by a match.for. This is called a
negative lookbehind assertiotsimilar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(?(id/naméeyes-pattern|no-pattern) Will try to match with 'yes-pattern | if the group with
given id or nameexists, and withho-pattern | if it doesn't. |no-pattern | is optional and can
be omitted. For example(<)?(\w+@\w+(?:\.\w+)+)(?(1)>) Jis a poor email matching pat-
tern, which will match with’'<user@host.com>’ as well as'user@host.com’ , but not with
'<user@host.com’ . New in version 2.4.

The special sequences consist\dfand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exariplenatches the characte$’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example,(.+) \1 | matchesthe the’ or’55 55 | but not'the end” (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of
numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal valuenumber Inside the [' and ‘]’ of a character class, all numeric escapes are treated as
characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of al-
phanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note ttimatis defined as the boundary betwaanand\W, so the precise set of
characters deemed to be alphanumeric depends on the values NI BODEandLOCALEflags. Inside a
character rangd\b | represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when itrist at the beginning or end of a word. This is just the opposite
of \b , so is also subject to the settingsl@dd CALEandUNICODE

\d When theUNICODEflag is not specified, matches any decimal digit; this is equivalent to th§0sg} ..
With UNICODE it will match whatever is classified as a digit in the Unicode character properties database.

\D When theUNICODEflag is not specified, matches any non-digit character; this is equivalent to the set
T°0-9] ;. With UNICODE it will match anything other than character marked as digits in the Unicode
character properties database.

\s When theLOCALEandUNICODHflags are not specified, matches any whitespace character; this is equivalent
to the set] \t\n\r\flv] . With LOCALE it will match this set plus whatever characters are defined
as space for the current locale.UNICODEs set, this will match the charactefs\t\n\r\fiv] 1 plus
whatever is classified as space in the Unicode character properties database.

\S When theLOCALEand UNICODEflags are not specified, matches any non-whitespace character; this is
equivalent to the sef" \t\n\r\fiv] ; With LOCALE it will match any character not in this set, and
not defined as space in the current locale.UNICODEis set, this will match anything other than
\t\n\r\fiv] ;and characters marked as space in the Unicode character properties database.

4.2. re — Regular expression operations 113

\w When theLOCALEandUNICODHflags are not specified, matches any alphanumeric character and the under-
score; this is equivalent to the sgt-zA-Z0-9 _] .. With LOCALE it will match the set[0-9 _], plus
whatever characters are defined as alphanumeric for the current loddieIGODES set, this will match
the character§0-9 _], plus whatever is classified as alphanumeric in the Unicode character properties
database.

\W When theLOCALEand UNICODEflags are not specified, matches any non-alphanumeric character; this is
equivalentto the séfa-zA-Z0-9 _] . With LOCALE it will match any character notinthe Sg-9 _]
and not defined as alphanumeric for the current local&INfCODEis set, this will match anything other
than0-9 _],and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are
accustomed to Perl’s semantics, the search operation is what you're looking for. Seantt®) function and
corresponding method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with * matches only at the start

of the string, or INMULTILINE mode also immediately following a newline. The “match” operation succeeds
only if the pattern matches at the start of the string regardless of mode, or at the starting position given by the
optionalposargument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile("a", re.M).search(\na", 1) # succeeds
re.compile(""a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifigggvalue. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

114 Chapter 4. String Services

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a
single program.

I

IGNORECASE
Perform case-insensitive matching; expressions/liez] ; will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make \w, \W, \b , \B }, \s ; and\S dependent on the current locale.

M

MULTILINE
When specified, the pattern characfermatches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara@tenatches at the end of the string and
at the end of each line (immediately preceding each newline). By defaufhdtches only at the beginning
of the string, and$’ only at the end of the string and immediately before the newline (if any) at the end of
the string.

S

DOTALL
Make the . ' special character match any character at all, including a newline; without this flagill
match anythingxcepta newline.

U

UNICODE
Make \w;, "W, \b ;, \B, \d ;, \D}, \s ; and\S dependent on the Unicode character properties database.
New in version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line céhtains a
neither in a character class or preceded by an unescaped backslash, all characters from the leftr#dst such *
through the end of the line are ignored.

search (pattern, string{, flags])
Scan througlstringlooking for a location where the regular expresgiatternproduces a match, and return
a corresponding/iatchObject instance. ReturtNone if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, strini, flags])
If zero or more characters at the beginningstfng match the regular expressigattern return a corre-
spondingMatchObject instance. ReturiNone if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

split (pattern, string[, maxsplit = 0])
Split string by the occurrences gfattern If capturing parentheses are usegattern then the text of all
groups in the pattern are also returned as part of the resulting listaxgplitis nonzero, at moshaxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 releasmaxsplitwas ignored. This has been fixed in later releases.)

4.2. re — Regular expression operations 115

>>> re.split(\W+', 'Words, words, words.’)
[Words’, 'words’, 'words’, "]

>>> re.split((\W+)", 'Words, words, words.")
[Words', ’, *, 'words’, ’, ’, 'words’, ", "]
>>> re.split(\W+’, 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of the alelysub.split() and
regsub.splitx()

findall (pattern, string{, flags])

Return a list of all non-overlapping matchespatternin string. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty
matches are included in the result unless they touch the beginning of another match. New in version 1.5.2.
Changed in version 2.4: Added the optional flags argument.

finditer (pattern, string[, flags])

Return an iterator over all non-overlapping matches for thep&Eernin string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2. Changed in version 2.4: Added the optional flags argument.

sub (pattern, repl, strin&, count])

Return the string obtained by replacing the leftmost non-overlapping occurrenpastenin string by

the replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a
function; if it is a string, any backslash escapes in it are processed. Thet ids‘converted to a single
newline character\f ' is converted to a linefeed, and so forth. Unknown escapes sucl asre left
alone. Backreferences, such &*, are replaced with the substring matched by group 6 in the pattern. For
example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\)’,
r'static PyObject®\npy_\1(void)\n{’,

'def myfunc():’)

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrencpatfern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == '-": return '’
else: return -’
>>> re.sub(’-{1,2}, dashrepl, ’'pro----gram-files’)
‘pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for exasy€; (?i)b+", "x", "bbbb
BBBB") ' returns’x X’

The optional argumertountis the maximum number of pattern occurrences to be replamaat must

be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous matayls@x*’, ’-’, 'abc’) "returns
"-a-b-c-’

In addition to character escapes and backreferences as described ‘gsmaame> ’ will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ' uses

the corresponding group numbeaig<2> ' is therefore equivalent td2 ', but isn't ambiguous in a replace-

ment such as\g<2>0 . ‘\20 ' would be interpreted as a reference to group 20, not a reference to group 2
followed by the literal characte®'. The backreferencag<0> '’ substitutes in the entire substring matched

by the RE.

subn (pattern, repl, strini, count])

Perform the same operationsigh() , but return a tuplé new_string, number_ of_subs madg .

116

Chapter 4. String Services

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos{, endpog])
If zero or more characters at the beginningstifng match this regular expression, return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different

from a zero-length match.
Note: If you want to locate a match anywheredtring, usesearch() instead.

The optional second paramefusgives an index in the string where the search is to start; it defaults to

0. This is not completely equivalent to slicing the string; tlie pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parametezndposlimits how far the string will be searched; it will be as if the string is
endposcharacters long, so only the characters frposto endpos- 1 will be searched for a match. If
endposs less tharpos no match will be found, otherwise, ik is a compiled regular expression object,
rx.match(string, 0, 50) is equivalent tax.match(string[:50], 0)

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a
correspondindgMatchObject instance. Returilone if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomateh() method.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (string[, pod, endpod])

Identical to theindall() function, using the compiled pattern.
finditer (string[, pos[, endpog])
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildétiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined i< id>) ; to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

4.2. re — Regular expression operations 117

expand (templatg
Return the string obtained by doing backslash substitution on the templatetstriptate as done by the
sub() method. Escapes such as ‘ are converted to the appropriate characters, and numeric backrefer-
ences (i1 ', ‘\2 ') and named backreferencesg&l> ', ‘\g<name> ') are replaced by the contents of the
corresponding group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arggreermgs,
defaults to zero (the whole match is returned). ¢gfraupNargument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, arindexError ~ exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding resultNone. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

If the regular expression uses tff@P< name...) | syntax, thegroupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is '3’ , as ism.group(int) , andm.group(2) is
14

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. Thedefaultargument is used for groups that did not participate in the match; it defalltsrte.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup name. The
defaultargument is used for groups that did not participate in the match; it defaltsrte.

start ([group])

end ([group])
Return the indices of the start and end of the substring matchegddloy; group defaults to zero (meaning
the whole matched substring). Retufin if group exists but did not contribute to the match. For a match
objectm, and a group that did contribute to the match, the substring matched by ggoigguivalent to

m.group(Q))Iis

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equal m.end(group) if group matched a null string. For example,

afterm = re.search(’b(c?)’, 'cba’) , m.start(0) is 1, mend(0) is 2, m.start(1)
andm.end(1) are both 2, andh.start(2) raises arindexError exception.
span ([group])

ForMatchObject m, return the 2-tuplé m.start(group), m.end(group)) . Note that ifgroupdid
not contribute to the match, this(sl, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to theearch() or match() method of theRegexObject . This
is the index into the string at which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to theearch() or match() method of theRegexObject
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing grouplanme if no group was matched at all. For example,

118 Chapter 4. String Services

the expressionga)b ;, ((@)(b)) ,, and((ab)) ;will have lastindex == if applied to the string
'ab’ , while the expressioffa)(b) ;will havelastindex == , if applied to the same string.

lastgroup

The name of the last matched capturing group\one if the group didn’'t have a name, or if no group was
matched at all.

re

The regular expression object whasatch() orsearch() method produced thislatchObject in-
stance.

string
The string passed tmatch() or search()

4.2.6 Examples
Simulating scanf()

Python does not currently have an equivalens¢anf() . Regular expressions are generally more powerful,
though also more verbose, thacanf() format strings. The table below offers some more-or-less equivalent
mappings betweescanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%cC f]

%5¢c {5} |

%d T-+]2Ad+

%e %E %f, %g | T-+]?20\d+(\\d*)?|\d*\.\d+)([eE][-+]?\d+)? !
%i T-+]?(O[xX][\dA-Fa-f]+|0[0-7]*\d+)]

%0 o[o-71*

%s \S+]

%u \d+ |

%x, %X O[xX][\dA-Fa-f]+]

To extract the filename and numbers from a string like

/usr/sbin/sendmail - O errors, 4 warnings

you would use acanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be
(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the messagaximum recursion limit exceeded. For example,

4.2. re — Regular expression operations 119

>>> import re
>>> s = 'Begin ' + 1000*a very long string ' + 'end’
>>> re.match('Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.3/sre.py”, line 132, in match

return _compile(pattern, flags).match(string)

RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of th®, pattern are special-cased to avoid recursion. Thus, the above reg-
ular expression can avoid recursion by being reca3egin [a-zA-Z0-9 _]*?end .. As a further benefit,
such regular expressions will run faster than their recursive equivalents.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format stringgexplained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, vl,v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packedfmck(fmt, ...)) according to the given format. The result is
a tuple even if it contains exactly one item. The string must contain exactly the amount of data required by
the format [en(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

120 Chapter 4. String Services

Format | C Type Python Notes
‘X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
g int integer
‘17 unsigned int long
‘7 long integer
‘L unsigned long long
‘q’ long long long Q)
‘Q unsigned long long long (1)
‘f float float
‘d’ double float
‘s’ charf] string
‘p’ char(] string
‘P void * integer

Notes:

(1) The ‘g’ and ‘Q conversion codes are available in native mode only if the platform C compiler supports C
long long , or, on Windows,__int64 . They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the formatktrinmeans
exactly the same @shhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for examplgd,0s’ means a single 10-byte string, whilEOc’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special'@sise,means a single, empty string
(while’0Oc’ means 0 characters).

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed patk() is too long (longer than

the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note thatpack() , the p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

Forthe 1’,‘L’, ‘g’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer typ&UA L pointer will always be returned as the Python
integer0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

4.3. struct — Interpret strings as packed binary data 121

Character | Byte order Size and alignment
‘@ native native
= native standard
‘< little-endian standard
>’ big-endian standard
e network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compdaenf expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytesjong long (__int64 on Windows) is 8 bytesfloat and
double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betweei@ and ‘=": both use native byte order, but the size and alignment of the latter is
standardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or witl the
byte order character). The byte order charactéchooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, 98 themat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize('hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the fortnat’ specifies two pad bytes at the end,
assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.14):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

classSequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find

122 Chapter 4. String Services

the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ useSequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of Differ delta begins with a two-letter code:
Code | Meaning

- line unique to sequence 1

'+’ line unique to sequence 2
T line common to both sequences
T line not present in either input sequence

Lines beginning with? ’ attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

classHtmIDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:
—nit __([tabsize}[, Wrapcolumr][, Iinejunk][, charjunk])
Initializes instance oHtmMIDIff .
tabsizeis an optional keyword argument to specify tab stop spacing and defa@lis to
wrapcolumnis an optional keyword to specify column number where lines are broken and wrapped,
defaults toNone where lines are not wrapped.

linejunk and charjunkare optional keyword arguments passed imtiff() (used byHtmIDiff
to generate the side by side HTML differences). 8df() documentation for argument default
values and descriptions.

The following methods are public:

make_file (fromlines, tolines[, fromdesc][, todesd[, contexﬂ[, numlines])
Comparegromlinesandtolines(lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.
fromdescandtodescare optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

contextand numlinesare both optional keyword arguments. $ehtextto True when contextual
differences are to be shown, else the defaulidtse to show the full files.numlinesdefaults to5.
Whencontextis True numlinescontrols the number of context lines which surround the difference
highlights. Whercontextis False numlinescontrols the number of lines which are shown before a
difference highlight when using the "next” hyperlinks (setting to zero would cause the "next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines{, fromdesd[, todesc][, contexﬂ[, numlines])
Comparedromlinesandtolines(lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those fonake_file() method.
‘Tools/scripts/diff.py’ is a command-line front-end to this class and contains a good example of its use.
New in version 2.4.

4.4. difflib — Helpers for computing deltas 123

context _diff (a, b[fromfile][, tofile][, fromfiledatd[, tofiledaté[, n][Iineterm])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines issathigh defaults to three.

By default, the diff control lines (those wittt* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set inetermargument td" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned thye.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

get _close _matches (‘word, possibilitieg, n][cutoff])
Return a list of the best “good enough” matchesrd is a sequence for which close matches are desired
(typically a string), andgbossibilitiesis a list of sequences against which to matabrd (typically a list of
strings).
Optional argument (default3) is the maximum number of close matches to retarmust be greater than
0.

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches(appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
[apple’, "ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

ndiff (a, H, linejunk][, charjunk])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The defaultisNlone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE _JUNK() , which filters out lines without visible characters, except for at most one pound char-
acter (#). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which
lines are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level functit® _CHARACTERIUNK() , which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

124 Chapter 4. String Services

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> print ".join(diff),
- one

?

+ ore
o -
two
three

tree
emu

+ + 0t

restore (sequence, whigh
Return one of the two sequences that generated a delta.

Given asequenc@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1
or 2 (parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ”.join(restore(diff, 1)),

one

two

three

>>> print ".join(restore(diff, 2)),

ore

tree

emu

\

unified _diff (a, b, fromfile][, tofile][, fromfiledatd [, tofiledatd[, n][, lineterm])

Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in unified diff

format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is

set byn which defaults to three.

By default, the diff control lines (those with- , +++, or @®are created with a trailing newline. This
is helpful so that inputs created frofite.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set ihetermargument td" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these

may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned tipe.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

IS _LINE _JUNKline)
Return true for ignorable lines. The liiee is ignorable ifline is blank or contains a singlé’, otherwise
it is not ignorable. Used as a default for paramétezjunkin ndiff() before Python 2.3.

IS _CHARACTERIUNK(ch)
Return true for ignorable characters. The charagités ignorable ifchis a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

4.4. difflib — Helpers for computing deltas 125

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publistiedirobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[b]]])
Optional argumenisjunk must beNone (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Paksiador isjunk
is equivalent to passinigmbda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.
The optional argumentsandb are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set _segs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequencesetusseq2() to set the commonly used sequence once and
callset _seql() repeatedly, once for each of the other sequences.

set _seql(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia alo: ahi] andb[blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchtha#[i: i+k] isequal
tob[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(i", ', k')
meeting those conditions, the additional condititns= k', i <= ', and ifi == i’,j <= | are also

met. In other words, of all maximal matching blocks, return one that starts earliasaimd of all those
maximal matching blocks that start earliesgirreturn the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
O, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here's the same example as before, but considering blanks to be junk. That preedad’ from
matching the abcd’ at the tail end of the second sequence directly. Instead onllatiw’ can
match, and matches the leftmésibcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
1, o, 4)

If no blocks match, this returnsalo, blo, 0) .

126 Chapter 4. String Services

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of thg formy n), and means

thata[i: i+n] == b[j: j+n] . The triples are monotonically increasingiiandj.
The last triple is a dummy, and has the va{len(a), len(b), 0) . Itis the only triple withn ==
0.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[0, O, 2), (3, 2, 2), (5, 4, 0)]

get _opcodes ()
Return list of 5-tuples describing how to tuannto b. Each tuple is of the fornitag, i1, i2, j1, j2).
The first tuple hagl == j1 == 0, and remaining tuples have equal to the2 from the preceding tuple,
and, likewisej1 equal to the previoug.

Thetagvalues are strings, with these meanings:

Value | Meaning
replace’ a[il: i2] should be replaced ly j1: j2] .
'delete’ a[i1: i2] should be deleted. Note thidt == j2 in this case.
'insert’ b[j1: j2] should be inserted &f i1: i1] . Note thail == i2 in this case.
‘'equal’ alil:i2] == b[j1:]2] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"

>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, afil:i2], j1, j2, b[j1:j2]))
delete a[0:1] (q) b[0:0] ()

equal a[l1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get _grouped _opcodes ([n])
Return a generator of groups with uprtdéines of context.

Starting with the groups returned lygt _opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same formajets_opcodes() . New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this id.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to computeget _matching _blocks() orget _opcodes() hasn't already been
called, in which case you may want to fquick _ratio() orreal _quick _ratio() first to get an
upper bound.

quick _ratio ()
Return an upper bound aatio() relatively quickly.

This isn’t defined beyond that it is an upper boundatio() , and is faster to compute.

real _quick _ratio ()
Return an upper bound aatio() very quickly.

This isn’t defined beyond that it is an upper boundratio() , and is faster to compute than either
ratio() or quick _ratio()

4.4. difflib — Helpers for computing deltas 127

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, althougiuick _ratio() andreal _quick _ratio() are always at least as large
asratio()

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s ratio()

0.75

>>> g.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> g = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuratip@
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

>>> for block in s.get_matching_blocks():
print "a[%d] and b[%d] match for %d elements" % block
al0] and b[0] match for 8 elements
a[8] and b[17] match for 6 elements
a[14] and b[23] match for 15 elements
a[29] and b[38] match for O elements

Note that the last tuple returned gt _matching _blocks() is always a dummylen(a), len(b),
0) , and this is the only case in which the last tuple element (number of elements matdhed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get _opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functioget _close _matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

128 Chapter 4. String Services

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim torbmimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

TheDiffer class has this constructor:

classDiffer ([Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be
obtained from theeadlines() method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is viathigelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

>>> textl = "™ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

... ".splitlines(1)

>>> |en(textl)

4

>>> text1[0][-1]

\n'

>>> text2 = ™ 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

. ".splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiatingRiffer object we may pass functions to filter out line and character “junk.” See
the Differ() constructor for details.
Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is alist of strings, so let’s pretty-print it:

4.4. difflib — Helpers for computing deltas 129

>>> from pprint import pprint
>>> pprint(result)
[1. Beautiful is better than ugly.\n’,
2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,
3. Simple is better than complex.\n’,
'? ++ \n’
’ 4. Complex is better than complicated.\n’,

? \n’,
+ 4. Complicated is better than complex.\n’,

" -

+

++++ ~o\n),
5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
° - -
+ 4. Complicated is better than complex.
? ++++ 7 -
+ 5. Flat is better than nested.
4.5 fpformat — Floating point conversions

Thefpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat module defines the following functions and an exception:
fix (x,dig9

Formatx as[-]ddd.ddd with digsdigits after the point and at least one digit beforedifs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (X, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifjs <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber

Exception raised when a string passefix¢ orsci() as thex parameter does not look like a number.
This is a subclass dfalueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

130 Chapter 4. String Services

>>> jmport fpformat
>>> fpformat.fix(1.23, 1)
1.2’

4.6 StringlO — Read and write strings as files

This module implements a file-like clasitringlO , that reads and writes a string buffer (also knowmasnory
files). See the description of file objects for operations (section 2.3.9).

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, thetringlO will start empty. In both cases, the initial file position
starts at zero.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as Adaitl (that use the 8th bit) will cause a
UnicodeError to be raised whegetvalue() is called.

The following methods o$tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before$ienglO object'sclose() method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to rais&nicodeError

close ()
Free the memory buffer.

4.7 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of ti&ringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the funcgitsmglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. Use the origidainglO module in that case.

Unlike the memory files implemented by tBéringlO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as p&in strings.

Another difference from th&tringlO module is that callingStringlO() with a string parameter creates
a read-only object. Unlike an object created without a string parameter, it does not have write methods. These
objects are not generally visible. They turn up in tracebacl&m@isgl andStringO

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 textwrap — Text wrapping and filling

New in version 2.3.

4.6. StringlO — Read and write strings as files 131

Thetextwrap module provides two convenience functiomsap() andfill() , as well asTextWrapper

the class that does all the work, and a utility functidedent() . If you're just wrapping or filling one or

two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (tex{, width[, ...]])
Wraps the single paragraphtext(a string) so every line is at mogatidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attribufBsxé¥rapper , documented below.
width defaults to70.

fill (texq, width[, ..]])
Wraps the single paragraphtext, and returns a single string containing the wrapped paragfaifh.
is shorthand for

"\n".join(wrap(text, ...))

In particularfill() accepts exactly the same keyword argumentsrap() .

Bothwrap() andfill() work by creating aextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

An additional utility function,dedent() , is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (tex®
Remove any whitespace that can be uniformly removed from the left of every ltegtin

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s ="
hello
world

print repr(s) # prints ’ hello\n world\n
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (..)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the sarmi@xtWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer thanvidth , TextWrapper guarantees that no output line will be longer thaidth
characters.

132 Chapter 4. String Services

expand _tabs
(default: True) If true, then all tab characters iextwill be expanded to spaces using theandtabs()
method oftext

replace _whitespace
(default: True) If true, each whitespace character (as definedstiing.whitespace) remain-
ing after tab expansion will be replaced by a single spadéote: If expand _tabs is false and
replace _whitespace s true, each tab character will be replaced by a single space, whiit ke
same as tab expansion.

initial _indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent _indent
(default:”) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix _sentence _endings
(default:False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase
letter followed by one of.'”, ‘1 ’, or *?’, possibly followed by one of*’ or *’ ’, followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix _sentence _endings is false by default.

Since the sentence detection algorithm reliestiimg.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break _long _words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines are
longer tharwidth . If itis false, long words will not be broken, and some lines may be longentfdth .
(Long words will be put on a line by themselves, in order to minimize the amount by whidtth is
exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (texd
Wraps the single paragraphtiext(a string) so every line is at mogfdth characters long. All wrapping
options are taken from instance attributes of TextWrapper instance. Returns a list of output lines,
without final newlines.

fill (tex)
Wraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding

4.9. codecs — Codec registry and base classes 133

name in all lower case letters, and return a tuple of functipescoder decoder stream.reader,
stream writer) taking the following arguments:

encoderand decoder These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

stream_readerandstream.writer: These have to be factory functions providing the following interface:
factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors dgtrict’ (raise an exception in case of an encoding erim@place’ (re-
place malformed data with a suitable replacement marker, suéh)aggnore’ (ignore malformed data
and continue without further noticéymicharrefreplace’ (replace with the appropriate XML char-
acter reference (for encoding only)) altmhckslashreplace’ (replace with backslashed escape se-
quences (for encoding only)) as well as any other error handling name definedjiger _error()

In case a search function cannot find a given encoding, it should ndtura.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found,@kupError is raised. Otherwise, the codecs tuple is stored in
the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHambkupé)
for the codec lookup:

getencoder (encoding
Lookup up the codec for the given encoding and return its encoder function.

Raises d.ookupError in case the encoding cannot be found.

getdecoder (encoding
Lookup up the codec for the given encoding and return its decoder function.

Raises d.ookupError in case the encoding cannot be found.

getreader (encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises d.ookupError in case the encoding cannot be found.

register _error (name, errorhandler)
Register the error handling functiarror_handler under the nam@&ame error_handler will be called
during encoding and decoding in case of an error, wieneis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup _error (namg
Return the error handler previously register under the naanee

Raises d ookupError in case the handler cannot be found.

134 Chapter 4. String Services

strict _errors (exceptiol
Implements thestrict error handling.

replace _errors (. exception
Implements theeplace error handling.

ignore _errors (exceptiof
Implements thégnore error handling.

xmicharrefreplace _errors _errors (exception
Implements thexmicharrefreplace error handling.
backslashreplace _errors _errors (exception

Implements théackslashreplace error handling.
To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodini, errors[, buffering]]])
Open an encoded file using the giverodeand return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaultsstdct’ which causes &alueError
to be raised in case an encoding error occurs.

bufferinghas the same meaning as for the builepen() function. It defaults to line buffered.

EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giygriencoding and then written to
the original file as strings using thfeutputencoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If outputis not given, it defaults tinput.

errors may be given to define the error handling. It defaultstact’ , Which cause¥alueError to
be raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

BOM

BOMBE

BOMLE

BOMUTF8

BOMUTF16

BOMUTF16_BE

BOMUTF16_LE

BOMUTF32

BOMUTF32_BE

BOMUTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16_BE or BOMUTF16_LE depending on the platform’s native byte or-
der,BOMs an alias foBOMUTF16, BOMLE for BOMUTF16_LE andBOMBE for BOMUTF16_BE
The others represent the BOM in UTF-8 and UTF-32 encodings.

49.1 Codec Base Classes

Thecodecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

4.9. codecs — Codec registry and base classes 135

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, thecode() anddecode() methods may implement different
error handling schemes by providing teeors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

"strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

'replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPL,
'xmlicharrefreplace’ Replace with the appropriate XML character reference (only for encoding).
'backslashreplace’ Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedreiister _error

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input[, errors])
Encodes the objedhput and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (eg1252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input[, errors])
Decodes the objedhput and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. Semdings.utf _8 for an example on how this is
done.

StreamWriter Objects
TheStreamWriter class is a subclass @fodec and defines the following methods which every stream writer
must define in order to be compatible to the Python codec registry.

classStreamWriter (strean{, errors])
Constructor for &streamWriter instance.

136 Chapter 4. String Services

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiiers keyword
argument. These parameters are predefined:

e’strict’ RaiseValueError (or a subclass); this is the default.

e’'ignore’ Ignore the character and continue with the next.

e'replace’ Replace with a suitable replacement character

eo'’xmicharrefreplace’ Replace with the appropriate XML character reference
e’backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime Sttb@mWriter
object.

The set of allowed values for tlegrors argument can be extended wittgister _error()

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite€) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tBeeamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

TheStreamReader class is a subclass Gfodec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strearr[, errors])
Constructor for é&StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiiers keyword
argument. These parameters are defined:

e’strict’ RaiseValueError (or a subclass); this is the default.
e’ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime Sttb@mReader
object.

The set of allowed values for tlegrors argument can be extended wittgister _error()

4.9. codecs — Codec registry and base classes 137

read ([size[, chars,[firstline]]])
Decodes data from the stream and returns the resulting object.

charsindicates the number of characters to read from the streaad() will never return more than
charscharacters, but it might return less, if there are not enough characters available.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possiblesizeis intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

Changed in version 2.4harsargument added. Changed in version 2.fir&tline argument added.
readline ([size[, keepend]s])

Read one line from the input stream and return the decoded data.

size if given, is passed as size argument to the streagaldline() method.

If keependss false lineends will be stripped from the lines returned.

Changed in version 2.4eependargument added.
readlines ([sizehin[, keepend]s])

Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list dewteies if
endsis true.

sizehint if given, is passed asizeargument to the stream’sad() method.
reset ()
Resets the codec buffers used for keeping state.
Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBeeamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned kgothep() function to construct the
instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance.streammust be a file-like objectReaderand Writer must
be factory functions or classes providing tBegeamReader andStreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaceStteamReader andStreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects
The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned lyothep() function to construct the
instance.

138 Chapter 4. String Services

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors

Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework
on the frontend (the input teead() and output ofwrite()) while Readerand Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface,Reader Writer must be factory functions or classes
providing objects of th&treamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®gaderandWriter for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceSwéamReader andStreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid

aliases.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

an IBM EBCDIC code page

an IBM PC code page, which msscii compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional ¢
big5hkscs big5-hkscs, hkscs Traditional ¢
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Eu
cp737 Greek
cp775 IBM775 Baltic langu
cp850 850, IBM850 Western Eu
cp852 852, IBM852 Central and
cp855 855, IBM855 Bulgarian, E
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic

4.9. codecs — Codec registry and base classes

139

Codec Aliases Languages
Ccp865 865, IBM865 Danish, Nol
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional ¢
cp1006 Urdu
cpl026 ibm1026 Turkish
cpl140 ibm1140 Western Eu
cpl250 windows-1250 Central and
cpl251 windows-1251 Bulgarian, E
cpl252 windows-1252 Western Eu
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows1256 Arabic
cpl257 windows-1257 Baltic langu
cpl258 windows-1258 Viethamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ke-5601, ks c-5601-1987, ksx1001, kx-1001 Korean
gb2312 chinese, csis058gh231280, euc-cn, euccn, eucgh2312-cn, gh2312-1980, gh2312-80, is&imp8fied C
gbk 936, cp936, ms936 Unified Chil
gb18030 gb18030-2000 Unified Chil
hz hzgb, hz-gb, hz-gb-2312 Simplified C
502022 jp €sis02022jp, is02022jp, is0-2022-jp Japanese
502022 jp_1 i502022jp-1, is0-2022-jp-1 Japanese
i502022 jp_2 iI502022jp-2, is0-2022-jp-2 Japanese, |
502022 jp_2004 | is02022jp-2004, is0-2022-jp-2004 Japanese
502022 jp_3 i502022jp-3, is0-2022-jp-3 Japanese
i502022 jp_ext i502022jp-ext, is0-2022-jp-ext Japanese
502022 kr €sis02022kr, is02022kr, iso0-2022-kr Korean
latin_1 is0-8859-1, is08859-1, 8859, cp819, latin, latinl, L1 West Europ
508859 2 iS0-8859-2, latin2, L2 Central and
is08859 3 is0-8859-3, latin3, L3 Esperanto,
is08859 4 is0-8859-4, latin4, L4 Baltic langu
i508859 5 iS0-8859-5, cyrillic Bulgarian, E
is08859 6 is0-8859-6, arabic Arabic
is08859 7 is0-8859-7, greek, greek8 Greek
is08859 8 is0-8859-8, hebrew Hebrew
i508859 9 i50-8859-9, latin5, L5 Turkish
508859 10 is0-8859-10, latin6, L6 Nordic lang
i508859 13 iS0-8859-13 Baltic langu
is08859 14 is0-8859-14, latin8, L8 Celtic langu
is08859 15 is0-8859-15 Western Eu
johab cpl361, ms1361 Korean
koi8_r Russian
koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, E
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and
mac_roman macroman Western Eu
mac_turkish macturkish Turkish
140 Chapter 4. String Services

Codec Aliases Languages
ptcpl54 csptcpl54, ptl54, cpl54, cyrillic-asian Kazakh
shift_jis csshiftjis, shiftjis, sjis, sjis Japanese
shift_jis_2004 shiftjis2004, sjis 2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, §isx0213 Japanese
utf_16 U16, utflé all language
utf_16_be UTF-16BE all language
utf_16_le UTF-16LE all language
utf_7 u7 all language
utf_8 U8, UTF, utf8 all language

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them

don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the

“decoding” direction is listed as operand type in the table.

Codec Aliases Operand type | Purpose

base64.codec base64, base-64 byte string Convert operand to MIME base64

bz2 _codec bz2 byte string Compress the operand using bz2
hex_codec hex byte string Convert operand to hexadecimal repres
idna Unicode string| Implements RFC 3490. New in version
mbcs dbcs Unicode string| Windows only: Encode operand accordi
palmos Unicode string| Encoding of PalmOS 3.5

punycode Unicode string| Implements RFC 3492. New in version
quopri_codec quopri, quoted-printable, quotedprintahblebyte string Convert operand to MIME quoted printa
raw_unicode escape Unicode string| Produce a string that is suitable as raw |
rot_13 rotl3 byte string Returns the Caesar-cypher encryption c
string_escape byte string Produce a string that is suitable as strin
undefined any Raise an exception for all conversion. C
unicode_escape Unicode string| Produce a string that is suitable as Unic
unicode_internal Unicode string| Return the internal representation of the
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna

New in version 2.3.

— Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds uponptineycode encoding and
stringprep

These RFCs together define a protocol to supporta®oH characters in domain names. A domain name contain-
ing nonAscli characters (such as “www.Alliancefrangaise.nu”) is converted intesami-compatible encoding
(ACE, such as “www.xn-alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places
where arbitrary characters are not allowed by the protocol, such as DNS queries,Hd3tT Flelds, and so on.

This conversion is carried out in the application; if possible invisible to the user: The application should trans-
parently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before
presenting them to the user.

Python supports this conversion in several ways: il codec allows to convert between Unicode and the
ACE. Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications

need not be concerned about converting host names themselves when they pass them to the socket module. On top

of that, modules that have host names as function parameters, shtthldéis andftplib , accept Unicode

4.9. codecs — Codec registry and base classes 141

host nameshtplib then also transparently sends an IDNA hostname imHtsee: field if it sends that field at
all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version label. The implementation currently assumes query strings, so
AllowUnassigned s true.

ToASCII (label)
Convert a label tascli, as specified in RFC 349QseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based onuUtlieotleData.txt’ file version 3.2.0 which is publically
available fromftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/lUNIDATA/UnicodeData.html). It defines the following functions:

lookup (namg
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not foundKeyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode charactiehr as a string. If no name is definedefaultis
returned, or, if not givenyalueError is raised.

decimal (unichi], default])
Returns the decimal value assigned to the Unicode chanawighr as integer. If no such value is defined,
defaultis returned, or, if not giveriyalueError is raised.

digit (unich, default])
Returns the digit value assigned to the Unicode charagt®hr as integer. If no such value is defined,
defaultis returned, or, if not giveriyalueError is raised.

numeric (unich, default])
Returns the numeric value assigned to the Unicode characiehnr as float. If no such value is defined,
defaultis returned, or, if not giveriValueError s raised.

category (‘unichr)
Returns the general category assigned to the Unicode chavadatlr as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode charattdr as string. If no such value is
defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode chanaicteras integer. Returnd if no
combining class is defined.

east _asian _width (‘unichr)
Returns the east asian width assigned to the Unicode chausitér as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode charaditgr as integer. Returrisif the character

142 Chapter 4. String Services

has been identified as a “mirrored” character in bidirectional Gextherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chamatteas string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornform for the Unicode stringunistr. Valid values forform are 'NFC’, 'NFKC’,
'NFD’, and 'NFKD'.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)

can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata _version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of theringprep ~ procedure are part of the profile. One example stirengprep

profile isnameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated usingrttkestringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a ssttjingprep provides the “characteristic function”, i.e. a function that returns true

if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in _table _al(codg
Determine whethetodeis in tableA.1 (Unassigned code points in Unicode 3.2).

in _table _b1(codg
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

4.11. stringprep — Internet String Preparation 143

map_table _b2(code
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table _b3(code
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

in _table _cl11(code
Determine whethetodeis in tableC.1.1 (ASCII space characters).

in _table _c12(code
Determine whethecodeis in tableC.1.2 (Non-ASCII space characters).

in _table _c11 _c12(codg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in _table _c21(code
Determine whethetodeis in tableC.2.1 (ASCII control characters).

in _table _c22(code
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

in _table _c21 _c22(codg
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in _table _c3(codg
Determine whethetodeis in tableC.3 (Private use).

in _table _c4(codg
Determine whethetodeis in tableC.4 (Non-character code points).

in _table _c5(codég
Determine whethetodeis in tableC.5 (Surrogate codes).

in _table _c6(codd
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in _table _c7(codg
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in _table _c8(codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in _table _c9(codg
Determine whethetodeis in tableC.9 (Tagging characters).

in _table _d1(codg
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or "AL”).

in _table _d2(codg
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

144 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions.
Here’s an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying interactive Python examples.

unittest Unit testing framework for Python.

test Regression tests package containing the testing suite for Python.
test.test _support Support for Python regression tests.

decimal Implementation of the General Decimal Arithmetic Specification.

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

collections High-performance datatypes

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar Functions for working with calendars, including some emulation of thexttal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be
presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, whichpusisc to

generate its documentation as text on the console. The same text documentation can also be viewed from outside
the Python interpreter by runningydoc as a script at the operating system’s command prompt. For example,
running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by
the UNIX man command. The argument pydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argupyeitdmoks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabd refers to

145

an existing Python source file, then documentation is produced for that file.

Specifying aw flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a-k flag before the argument will search the synopsis lines of all available modules for the keyword
given as the argument, again in a manner similar to thexUnan command. The synopsis line of a module is
the first line of its documentation string.

You can also us@ydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browserspydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
athttp://localhost:1234/ in your preferred Web browsepydoc -gwill start the server and additionally
bring up a smallrkinter -based graphical interface to help you search for documentation pages.

Whenpydocgenerates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter
and typedimport spam .

Module docs for core modules are assumed to residetpn/www.python.org/doc/current/lib/. This can be over-
ridden by setting the PYTHONDOCS environment variable to a different URL or to a local directory containing
the Library Reference Manual pages.

5.2 doctest — Test interactive Python examples

The doctest module searches for pieces of text that look like interactive Python sessions, and then executes
those sessions to verify that they work exactly as shown. There are several common ways to use doctest:

e To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as
documented.

e To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

e To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending
on whether the examples or the expository text are emphasized, this has the flavor of "literate testing” or
"executable documentation”.

Here’s a complete but small example module:

146 Chapter 5. Miscellaneous Services

This is the "example" module.
The example module supplies one function, factorial(). For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test interactive Python examples 147

If you run ‘example.py’ directly from the command linejoctest

import math
if not n >= O:

raise ValueError("n must be >= 0")

if math.floor(n) != n:

raise ValueError("n must be exact integer")
if nt1 == n: # catch a value like 1e300
raise OverflowError("n too large")

result = 1

factor = 2

while factor <= n:
result *= factor
factor += 1

return result

def _test():
import doctest
doctest.testmod()

if _name__ == "_ main__"
_test()

$ python example.py
$

works its magic:

There’s no output! That's normal, and it means all the examples worked. -P#ss$he script, andloctest
prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Trying:
factorial(5)
Expecting:
120
ok
Trying:
[factorial(n) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok
Trying:
[factorial(long(n)) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

148

Chapter 5. Miscellaneous Services

Trying:
factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
1 items had no tests:
__main__._test
2 items passed all tests:
1 tests in __main__
8 tests in __main__.factorial
9 tests in 3 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive useloftest ! Jump in. The following sections
provide full details. Note that there are many examples of doctests in the standard Python test suite and libraries.
Especially useful examples can be found in the standard testifileest/test_doctest.py’.

5.2.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll continue to do it) is to end each module
Mwith:

def _test():
import doctest
doctest.testmod()

if _name__ == "_ main_"
_test()

doctest then examines docstrings in mode
Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outputi§Test Failed*** N failures. ', where
N is the number of examples that failed.

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passingrbose=True to testmod() , or prohibit it by passing
verbose=False . In either of those casesys.argv is not examined byestmod() (so passingv or
not has no effect).

For more information otestmod() , see section 5.2.4.

5.2. doctest — Test interactive Python examples 149

5.2.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in theafilgé.txt’. The
file content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For
example, perhapgxample.txt’ contains this:

The “example” module

Using “factorial

This is an example text file in reStructuredText format. First import
“factorial* from the ‘“example” module:

>>> from example import factorial
Now use it:

>>> factorial(6)
120

Runningdoctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:
factorial(6)
Expected:
120
Got:
720

As with testmod() , testfile() won't display anything unless an example fails. If an example does falil,
then the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same format as
testmod()

By default,testfile() looks for files in the calling module’s directory. See section 5.2.4 for a description of
the optional arguments that can be used to tell it to look for files in other locations.

Like testmod() , testfile() 's verbosity can be set with th& command-line switch or with the optional
keyword argumenterbose

For more information otestfile() , See section 5.2.4.

5.2.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running
doctest on these examples, see the following sections.

150 Chapter 5. Miscellaneous Services

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into the
module are not searched.

In addition, if M. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings foundvfrontest __ are
searched, and strings are treated as if they were docstrings. In outputKaitkéy. __test __ appears with
name

<name of M>._ test K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested
classes.

Changed in version 2.4: A "private name” concept is deprecated and no longer documented.

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn't trying to do an exact
emulation of any specific Python shell. All hard tab characters are expanded to spaces, using 8-column tab stops.
If you don't believe tabs should mean that, too bad: don't use hard tabs, or write youDogirestParser

class.

Changed in version 2.4: Expanding tabs to spaces is new; previous versions tried to preserve hard tabs, with
confusing results.

>>> # comments are ignored

>>> x = 12

>>> X

12

>>> if x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NO!I"

no

NO

NoH!

>>>

Any expected output must immediately follow the firrab> > or'... "’ line containing the code, and the
expected output (if any) extends to the next> ’ or all-whitespace line.

The fine print:

e Expected output cannot contain an all-whitespace line, since such aline is taken to signal the end of expected
output. If expected output does contain a blank line qRItANKLINE> in your doctest example each place
a blank line is expected. Changed in version ZBLANKLINE> was added; there was no way to use
expected output containing empty lines in previous versions.

e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different
means).

e If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
should use a raw docstring, which will preserve your backslashes exactly as you type them:

5.2. doctest — Test interactive Python examples 151

>>> def f(x):

r"Backslashes in a raw docstring: m\n
>>> print f.__doc__
Backslashes in a raw docstring: m\n

”m

Otherwise, the backslash will be interpreted as part of the string. For examplé\"tabdve would be
interpreted as a newline character. Alternatively, you can double each backslash in the doctest version (and
not use a raw string):

>>> def f(x):

. ""Backslashes in a raw docstring: m\\n™”
>>> print f.__doc__

Backslashes in a raw docstring: m\n

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> jmport math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
'>>> ' line that started the example.

What's the Execution Context?

By default, each timeloctest finds a docstring to test, it usesshallow copyof Ms globals, so that running
tests doesn’t change the module’s real globals, and so that one Mt leave behind crumbs that accidentally
allow another test to work. This means examples can freely use any names defined at topNeaeldmames
defined earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by pagsdg=your _dict totestmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback.
Since tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers),
this is one case where doctest works hard to be flexible in what it accepts.

Simple example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

That doctest succeedsvblueError s raised, with thelist.remove(x): x not in list ' detail as
shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

152 Chapter 5. Miscellaneous Services

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The
traceback stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail.
This is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line
detail:

>>> raise ValueError('multi\n line\ndetail’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: multi
line
detail

The last three lines (starting wiNalueError) are compared against the exception’s type and detail, and the
rest are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the
last example is probably better as:

>>> raise ValueError('multi\n line\ndetail’)
Traceback (most recent call last):

ValueError: multi
line
detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the use 'ofis
independent of doctestELLIPSIS option. The ellipsis in that example could be left out, or could just as well
be three (or three hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won't need to remember:

e Doctest can't guess whether your expected output came from an exception traceback or from ordi-
nary printing. So, e.g., an example that expet®talueError: 42 is prime " will pass whether
ValueError is actually raised or if the example merely prints that traceback text. In practice, ordinary
output rarely begins with a traceback header line, so this doesn’t create real problems.

e Each line of the traceback stack (if present) must be indented further than the first line of the example,
start with a non-alphanumeric character. The first line following the traceback header indented the same and
starting with an alphanumeric is taken to be the start of the exception detail. Of course this does the right
thing for genuine tracebacks.

e When thdGNORE_EXCEPTION.DETAIL doctest option is is specified, everything following the leftmost
colon is ignored.

e The interactive shell omits the traceback header line for sBymtaxError s. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test
aSyntaxError that omits the traceback header, you will need to manually add the traceback header line
to your test example.

e For someSyntaxError s, Python displays the character position of the syntax error, usinparker:

5.2. doctest — Test interactive Python examples 153

>>> 1 1
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are not
checked by doctest. For example, the following test would pass, even though it patsrtaeker in the
wrong location:

>>> 1 1
Traceback (most recent call last):
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Changed in version 2.4: The abilty to handle a multi-line exception detail, and the
IGNORE_EXCEPTION.DETAIL doctest option, were added.

Option Flags and Directives

A number of option flags control various aspects of doctest's behavior. Symbolic names for the flags are supplied
as module constants, which can be or'ed together and passed to various functions. The names can also be used in
doctest directives (see below).

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

DONTACCEPTTRUEFOR 1
By default, if an expected output block contains jusan actual output block containing jusor justTrue
is considered to be a match, and similarly @oversusFalse . WhenDONTACCEPTTRUE.FOR_1 is
specified, neither substitution is allowed. The default behavior caters to that Python changed the return
type of many functions from integer to boolean; doctests expecting "little integer” output still work in these
cases. This option will probably go away, but not for several years.

DONTACCEPTBLANKLINE
By default, if an expected output block contains a line containing only the stBhdA\NKLINE>, then that
line will match a blank line in the actual output. Because a genuinely blank line delimits the expected output,
this is the only way to communicate that a blank line is expected. Il@NT ACCEPTBLANKLINE is
specified, this substitution is not allowed.

NORMALIZEWHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By
default, whitespace must match exact§yORMALIZE WHITESPACEs especially useful when a line of
expected output is very long, and you want to wrap it across multiple lines in your source.

ELLIPSIS
When specified, an ellipsis marker.() in the expected output can match any substring in the actual
output. This includes substrings that span line boundaries, and empty substrings, so it's best to keep usage
of this simple. Complicated uses can lead to the same kinds of "oops, it matched too much!” surprises that
[* |is prone to in regular expressions.

IGNORE_EXCEPTION.DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is raised,
even if the exception detail does not match. For example, an example expa&tingError: 42 '

154 Chapter 5. Miscellaneous Services

will pass if the actual exception raised MdlueError: 3*14 ', but will fail, e.qg., if TypeError is

raised.
Note that a similar effect can be obtained usiBLIPSIS , and IGNORE_EXCEPTION.DETAIL
may go away when Python releases prior to 2.4 become uninteresting. Until then,

IGNORE_LEXCEPTIONDETAIL is the only clear way to write a doctest that doesn’t care about the
exception detail yet continues to pass under Python releases prior to 2.4 (doctest directives appear to be
comments to them). For example,

>>> (1, 2)[3] = 'moo’ #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment

passes under Python 2.4 and Python 2.3. The detail changed in 2.4, to say "does not” instead of "doesn’t”.

COMPARISONFLAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

REPORTUDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a unified
diff.

REPORTICDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

REPORTINDIFF
When specified, differences are computedibiffib.Differ , using the same algorithm as the popular
‘ndiff.py’ utility. This is the only method that marks differences within lines as well as across lines. For

example, if a line of expected output contains digiwhere actual output contains lettera line is inserted
with a caret marking the mismatching column positions.

REPORTONLY_FIRST _FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remain-
ing examples. This will prevent doctest from reporting correct examples that break because of earlier
failures; but it might also hide incorrect examples that fail independently of the first failure. When
REPORTONLY_FIRST _FAILURE is specified, the remaining examples are still run, and still count to-
wards the total number of failures reported; only the output is suppressed.

REPORTINGFLAGS
A bitmask or’ing together all the reporting flags above.

"Doctest directives” may be used to modify the option flags for individual examples. Doctest directives are
expressed as a special Python comment following an example’s source code:

directive = "#" "doctest:" directive _options

directive _options = directive _option ("," directive _option)*

directive _option := on_or _off directive _option _name

on_or _off =

directive _option _name := "DONT_ACCEPTBLANKLINE" | "NORMALIZE _WHITESPACE" | ...

Whitespace is not allowed between ther - and the directive option name. The directive option hame can be
any of the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example+ Wsenable the named
behavior, or to disable it.

For example, this test passes:

5.2. doctest — Test interactive Python examples 155

>>> print range(20) #doctest: +NORMALIZE_WHITESPACE
o 1, 2, 3 4 5 6 7, 8 09,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit
list elements, and because the actual output is on a single line. This test also passes, and also requires a directive
to do so:

>>> print range(20) # doctest:+ELLIPSIS
[0, 1, .., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print range(20) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[0, 1, .., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print range(20) # doctest: +ELLIPSIS
. # doctest: +NORMALIZE_WHITESPACE
[o, 1, .., 18, 19]

As the previous example shows, you can add lines to your example containing only directives. This can be
useful when an example is too long for a directive to comfortably fit on the same line:

>>> print range(5) + range(10,20) + range(30,40) + range(50,60)
. # doctest: +ELLIPSIS
[o, .., 4, 10, .., 19, 30, .., 39, 50, ..., 59]

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via+ in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an optiom &idirective

can be useful.

Changed in version 2.4: ConstantdDONTACCEPTBLANKLINE, NORMALIZEWHITESPACE
ELLIPSIS , IGNORE.EXCEPTION.DETAIL, REPORTUDIFF, REPORTICDIFF, REPORINDIFF,
REPORTONLY_FIRST _FAILURE, COMPARISON-LAGSandREPORTINGFLAGSwere added; by default
<BLANKLINE> in expected output matches an empty line in actual output; and doctest directives were added.

There’s also a way to register new option flag names, although this isn’t useful unless you intend to extend
doctest internals via subclassing:

register _optionflag (name¢
Create a new option flag with a given name, and return the new flag’s integer value.
register _optionflag() can be used when subclassi@gtputChecker or DocTestRunner
to create new options that are supported by your subclassgster _optionflag should always be
called using the following idiom:

MY_FLAG = register_optionflag(MY_FLAG’)

New in version 2.4.

156 Chapter 5. Miscellaneous Services

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match,
the test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t
guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs will
be printed in any particular order, so a test like

>>> foo()
{"Hermione™: "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d

[(Harry’, 'broomstick’), ("Hermione’, 'hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time

7948648

>>> class C:. pass

>>> C() # the default repr() for instances embeds an address
<_main__.C instance at OxOOAC18F0>

TheELLIPSIS directive gives a nice approach for the last example:

>>> C() #doctest: +ELLIPSIS
<_main__.C instance at Ox...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the forni/2.**J are safe across all platforms, and | often contrive doctest examples to produce
numbers of that form:

5.2. doctest — Test interactive Python examples 157

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

5.2.4 Basic API

The functiongestmod() andtestfile() provide a simple interface to doctest that should be sufficient for
most basic uses. For a less formal introduction to these two functions, see sections 5.2.1 and 5.2.2.

extraglobq| , raise_on_error || , parser])

testfile (fiIename{, modularelative][, name][, ackagé[, globs][, verbosé[, report][, optionflag:i[,
All arguments excegilenameare optional, anj

should be specified in keyword form.
Test examples in the file namétkname Return { failure_count test.couny .
Optional argumentodule_relative specifies how the filename should be interpreted:

oIf module_relativeis True (the default), theffilenamespecifies an OS-independent module-relative
path. By default, this path is relative to the calling module’s directory; but ifphekageargument
is specified, then it is relative to that package. To ensure OS-independiégreameshould use
characters to separate path segments, and may not be an absolute path (i.e., it may not bejin with

oIf module_relativeis False , thenfilenamespecifies an OS-specific path. The path may be absolute
or relative; relative paths are resolved with respect to the current working directory.

Optional argument name gives the name of the test; by default, or iNone,
os.path.basename(filenamé is used.

Optional argumenpackages a Python package or the name of a Python package whose directory should
be used as the base directory for a module-relative filename. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify
packagef module_relativeis False .

Optional argumenglobsgives a dict to be used as the globals when executing examples. A new shallow
copy of this dict is created for the doctest, so its examples start with a clean slate. By defalNipoe jfa
new empty dict is used.

Optional argumengxtraglobggives a dict merged into the globals used to execute examples. This works like
dict.update() . if globsandextraglobshave a common key, the associated valuexmaglobsappears

in the combined dict. By default, or None, no extra globals are used. This is an advanced feature that
allows parameterization of doctests. For example, a doctest can be written for a base class, using a generic
name for the class, then reused to test any number of subclasses by passitrgglobsdict mapping the

generic name to the subclass to be tested.

Optional argumenterboseprints lots of stuff if true, and prints only failures if false; by default, dldne,

it's true if and only if’-v’ isin sys.argv

Optional argumenteport prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argumendptionflagsor’s together option flags. See section 5.2.3.

Optional argumentaise_on_error defaults to false. If true, an exception is raised upon the first failure or

unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is
to continue running examples.

Optional argumenparserspecifies @ocTestParser (or subclass) that should be used to extract tests
from the files. It defaults to a normal parser (iBqcTestParser()).
New in version 2.4.

testmod ([m][namé H globs][, verbosé[, isprivate][, report][, optionflagé[, extraglobg[,

raise_on_error || , exclude.empty])
All arguments are optional, and all except foshould be specified in keyword form.

158 Chapter 5. Miscellaneous Services

Test examples in docstrings in functions and classes reachable from mo¢hrdenodule__main __if m
is not supplied or idNone), starting withm. __doc __.

Also test examples reachable from diat __test __, if it exists and is noNone. m. __test __ maps
names (strings) to functions, classes and strings; function and class docstrings are searched for examples;
strings are searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to moduége searched.
Return { failure_count test.coun) .
Optional argumenbamegives the name of the module; by default, oNibne, m. __name__ is used.

Optional argumenexclude emptydefaults to false. If true, objects for which no doctests are found
are excluded from consideration. The default is a backward compatibility hack, so that code still using

doctest.master.summarize() in conjunction withtestmod() continues to get output for ob-
jects with no tests. Thexclude_.emptyargument to the newddocTestFinder constructor defaults to
true.

Optional argumentextraglobs verbosereport, optionflags raise_on_error, andglobsare the same as for
functiontestfile() above, except thaflobsdefaults tom. __dict

Optional argumenisprivatespecifies a function used to determine whether a name is private. The default
function treats all names as publisprivatecan be set taloctest.is _private to skip over names

that are private according to Python’s underscore naming converlieprecated since release 2.4s-

private was a stupid idea — don’t use it. If you need to skip tests based on name, filter the list returned by
DocTestFinder.find() instead.

Changed in version 2.3: The paramatptionflagswvas added.
Changed in version 2.4: The parametexgraglobsraise_on_error andexclude emptywere added.

There’s also a function to run the doctests associated with a single object. This function is provided for backward
compatibility. There are no plans to deprecate it, but it’s rarely useful:

run _docstring _examples (f, globs[, verbosé[, namé[, compileflagi[, optionflagﬁ)
Test examples associated with objedior examplef may be a module, function, or class object.

A shallow copy of dictionary argumemgtobsis used for the execution context.
Optional argumenbameis used in failure messages, and defaultf\ioName" .

If optional argumenterbosds true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argumentompileflagsgives the set of flags that should be used by the Python compiler when
running the examples. By default, oMione, flags are deduced corresponding to the set of future features
found inglobs

Optional argumenbptionflagsworks as for functiortestfile() above.

5.2.5 Unittest API

As your collection of doctest’'ed modules grows, you'll want a way to run all their doctests systematically. Prior
to Python 2.4doctest had a barely documentéltester class that supplied a rudimentary way to combine
doctests from multiple moduleslester was feeble, and in practice most serious Python testing frameworks
build on theunittest module, which supplies many flexible ways to combine tests from multiple sources. So,
in Python 2.4doctest ’s Tester class is deprecated, addctest provides two functions that can be used

to createunittest test suites from modules and text files containing doctests. These test suites can then be run
usingunittest test runners:

5.2. doctest — Test interactive Python examples 159

import unittest
import doctest
import my_module_with_doctests, and_another

suite = unittest.TestSuite()

for mod in my_module_with_doctests, and_another:
suite.addTest(doctest.DocTestSuite(mod))

runner = unittest.TextTestRunner()

runner.run(suite)

There are two main functions for creatingittest .TestSuite instances from text files and modules with
doctests:

DocFileSuite (*paths, **kw)
Convert doctest tests from one or more text files tmetest . TestSuite

The returnedunittest .TestSuite is to be run by the unittest framework and runs the interac-
tive examples in each file. If an example in any file fails, then the synthesized unit test fails, and a
failureException exception is raised showing the name of the file containing the test and a (some-
times approximate) line number.

Pass one or more paths (as strings) to text files to be examined.
Options may be provided as keyword arguments:
Optional argumentodule_relative specifies how the filenames pathsshould be interpreted:

olf module_relative is True (the default), then each filename specifies an OS-independent module-
relative path. By default, this path is relative to the calling module’s directory; but iptokage
argument is specified, then it is relative to that package. To ensure OS-independence, each filename
should us€ characters to separate path segments, and may not be an absolute path (i.e., it may not
begin with/).

olf module_relative is False , then each filename specifies an OS-specific path. The path may be
absolute or relative; relative paths are resolved with respect to the current working directory.

Optional argumenpackages a Python package or the name of a Python package whose directory should
be used as the base directory for module-relative filenames. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify
packagef module_relativeis False .

Optional argumensetUpspecifies a set-up function for the test suite. This is called before running the tests
in each file. ThesetUpfunction will be passed BocTest object. The setUp function can access the test
globals as thglobsattribute of the test passed.

Optional argumentearDownspecifies a tear-down function for the test suite. This is called after running
the tests in each file. TheearDownfunction will be passed ®ocTest object. The setUp function can
access the test globals as tiiebsattribute of the test passed.

Optional argumenglobsis a dictionary containing the initial global variables for the tests. A new copy of
this dictionary is created for each test. By defagltbsis a new empty dictionary.

Optional argumenoptionflagsspecifies the default doctest options for the tests, created by or-ing together
individual option flags. See section 5.2.3. See functen _unittest _reportflags() below for a
better way to set reporting options.

Optional argumenparserspecifies @ocTestParser (or subclass) that should be used to extract tests
from the files. It defaults to a normal parser (ileqcTestParser()).

New in version 2.4.

DocTestSuite ([module] [: globs][, extraglobs] [, testinder][, setUp][, tearDown][, checkeﬂ)
Convert doctest tests for a module tardttest . TestSuite

The returnedunittest .TestSuite is to be run by the unittest framework and runs each doctest in
the module. If any of the doctests fail, then the synthesized unit test fails, taildir@Exception

160 Chapter 5. Miscellaneous Services

exception is raised showing the name of the file containing the test and a (sometimes approximate) line
number.

Optional argumentoduleprovides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argumenglobsis a dictionary containing the initial global variables for the tests. A new copy of
this dictionary is created for each test. By defaglobsis a new empty dictionary.

Optional argumenextraglobsspecifies an extra set of global variables, which is mergeddghlibs By
default, no extra globals are used.

Optional argumentest_finder is theDocTestFinder object (or a drop-in replacement) that is used to
extract doctests from the module.

Optional argumentsetUp tearDown andoptionflagsare the same as for functiddocFileSuite()
above.

New in version 2.3.

Changed in version 2.4: The parametglsbs extraglobs test finder, setUp tearDown andoptionflags
were added; this function now uses the same search technigestmsd()

Under the coverdDocTestSuite() creates ainittest .TestSuite out of doctest.DocTestCase
instances, andocTestCase is a subclass ofinittest .TestCase . DocTestCase isn't documented
here (it's an internal detail), but studying its code can answer questions about the exact detaitesf
integration.

Similarly, DocFileSuite() creates anittest .TestSuite out ofdoctest.DocFileCase instances,
andDocFileCase is a subclass dbocTestCase .

So both ways of creating anittest ~ .TestSuite run instances obocTestCase . This is important for a

subtle reason: when you raioctest functions yourself, you can control tliectest options in use directly,

by passing option flags toctest functions. However, if you're writing anittest framework,unittest

ultimately controls when and how tests get run. The framework author typically wants to coattelst

reporting options (perhaps, e.g., specified by command line options), but there’s no way to pass options through
unittest todoctest test runners.

For this reasonjoctest also supports a notion ofbctest reporting flags specific tonittest ~ support, via
this function:

set _unittest _reportflags (flags
Set thedoctest reporting flags to use.

Argumentflagsor’s together option flags. See section 5.2.3. Only "reporting flags” can be used.

This is a module-global setting, and affects all future doctests run by madiitest : therunTest()

method ofDocTestCase looks at the option flags specified for the test case wheteT estCase

instance was constructed. If no reporting flags were specified (which is the typical and expected case),
doctest ’s unittest reporting flags are or’ed into the option flags, and the option flags so augmented
are passed to tHeocTestRunner instance created to run the doctest. If any reporting flags were specified
when theDocTestCase instance was constructedhctest 's unittest reporting flags are ignored.

The value of theunittest reporting flags in effect before the function was called is returned by the
function.

New in version 2.4.

5.2.6 Advanced API

The basic APl is a simple wrapper that's intended to make doctest easy to use. It is fairly flexible, and should
meet most users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s
capabilities, then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples ex-
tracted from doctest cases:

e Example : A single python statement, paired with its expected output.

5.2. doctest — Test interactive Python examples 161

e DocTest : A collection of Example s, typically extracted from a single docstring or text file.
Additional processing classes are defined to find, parse, and run, and check doctest examples:
e DocTestFinder : Finds all docstrings in a given module, and useBaTestParser to create a
DocTest from every docstring that contains interactive examples.

e DocTestParser : Creates &ocTest object from a string (such as an object’s docstring).

e DocTestRunner : Executes the examples inocTest , and uses a@utputChecker to verify their
output.

e OutputChecker : Compares the actual output from a doctest example with the expected output, and
decides whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:
[— + [+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
+omees + | - oo + [- (printed)
I I | Example | I |
v I I v I
DocTestParser | Example | OutputChecker
Fommmmeeee +

DocTest Objects

classDocTest (examples, globs, name, filename, lineno, docstring
A collection of doctest examples that should be run in a single namespace. The constructor arguments are
used to initialize the member variables of the same names. New in version 2.4.

DocTest defines the following member variables. They are initialized by the constructor, and should not be
modified directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run by this
test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names to
values. Any changes to the namespace made by the examples (such as binding new variables) will be
reflected inglobs after the test is run.

name
A string name identifying th®ocTest . Typically, this is the name of the object or file that the test was
extracted from.

filename
The name of the file that thiBocTest was extracted from; dlone if the filename is unknown, or if the
DocTest was not extracted from a file.

lineno
The line number withifilename where thisDocTest begins, oNone if the line number is unavailable.
This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or ‘None* if the string is unavailable, or if the test was not
extracted from a string.

162 Chapter 5. Miscellaneous Services

Example Objects

classExample (source, War[t, exgmsg][, Iineno][, indent][, options])
A single interactive example, consisting of a Python statement and its expected output. The constructor
arguments are used to initialize the member variables of the same names. New in version 2.4.

Example defines the following member variables. They are initialized by the constructor, and should not be
modified directly.

source

A string containing the example’s source code. This source code consists of a single Python statement, and
always ends with a newline; the constructor adds a newline when necessary.

want
The expected output from running the example’s source code (either from stdout, or a traceback in case of
exception)want ends with a newline unless no output is expected, in which case it's an empty string. The
constructor adds a newline when necessary.

exc _msg
The exception message generated by the example, if the example is expected to generate an exception;
or None if it is not expected to generate an exception. This exception message is compared against the
return value oftraceback.format _exception _only() . exc _msg ends with a newline unless
it's None. The constructor adds a newline if needed.

lineno

The line number within the string containing this example where the example begins. This line number is
zero-based with respect to the beginning of the containing string.

indent

The example’s indentation in the containing string, i.e., the number of space characters that precede the
example’s first prompt.

options
A dictionary mapping from option flags forue or False , which is used to override default options for
this example. Any option flags not contained in this dictionary are left at their default value (as specified by
theDocTestRunner 's optionflags). By default, no options are set.

DocTestFinder objects

classDocTestFinder ([verbosd[, parser][, recursd[, excludeemptﬂ)
A processing class used to extract ecTest s that are relevant to a given object, from its docstring and
the docstrings of its contained object®ocTest s can currently be extracted from the following object
types: modules, functions, classes, methods, staticmethods, classmethods, and properties.

The optional argumenterbosecan be used to display the objects searched by the finder. It defaults to
False (no output).

The optional argumemarserspecifies th®ocTestParser object (or a drop-in replacement) that is used
to extract doctests from docstrings.

If the optional argumentecurseis false, therDocTestFinder.find() will only examine the given
object, and not any contained objects.
If the optional argumengxclude emptyis false, therDocTestFinder.find() will include tests for

objects with empty docstrings.
New in version 2.4.

DocTestFinder defines the following method:

find (obj[, namd[, modultﬂ[, globs][, extraglobﬁ)
Return a list of theDocTest s that are defined bgbj's docstring, or by any of its contained objects’
docstrings.

The optional argumentamespecifies the object’'s name; this name will be used to construct names for the
returnedDocTest s. If nameis not specified, thenbj. __name__ is used.

5.2. doctest — Test interactive Python examples 163

The optional parametenoduleis the module that contains the given object. If the module is not specified
or is None, then the test finder will attempt to automatically determine the correct module. The object’s
module is used:

eAs a default namespace gfobsis not specified.

oTO prevent the DocTestFinder from extracting DocTests from objects that are imported from other
modules. (Contained objects with modules other timaaluleare ignored.)

oTo find the name of the file containing the object.
oTo help find the line number of the object within its file.

If moduleis False , no attempt to find the module will be made. This is obscure, of use mostly in testing
doctest itself: ifmoduleis False , or is None but cannot be found automatically, then all objects are
considered to belong to the (non-existent) module, so all contained objects will (recursively) be searched
for doctests.

The globals for eacBocTest is formed by combininglobsandextraglobg(bindings inextraglobsover-
ride bindings inglobg. A new shallow copy of the globals dictionary is created for daobTest . If globs
is not specified, then it defaults to the module’sdict__, if specified, of} otherwise. Ifextraglobss not
specified, then it defaults ¢ .

DocTestParser objects

classDocTestParser ()
A processing class used to extract interactive examples from a string, and use them to Declest
object. New in version 2.4,

DocTestParser defines the following methods:

get _doctest (string, globs, name, filename, linéno
Extract all doctest examples from the given string, and collect them iBimcdest object.

globs name filename andlineno are attributes for the ne®ocTest object. See the documentation for
DocTest for more information.

get _examples (string[, namd)
Extract all doctest examples from the given string, and return them as a kstashple objects. Line
numbers are 0-based. The optional argunmamheis a name identifying this string, and is only used for
error messages.

parse (string[, namd)
Divide the given string into examples and intervening text, and return them as a list of alteEeimgle s
and strings. Line numbers for tliexample s are 0-based. The optional argumeammeis a name identify-
ing this string, and is only used for error messages.

DocTestRunner objects

classDocTestRunner ([checkeﬂ[, verbosd[, optionflag:i)
A processing class used to execute and verify the interactive exampl&oicilast .

The comparison between expected outputs and actual outputs is don®bypanChecker . This com-

parison may be customized with a number of option flags; see section 5.2.3 for more information. If
the option flags are insufficient, then the comparison may also be customized by passing a subclass of
OutputChecker to the constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be
passed tdrestRunner.run() ; this function will be called with strings that should be displayed. It
defaults tosys.stdout.write . If capturing the output is not sufficient, then the display output
can be also customized by subclassing DocTestRunner, and overriding the metpods _start ,

report _success ,report _unexpected _exception ,andreport _failure

The optional keyword argumeiheckerspecifies theOutputChecker object (or drop-in replacement)
that should be used to compare the expected outputs to the actual outputs of doctest examples.

164 Chapter 5. Miscellaneous Services

The optional keyword argumererbosecontrols theDocTestRunner ’s verbosity. Ifverboses True ,
then information is printed about each example, as it is rurvetboseis False , then only failures are
printed. Ifverboseds unspecified, oNone, then verbose output is used iff the command-line switcts
used.

The optional keyword argumenpptionflagscan be used to control how the test runner compares expected
output to actual output, and how it displays failures. For more information, see section 5.2.3.

New in version 2.4.
DocTestParser defines the following methods:

report _start (out, test, examp)e
Report that the test runner is about to process the given example. This method is provided to allow subclasses
of DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processtedtis the test containingxample outis the output function
that was passed ocTestRunner.run()

report _success (out, test, example, gpt
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processedt is the actual output from the exampltestis the test
containingexample outis the output function that was passedocTestRunner.run()

report _failure (out, test, example, gpt
Report that the given example failed. This method is provided to allow subclasBes béstRunner to
customize their output; it should not be called directly.

exampleis the example about to be processegat is the actual output from the exampliestis the test
containingexample outis the output function that was passedtocTestRunner.run()

report _unexpected _exception (out,test, example, exnfo)
Report that the given example raised an unexpected exception. This method is provided to allow subclasses
of DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processesc info is a tuple containing information about the unex-
pected exception (as returneddys.exc _info()). testis the test containingxample outis the output
function that was passed BocTestRunner.run()

run (tes{, compileflagg[, out][, cIeaLgIobs])
Run the examples itest(aDocTest object), and display the results using the writer function

The examples are run in the namespest.globs . If clear_globsis true (the default), then this names-
pace will be cleared after the test runs, to help with garbage collection. If you would like to examine the
namespace after the test completes, therclese_globs=False

compileflaggives the set of flags that should be used by the Python compiler when running the examples.
If not specified, then it will default to the set of future-import flags that applyltds

The output of each example is checked usingDioeTestRunner ’s output checker, and the results are
formatted by thédocTestRunner.report _* methods.

summarize ([verbosd)
Print a summary of all the test cases that have been run by this DocTestRunner, and return a tuple
‘(failure_count test_coun)’.

The optionalverboseargument controls how detailed the summary is. If the verbosity is not specified, then
theDocTestRunner 's verbosity is used.

OutputChecker objects

classOutputChecker ()
A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methodscheck _output , which compares a given pair of outputs, and
returns true if they match; ansutput _difference , which returns a string describing the differences
between two outputs. New in version 2.4.

5.2. doctest — Test interactive Python examples 165

OutputChecker defines the following methods:

check _output (want, got, optionflags
ReturnTrue iff the actual output from an examplgdt) matches the expected outputanf). These strings
are always considered to match if they are identical; but depending on what option flags the test runner is
using, several non-exact match types are also possible. See section 5.2.3 for more information about option
flags.

output _difference (example, got, optionflays
Return a string describing the differences between the expected output for a given exampipl¢ and
the actual outputgot). optionflagss the set of option flags used to compam@ntandgot.

5.2.7 Debugging

Doctest provides several mechanisms for debugging doctest examples:

e Several functions convert doctests to executable Python programs, which can be run under the Python
debuggerpdb.

e The DebugRunner class is a subclass @focTestRunner that raises an exception for the first failing
example, containing information about that example. This information can be used to perform post-mortem
debugging on the example.

e The unittest cases generated bpocTestSuite() support thedebug() method defined by
unittest .TestCase

e Youcan add acall tpdb.set _trace() inadoctest example, and you'll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example,
supposea.py’ contains just this module docstring:

i

>>> def f(x):
g(x*2)
>>> def g(x):
print x+3
import pdb; pdb.set_trace()

Then an interactive Python session may look like this:

166 Chapter 5. Miscellaneous Services

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list

1 def g(x):

2 print x+3

3 > import pdb; pdb.set_trace()
[EOF]
(Pdb) print x
6

(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list
1 def f(x):
2 > g(x*2)
[EOF]
(Pdb) print x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> f(3)
(Pdb) cont
0, 3)
>>>

Changed in version 2.4: The ability to useb.set _trace() usefully inside doctests was added.

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

script _from _examples (9
Convert text with examples to a script.

Arguments is a string containing doctest examples. The string is converted to a Python script, where
doctest examples isare converted to regular code, and everything else is converted to Python comments.
The generated script is returned as a string. For example,

import doctest

print doctest.script_from_examples(r""
Set x and y to 1 and 2.
>>> x, y =1, 2

Print their sum:

>>> print x+y
3

displays:

5.2. doctest — Test interactive Python examples 167

Set x and y to 1 and 2.
X,y =1 2

#

Print their sum:

print x+y

Expected:

3

This function is used internally by other functions (see below), but can also be useful when you want to
transform an interactive Python session into a Python script.

New in version 2.4.

testsource (module, name
Convert the doctest for an object to a script.

Argumentmoduleis a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argumentameis the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’'s docstring converted to a Python script, as described for
script _from _examples() above. For example, if module.py’ contains a top-level functiof()

then

import a, doctest
print doctest.testsource(a, "a.f")

prints a script version of functioff) ’s docstring, with doctests converted to code, and the rest placed in
comments.

New in version 2.3.
debug (module, nam[a pm])
Debug the doctests for an object.

The moduleand namearguments are the same as for functiestsource() above. The synthesized
Python script for the named object’s docstring is written to a temporary file, and then that file is run under
the control of the Python debuggedb.

A shallow copy ofmodule __dict __ is used for both local and global execution context.

Optional argumenpm controls whether post-mortem debugging is usegnithas a true value, the script

file is run directly, and the debugger gets involved only if the script terminates via raising an unhandled
exception. If it does, then post-mortem debugging is invokedpdia.post _mortem() , passing the
traceback object from the unhandled exceptiomnifis not specified, or is false, the script is run under the
debugger from the start, via passing an appropeaefile() call topdb.run()

New in version 2.3.

Changed in version 2.4: Timmargument was added.
debug _src (src[, pm][, gIobs])

Debug the doctests in a string.

This is like functiondebug() above, except that a string containing doctest examples is specified directly,
via thesrc argument.

Optional argumenpmhas the same meaning as in functidebug() above.

Optional argumerglobsgives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

New in version 2.4.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework
authors, and will only be sketched here. See the source code, and esgeetallyRunner ’s docstring (which
is a doctest!) for more details:

classDebugRunner ([checkeﬂ[, verbosd[, optionflagg)
A subclass oDocTestRunner that raises an exception as soon as a failure is encountered. If an unex-
pected exception occurs, &mexpectedException exception is raised, containing the test, the exam-

168 Chapter 5. Miscellaneous Services

ple, and the original exception. If the output doesn’t match, thBoaT estFailure exception is raised,
containing the test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentation for
DocTestRunner in section 5.2.6.

There are two exceptions that may be raisedepugRunner instances:

exceptionDocTestFailure (test, example, gpt
An exception thrown bybocTestRunner to signal that a doctest example’s actual output did not match
its expected output. The constructor arguments are used to initialize the member variables of the same
names.

DocTestFailure defines the following member variables:
test
TheDocTest object that was being run when the example failed.

example
TheExample that failed.

got
The example’s actual output.

exceptionUnexpectedException (test, example, exinfo)
An exception thrown bypocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the member variables of the same names.

UnexpectedException defines the following member variables:
test
TheDocTest object that was being run when the example failed.

example
TheExample that failed.

exc _info
A tuple containing information about the unexpected exception, as returrgghaxc _info()

5.2.8 Soapbox

As mentioned in the introductiodpctest has grown to have three primary uses:

1. Checking examples in docstrings.
2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often
be worth many words. If done with care, the examples will be invaluable for your users, and will pay back the
time it takes to collect them many times over as the years go by and things change. I'm still amazed at how often
one of mydoctest examples stops working after a "harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what's actually being tested, and why.
When a test fails, good prose can make it much easier to figure out what the problem is, and how it should be
fixed. It's true that you could write extensive comments in code-based testing, but few programmers do. Many
have found that using doctest approaches instead leads to much clearer tests. Perhaps this is simply because
doctest makes writing prose a little easier than writing code, while writing comments in code is a little harder. |
think it goes deeper than just that: the natural attitude when writing a doctest-based test is that you want to explain
the fine points of your software, and illustrate them with examples. This in turn naturally leads to test files that

5.2. doctest — Test interactive Python examples 169

start with the simplest features, and logically progress to complications and edge cases. A coherent narrative is
the result, instead of a collection of isolated functions that test isolated bits of functionality seemingly at random.
It's a different attitude, and produces different results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

e Write text files containing test cases as interactive examples, and test the filestasifilg() or
DocFileSuite() . This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

¢ Define functions namedregrtest _topic that consist of single docstrings, containing test cases for
the named topics. These functions can be included in the same file as the module, or separated out into a
separate test file.

e Define a__test __ dictionary mapping from regression test topics to docstrings containing test cases.

5.3 unittest — Unit testing framework

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent's Smalltalk testing framework. Each is the de
facto standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting frameworkumtiest module provides classes that make
it easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup
actions. This may involve, for example, creating temporary or proxy databases, directories, or starting a
server process.

test case
A test casds the smallest unit of testing. It checks for a specific response to a particular set of inputs.
PyUnit provides a base claskgstCase , which may be used to create new test cases. You may provide
your own implementation that does not subclass fii@atCase , of course.

test suite
A test suiteis a collection of test cases, test suites, or both. It is used to aggregate tests that should be
executed together.

test runner
A test runneiis a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results
of executing the tests.

The test case and test fixture concepts are supported througest@ase andFunctionTestCase classes;

the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usiiggtCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture. FAfitbtionTestCase

existing functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization
is run first; if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of
the test. Each instance of thestCase will only be used to run a single test method, so a new fixture is created

for each test.

Test suites are implemented by testSuite class. This class allows individual tests and test suites to be
aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

170 Chapter 5. Miscellaneous Services

A test runner is an object that provides a single metlmod() , which accepts destCase or TestSuite

object as a parameter, and returns a result object. TheTdmstResult is provided for use as the result object.
PyUnit provide theTextTestRunner as an example test runner which reports test results on the standard error
stream by default. Alternate runners can be implemented for other environments (such as graphical environments)
without any need to derive from a specific class.

See Also:

Moduledoctest (section 5.2):
Another test-support module with a very different flavor.

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern shareditbgst

5.3.1 Basic example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates
that a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions fromrttiedom module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

’)

if _name__ =="'_ main__"
unittest.main()

A testcase is created by subclassimiftest. TestCase . The three individual tests are defined with methods
whose names start with the lettetest ’. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call @ssertEqual() to check for an expected resulissert _() to verify
a condition; orassertRaises() to verify that an expected exception gets raised. These methods are used
instead of theassert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if
atearDown() method is defined, the test runner will invoke that method after each test. In the example,

5.3. unittest ~ — Unit testing framework 171

setUp() was used to create a fresh sequence for each test.

The final block shows a simple way to run the testsittest.main() provides a command line interface to
the test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse
output, and no requirement to be run from the command line. For example, the last two lines may be replaced
with:

suite = unittest.makeSuite(TestSequenceFunctions)
unittest. TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly ussittest features which are sufficient to meet many
everyday testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing atest cases— single scenarios that must be set up and checked for
correctness. In PyUnit, test cases are represented by instanceJeétliase class in theunittest ~ module.
To make your own test cases you must write subclass€&sgiCase , or useFunctionTestCase

An instance of @estCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of destCase instance should be entirely self contained, such that it can be run either in
isolation or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridertilest() method in order to perform specific testing
code:

import unittest

class DefaultWidgetSizeTestCase(unittest. TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), 'incorrect default size’)

Note that in order to test something, we use the one ofasert*() or fail*() methods provided by

the TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing
framework will identify the test case adailure. Other exceptions that do not arise from checks made through the
assert*() andfail*() methods are identified by the testing framework as dfnerrors.

172 Chapter 5. Miscellaneous Services

The way to run a test case will be described later. For now, note that to construct an instance of such a test case,
we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a
“Widget” in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method atep() , which the testing frame-
work will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If thesetUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thranTest() method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thanTest() method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, theearDown() method will be run regardless of whether or mohTest() suc-
ceeded.

Such a working environment for the testing code is calléigtare

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes suchbafaultWidgetSizeTestCase
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

5.3. unittest = — Unit testing framework 173

import unittest

class WidgetTestCase(unittest. TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

Here we have not providedranTest() = method, but have instead provided two different test methods. Class
instances will now each run one of ttest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing
the method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this:
thetest suite , represented by the clasestSuite in theunittest module:

widgetTestSuite = unittest. TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object
that returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init__(self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creat@destCase subclass with many similarly named test functions, there is
a convenience function calledakeSuite() that constructs a test suite that comprises all of the test cases in a

174 Chapter 5. Miscellaneous Services

test case class:

suite = unittest.makeSuite(WidgetTestCase)

Note that when using thenakeSuite() function, the order in which the various test cases will be run by the
test suite is the order determined by sorting the test function names usiagpite built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite instances can be added t@estSuite just asTestCase instances can be added to
aTestSuite

suitel modulel.TheTestSuite()
suite2 module2.TheTestSuite()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module \gidghtssts.py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

e If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code
Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to destCase subclass.

For this reason, PyUnit providesFunctionTestCase class. This subclass dfestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
..

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they
can also be provided:

5.3. unittest = — Unit testing framework 175

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use @éfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treaissertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended
to be used as a base class, with specific tests being implemented by concrete subclasses. This class imple-
ments the interface needed by the test runner to allow it to drive the test, and methods that the test code can
use to check for and report various kinds of failures.

classFunctionTestCase (testFun{, setU;{, tearDowr{, description]]])
This class implements the portion of thestCase interface which allows the test runner to drive the test,
but does not provide the methods which test code can use to check and report errors. This is used to create
test cases using legacy test code, allowing it to be integrated intdtast -based test framework.

classTestSuite ([test%)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregastsis If
given, it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module destCase class. When loading from a
module, it considers allestCase -derived classes. For each such class, it creates an instance for each
method with a name beginning with the stririgst ’

defaultTestLoader
Instance of theTestLoader class which can be shared. If no customization of TestLoader is
needed, this instance can always be used instead of creating new instances.

classTextTestRunner ([strean{, descriptiong, verbosit)]]])
A basic test runner implementation which prints results on standard output. It has a few configurable
parameters, but is essentially very simple. Graphical applications which run test suites should provide
alternate implementations.

main ([module[, defauItTes[t, argv[, testRunne{r, testRunne}]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently
executable. The simplest use for this function is:

1 ’

if _name__ =="'__main__"
unittest.main()

In some cases, the existing tests may have be written usingotttest module. If so, that module provides
aDocTestSuite class that can automatically builohittest. TestSuite instances from the existing test
code. New in version 2.3.

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests
— the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test

176 Chapter 5. Miscellaneous Services

implementation to check conditions and report failures, and some inquiry methods allowing information about the
test itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any
exception raised by this method will be considered an error rather than a test failure. The default implemen-
tation does nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called
even if the test method raised an exception, so the implementation in subclasses may need to be particularly
careful about checking internal state. Any exception raised by this method will be considered an error rather
than a test failure. This method will only be called if thetUp() succeeds, regardless of the outcome of
the test method. The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passedas If resultis omitted orNone,
a temporary result object is created and used, but is not made available to the caller. This is equivalent to
simply calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the
caller, and can be used to support running tests under a debuggetr.

The test code can use any of the following methods to check for and report failures.

assert _(expr[, msg])
failUnless (expf, msg])
Signal a test failure iexpris false; the explanation for the error will esgif given, otherwise it will be

None.

assertEqual (first, seconﬂ, msq|)

failUnlessEqual (first, secongl, msg])
Test thafirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as
the first parameter ttailUnless() : the default value fomsgcan be computed to include representa-

tions of bothfirst andsecond

assertNotEqual (first, seconﬂ, msg])

faillfEqual (first, secondl, msq])
Test thafirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg or None. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations
of bothfirst andsecond

assertAlmostEqual (first, secon@, placeﬁ{, ms])

failUnlessAlmostEqual (first, seconﬂ, placeg, msg]])
Test thaffirst andsecondare approximately equal by computing the difference, rounding to the given num-
ber ofplaces and comparing to zero. Note that comparing a given number of decimal places is not the same
as comparing a given number of significant digits. If the values do not compare equal, the test will fail with
the explanation given bysg or None.

assertNotAlmostEqual (first, secon@, place{, msg]])

faillfAlImostEqual (first, secon@, placeg, msq| |)
Test thaffirst andsecondare not approximately equal by computing the difference, rounding to the given
number ofplaces and comparing to zero. Note that comparing a given number of decimal places is not the
same as comparing a given number of significant digits. If the values do not compare equal, the test will fall
with the explanation given bysg or None.

assertRaises (exception, callable,)..
failUnlessRaises (exception, callable,)..
Test that an exception is raised wheadlable is called with any positional or keyword arguments that are

5.3. unittest = — Unit testing framework 177

also passed tassertRaises() . The test passes @xceptions raised, is an error if another exception
is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the
exception classes may be passeebaseption

faillf (expl{, msg])
The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris
true, withmsgor None for the error message.

fail ([msg])
Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytds() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to
“play fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test objecteBt€ase instances, this will always be
1, but this method is also implemented by fhestSuite class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including
the module and class names.

shortDescription 0
Returns a one-line description of the testName if no description has been provided. The default imple-
mentation of this method returns the first line of the test method’s docstring, if availaiNeper

5.3.6 TestSuite Objects

TestSuite objects behave much likeestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to
add tests t@estSuite instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (test9
Add all the tests from a sequenceT@stCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

run (resulf
Run the tests associated with this suite, collecting the result into the test result object passatl &ote
that unlikeTestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of @estSuite object, therun() method is invoked by destRunner rather than by
the end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. ThetCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top efittest ~ may want access to tiestResult object generated by running
a set of tests for reporting purposestestResult instance is returned by thieestRunner.run() method
for this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among

178 Chapter 5. Miscellaneous Services

those test runs. The collections contain tuplegtetcase tracebach , wheretracebackis a string containing a
formatted version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running
a set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an
exception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead
of sys.exc _info() results.

failures
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which signalled
a failure in the code under test. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc _info() results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of th&estResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools
which support interactive reporting while tests are being run.

startTest (tes)
Called when the test casestis about to be run.

stopTest (tes)
Called when the test casesthas been executed, regardless of the outcome.

addError (test, er)
Called when the test casestraises an exception without signalling a test failleg. is a tuple of the form
returned bysys.exc _info() : (type value traceback.

addFailure (test, er)
Called when the test casestsignals a failureerr is a tuple of the form returned tgys.exc _info()
(type valug tracebach .

addSuccess (tes)
This method is called for a test that does not fagktis the test case object.

One additional method is available fbestResult objects:

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need
to create an instance of this class; theittest module provides an instance that can be shared as the
defaultTestLoader module attribute. Using a subclass or instance would allow customization of some
configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClags
Return a suite of all tests cases contained inTibstCase -derived classestCaseClass

loadTestsFromModule (modul§
Return a suite of all tests cases contained in the given module. This method seaochdsfor classes
derived fromTestCase and creates an instance of the class for each test method defined for the class.

5.3. unittest ~ — Unit testing framework 179

Warning: While using a hierarchy ofestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does
not play well with this method. Doing so, however, can be useful when the fixtures are different and defined

in subclasses.

loadTestsFromName (name[, moduld)
Return a suite of all tests cases given a string specifier.

The specifiernameis a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returhestCase or TestSuite in-
stance. For example, if you have a mod@ampleTests containing aTestCase -derived class
SampleTestCase with three test methodsgst _one() ,test _two() , andtest _three()), the
specifier SampleTests.SampleTestCase’ would cause this method to return a suite which will run

all three test methods. Using the specifitampleTests.SampleTestCase.test _two’ would

cause it to return a test suite which will run only ttest _two() test method. The specifier can refer to
modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesmmerelative to a given module.

loadTestsFromNames (name@, moduld)
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wikiCaseClass

The following attributes of destLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
'test’

sortTestMethodsUsing
Function to be used to compare method names when sorting trgetiliestCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite class.

5.4 test — Regression tests package for Python
Thetest package contains all regression tests for Python as well as the moelsti¢sst _support and
test.regrtest . test.test _support is used to enhance your tests whidst.regrtest drives the

testing suite.

Each module in théest package whose name starts withst _’ is a testing suite for a specific module or
feature. All new tests should be written using thettest module; usinginittest is not required but makes
the tests more flexible and maintenance of the tests easier. Some older tests are writtedptiasse and a
“traditional” testing style; these styles of tests will not be covered.

See Also:

Module unittest (section 5.3):
Writing PyUnit regression tests.

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

Itis preferred that tests for test package use thenittest module and follow a few guidelines. One is to
have the name of all the test methods start wigist _’ as well as the module’s name. This is needed so that the

180 Chapter 5. Miscellaneous Services

methods are recognized by the test driver as test methods. Also, no documentation string for the method should be
included. A comment (such agTests function returns only True or False ") should be used

to provide documentation for test methods. This is done because documentation strings get printed out if they
exist and thus what test is being run is not stated.

A basic boilerplate is often used:

import unittest
from test import test_support

class MyTestCasel(unittest.TestCase):
Only use setUp() and tearDown() if necessary

def setUp(self):
. code to execute in preparation for tests ...

def tearDown(self):
. code to execute to clean up after tests ...

def test_feature_one(self):
Test feature one.
. testing code ...

def test_ feature_two(self):
Test feature two.
. testing code ...

. more test methods ...

class MyTestCase2(unittest.TestCase):
. same structure as MyTestCasel ...

. more test classes ...

def test_main():
test_support.run_unittest(MyTestCasel,
MyTestCase2,
. list other tests ...

if _name__ =="'_ main__"
test_main()
This boilerplate code allows the testing suite to be rutdsy.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

e The testing suite should exercise all classes, functions, and constants. This includes not just the external
API that is to be presented to the outside world but also "private” code.

Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and
edge cases are tested.

Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as
many different paths through the code are taken.

Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not
crop up again if the code is changed in the future.

5.4. test — Regression tests package for Python 181

e Make sure to clean up after your tests (such as close and remove all temporary files).

e Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of
tests and also minimizes possible anomalous behavior from side-effects of importing a module.

e Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is
used. Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = 'abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself
automatically starts running all regression tests intdwt package. It does this by finding all modules in

the package whose name starts wiilst _', importing them, and executing the functieest _main() if

present. The names of tests to execute may also be passed to the script. Specifying a single regression test
(python regrtest.py test_spam.py) will minimize output and only print whether the test passed or failed and thus
minimize output.

Runningtest.regrtest directly allows what resources are available for tests to use to be set. You do this
by using the-u command-line option. Rupython regrtest.py -uall to turn on all resources; specifyiral

as an option foru enables all possible resources. If all but one resource is desired (a more common case), a
comma-separated list of resources that are not desired may be listeallaffidre commangbython regrtest.py
-uall,-audio,-largefile will run test.regrtest with all resources except thaudio andlargefile resources.

For a list of all resources and more command-line optionspython regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On
UNIX, you can runmake testat the top-level directory where Python was built. On Windows, executibgt
from your ‘PCBuild’ directory will run all regression tests.

5.5 test.test _support — Utility functions for tests

Thetest.test _support module provides support for Python’s regression tests.
This module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

182 Chapter 5. Miscellaneous Services

exceptionTestSkipped
Subclass offestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass offestSkipped . Raised when a resource (such as a network connection) is not available.
Raised by theequires() function.

Thetest.test _support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about
a running testverbosds set bytest.regrtest

have _unicode
True when Unicode support is available.

is _jython
True if the running interpreter is Jython.
TESTFN

Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest.test _support module defines the following functions:

forget (module_.nameg
Removes the module nametdule_ namefrom sys.modules and deletes any byte-compiled files of the
module.

is _resource _enabled (resourcé
ReturnsTrue if resourceis enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resourc{, msg])
RaisesResourceDenied if resourceis not availablemsgis the argument tResourceDenied if it is
raised. Always returns true if called by a function whasename__is’ __main __" . Used when tests
are executed btest.regrtest

findfile (filenamé
Return the path to the file namétename If no match is foundilenameis returned. This does not equal a
failure since it could be the path to the file.

run _unittest (*classe3
Executeunittest. TestCase subclasses passed to the function. The function scans the classes for
methods starting with the prefitést _’ and executes the tests individually. This is the preferred way to
execute tests.

run _suite (suitd:, testclasi)
Execute thaunittest. TestSuite instancesuite The optional argumengstclassaccepts one of the
test classes in the suite so as to print out more detailed information on where the testing suite originated
from.

5.6 decimal — Decimal floating point arithmetic

New in version 2.4.

Thedecimal module provides support for decimal floating point arithmetic. It offers several advantages over
thefloat() datatype:

e Decimal numbers can be represented exactly. In contrast, numberd.likedo not have an ex-
act representation in binary floating point. End users typically would not expéctto display as
1.1000000000000001 as it does with binary floating point.

5.6. decimal — Decimal floating point arithmetic 183

e The exactness carries over into arithmetic. In decimal floating pdirt, + 0.1 + 0.1 - 0.3 "is
exactly equal to zero. In binary floating point, result5i®511151231257827e-017 . While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal would be preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates a notion of significant places so1t#@ ‘+ 1.20 'is 2.50 . The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For insthr3ce, *

* 1.2 'gives1.56 while‘1.30 * 1.20 ’gives1.5600 .

e Unlike hardware based binary floating point, the decimal module has a user settable precision (defaulting to
28 places) which can be as large as needed for a given problem:

>>> getcontext().prec = 6

>>> Decimal(1) / Decimal(7)
Decimal("0.142857")

>>> getcontext().prec = 28

>>> Decimal(1) / Decimal(7)
Decimal("0.1428571428571428571428571429")

e Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeroes. Decimals also include special values sofihitgs
-Infinity , andNaN The standard also differentiate® from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options includ@OUNDCEILING , ROUNDDOWNROUNDFLOOR ROUNDHALF_DOWN
ROUNDHALF_EVEN ROUNDHALF_UP, andROUNDUP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module areClamped, InvalidOperation , DivisionByZero , Inexact , Rounded,
Subnormal , Overflow , andUnderflow

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag incremented from zero
and, then, if the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them
before monitoring a calculation.

See Also:
IBM’s General Decimal Arithmetic Specificatiomhe General Decimal Arithmetic Specification
IEEE standard 854-198Unofficial IEEE 854 Text

5.6.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current contexftétintext() and,
if necessary, setting new values for precision, rounding, or enabled traps:

184 Chapter 5. Miscellaneous Services

>>> from decimal import *

>>> getcontext()

Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, InvalidOperation,
DivisionByZero])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings or tuples. To create a Decimalld=m afirst

convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values suciNaN which stands for “Not a number”, positive and
negativelnfinity , and-0 .

>>> Decimal(10)
Decimal("10")

>>> Decimal("3.14")
Decimal("3.14")

>>> Decimal((0, (3, 1, 4), -2))
Decimal("3.14")

>>> Decimal(str(2.0 ** 0.5))
Decimal("1.41421356237")
>>> Decimal("NaN")
Decimal("NaN")

>>> Decimal("-Infinity")
Decimal("-Infinity")

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext().prec = 6

>>> Decimal('3.0")

Decimal("3.0")

>>> Decimal('3.1415926535")

Decimal("3.1415926535")

>>> Decimal(’3.1415926535") + Decimal('2.7182818285’)
Decimal("5.85987")

>>> getcontext().rounding = ROUND_UP

>>> Decimal(’3.1415926535") + Decimal('2.7182818285’)
Decimal("5.85988")

Decimals interact well with much of the rest of python. Here is a small decimal floating point flying circus:

5.6. decimal — Decimal floating point arithmetic 185

>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
>>> max(data)

Decimal("9.25")

>>> min(data)

Decimal("0.03")

>>> sorted(data)

[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal('1.87"),
Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]

>>> sum(data)

Decimal("19.29")

>>> a,b,c = data[:3]

>>> str(a)

'1.34'

>>> float(a)

1.3400000000000001

>>> round(a, 1) # round() first converts to binary floating point
1.3

>>> int(a)

1

>>> g * 5

Decimal("6.70")

>>> g * b

Decimal("2.5058")

>>> c % a

Decimal("0.77")

Thequantize() method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal(’7.325’).quantize(Decimal(’.01"), rounding=ROUND_DOWN)
Decimal("7.32")

>>> Decimal(’7.325’).quantize(Decimal(’1.’), rounding=ROUND_UP)
Decimal("8")

As shown above, thgetcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use teetcontext() function.

In accordance with the standard, tl@ecimal module provides two ready to use standard contexts,
BasicContext andExtendedContext . The former is especially useful for debugging because many of
the traps are enabled:

186 Chapter 5. Miscellaneous Services

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext(myothercontext)

>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[])

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(7)

Decimal("0.142857143")

>>> Decimal(42) / Decimal(0)

Decimal("Infinity")

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using theclear _flags() = method.

>>> setcontext(ExtendedContext)

>>> getcontext().clear_flags()

>>> Decimal(355) / Decimal(113)

Decimal("3.14159292")

>>> getcontext()

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Inexact, Rounded], traps=[])

Theflagsentry shows that the rational approximatiorPiowas rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in thegps field of a context:

>>> Decimal(1) / Decimal(0)
Decimal("Infinity")
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-

Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted tBecimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

5.6.2 Decimal objects

classDecimal ([value[, contexﬂ])
Constructs a newecimal object based frommalue

value can be an integer, string, tuple, or anoth2ecimal object. If no value is given, returns
Decimal("0") . If valueis a string, it should conform to the decimal numeric string syntax:

5.6. decimal — Decimal floating point arithmetic 187

sign =Y

digit =0T |23 |4 |58 7|8 Y
indicator = e | 'F

digits = digit [digit]...

decimal-part = digits .’ [digits] | [."] digits

exponent-part = indicator [sign] digits

infinity = Infinity’ | ’Inf

nan »= ’'NaN’' [digits] | 'sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If valueis atuple , it should have three components, a si@rf@r positive orl for negative), auple

of digits, and an integer exponent. For exampec¢imal((0, (1, 4, 1, 4), -3)) ' returns
Decimal("1.414")

The contextprecision does not affect how many digits are stored. That is determined exclusively by the
number of digits invalue For example, Decimal("3.00000") ' records all five zeroes even if the
context precision is only three.

The purpose of theontextargument is determining what to dovilueis a malformed string. If the context
trapsinvalidOperation , an exception is raised; otherwise, the constructor returns a new Decimal with
the value oNaN

Once constructed)ecimal objects are immutable.

Decimal floating point objects share many properties with the other builtin numeric types dloat asandint .

All of the usual math operations and special methods apply. Likewise, decimal objects can be copied, pickled,
printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type (such as
float orlong).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized
methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’'s rightmost digits until only the lead digit
remains:Decimal("321e+5").adjusted() returns seven. Used for determining the position of the
most significant digit with respect to the decimal point.

as _tuple ()
Returns a tuple representation of the numbggigh, digittuple, exponent)

compare (other[, contexﬂ)
Compares like__cmp__() but returns a decimal instance:

a or b is a NaN ==> Decimal("NaN")

a<b ==> Decimal("-1")
a==~>b ==> Decimal("0")
a>bhb ==> Decimal("1")
max(other[, contexl])
Like ‘max(self, other) " except that the context rounding rule is applied before returning and that
NaN values are either signalled or ignored (depending on the context and whether they are signaling or
quiet).
min (othel{, contexl])
Like ‘min(self, other) " except that the context rounding rule is applied before returning and that
NaN values are either signalled or ignored (depending on the context and whether they are signaling or

quiet).

normalize ([context])
Normalize the number by stripping the rightmost trailing zeroes and converting any result equal to
Decimal("0™) to Decimal("0eQ") . Used for producing canonical values for members of an equiv-

188 Chapter 5. Miscellaneous Services

alence class. For exampBgecimal("32.100") andDecimal("0.321000e+2") both normalize
to the equivalent valuBecimal("32.1")

quantize (exp[, rounding{, contex[, watchexd]])
Quantize makes the exponent the samexasSearches for a rounding method@unding then incontext
and then in the current context.

If watchexps set (default), then an error is returned whenever the resulting exponent is greatemiran
or less tharktiny

remainder _near (othet[, contexﬂ)
Computes the modulo as either a positive or negative value depending on which is closest to zero. For
instance, Decimal(10).remainder _near(6) ' returnsDecimal("-2") which is closer to zero
thanDecimal("4")

If both are equally close, the one chosen will have the same sigelfas

same_quantum (other[, contexﬂ)
Test whether self and other have the same exponent or whether bdthNre

sqrt ([context])
Return the square root to full precision.

to _eng_string ([contexl])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converecimal('123E+1") to Decimal("1.23E+3")

to _integral ([rounding{, contexﬂ])
Rounds to the nearest integer without signalimgxact or Rounded. If given, appliesounding other-
wise, uses the rounding method in either the supplttextor the current context.

5.6.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed usiggttbatext() and
setcontext() functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread.to

New contexts can formed using tBentext constructor described below. In addition, the module provides three
pre-made contexts:

classBasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tiROUNDHALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
exceptinexact , Rounded, andSubnormal .

Because many of the traps are enabled, this context is useful for debugging.

classExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUNDHALF_EVEN All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the trapped are disabled, this context is useful for applications that prefer to have result value
of NaN or Infinity instead of raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.

classDefaultContext
This context is used by th@ontext constructor as a prototype for new contexts. Changing a field (such a

5.6. decimal — Decimal floating point arithmetic 189

precision) has the effect of changing the default for new contexts creating Botitext constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUMNBLF _EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created witiotibext constructor.

classContext (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capijals=1
Creates a new context. If a field is not specified oN@ne, the default values are copied from the
DefaultContext . If the flagsfield is not specified or idlone, all flags are cleared.

Theprecfield is a positive integer that sets the precision for arithmetic operations in the context.
Theroundingoption is one of:

eROUNDCEILING (towardsinfinity),

¢ROUNDDOWNtowards zero),

¢ROUNDFLOORtowards-Infinity),

¢ROUNDHALF_DOWNto nearest with ties going towards zero),

¢ROUNDHALF_EVEN(to nearest with ties going to nearest even integer),

eROUNDHALF_UP (to nearest with ties going away from zero), or

¢ROUNDUP (away from zero).
Thetrapsandflagsfields list any signals to be set. Generally, new contexts should only set traps and leave
the flags clear.
The EminandEmaxfields are integers specifying the outer limits allowable for exponents.

Thecapitalsfield is either0 or 1 (the default). If set td, exponents are printed with a capiElotherwise,
a lowercase is used:Decimal(’6.02e+23’)

The Context class defines several general purpose methods as well as a large number of methods for doing
arithmetic directly in a given context.

clear _flags ()
Resets all of the flags .

copy ()
Return a duplicate of the context.

create _decimal (num
Creates a new Decimal instance frommbut usingself as context. Unlike th®ecimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change

the result:
>>> getcontext().prec = 3
>>> Decimal("3.4445") + Decimal("1.0023")
Decimal("4.45")
>>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
Decimal("4.44")
Etiny ()

Returns a value equal t&Emin - prec + 1 ' which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is sEtitoy .

190 Chapter 5. Miscellaneous Services

Etop ()
Returns a value equal t&ax - prec + 1 .

The usual approach to working with decimals is to cr&deimal instances and then apply arithmetic operations
which take place within the current context for the active thread. An alternate approach is to use context methods
for calculating within a specific context. The methods are similar to those fddéloemal class and are only
briefly recounted here.
abs (x)

Returns the absolute value xf
add(x,y)

Return the sum af andy.

compare (X, Y)
Compares values numerically.

Like __cmp__() but returns a decimal instance:

a or b is a NaN ==> Decimal("NaN")

a<b ==> Decimal("-1")
a == ==> Decimal("O")
a>bhb ==> Decimal("1")
divide (Xx,Y)
Returnx divided byy.
divmod (x,V)

Divides two numbers and returns the integer part of the result.
max(X, y)

Compare two values numerically and return the maximum.

If they are numerically equal then the left-hand operand is chosen as the result.
min (X, y)

Compare two values numerically and return the minimum.

If they are numerically equal then the left-hand operand is chosen as the result.

minus (X)
Minus corresponds to the unary prefix minus operator in Python.

multiply (X, y)
Return the product of andy.

normalize (X)
Normalize reduces an operand to its simplest form.

Essentially gplus operation with all trailing zeros removed from the result.

plus (X)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it inotan identity operation.

power (X, y[modulo])
Return X ** y ’to the moduloif given.

The right-hand operand must be a whole number whose integer part (after any exponent has been applied)
has no more than 9 digits and whose fractional part (if any) is all zeros before any rounding. The operand
may be positive, negative, or zero; if negative, the absolute value of the power is used, and the left-hand
operand is inverted (divided into 1) before use.

If the increased precision needed for the intermediate calculations exceeds the capabilities of the implemen-
tation then arinvalidOperation condition is signaled.

If, when raising to a negative power, an underflow occurs during the division into 1, the operation is not
halted at that point but continues.

5.6. decimal — Decimal floating point arithmetic 191

quantize (x,Y)
Returns a value equal toafter rounding and having the exponentyof

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than
precision, then amvalidOperation is signaled. This guarantees that, unless there is an error condi-
tion, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

remainder (X,Y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder _near (X,Y)
Computed the modulo as either a positive or negative value depending on which is closest to zero. For
instance, Decimal(10).remainder _near(6) ' returnsDecimal("-2") which is closer to zero
thanDecimal("4")

If both are equally close, the one chosen will have the same sigelfas

same_quantum (X, y)
Test whethex andy have the same exponent or whether bothNabl

sart ()
Return the square root to full precision.

subtract (x,Y)
Return the difference betweerandy.

to _eng_string ()
Convert to engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, conveiecimal(’123E+1") to Decimal("1.23E+3")

to _integral (X)
Rounds to the nearest integer without signalimgxact or Rounded.

to _sci _string ()
Converts a number to a string using scientific notation.

5.6.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context
trap enabler.

The context flag is incremented whenever the condition is encountered. After the computation, flags may be
checked for informational purposes (for instance, to determine whether a computation was exact). After checking
the flags, be sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if theDivisionByZero trap is set, then BivisionByZero exception is raised upon encountering
the condition.

classClamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the contertis andEmaxlimits. If possible,
the exponent is reduced to fit by adding zeroes to the coefficient.

classDecimalException
Base class for other signals and is a subclagsittimeticError

classDivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is
not trapped, returnsfinity or -Infinity with the sign determined by the inputs to the calculation.

192 Chapter 5. Miscellaneous Services

classlnexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal
flag or trap is used to detect when results are inexact.

classinvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trappedNeduRtssible
causes include:

Infinity - Infinity

0 * Infinity

Infinity / Infinity

X % 0

Infinity % x

X._rescale(non-integer)
sqrt(-x) and x > 0
0* 0

X ** (non-integer)

X ** Infinity

classOverflow
Numerical overflow.

Indicates the exponent is larger themax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity . In either caselnexact andRounded are also signaled.

classRounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rduf@ingp 5.0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

classSubnormal
Exponent was lower thalBmin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

classUnderflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by roundingxact and Subnormal are also
signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(lnexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

5.6. decimal — Decimal floating point arithmetic 193

5.6.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent
exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import *
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111’)
>>> (U +Vv) +w

Decimal("9.5111111")

>>> u + (Vv + w)

Decimal("10")

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (U*w)

Decimal("0.01")

>>> U * (v+w)

Decimal("0.0060000")

Thedecimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid
loss of significance:

>>> getcontext().prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (U + V) + w

Decimal("9.51111111")

>>>u + (Vv + w

Decimal("9.51111111")

>>>

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003")
>>> (U*v) + (U*w)

Decimal("0.0060000")

>>> U * (v+w)

Decimal("0.0060000")

Special values

The number system for theecimal module provides special values includibdgN sNaN, -Infinity
Infinity , and two zeroest0 and-0 .

Infinities can be constructed directly witlecimal(’Infinity’) . Also, they can arise from dividing by
zero when théivisionByZero signal is not trapped. Likewise, when therflow signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large,
indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and retNah or if the InvalidOperation signal is trapped, raise an
exception. For exampl®/0 returnsNaNwhich means “not a number”. This variety NaNis quiet and, once
created, will flow through other computations always resulting in andflaé&t This behavior can be useful for a

194 Chapter 5. Miscellaneous Services

series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant issNaN which signals rather than remaining quiet after every operation. This is a useful return value
when an invalid result needs to interrupt a calculation for special handling.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative
zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with dif-
fering precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized
floating point representations, it is not immediately obvious that the following calculation returns a value equal to
zero:

>>> 1 / Decimal(’Infinity’)
Decimal("0E-1000000026")

5.6.6 Working with threads

The getcontext() function accesses a differe@ontext object for each thread. Having separate thread
contexts means that threads may make changes (sughteantext.prec=10) without interfering with
other threads.

Likewise, thesetcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called befogetcontext() , thengetcontext() will automatically cre-
ate a new context for use in the current thread.

The new context is copied from a prototype context calbedaultContext To control the defaults so that each
thread will use the same values throughout the application, directly modif{pdfaultContextobject. This
should be dondeforeany threads are started so that there won't be a race condition between threads calling
getcontext() . For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1

setcontext(DefaultContext)

Afterwards, the threads can be started
tl.start()

t2.start()
t3.start()

5.6.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work \Bigtimal class:

5.6. decimal — Decimal floating point arithmetic 195

def moneyfmt(value, places=2, curr=", sep=",, dp="/,
pos=", neg="-', trailneg="):
""Convert Decimal to a money formatted string.

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: '+, space or blank
neg: optional sign for negative numbers: -, ’(, space or blank
trailneg:optional trailing minus indicator: -, ’)’, space or blank

>>> d = Decimal(’-1234567.8901")

>>> moneyfmt(d, curr="$’)

’-$1,234,567.89’

>>> moneyfmt(d, places=0, sep="’, dp=", neg=", trailneg="-)
'1.234.568-'

>>> moneyfmt(d, curr="$’, neg="(, trailneg=")")
'($1,234,567.89)’

>>> moneyfmt(Decimal(123456789), sep="")

'123 456 789.00°

>>> moneyfmt(Decimal(’-0.02’), neg='<’, trailneg=">")
'<.02>’

q = Decimal((0, (1,), -places)) # 2 places --> '0.01’
sign, digits, exp = value.quantize(qg).as_tuple()
assert exp == -places
result =]
digits = map(str, digits)
build, next = result.append, digits.pop
if sign:
build(trailneg)
for i in range(places):
if digits:
build(next())
else:
build('0%)
build(dp)
i=0
while digits:
build(next())
i +=1
if i == 3 and digits:
i=0
build(sep)
build(curr)
if sign:
build(neg)
else:
build(pos)
result.reverse()
return ".join(result)

def pi():
""Compute Pi to the current precision.

>>> print pi()
3.141592653589793238462643383

getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats

lasts, t, s, n, na, d, da = O, three, 3, 1, 0, 0, 24
while s != lasts:
lasts = s
n, na
d, da

196 Chapter 5. Miscellaneous Services

n+na, na+8
d+da, da+32

5.6.8 Decimal FAQ

Q. Itis cumbersome to typgecimal.Decimal(’1234.5) . Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23") + D('3.45)
Decimal("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize() method rounds to a fixed number of decimal places. Ifitlexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal(’0.01)

>>> # Round to two places
>>> Decimal("3.214").quantize(TWOPLACES)
Decimal("3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal("3.21")

>>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):

Inexact: Changed in rounding

Q. Once | have valid two place inputs, how do | maintain that invariant throughout an application?

A. Some operations like addition and subtraction automatically preserve fixed point. Others, like multiplication
and division, change the number of decimal places and need to be followed-upquidiméze() step.

Q. There are many ways to express the same value. The nu2®@r200.000 , 2E2, and.02E+4 all have
the same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. Thenormalize() method maps all equivalent values to a single representive:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential represen-
tation?

A. For some values, exponential notation is the only way to express the number of significant places in the co-
efficient. For example, expressifgOE+3 as5000 keeps the value constant but cannot show the original’s
two-place significance.

Q. Is there a way to convert a regular float tDecimal ?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take
more precision than intuition would suggest, so trappimexact will signal a need for more precision:

5.6. decimal — Decimal floating point arithmetic 197

def floatToDecimal(f):
"Convert a floating point number to a Decimal with no loss of information”
Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
exponent. Double the mantissa until it is an integer. Use the integer
mantissa and exponent to compute an equivalent Decimal. If this cannot
be done exactly, then retry with more precision.

mantissa, exponent = math.frexp(f)
while mantissa != int(mantissa):
mantissa *= 2.0
exponent -= 1
mantissa = int(mantissa)

oldcontext = getcontext()
setcontext(Context(traps=[Inexact]))

try:
while True:
try:
return mantissa * Decimal(2) ** exponent
except Inexact:
getcontext().prec += 1
finally:
setcontext(oldcontext)
Q. Why isn’t thefloatToDecimal() routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use
requires some care to avoid the representation issues associated with binary floating point:

>>> floatToDecimal(1.1)
Decimal("1.100000000000000088817841970012523233890533447265625")

Q. Within a complex calculation, how can | make sure that | haven't gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only
the results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that
the results can look odd if you forget that the inputs haven't been rounded:

>>> getcontext().prec = 3

>>> Decimal(’3.104") + D(’2.104)
Decimal("5.21")

>>> Decimal(’3.104’) + D('0.000") + D(’2.104’)
Decimal("5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext().prec = 3
>>> +Decimal(’1.23456789’) # unary plus triggers rounding
Decimal("1.23")

198 Chapter 5. Miscellaneous Services

Alternatively, inputs can be rounded upon creation usingtbetext.create _decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal(’1.2345678")
Decimal("1.2345")

5.7 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name fromathhe

module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

Number-theoretic and representation functions:

ceil (X)
Return the ceiling ok as a float, the smallest integer value greater than or equal to
fabs (x)
Return the absolute value »f
floor (X)
Return the floor ok as a float, the largest integer value less than or equal to
fmod (x, y)

Returnfmod(X, V), as defined by the platform C library. Note that the Python expressiény may
not return the same result. The intent of the C standard idtad(x, y) be exactly (mathematically;
to infinite precision) equal ta& - n*y for some integen such that the result has the same sigix asd
magnitude less thaabs(y) . Python’sx % y returns a result with the sign gfinstead, and may not be
ex