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Abstract

This paper compares and evaluates the suitability of real-
time operating systems, VxWorks and LynxOS, and general-
purpose operating systems with real-time extensions, Windows
NT, Solaris, and Linux, for real-time ORB middleware. While
holding the hardware and ORB constant, we vary these op-
erating systems and measure platform-specific variations in
context switching overhead and priority inversions.

Our findings illustrate that general-purpose operating sys-
tems like Windows NT, Solaris, and Linux are not yet suited
to meet the demands of applications with stringent QoS re-
quirements. Although Linux provides good raw performance,
its high jitter makes it unsuitable for real-time applications.
Both LynxOS and VxWorks do enable predictable and efficient
ORB performance, however, thereby making them suitable as
OS platforms for real-time CORBA applications. In general,
our results underscore the need for a measure-driven method-
ology to pinpoint sources of overhead and priority inversion
in real-time ORB endsystems.

Keywords: Real-time Object-Oriented Systems, Operating
System QoS Support, Real-time CORBA Object Request Bro-
ker

1 Introduction

There has been recent progress towards standardizing object-
oriented (OO) middleware for real-time and embedded sys-
tems. In particular, the OMG is actively investigating standard

�This work was supported in part by Boeing, CDI/GDIS, DARPA con-
tract 9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and US
Sprint.

extensions to CORBA to support distributed real-time appli-
cations [1]. The goal of standardizing real-time CORBA is
to enable real-time applications to interwork throughout small
footprint [2] embedded systems and heterogeneous distributed
environments, such as the Internet.

Notwithstanding the significant efforts of the OMG real-
time CORBA standardization effort, however, developing,
standardizing, and leveraging distributed real-time ORB mid-
dleware remains hard. There are few successful examples of
standard, widely deployed distributed real-time ORB middle-
ware running on COTS operating systems and COTS hard-
ware. Conventional CORBA ORBs are generally unsuited for
performance-sensitive, distributed real-time applications due
to their (1) lack of QoS specification interfaces, (2) lack of
QoS enforcement, (3) lack of real-time programming features,
and (4) overall lack of performance and predictability [3].

Our prior research on CORBA middleware has explored
several dimensions of real-time ORB endsystem design in-
cluding static [4] and dynamic [5] real-time scheduling, real-
time request demultiplexing [6], real-time event process-
ing [7], real-time I/O subsystems [8], real-time ORB Core
connection and concurrency architectures [9], real-time IDL
compiler stub/skeleton optimizations [10], and performance
comparisons of various commercial ORBs [11]. This paper
presents our initial results on a previously unexamined point
in the real-time ORB endsystem design space:the impact of
OS performance and predictability on ORB performance and
predictability.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the architecture and design goals of TAO [4],
which is a real-time implementation of CORBA developed
at Washington University; Section 3 presents empirical re-
sults from systematically benchmarking the efficiency and pre-
dictability of TAO in several real-time operating systems,i.e.,
VxWorks and LynxOS, and operating systems with real-time
extensions,i.e., Solaris, Windows NT, and Linux; and Sec-
tion 4 presents concluding remarks.
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2 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. The TAO
ORB endsystem contains the network interface, OS, commu-
nication protocol, and CORBA-compliant middleware com-
ponents and features shown in Figure 1. TAO supports the
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Figure 1: Components in the TAO Real-time ORB Endsystem

standard OMG CORBA reference model [12], with the fol-
lowing enhancements designed to overcome the shortcomings
of conventional ORBs [9] for high-performance and real-time
applications:

Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and
skeletons efficiently marshal and demarshal operation param-
eters, respectively [13]. In addition, TAO’s Real-time IDL
(RIDL) stubs and skeletons extend the OMG IDL specifica-
tions to ensure that application timing requirements are speci-
fied and enforced end-to-end [14].

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAO’s real-time Object Adapter [10] uses perfect
hashing [15] and active demultiplexing [6] optimizations to
dispatch servant operations in constantO(1) time, regardless
of the number of active connections, servants, and operations
defined in IDL interfaces.

ORB Run-time Scheduler: A real-time scheduler [1] maps
application QoS requirements, such as include bounding end-
to-end latency and meeting periodic scheduling deadlines,
to ORB endsystem/network resources, such as ORB endsys-
tem/network resources include CPU, memory, network con-
nections, and storage devices. TAO’s run-time scheduler sup-

ports both static [4] and dynamic [5] real-time scheduling
strategies.

Real-time ORB Core: An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [9] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture [13] to provide an efficient and predictable CORBA
IIOP protocol engine.

Real-time I/O subsystem: TAO’s real-time I/O subsystem
[16] extends support for CORBA into the OS. TAO’s I/O sub-
system assigns priorities to real-time I/O threads so that the
schedulability of application components and ORB endsystem
resources can be enforced. TAO also runs efficiently and rel-
atively predictably on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [17]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
planes, multi-processor shared memory environments, as well
as Internet protocols like TCP/IP.

TAO is developed atop lower-level middleware called
ACE [18], which implements core concurrency and distribu-
tion patterns [19] for communication software. ACE pro-
vides reusable C++ wrapper facades and framework compo-
nents that support the QoS requirements of high-performance,
real-time applications. ACE runs on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and Vx-
Works.

3 Real-time ORB Endsystem Perfor-
mance Experiments

A real-time OS provides applications with mechanisms for
priority-controlled access to hardware and software resources.
Mechanisms commonly supported by real-time operating sys-
tems include real-time scheduling classes and real-time I/O
subsystems. These mechanisms enable applications to spec-
ify their processing requirements and allow the OS to enforce
the requested quality of service (QoS) usage policies.

This section presents the results of experiments conducted
with a real-time ORB/OS benchmarking framework developed
at Washington University and distributed with the TAO re-
lease.1 This benchmarking framework contains a suite of test

1TAO and the ORB/OS benchmarks described in this paper are available
at www.cs.wustl.edu/ �schmidt/TAO.html .
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metrics that evaluate the effectiveness and behavior of real-
time operating systems using various ORBs, including MT-
Orbix, COOL, VisiBroker, CORBAplus, and TAO.

Our previous experience [6, 11, 20, 21, 9] measuring the
performance of CORBA implementations showed that TAO
supports efficient and predictable QoS better than other ORBs.
Therefore, the experiments reported below focus solely on
TAO.

3.1 Performance Results

3.1.1 Benchmark Configuration

Hardware overview: All of the tests in this section were run
on a 450 MHz Intel Pentium II with 256 Mbytes of RAM. We
focused primarily on a single CPU hardware configuration to
factor out differences in network interface driver support and
to isolate the effects of OS design and implementation on the
end-to-end performance of ORB middleware and applications.

Operating system and compiler overview: We ran the
ORB/OS benchmarks described in this paper on two real-time
operating systems, VxWorks 5.3.1 and LynxOS 3.0.0, and
three general-purpose operating systems with real-time exten-
sions, Windows NT 4.0 Workstation with SP3, Solaris 2.6 for
Intel, and RedHat Linux 5.1 (kernel version 2.0.34). A brief
overview of each OS follows:

� VxWorks: VxWorks is a real-time OS that supports
multi-threading and interrupt handling. By default, the Vx-
Works thread scheduler uses a priority-based first-in first-out
(FIFO) preemptive scheduling algorithm, though it can be con-
figured to support round-robin scheduling. In addition, Vx-
Works provides semaphores that implement a priority inheri-
tance protocol [22].

� LynxOS: LynxOS is designed for complex hard real-
time applications that require fast, deterministic response.
LynxOS handles interrupts predictably by performing asyn-
chronous processing at the priority of the thread that made the
request. In addition, LynxOS supports priority inheritance, as
well as FIFO and round-robin scheduling policies [23].

� Windows NT: Microsoft Windows NT is a general-
purpose, preemptive, multi-threading OS designed to pro-
vide fast interactive response. Windows NT uses a round-
robin scheduling algorithm that attempts to share the CPU
fairly among all ready threads of the same priority. Win-
dows NT defines a high-priority thread class calledREAL-
TIME PRIORITY CLASS. Threads in this class are scheduled
before most other threads, which are usually in theNOR-
MAL PRIORITY CLASS.

Windows NT is not designed as a deterministic real-time
OS, however. In particular, its internal queueing is performed

in FIFO order and priority inheritance is not supported for mu-
texes or semaphores. Moreover, there is no way to prevent
hardware interrupts and OS interrupt handlers from preempt-
ing application threads [24].

� Solaris: Solaris is a general-purpose, preemptive, multi-
threaded implementation of SVR4 UNIX and POSIX. It is de-
signed to work on uniprocessors and shared memory symmet-
ric multiprocessors [25]. Solaris provides a real-time schedul-
ing class that attempts to provide worst-case guarantees on
the time required to dispatch application or kernel threads
executing in this scheduling class [26]. In addition, Solaris
implements a priority inheritance protocol for mutexes and
queues/dispatches threads in priority order.

� Linux: Linux is a general-purpose, preemptive, multi-
threaded implementation of SVR4 UNIX, BSD UNIX, and
POSIX. It supports POSIX real-time process and thread
scheduling. The thread implementation utilizes processes cre-
ated by a specialclone version offork . This design sim-
plifies the Linux kernel, though it limits scalability because
kernel process resources are used for each application thread.

We use the GNU g++ compiler with�O2 optimization on
all but Windows NT, where we use Microsoft Visual C++ 6.0
with full optimization enabled, and VxWorks, where we use
the GreenHills C++ version 1.8.8 compiler with�OL �OM
optimization. For optimal performance our executables use
static libraries.

Our tests on Solaris, LynxOS, Linux, and VxWorks were
run with real-time, preemptive, FIFO thread scheduling.
This provides strict priority-based scheduling to application
threads. On Windows NT, tests were run in the Real-time pri-
ority class, which provides preemption capability over non-
real-time threads. However, the scheduing is round-robin in-
stead of FIFO2

ORB overview: Our benchmarking testbed is designed to
isolate and quantify the impact of OS-specific variations on
ORB endsystem performance and predictability. The ORB
used for all the tests in this paper is version 1.0 of TAO [4],
which is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. TAO uses
components in the ACE framework [27] to provide a common
implementation framework on each OS platform in our bench-
marking suite. Thus, the differences in performance reported
in the following tests are due entirely to variations in OS inter-
nals, rather than ORB internals.

2Our high-priority client test results discussed below are not affected by
using round-robin, because we have only one high priority thread. The low-
priority results, however, do reflect round-robin scheduling on Windows NT.
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Benchmarking metric overview: The remainder of this
section describes the results of the following benchmarking
metrics we developed to evaluate the performance and pre-
dictability of VxWorks, LynxOS, Windows NT, Solaris, and
Linux running TAO:

�Context switch overhead: These tests measure (1) gen-
eral OS context switch overhead and (2) context switching
overhead incurred when processing ORB requests. High con-
text switch overhead can significantly degrade application re-
sponsiveness and determinism. These tests and their results
are presented in Section 3.1.2.

� Priority inversion: This test measures priority inver-
sion incurred when processing operations from client threads
running at different priorities. Priority inversion is undesir-
able if an OS services applications that possess stringent QoS
requirements. This test and its results are presented in Sec-
tion 3.1.3.

3.1.2 Measuring ORB/OS Context Switching Overhead

Terminology synopsis: A context switchinvolves the sus-
pension of one thread and immediate resumption of another
thread. The time between suspension and resumption is the
context switchingoverhead. Context switching overhead in-
dicates the efficiency of the OS thread dispatcher. From the
point of view of applications and ORB middleware, context
switch time overhead should be minimized because it directly
reduces the effective use of CPU resources.

There are two types of context switching,voluntaryandin-
voluntary, which are defined as follows:

� Voluntary context switch: This occurs when a thread
voluntarily yields the processor before its time slice completes.
Voluntary context switching commonly occurs when a thread
blocks awaiting a resource to become available.

� Involuntary context switch: This occurs when a higher
priority thread becomes runnable or because the current
thread’s time quantum has expired.

Overview of context switching overhead metrics: We
measured OS context switching overhead using three metrics.
Multiple metrics were required since all OS platforms do not
support each approach. Moreover, some operating systems
show anomalous results with certain metrics.

The first context switching metric is theSuspend-Resume
test. It is based on the Task Context Switching measurement
described in [28]. In turn, this test is based on Superconduct-
ing Super Collider (SSC) Laboratory Ping Suspend/Resume
Task and Suspend/Resume Task benchmarks. It measures two
different times:

1. The time to resume a blocked high-priority thread, which
does nothing other than block again immediately when
it is resumed. A low-priority thread resumes the high-
priority thread, so the elapsed time includes two context
switches, one thread suspend, and one thread resume.

2. The time to suspend and resume a low-priority thread that
does nothing. There is no context switching. This time is
subtracted from the one described above, and the result is
divided by two to yield the context switch time.

POSIX pthreads [29] do not support a suspend/resume thread
interface. Therefore, the Suspend-Resume test is not appli-
cable to OS platforms, such as LynxOS and Linux, that only
support POSIX threads.

The second context switching metric is theYieldtest. It runs
two threads at the same priority. Each thread iteratively calls
its system function to immediately yield the CPU.

The third context switching metric is theSynchronized
Suspend-Resumetest. This test contains two threads, one
higher priority than the other. The test measures two differ-
ent times:

1. The high-priority thread blocks on a mutex held by the
low-priority thread. Just prior to releasing the mutex, the
low-priority thread reads the high-resolution clock (tick
counter).3 Immediately after acquiring the mutex, the
high-priority thread also reads the high-resolution clock.
The time between the two clock reads includes a mutex
release, context switch, and mutex acquire.

The lower priority thread uses a semaphore to suspend
each iteration of the high-priority thread. This prevents
the high-priority thread from simply acquiring and releas-
ing the mutexad infinitum. The timed portions of the test
do not include semaphore operation overhead.

2. The time to acquire and release a mutex in a single thread,
without context switching, is measured. This time is sub-
tracted from the one described above to yield the context
switch time.

Below, we describe the results from tests that measure (1)
the OS context switching overhead and (2) the number of con-
text switches incurred per CORBA request. To support real-
time ORB middleware, an OS should minimize this overhead.

Results of OS context switch overhead metrics: Table 1
shows the context switch times measured on each of the plat-
forms. Context switch time is difficult to measure, as these re-
sults suggest. Windows NT performs consistently well, while
Solaris consistently performs the worst of the tested OS’s, with
the exception of the VxWorks Yield test.

3Solaris provides a high-resolution timer interface. On other OS platforms,
the PentiumRDTSCinstruction was used directly to read the tick counter.
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Operating Context Switch Time,�sec
System mean (standard deviation)

Suspend- Yield Test Synch Test
Resume Test

VxWorks 0.946 (0.041) N/A 1.62 (0.023)
LynxOS N/A 5.42 (0.008) 5.96 (0.042)
Windows NT 1.41 (0.036) 1.78 (0.021) 2.79 (0.110)
Solaris 21.3 (0.569) 11.2 (0.900) 131.2 (0.613)
Linux N/A 2.60 (0.023) 9.72 (0.187)

Table 1: Context Switch Time Measurements

The VxWorks context switch times as measured by the
Suspend-Resume and Synchronized Suspend-Resume tests
are very low, around 1�sec. However, they are not as con-
sistent as on some of the other platforms, with a standard de-
viation of up to about 4% of the mean. The Yield test was
not run on VxWorks because it does not support an immediate
thread yield without delaying the calling task for a non-zero
time interval. Measuring the yield time would include that in-
terval (of 1/60 second on Pentium target), therefore adding to
the inaccuracy of the context switch time calculation.

The LynxOS context switch times are relatively high, be-
tween 5 and 6�sec. Surprisingly, the times are no better than
we measured on a 200 MHz Pentium Pro. This may be an
anomaly in either then OS or our tests, possibly with respect
to caching behavior. The jitter is very low on LynxOS, less
than 1% of the mean.

The context switch times measured on Windows NT are
consistently low, but with jitter of up to 3.9%. Conversely,
Solaris has very high context switch times, the best being 11.2
�sec for the Yield test, and very high jitter of 8%. The Linux
Yield test context switch time of 2.60�sec is also low, though
its Synchronized Suspend-Resume time of 9.72�sec is high.
The jitter on Linux is less than 2%.

The Suspend-Resume test, Yield test, and Synchronized
Suspend-Resume test results are not directly comparable. All
measure voluntary context switches. However, the scheduling
ramifications of thread suspension and yield may be different.
This is apparent from the results on Solaris and Linux, espe-
cially, which show different times for the approaches.

The results above demonstrate that it is hard to measure con-
text switching overhead reliably. Therefore, the multiple mea-
sures of context switch time are useful.

Impact of context switching overhead on two-way CORBA
operations: OS context switching overhead significantly
impacts the performance and predictability of real-time ORB
endsystems. In addition, context switching complicates real-
time scheduling analysis [30]. Thus, high levels of OS context
switching overhead are undesirable for applications with strin-
gent performance requirements.

To study the effect of context switching overhead on
CORBA operations, we consider two-way operations,i.e.,
round-trip request-response from client to server and back.
The client and server execute in different threads (in the same
process, on systems that have process boundaries). For this
canonical case, we expect two context switches. The first oc-
curs when the ORB passes the operation to the servant, exe-
cuted in the context of the server thread. The second context
switch occurs when the client thread executes to handle the
response.

We measured the number of context switches for this case
on several of the OS platforms.4 On Solaris, we calculated
the number of context switches using thegetrusage library
function. It reports voluntary and involuntary context switches
incurred by the current process; we summed the two values.

On Windows NT, we used theMicrosoft Spy++utility that
comes with the Microsoft Visual C++ compiler. This util-
ity displays the number of context switches incurred by each
thread. To read the number of context switches, we forced the
threads to block on exit waiting for input from the console.

To determine the number of context switches performed by
the OS, we made 4,000 two-way CORBA requests inn client
threads and computed the number of context switches incurred
by the OS. There were one high-priority client thread andn
low-priority client threads, wheren ranges from 1 to 50. The
low-priority threads all run at different priorities ranging from
P1 : : : Pn. On both Solaris and Windows NT, we measured
an average of two context switches per two-way request, as
expected.

Result synopsis: In general, context switching overhead is
an important measure of the efficiency of an OS thread dis-
patcher. Our measurements confirm that there are two con-
text switches per two-way CORBA operation. In addition, we
measured the actual cost of a context switch. Typically, it is
between 1 and 10�sec on all of the OS’s that we surveyed.
Therefore, its contribution to the overall two-way operation
latency is very small.

The standard deviations of the context switch measurements
for LynxOS and Windows NT, and to a lesser extent Vx-
Works and Linux, are much lower than for Solaris relative
to their means, indicating that their dispatchers are more ef-
ficient and predictable. If the efficiency of the Solaris thread
dispatcher can be improved, ORBs will perform more pre-
dictably, thereby helping to meet application QoS require-
ments more effectively.

4LynxOS does not provide the internal instrumentation to measure context
switches, to minimize context switching overhead.
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3.1.3 Measuring ORB/OS Priority Inversion

Terminology synopsis: Priority inversion occurs when a
high-priority thread must block waiting for a low-priority
thread to release a resource required by the higher priority
thread. Two types of priority inversions exist,thread-based
andpacket-based[8]:

� Thread-based priority inversion: This inversion oc-
curs when higher priority threads must block waiting for lower
priority threads to release a resource required by the higher
priority threads. Unbounded thread-based priority inversion is
highly undesirable for most real-time systems since it yields
non-deterministic behavior. In turn, this can result in missed
deadlines for real-time application and ORB endsystem tasks.

� Packet-based priority inversion: Even if thread-based
priority inversion is bounded or eliminated, another potential
priority inversion problem exists. This problem stems from
the fact that many protocol implementations queue and pro-
cess packets in FIFO order. FIFO queueing is prone topacket-
based priority inversions. These inversions occur when higher
priority threads must block until the packet they need to pro-
cess is at the front of the queue.

Overview of the priority inversion metric: Priority inver-
sion can be detected by observing the latencies of client and
server threads that run at different priorities. Higher latency in
a higher priority client indicates priority inversion. The degree
of the priority inversion is the difference in latency from the
average lower priority latency.

In this benchmark we measured packet-based and thread-
based priority inversion. The configuration used for this
benchmark is shown in Figure 2. This benchmark is based on
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tion

a priority-basedconcurrency architecture [31], which is often

used by real-time applications with deterministic QoS require-
ments. For instance, avionics mission computing systems [7]
commonly execute fixed priority threads corresponding to the
rates, e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, at which operations
are called by clients.

Each client thread generates CORBA requests at a constant
rate. This test exposes the two types of priority inversion by
using a range of priorities in the client and server threads. For
instance, the OS I/O subsystem may not consider the priority
of each thread when queueing the network packets,e.g., it may
just queue them in FIFO order. As lower priority threads send
CORBA requests and the lower layers in the network queue
those requests, some high-priority requests can be delayed by
lower priority requests. This behavior can cause higher la-
tency for higher priority requests,i.e., packet-based priority
inversion.5

The client and server processes for the priority inversion
benchmark are configured as follows:

� Server configuration: As shown in Figure 2, our
testbed server consists of four servantsS0 : : : S3, each running
in a thread with a corresponding real-time priorityP0 : : : P3.
Each thread processes requests that are sent to its servant by
the corresponding client threadsC0 : : : C3 in another process
on the same machine. Each pair of client/server threads have
matching priorities,i.e., a client threadCi communicates with
a servant threadSi with the same thread prioritypi.

� Client configuration: Figure 2 shows the client-side of
the priority inversion benchmarking test. The highest priority
client (C0), runs at the default OS real-time priorityP0 and
invokes operations at 20 Hz,i.e., it invokes 20 CORBA two-
way calls per second. The rest of the clientsC1 : : : C3 have
lower priority OS threadsP1 : : : P3 and invoke operations at
10, 5, and 1 Hz,i.e., they invoke 10, 5, and 1 CORBA two-
way calls per second.

All client threads have matching priorities with their corre-
sponding servant thread. In each call, the client sends a value
of typeCORBA::Octet to the servant. The servant cubes the
number and returns it to the client.

When the test program creates the client threads, these
threads block on a barrier lock so that no client begins work
until the others are created and ready to run. When all threads
inform the main thread they are ready to begin, the main thread
unblocks all client threads. These threads execute in an order
determined by the real-time thread dispatcher. Each client in-
vokes 1,000 CORBA two-way requests at its prescribed rate.
All clients, except for the lowest priority client,i.e., C3, make

5The TAO ORB Core is designed to alleviatethread-basedpriority inver-
sion by using a priority-based concurrency architecture and non-multiplexed
connection architecture that share a minimal amount of resources among
threads [9]. Consequently, TAO incurs minimal thread-based priority inver-
sion.
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CORBA requests as long as the lowest priority client is issuing
requests. Thus, there will always be higher priority traffic for
the duration of the test.

Priority inversion occurs when a higher priority client incurs
higher latency than lower priority threads. In an ideal ORB
endsystem, we should see no priority inversion,i.e., the higher
the priority, the lower the latency. In the figure, this would
look like a “staircase,” climbing slightly higher from left to
right.

Results of priority inversion metrics: The average priority
inversion incurred by various clients is shown in Figure 3. The
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jitter results for this test are shown in Figure 4. An impor-
tant characteristic of real-time operating systems and ORBs is
predictability. In particular, for real-time applications with de-
terministic QoS requirements, low jitter is essential to bound
computation time and to ensure that deadlines are met. There-
fore, operating systems that exhibit high jitter in Figure 4 may
not be suitable for certain classes of real-time applications,
even though their average priority inversion is low.
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� Linux results: The TAO latency on Linux is compa-
rable to that of the real-time operating systems. However, it
does incur priority inversion,e.g., the 10 Hz client latency of
289�sec is higher than the 269�sec 5 Hz client latency. Fur-
thermore, jitter is very high on Linux, from 28.8% to 193% of
the mean latency.

� LynxOS results: LynxOS does not display measurable
priority inversion in our tests, as shown in Figure 3. In addi-
tion, LynxOS exhibited the lowest jitter of any of the tested
systems,i.e., 6.42% of the mean latency for the 20 Hz client,
up to 18.8% for the 1 Hz client.

� Windows NT results: TAO displays priority version on
Windows NT. As shown in Figure 3, the latency of the 5 and
10 Hz clients is higher than that of the 1 Hz client. In addition,
jitter is high on Windows NT, as shown in Figure 4, ranging
from 31.3 to 57.3% of the mean latency.

� Solaris results: Solaris exhibits priority inversion, as
shown in Figure 3. Figure 4 shows the jitter on Solaris is high,
32.6% to 41.2%. The high-priority 20 Hz client has higher
latency than the three lower-priority clients. This relative in-
version does not occur for the 10 Hz, 5 Hz, and 1 Hz client
threads.

� VxWorks results: No priority inversion is observed in
the VxWorks benchmark, as shown in Figure 3. Furthermore,
the jitter of the measurements is low, 28.7% to 34.4%, from
Figure 4.

Result synopsis: To bound application execution time, it is
important for real-time ORB endsystems to minimize prior-
ity inversion. However, thread-based priority inversion and
packet-based priority inversion are hard to eliminate com-
pletely since lower layers of the protocol stack are often un-
aware of the priorities of the packet’s sender/receiver thread.
For instance, Solaris and Windows NT incur a fair amount of
priority inversion. In contrast, LynxOS and VxWorks behave
more deterministically, which makes them better suited to pro-
vide QoS required by applications.

4 Concluding Remarks

There is significant interest in developing high performance,
real-time systems using ORB middleware like CORBA to
lower development costs and decrease time-to-market. The
flexibility, reusability, and platform-independence offered by
CORBA make it attractive for use in OO real-time systems.
However, meeting the stringent QoS requirements of real-time
systems requires more than just specifying QoS via IDL in-
terfaces. Therefore, it is essential to develop integrated ORB

endsystems that can enforce application QoS guarantees end-
to-end.

This paper shows the initial results of our investigation into
the characteristics that determine the suitability of the OS
component in an ORB endsystem to support real-time applica-
tions. OS context switch overhead contributes little to overall
two-way CORBA operation latency. Priority inversion is suc-
cessfully avoided by real-time operating systems, but not by
general-purpose operating systems. Our preliminary results
indicate that a real-time ORB like TAO, run on a real-time OS
like LynxOS or VxWorks, can provide a very predictable and
efficient ORB endsystem platform for real-time applications.

We are also exploring other OS characteristics that affect
ORB endsystem performance [32]. We are expanding our la-
tency and jitter measurement techniques to provide a better in-
dication of the end-to-end performance that applications can
expect. In addition, we are developing techniques to mea-
sure and reduce ORB endsystem overhead, which is important
given the constrained CPU resources of most real-time sys-
tems.
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