Reference Counting¶
The macros in this section are used for managing reference counts of Python objects.
- 
void Py_INCREF(PyObject *o)¶
- Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed. - This function is usually used to convert a borrowed reference to a strong reference in-place. The - Py_NewRef()function can be used to create a new strong reference.- When done using the object, release it by calling - Py_DECREF().- The object must not be - NULL; if you aren’t sure that it isn’t- NULL, use- Py_XINCREF().- Do not expect this function to actually modify o in any way. 
- 
void Py_XINCREF(PyObject *o)¶
- Similar to - Py_INCREF(), but the object o can be- NULL, in which case this has no effect.- See also - Py_XNewRef().
- 
PyObject *Py_NewRef(PyObject *o)¶
-  Part of the Stable ABI since version 3.10.Create a new strong reference to an object: call Py_INCREF()on o and return the object o.When the strong reference is no longer needed, Py_DECREF()should be called on it to release the reference.The object o must not be NULL; usePy_XNewRef()if o can beNULL.For example: Py_INCREF(obj); self->attr = obj; can be written as: self->attr = Py_NewRef(obj); See also Py_INCREF().New in version 3.10. 
- 
PyObject *Py_XNewRef(PyObject *o)¶
-  Part of the Stable ABI since version 3.10.Similar to Py_NewRef(), but the object o can be NULL.If the object o is NULL, the function just returnsNULL.New in version 3.10. 
- 
void Py_DECREF(PyObject *o)¶
- Release a strong reference to object o, indicating the reference is no longer used. - Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deallocation function (which must not be - NULL) is invoked.- This function is usually used to delete a strong reference before exiting its scope. - The object must not be - NULL; if you aren’t sure that it isn’t- NULL, use- Py_XDECREF().- Do not expect this function to actually modify o in any way. - Warning - The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with a - __del__()method is deallocated). While exceptions in such code are not propagated, the executed code has free access to all Python global variables. This means that any object that is reachable from a global variable should be in a consistent state before- Py_DECREF()is invoked. For example, code to delete an object from a list should copy a reference to the deleted object in a temporary variable, update the list data structure, and then call- Py_DECREF()for the temporary variable.
- 
void Py_XDECREF(PyObject *o)¶
- Similar to - Py_DECREF(), but the object o can be- NULL, in which case this has no effect. The same warning from- Py_DECREF()applies here as well.
- 
void Py_CLEAR(PyObject *o)¶
- Release a strong reference for object o. The object may be - NULL, in which case the macro has no effect; otherwise the effect is the same as for- Py_DECREF(), except that the argument is also set to- NULL. The warning for- Py_DECREF()does not apply with respect to the object passed because the macro carefully uses a temporary variable and sets the argument to- NULLbefore releasing the reference.- It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during garbage collection. 
- 
void Py_IncRef(PyObject *o)¶
-  Part of the Stable ABI.Indicate taking a new strong reference to object o. A function version of Py_XINCREF(). It can be used for runtime dynamic embedding of Python.
- 
void Py_DecRef(PyObject *o)¶
-  Part of the Stable ABI.Release a strong reference to object o. A function version of Py_XDECREF(). It can be used for runtime dynamic embedding of Python.
The following functions or macros are only for use within the interpreter core:
_Py_Dealloc(), _Py_ForgetReference(), _Py_NewReference(),
as well as the global variable _Py_RefTotal.