
Operating System Performance in Support of Real-time Middleware

Douglas C. Schmidt, Mayur Deshpande, and Carlos O’Ryan
Department of Electrical and Computer Engineering

University of California, Irvine, 92612
fschmidt,deshpanm,coryang@uci.edu�

A subset of this paper appeared in the7th IEEE Inter-
national Workshop on Object-oriented Real-time Dependable
Systems (WORDS’02), San Diego, California, January 7–9,
2002.

Abstract

Commercial-off-the-shelf (COTS) hardware and software is
being evaluated and/or used in an increasing range of mission-
critical distributed real-time and embedded (DRE) systems.
Due to substantial R&D investment over the past decade,
COTS middleware has recently matured to the point where
it is no longer the dominant factor in the overhead, non-
determinism, and priority inversion incurred by DRE systems.
As a result, the focus has shifted to the COTS operating sys-
tems and networks, which are once again responsible for the
majority of end-to-end latency and jitter.

This paper compares and evaluates the suitability of popu-
lar COTS operating systems for real-time COTS middleware,
such as Real-time CORBA. We examine real-time operating
systems (VxWorks and QNX), general-purpose operating sys-
tems with real-time thread scheduling classes (Windows NT,
Windows 2K, and Linux), and a hybrid real-time/general-
purpose operating system (Linux/RT). While holding the hard-
ware and ORB constant, we vary these operating systems sys-
tematically to measure platform-specific variations in context
switch overhead, throughput of the ORB in terms of two-way
operations per-second and memory footprint of the ORB li-
braries. We also measure how the latency and jitter of high-
priority operations are affected as the number of low-priority
operations increase.

Our results indicate that real-time operating systems remain
the platforms of choice to deliver predictable, efficient, and
scalable performance for DRE middleware and applications.
However, the emergence of hybrid general-purpose/real-time
operating systems, such as Linux/RT, are a promising direc-
tion for future DRE systems. Although Linux/RT is not yet as
deterministic as traditional real-time operating systems, such
as QNX and VxWorks, it does provide more predictable and
scalable behavior compared to mainstream operating systems,

�This work was supported in part by Siemens and SAIC.

such as Windows NT/2K. Since traditional real-time operating
systems tend to be expensive and tedious to configure/program,
the maturation of Linux/RT will be a welcome advance for
DRE system developers.

Keywords: Real-time CORBA Object Request Brokers, Real-
time Operating System Middleware Support.

1 Introduction

Emerging trends. Two fundamental trends are having a pro-
found influence on the way in which newdistributed real-time
and embedded (DRE) systems are being conceived and con-
structed:
� Commoditization of Information Technology (IT) — IT

of all forms is becoming highly commoditizedi.e.,
COTS hardware and software artifacts are getting faster,
cheaper, and better at a relatively predictable rate. Dur-
ing the past decade, many application domains have ben-
efited from the commoditization of hardware, such as
CPUs and storage devices, and networking elements,
such as IP routers. More recently, the maturation of pro-
gramming languages, such as Java and C++, operating
environments, such as POSIX and Java Virtual Machines,
and enabling middleware, such as CORBA and Enter-
prise Java Beans, are helping to commoditize many soft-
ware components and architectural layers, as well.

� Network-centric paradigm shift — There is a growing ac-
ceptance of network-centric systems, where applications
with a range of quality of service (QoS) needs are con-
structed by integrating separate components connected
by various forms of communication services. The nature
of this interconnection can range from small and tightly
coupled DRE systems, such as avionics mission comput-
ing, to the large and loosely coupled DRE systems, such
as global telecommunications.

The interplay of these two trends has led to new ar-
chitectural concepts and services that are embodied in lay-
ers of COTS middleware [1]. These middleware layers
are interposed between applications and commonly available

1

COTS hardware and software infrastructure to make it fea-
sible, easier, and more cost effective to develop and evolve
DRE systems. Middleware is the result of recognizing the
need for more advanced and capable support–beyond simple
connectivity–needed to construct effective DRE systems.

Although the quality of COTS software has generally
lagged behind hardware, recent improvements in frame-
works [2], patterns [3, 4], and development processes [5, 6]
have encapsulated the knowledge that enables COTS soft-
ware to be developed, combined, and used in an increasing
number of mission-critical DRE applications. Common ex-
amples include e-commerce web sites, consumer electron-
ics, avionics mission computing, hot rolling mills, backbone
routers, and high-speed network switches. Over the past sev-
eral years, there has been substantial improvement in the QoS
of COTS DRE middleware, based largely on the maturation
of implementations of industry standards, such as Real-time
CORBA [7].

The growing importance of operating system infrastruc-
ture. First generation COTS middleware, such as initial im-
plementations of CORBA, lacked appropriate optimizations
and capabilities to support DRE systems with stringent QoS
requirements [8]. Due to substantial R&D progress over the
past decade [9, 10], COTS middleware, such as Real-time
CORBA [7], has recently matured to the point where it is no
longer the dominant factor in the overhead, non-determinism,
and priority inversion incurred by DRE systems [11]. As a re-
sult, the focus has shifted to the COTS operating systems and
networks, which are once again responsible for the majority of
end-to-end latency and jitter.

This paper compares and evaluates the suitability of popu-
lar COTS operating systems for real-time COTS middleware,
in particular Real-time CORBA. We examine three types of
operating systems:

� Real-time operating systems, i.e., VxWorks and QNX
� General-purpose operating systems with real-time thread

scheduling classes,i.e., Windows NT, Windows 2K, and
Linux, and

� A hybrid real-time/general-purpose operating system,
i.e. Linux/RT.

Our findings extend earlier results in [12, 13] and illustrate that
general-purpose operating systems like Windows NT, Win-
dows 2K, and Linux are not yet suited to meet the demands
of applications with stringent QoS requirements. We also find
that real-time operating systems like QNX and VxWorks do
enable predictable and efficient ORB performance, thereby
making them suitable as OS platforms for real-time CORBA
applications.

This paper extends our previous research by including mea-
surements for Linux/RT. We find that Linux/RT provides better
control over QoS capabilities than Linux, but its jitter makes

it unsuitable for applications with hard real-time deadlines. In
general, our results underscore the need for a measure-driven
methodology to pinpoint sources of overhead and priority in-
version in ORB middleware and operating systems for DRE
systems.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 describes the ORB/OS testbed
that we used to systematically benchmark the performance of
TAO on popular real-time and general-purpose operating sys-
tems; Section 3 analyzes empirical results from benchmarks
that measure the efficiency and predictability of TAO on the
different OS platforms; and Section 4 presents concluding re-
marks.

2 Overview of ORB/OS Testbed

Evaluating the performance of complex DRE systems is hard
and becomes even harder if DRE system is built using a com-
bination of real-time middleware and operating systems [11].
This section describes the ORB/OS testbed that we used to
systematically benchmark the performance of TAO over dif-
ferent operating systems, while keeping the hardware platform
constant. This testbed helps to isolate the overhead due to the
OS.

2.1 Hardware Overview

All of the tests in this section were run on a single-cpu Dell
866MHz Intel Pentium III system configured with 512 Mbytes
of RAM and a 256Kb cache. We focus our experiments on a
single CPU hardware configuration to:

� Factor out differences in network interface driver support
and

� Isolate the effects of OS design and implementation on
ORB middleware and application performance.

2.2 Operating Systems Overview

We ran the ORB/OS benchmarks described in this paper on
two well-established real-time operating systems (VxWorks
5.4 and QNX-RTP 6.0), three general-purpose operating sys-
tems with real-time scheduling classes (Windows NT 4.0
Workstation with SP5, Windows 2K Professional, and Debian
GNU/Linux kernel version 2.2.14), and one hybrid general-
purpose/real-time OS (Timesys Linux/RT version 2.2.14). On
all platforms, we used the TCP/IP stack supplied with the OS.
Each OS is described briefly below:

� VxWorks and QNX Both VxWorks and QNX are multi-
threaded real-time OSes but QNX has a micro-kernel archi-
tecture that uses message-passing as a fundamental means for

2

inter-process communication (IPC). Both VxWorks and QNX
support preemptive priority-based first-in first-out (FIFO)
scheduling of threads, in addition to semaphores that imple-
ment a priority inheritance protocol [14].

� Linux and Linux/RT Linux is a general-purpose, pre-
emptive, multi-threaded implementation of SVR4 UNIX, BSD
UNIX, and POSIX. It supports POSIX real-time process and
thread scheduling. The Linux thread implementation inter-
nally uses processes created by a variant of thefork() sys-
tem function calledclone(). This design simplifies the
Linux kernel, though it limits scalability because kernel pro-
cess resources are used for each application thread. Linux/RT
adds a resource kernel (RK) [15] to the core Linux kernel. The
RK enhances the real-time capabilities of Linux by providing
fixed-priority scheduling with priority-inheritance and high-
resolution timers. Linux/RT is also binary compatible with
Linux, i.e., it is possible to run Linux and Linux/RT applica-
tions on the same hardware without recompiling them. Boot-
ing with the Linux/RT kernel starts the Linux/RT OS. The
rest of the OS,e.g., file-systems, C-libraries, compiler, and
command-line tools, behaves like regular Linux.

� Windows NT and Windows 2K are general-purpose,
preemptive, multi-threading OS designed to provide fast in-
teractive response. They use round-robin scheduling algo-
rithm that attempts to share the CPU fairly among all ready
threads of the same priority. Windows NT/2K and support
high-priority threads via theirREALTIME PRIORITY CLASS.
Threads in this class are scheduled before most other threads,
which are usually in theNORMAL PRIORITY CLASS. Win-
dows NT/2K are not designed as a deterministic real-time OS,
however. In particular, their internal queueing is performed in
FIFO order and priority inheritance is not supported for mu-
texes or semaphores. Moreover, there is no way to prevent
hardware interrupts and OS interrupt handlers from preempt-
ing application threads.

2.3 Compiler Overview

We use the GNU g++ compiler on all platforms except Win-
dows NT, where we use Microsoft Visual C++ 6.0. On Vx-
Works we used the cygnus gcc cross-compiler supplied by
WindRiver to compile from a Windows-NT host. To enhance
performance, all libraries and executables were compiled stat-
ically and without debugging symbols.

The compiler settings for each platform are noted below.

� VxWorks. We used a cross-compiler to compile
from a Windows NT host. The compiler was the
gcc compiler from Cygnus, version-2.7.2-960126 sup-
plied by WindRiver. The compiler options included:
fno-implicit-templates, DCPU=I80486, m486,
DACE_VXWORKS=0x540, D_REENTRANT, O, fno-rtti,

DACE_LACKS_RTTI, check-new. The VxWorks gcc
compiler has bugs with native C++ exception handling and the
03 optimization level, so we could not use these options.

� QNX. We used gcc-2.95.2 for this platform. The
options included: fno-exceptions, fcheck-new,
Wpointer-arith, O3, fno-implicit-templates,
DACE_NDEBUG, andD__ACE_INLINE__.

� Linux and Linux/RT We used gcc-2.95.2
for these platforms as well. The options included:
Wpointer-arith, O3, fno-implicit-templates,
D_POSIX_THREADS, fno-exceptions, fcheck-new,
D_POSIX_THREADS, D_POSIX_THREAD_SAFE_
FUNCTIONS, D_REENTRANT andDACE_NDEBUG.

� Windows NT/2K. We use the VC++ 6.0
Static Release build workspaces provided with
the ACE+TAO distributions. C++ exception handling is
enabled because Windows uses structured exceptions to report
certain OS-level errors.

2.4 Real-time CORBA Overview

The vehicle for our experiments on middleware and OS sup-
port for DRE applications is version 1.2 ofThe ACE ORB
(TAO) [16]. TAO is an open-source1 Real-time CORBA (RT-
CORBA)-compliant ORB developed at the University of Cal-
ifornia, Irvine and Washington University, St. Louis. It is de-
signed to support applications with stringent end-to-end QoS
requirements. As shown in Figure 1 TAO 1.2 implements all

����������

����	
�������
����

�����������������

��������

�
������	����

�������������	��	�

��������	��

���������

���������������

��	���

�	��

��������

�������	��

������

�����
����	�	�

�	��	��

�������

����������

����	
�������
����

�����������������

����� !�"#$

�% ����&'�(��� %�"��)�*%�

!"����&'

������

��+

������

#���,���$

�����
��������

Figure 1: ORB Endsystem Features for Real-Time CORBA

1The source code and performance tests for TAO can be downloaded from
www.cs.wustl.edu/˜schmidt/TAO.html.

3

the RT-CORBA standard interfaces and QoS policies that al-
low applications to configure and control the following ORB
endsystem resources:

� Processor resources via thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling
service

� Communication resources via protocol properties and ex-
plicit bindings and

� Memory resources via buffering requests in queues and
bounding the size of thread pools.

3 Empirical Benchmarking Results

We have developed the following ORB/OS benchmarking
metrics to evaluate the performance and predictability of Vx-
Works, QNX, Windows NT, Windows 2K, Linux/RT, and
Linux all running TAO 1.2:

� Context switch overhead. These tests measure general
OS context switch overhead. High context switch overhead
can significantly degrade application responsiveness and de-
terminism. These tests and their results are presented in Sec-
tion 3.1.

� ORB/OS operation throughput. This test indicates the
maximum operation throughput that applications can achieve
on various OS platforms. It measures end-to-end two-way re-
sponse when a client sends a request immediately after receiv-
ing the response to the previous request. This test and its re-
sults are presented in Section 3.2.

�ORB/OS latency and jitter. This test measures how the
latency and jitter of high-priority operations are affected as
the number of low-priority operations increases. Ideally, high-
priority operations should not be affected at all, while the la-
tency of low-priority operations should increase gradually as
their numbers increase. For plus, for real-time systems, it is
also imperative that the jitter of high-priority tasks remain as
constant as possible as the number of lower priority tasks is
varied. This test and its results are presented in Section 3.3.

� ORB memory footprint. This test measures the size of
the static TAO library on various operating systems. As men-
tioned in Section 2.3, TAO was compiled and linked statically.
The results are presented in Section 3.4.

The remainder of this section describes these benchmarks
and their results in more depth.

3.1 Measuring ORB/OS Context Switch Over-
head

Terminology synopsis. A context switch involves the sus-
pension of one thread and immediate resumption of another

thread. The time between suspension and resumption is the
context switch overhead. Context switch overhead is a mea-
sure of the efficiency of the OS thread dispatcher. From the
point of view of applications and ORB middleware, the lower
the context switch time, the better the performance, since this
overhead reduces the effective use of CPU resources.

There are two types of context switches—voluntary and
involuntary—which are defined as follows:

� Voluntary context switches occur when a thread vol-
untarily yields the processor before its time slice completes.
Voluntary context switches commonly occurs when a thread
blocks awaiting a resource to become available.

� Involuntary context switches occur when a higher pri-
ority thread becomes runnable or because the current thread’s
time quantum has expired.

Overview of context switch overhead metrics. We mea-
sured OS context switch overhead using the following metrics:

1. The Suspend-Resume test. This test measures two dif-
ferent times:

1. The time to resume a blocked high-priority thread, which
does nothing other than block again immediately when
it is resumed. A low-priority thread resumes the high-
priority thread, so the elapsed time includes two context
switches, one thread suspend, and one thread resume.

2. The time to suspend and resume a low-priority thread that
does nothing,i.e., there is no context switch. This time is
subtracted from the one described above, and the result is
divided by two to yield the context switch time.

POSIX threads do not support a suspend/resume thread in-
terface. The Suspend-Resume test is therefore inapplicable for
the QNX, Linux, and Linux/RT platforms that only support
POSIX threads.

2. The Yield test. This test runs two threads at the same
priority. Each thread iteratively calls a system function that
yields the CPU immediately.

3. The Synchronized Suspend-Resume test. This test
contains two threads, one higher priority than the other. The
test measures two different times:

1. The high-priority thread blocks on a mutex held by the
low-priority thread. Just prior to releasing the mutex,
the low-priority thread reads the high-resolution clock
(tick counter). Immediately after acquiring the mutex, the
high-priority thread also reads the high-resolution clock.
The time between the two clock reads includes a mutex
release, context switch, and mutex acquire.

The lower priority thread uses a semaphore to suspend
each iteration of the high-priority thread. This prevents
the high-priority thread from simply acquiring and releas-
ing the mutexad infinitum. The timed portions of the test
do not include semaphore operation overhead.

4

2. The time to acquire and release a mutex in a single thread,
without context switching, is measured. This time is sub-
tracted from the one described above to yield the context
switch time.

This test is applicable to all OS platforms.

We use multiple context switch metrics because no single
approach is supported by all OS platforms. Moreover, some
operating systems show anomalous results with certain met-
rics, e.g., Windows NT/2K performs poorly on the Suspend-
Resume and Yield tests.2

Results of OS context switch overhead metrics. Table 1
shows the results of the context switch overhead tests. We

Operating Suspend-Resume Yield Synch
System Test Test Test
VxWorks 0.586 (0.025) 0.649 (0.013) 0.821 (0.019)
QNX N/A 0.470 (0.007) 0.861 (0.003)
Linux/RT N/A 0.645 (0.007) 2.88 (0.015)
Linux N/A 0.548 (0.006) 2.559 (0.011)
Windows NT 1.147 (0.005) 1.056 (0.006) 1.914 (0.010)
Windows 2K 1.148 (0.004) 1.075 (0.007) 2.810 (0.016)

Table 1:Context Switch Latency in �seconds (Jitter Shown
in Parentheses)

describe the results for the various OS platforms below.

� VxWorks and QNX results. These results show that
classic real-time operating systems like QNX and VxWorks
are top performers. QNX was better than VxWorks on the
Yield test and only slightly worse off on the Suspend-Resume
test. The jitter for QNX, though, was lower than that of Vx-
Works, making it more predictable. QNX performed the best
of all the operating systems on the Yield test.

� Linux and Linux/RT results. Linux/RT was�3 times
slower than QNX and VxWorks on the Synchronized Suspend-
Resume test. It was also slower than QNX and Linux on the
Yield test. Linux/RT showed a consistent trend of having a
higher context switch time than Linux, which may be due to
the addition of more preemption points in the kernel. Sur-
prisingly, its context switch jitter was also higher slightly than
Linux.

� Windows NT and Windows 2K results. Windows-
NT performed better than Linux or Linux/RT on the
Synchronized-Suspend-Resume test but fared worse than the
Linux-es on the Yield test taking almost twice the time. But in
keeping with the general trend, both NT and 2K were worse
than the real-time OSes (QNX and VxWorks) in terms of raw-
performance on comparable tests.

2The tests described in this section are available in the ACE release at
$ACE_ROOT/performance-tests/Misc.

Our subsequent results demonstrate that although context
switch overhead is a useful metric to compare OS perfor-
mance, it is not a good predictor for actual end-to-end applica-
tion performance. It should therefore only be considered along
with other metrics in a performance evaluation. Moreover,
the results above demonstrate that the context switch over-
head measurements depend largely on the particular bench-
mark used. Practitioners and researchers should therefore be
careful to use (multiple) standardized benchmarks in their OS
comparisons.

3.2 Measuring ORB/OS Operation Through-
put

Terminology synopsis. Operation throughput is the maxi-
mum rate at which CORBA operations can be performed. We
measure the throughput of both two-way (request/response)
and one-way (request without response) operations from client
to server. The one-way operation measurement eliminates the
server reply overhead. This test indicates the overhead im-
posed by the ORB and OS for each operation.

Overview of the operation throughput metric. Our
throughput test, calledIDL_Cubit, uses a single-threaded
client that issues an IDL operation at the fastest possible rate.3

The server performs the operation, which cubes each param-
eter in the request. For two-way operations, the client thread
waits for the response and checks its correctness. Inter-process
communication is performed via the network loop back inter-
face because the client and server process run on the same ma-
chine.

The time required for cubing the argument on the server
is small but non-zero. The client performs the same opera-
tion and compares it with the two-way operation result. The
cubing operation itself is not intended to be representative
of DRE application workload. Many real-time and embed-
ded applications do rely, however, on a large volume of small
messages that each requires a small amount of processing.
TheIDL_Cubit benchmark is therefore useful for evaluat-
ing ORB/OS overhead by measuring operation throughput.

We measure throughput for one-way and two-way oper-
ations using a variety of IDL data types, includingvoid,
short,long, andsequence types. The one-way operation
measurement eliminates the server reply overhead. Thevoid
keyword instructs the server to not perform any processing
other than that necessary to prepare and send a no-op response,
i.e., no input parameters are passed to cube. Thesequence
data types exercise TAO’s marshaling/demarshaling perfor-
mance [17].

3TheIDL_Cubit test is available in the TAO release at$TAO_ROOT/
performance-tests/Cubit/TAO/IDL_Cubit.

5

Results of the operation throughput measurements. The
throughput measurements are shown in Figure 2. The follow-

void short long
oneway

octet sequence0

5000

10000

15000

20000

25000

O
pe

ra
tio

ns
/s

ec
on

d

Linux
Linux/RT
QNX
VxWorks
Windows NT
Win-2K

Figure 2: Operation Throughtput Results

ing discussion describes the results for the various OS plat-
forms.

� Linux and Linux/RT results. Linux and Linux/RT ex-
hibit the highest operation throughput for all the data types
tested, with around 10,000 operations/sec for the simple data
types. Moreover, the one-way throughput on Linux was signif-
icantly higher—nearly double that on the other OS platforms.

� QNX and VxWorks results. QNX and VxWorks of-
fer consistently good performance for simple types, such as
void, short, and long, with QNX’s throughput being
around 6,000 calls/sec and VxWorks a little lower at 5,500
calls/sec.

� Windows NT and Windows 2K results. Windows NT
and 2K performed the worst of all the operating systems on the
two-way tests. On the one-way test, Windows NT was better
than QNX and VxWorks but worse than Linux and Linux/RT.

Result synopsis. Operation throughput provides a measure
of the overhead imposed by the ORB/OS. Our IDL_Cubit
test measures throughput for a variety of operation types and
data types. Our measurements show that end-to end perfor-
mance depends dramatically on type of data exchanged and
the type of OS.

The raw performance of an OS or middleware platform is
not the best metric, however, when evaluating the suitability of
an infrastructure for DRE systems. A more important metric
is the predictability of the system, i.e., how the system behaves
under different load conditions. In particular, the effect of low-
priority operations on the performance of high-priority opera-
tions is often a more essential property of real-time ORB/OS
combinations.

3.3 Measuring ORB/OS Latency and Jitter

Terminology synopsis. ORB end-to-end latency is defined
as the average amount of delay observed by a client thread
from the time it sends the request to the time it completely re-
ceives the response from a server thread. Likewise, jitter is
the variance of the latency for a series of requests. High la-
tency impairs the ability to meet deadlines, whereas high jitter
makes it harder to devise feasible real-time schedules [14].

Legend

Figure 3: ORB Endsystem Latency and Jitter Test Config-
uration

Overview of latency and jitter metrics. Our latency/jitter
test, called MT_Cubit, uses a multi-threaded client that is-
sues IDL operations at several rates.4 We computed the la-
tency and jitter incurred by various clients and servers using
the configurations shown in Figure 3 and described below.

� Server configuration. As shown in Figure 3, our
MT_Cubit server consists of one servant S0, with the high-
est real-time priority P0, and servants S1 : : : Sn that have
lower thread priorities, each with a different real-time priority
P1 : : : Pn. Each thread processes requests that are sent to its
servant by client threads in the other process on the same ma-
chine. Each client thread communicates with a servant thread
that has an identical priority, i.e., a client A with thread prior-
ity PA communicates with a servant A that has thread priority
PA.

� Client configuration. Figure 3 shows how the
MT_Cubit test uses clients from C0 : : : Cn. The highest pri-
ority client, i.e., C0, runs at the default OS real-time priority
P0 and invokes operations at 20 Hz, i.e., it invokes 20 CORBA
two-way calls per second. The remaining clients, C1 : : : Cn,

4The MT_Cubit test is available in the TAO release at $TAO_ROOT/
performance-tests/Cubit/TAO/MT_Cubit.

6

have different lower OS thread priorities P1 : : : Pn and invoke
operations at 10 Hz, i.e., they invoke 10 CORBA two-way
calls per second.

All client threads have matching priorities with their corre-
sponding servant thread. In each call, the client sends a value
of type CORBA::Octet to the servant. The servant cubes
the number and returns it to the client, which checks that the
returned value is correct. When the test program creates the
client threads, these threads block on a barrier lock so that
no client begins until the others are created and ready to run.
When all client threads are ready to begin sending requests,
the main thread unblocks them. These threads execute in an
order determined by the OS thread dispatcher.

Each low-priority client thread invokes 4,000 CORBA two-
way requests at its prescribed rate. The high-priority client
thread invokes CORBA operations as long as there are low-
priority clients issuing requests. Thus, high-priority client op-
erations run for the duration of the test.

0.5 1 1.5 2 2.5 3 3.5
Number of Low Priority Clients

0

200

400

600

800

A
ve

ra
ge

 L
at

en
cy

 (
us

ec
s)

Linux
Linux/RT
QNX
VxWorks
Windows NT
WIN-2K

Figure 4: TAO/OS Latency Results for High-priority
Clients

In an ideal ORB endsystem, the latency for the low-priority
clients should rise gradually as the number of low-priority
client threads increases. This behavior is expected because the
low-priority clients compete for OS and network resources as
the load increases. However, the latency of the high-priority
client should remain constant or show only a minor increase
with increasing number of low priority clients. In general, a
significant amount of jitter complicates the computation of re-
alistic worst-case execution times, which makes it hard to cre-
ate a feasible real-time schedule.

Results of latency and jitter metrics. The average two-way
response time incurred by the high-priority clients is shown in
Figure 4. The jitter results are shown in Figure 5. Below, we
describe the results for each OS.

2 5 9
Number of Low Priority Clients

0

200

400

600

800

Ji
tte

r
(u

se
cs

)

Linux
Linux/RT
QNX
VxWorks
Windows NT
Win-2K

Figure 5: TAO/OS Jitter Results for High-priority Clients

� QNX and VxWorks results. In VxWorks, the latency
of the high-priority client remained nearly constant as the
number of low-priority clients increased. In QNX, there was a
slight increase as the number of low-priority clients increased.
Jitter experienced by the high-priority client remained essen-
tially unchanged on both QNX and VxWorks, but the jitter in
VxWorks was an order of magnitude smaller than on any other
OS.

� Linux/RT and Linux results. With client threads less
than 5, Linux/RT’s high-priority client jitter was smaller than
that of QNX but noticeably higher at 9 client threads.

Linux did surprisingly well on high-priority latency when
the number of low-priority client threads remained small, be-
ing lower than that of Linux/RT, QNX or VxWorks. As the
number of low-priority clients increased, however, it’s latency
as compared to Linux/RT, was higher for high-priority clients,
though it still performed better than the Windows platforms.

It is also interesting to compare Linux/RT to other general
purpose operating systems. For an increasingly large number
of low priority clients, Linux/RT performed better than any of
the other general-purpose operating systems. As shown in Fig-
ure 6, its jitter remains relatively low and constant (at around
200 �secs).

� Windows NT and Windows 2K results. The high-
priority client latency for Windows NT/2K increased linearly
with the number of client threads and they were the worst of
all the OS platforms tested. Windows 2K had lower latency
than Windows NT, which would suggest a higher throughput
but ss shown in Figure 2, however, Windows NT had higher
throughput than Windows 2K.

The high-priority client jitter for Windows NT/2K rose lin-
early as well and even though for a smaller number of low-
priority clients (2), Windows 2K has less jitter than Linux and

7

2 5 9 15 20
Number of Low Priority Clients

0

500

1000

1500

2000

2500

3000

3500

4000

Ji
tte

r
(u

se
cs

)

Linux/RT
Linux
Windows NT
Win-2K

Figure 6: TAO/OS Jitter Results for Large number of
Clients

QNX, for higher number of clients (5 and 9) it had consider-
ably more jitter than all the other non-windows platforms.

Overall, Windows NT/2K produced poor results for all test
cases. In addition, the high variability in the results indicates
that Windows NT/2K is unsuitable for applications requiring
predictable QoS guarantees.

Result synopsis. In general, low latency and consistent jit-
ter are necessary for real-time operating systems to bound
application execution times. The general-purpose operating
systems we tested showed erratic behavior, particularly un-
der high load. For example, Windows NT and Linux ex-
hibit higher latency for high-priority clients. Windows NT/2K
had almost three times the jitter as compared to Linux/RT (9
clients). In contrast, real-time operating systems are more pre-
dictable, showing very stable jitter even with high number of
clients. For example, high-priority jitter for QNX and Vx-
Works was almost constant while the jitter of Linux/RT rose
with an increase in load.

3.4 Measuring ORB Footprint

Overview of static memory footprint metric. The TAO
real-time ORB is implemented with components from the
ACE toolkit [18]. Since the size of the static memory foot-
print is important for many DRE systems, we measured the
sizes of the ACE (libACE) and TAO (libTAO) libraries using
various commands provided by the operating systems. Since
the libraries were compiled as static libraries, they give a mea-
sure of the memory overhead that applications would incur if
they include all the features of ACE and TAO.

Results of footprint metrics. Figure 7 shows the mem-
ory footprint measured on each of the platforms in kilobytes.

These results show that Windows NT/2K has the smallest

694
649 656

595

1058

1380
1298

1000

Linux,Linux/RT QNX VxWorks Windows NT/2K
0

500

1000

1500

Fo
ot

pr
in

t (
K

ilo
by

te
s)

ACE
TAO

Figure 7: Memory Footprint in Kilobytes

static memory footprint, which indicates that the NT compiler
produces highly compact code. The larger footprint on the
gcc-compiled platforms may have been caused due to aggres-
sive inlining that occurs with the higher compiler optimization
levels. The QNX compiler had the largest memory footprint
for TAO, whereas Linux had the largest footprint for ACE.

4 Concluding Remarks

Over the past several years, many companies have used Real-
time CORBA successfully in distributed real-time and embed-
ded (DRE) systems to (1) lower software development costs
and (2) decrease their time-to-market. The flexibility, reusabil-
ity, and platform-independence offered by COTS Real-time
CORBA makes it attractive for use in object-oriented DRE
systems. Some developers continue to doubt the applicability
of CORBA for DRE systems, however, due to concerns about
its overhead, non-determinism, and priority inversion.

As recently as two years ago, it was reasonable to be skepti-
cal about the determinism of COTS CORBA implementations
for DRE systems [19]. However, the results in this paper show
the following:

� The main sources of overhead, non-determinism, and pri-
ority inversion can no longer be attributed to the ORB
middleware, which is consistent with the findings in [11].
In our experiments, real-time operating systems showed
consistency of jitter and predictability while running a
representative mixture of CORBA-based DRE applica-
tions. In contrast, general-purpose operating systems ex-
hibit various shortcomings that make them impractical
for DRE applications with stringent QoS requirements.

8

� The emergence of hybrid real-time/general-purpose oper-
ating systems, such as Linux/RT, is a promising develop-
ment since our earlier work [12, 13] measuring ORB/OS
performance. Although Linux/RT is not yet as deter-
ministic as traditional real-time operating systems, such
as QNX and VxWorks, it does provide more predictable
and scalable behavior compared to mainstream operating
systems, such as Windows NT/2K. Since traditional real-
time operating systems tend to be expensive and tedious
to configure/program, the maturation of Linux/RT will be
a welcome advance.

� Our experiments confirm that OS context switch over-
head contributes little to end-to-end two-way CORBA
operation latency or throughput, and should not be used
as the only predictor of OS performance.

Our future work is exploring software architectures, opti-
mizations, and patterns that can most effectively implement
the Real-time CORBA capabilities incorporated recently into
the CORBA 2.4 specification [7]. We plan to use the bench-
marking techniques and ORB/OS testbed described in this pa-
per to evaluate Real-time CORBA capabilities empirically to
determine their suitability for different classes of DRE sys-
tems.

References
[1] R. E. Schantz and D. C. Schmidt, “Middleware for Distributed Systems:

Evolving the Common Structure for Network-centric Applications,” in
Encyclopedia of Software Engineering (J. Marciniak and G. Telecki,
eds.), New York: Wiley & Sons, 2001.

[2] R. Johnson, “Frameworks = Patterns + Components,” Communications
of the ACM, vol. 40, Oct. 1997.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, Massachusetts:
Addison-Wesley, 1995.

[4] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. New York: Wiley & Sons, 2000.

[5] K. Beck, Extreme Programming Explained: Embrace Change. Boston:
Addison-Wesley, 2000.

[6] I. Jacobson, G. Booch, and J. Rumbaugh, Unified Software Develop-
ment Process. Addison-Wesley Object Technology Series, Reading,
Massachusetts: Addison-Wesley, 1999.

[7] Object Management Group, The Common Object Request Broker: Ar-
chitecture and Specification, 2.4 ed., Oct. 2000.

[8] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Com-
munication Middleware on High-Speed Networks,” in Proceedings of
SIGCOMM ’96, (Stanford, CA), pp. 306–317, ACM, August 1996.

[9] G. Coulson and S. Baichoo, “ Implementing the CORBA GIOP in a
High-Performance Object Request Broker Environment,” ACM Dis-
tributed Computing Journal, vol. 14, Apr. 2001.

[10] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
Concurrency Magazine, vol. 8, no. 1, 2000.

[11] Gautam Thaker and Patrick Lardieri, “ In Search of Commercial off the
Shelf (COTS), Hard Real-time, Object Oriented Middleware,” in Pro-
ceedings of the 3rd International Symposium on Distributed Objects and
Applications (DOA 2001), Sept. 2001.

[12] D. L. Levine, D. C. Schmidt, and S. Flores-Gaitan, “An Empirical
Evaluation of OS Support for Real-time CORBA Object Request Bro-
kers,” in Proceedings of Multimedia Computing and Networking 2000
(MMCN00), (San Jose, CA), ACM, Jan. 2000.

[13] D. L. Levine, S. Flores-Gaitan, C. D. Gill, and D. C. Schmidt, “Mea-
suring OS Support for Real-time CORBA ORBs,” in Proceedings of
the 4

th Workshop on Object-oriented Real-time Dependable Systems,
(Santa Barbara, CA), IEEE, Jan. 1999.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Proto-
cols: An Approach to Real-time Synchronization,” IEEE Transactions
on Computers, vol. 39, September 1990.

[15] S. Oikawa and R. Rajkumar, “Portable RK: A Portable Resource Kernel
for Guaranteed and Enforced Timing Behavior,” in Proceedings of the
5th IEEE Real-Time Technology and Applications Symposium, (Van-
couver, British Columbia), IEEE, June 1999.

[16] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,” Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[17] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Proto-
col Engine for Minimal Footprint Multimedia Systems,” Journal on Se-
lected Areas in Communications special issue on Service Enabling Plat-
forms for Networked Multimedia Systems, vol. 17, Sept. 1999.

[18] D. C. Schmidt and S. D. Huston, C++ Network Programming, Volume
1: Mastering Complexity With ACE and Patterns. Boston: Addison-
Wesley, 2002.

[19] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
Architectures for Reducing Priority Inversion and Non-determinism in
Real-time Object Request Brokers,” Journal of Real-time Systems, spe-
cial issue on Real-time Computing in the Age of the Web and the Inter-
net, vol. 21, no. 2, 2001.

9

