Automating Product-Line Variant Selection for Mobile Devices

Jules White and Doulas C. Schmidt Egon Wuchner and Andrey Nechypurenko
Vanderbilt University, Siemens AG,
Department of Electrical Engineering Corporate Technology (SE 2)
and Computer Science Otto-Hahn-Ring 6
Box 1679 Station B 81739 Munich, Germany
Nashville, TN, 37235, USA Email:{egon.wuchner, andrey.nechypurenko}@siemems.co

Email:{jules, schmidt}@dre.vanderbilt.edu

Abstract—Product-line architectures (PLAs) designed for mo- design of a PLA is typically guided by scope, commonal-
bile devices create a unique challenge for automated prodtic jty, and variability (SCV) analysis [7]. SCV captures key
variant selection engines since variants must be derived ethe-fly o5 4 cteristics of software product-lines, includingith@)
as devices are discovered. Current automation techniquesochot hich defi the d . d 't t of the PLA. (2
incorporate device resource consumption constraints int@ariant scopew '(f_ € 'n.es e Qmams an .Con extorthe , (2)
selection and do not address how a PLA can be designed tocommonalitieswhich describe the attributes that recur across
improve automated variant selection speed. This paper presits all members of the family of products, and (&riabilities,

a tool called Scatter whose input is (1) the requirements of which describe the attributes unique to the different membe
PLA construction and (2) the resources available on a discered of the family of products.

mobile device and whose output is the optimal variant that ca . .
be deployed to the device. Scatter provides automatic varid Using a PLA, developers can create software architectures

selection based on configuration and resource constraintsnd that can be rapidly retargeted to the capabilities of daffier
also ensures that variant selection is optimal with regard ® a mobile devices. In a pervasive environment, however, tta+e
configurable cost function. The paper presents our resultsrbm geting of a software application to produce a valid variantsf
experiments with Scatter and how PLA design decisions affé@ geyice must happen online. When a device enters a particular
constraint-based variant selection engine’s solving spde . L o
context, such as a retail store, the application providerice
must very quickly deduce and create a variant for the device.
With the large array of device types and rapid development
The increasing popularity and abundance of mobile argeed of new devices and capabilities, the system will not be
embedded devices is bringing the promise of pervasive coable to know about all device typaspriori. As devices enter a
puting closer to reality. A recent trend in mobile deviceatth context, their unique capabilities must be discovered aadtd
makes pervasive computing more realistic is the prolifenat with efficiently and correctly.
of services that allow mobile devices to download software Current techniques for automating variant constructiomfr
on-demand. Mobile phones, for example, can now access webmponent-based models or feature models, such as those
based applications, such as google mail, or download custpresented in [2], [14], [18], [21], [23], do not sufficiently
applications from services, such as Verizon’s “Get It NowAddress various challenges of designing and implementing a
Google delivers both a web-based interface to google maiitomated approach to selecting a product variant for almobi
and an application that can be downloaded to a mobile phogevice. One common capability lacking in each of these
In a pervasive computing environment, the ability to dowrapproaches is the ability to consider resource consumption
load software on-demand will play a critical role in delivgy constraints, such as the total available memory consumed
custom services to users where and when they are needsdthe features selected for the variant must be less than
For example, when a mobile device enters a retail stoz56 kilobytes. Resource constraints are important for feobi
software for browsing back room inventory, displaying stordevices since resources are typically limited. Some ressur
circulars, and purchasing items can be downloaded by tkech as cellular network bandwidth, also have a measurable
mobile device. When exiting the store, the device may la®st associated with them and must be conserved.
carried onto a train, in which case applications for placing Another missing detail of these approaches is the archi-
food orders, checking train schedules, and reserving durthiecture for how a device discovery service would be used to
tickets could be downloaded by the mobile device. characterize a device’s non-functional properties (sichg,
Product-line architectures (PLAS) [4] are a promising apetal RAM, etc.) so that a variant can be selected for them. A
proach to help developers manage the complexity of tkariant selection engine for mobile devices must have a way
variability between mobile devices [1], [28], [19]. PLAs][4 to interface with a discovery mechanism. Finally, to previd
enable the development of a group of software packages tfast feature selection engines (which aids dynamic soé&war
can be retargeted for different requirement sets by lewegag delivery for mobile devices) more research is needed on how
common capabilities, patterns, and architectural styléee PLA design decisions impact the speed of different autamati

|. INTRODUCTION

techniques. processor and 64mb of RAM. A variant selector must be able
To address these gaps in online mobile software varidnthandle these diverse device descriptions.

selection engines, we have developed a tool c&leatterthat e Variant cost optimization. Each variant may have a cost

first captures the requirements of a PLA and the resourcesaskociated with it. There may be many valid variants that

a mobile device and then quickly constructs a custom variargn be deployed and the variant selector must possess the

from a PLA for the device. This paper presents the architeability to choose the best variant based on a cost formula. Fo

ture and functionality of Scatter and provides the follogvinexample, if the variant selected is deployed to a devicesacro

contributions to research on custom application deploymemnGPRS connection that is billed for the total data tranetgrr

in pervasive environments: it is crucial that this cost/benefit tradeoff be analyzed mhe

« We describe Scatter’s graphical requirement and resoutf&ermining which variant to deploy. If one variant minisz
specification mechanisms and show how they facilitathe amount of data transferred over thousands or hundreds of
the capture and analysis of a wide variety of requiremefiousands of devices deployments, it can provide significan
types cost savings.

+ We discuss how Scatter transforms requirement speci-e Limited selection time. A variant selection may need
fications into a format that can be operated on by @ occur rapidly. On a train, for instance, a variant setecti
constraint solver and how we extend existing constrailingine may have tens of minutes or hours before the device
based automation approaches [2] to include resourggits (although the traveler may become irritated if varian
constraints selection takes this long). In a retail store, conversdly, i

« We describe the automated variant selection engingistomers cannot get a variant of a sales application quickl
based on a Constraint Logic Programming Finite Domatiey may become frustrated and leave. To provide a truly
(CLP(FD)) solver [11], [24] and show how it can rapidlyseamless pervasive environment, automated variant iselect
produce both correct and optimal variants based on thfist happen rapidly. When combined with the challenge of
requirements not knowing device signaturea priori and the need for

« We present data from experiments that show how PLéptimization, achieving quick selection times is even leard
constraints impact variant selection time for a constraint

based variant selection engine_ IIl. CAPTURING PLA AND MOBILE DEVICE
« We describe PLA design rules that we have gleaned from REQUIREMENTS

our experiments that help to improve variant selection Traditional processes of identifying valid PLA variants in

time when using a constraint-based approach. volve software developers manually determining the safwa
The remainder of this paper is organized as follows: Se&')mponents that must be in a variant, the components to
tion Il describes the challenges of selecting product vasia configure, and how to compose and deploy the components. In

for mobile devices; Section Il presents the problems Qfygition to being infeasible in a pervasive environmenteieh

capturing the requirements and resources for deploying Pl target device signatures are not known ahead of time
varlarlts to moblle devices and discusses how_Scatter adres 4 variant selection must be done on demand), such manual
them; Section IV shows how Scatter automatically transéorm o rqaches are tedious and error-prone and are a significant

PLA requirements and mobile device resources into a mode),rce of system downtime [9]. Manual approaches also do
that can be operated on by the CLP(FD) based variant selecigl; scale well and become impractical with the large sofutio
Section V analyzes the performance results of appIyingt@t:al;sloaces typical of PLAs.

to variant selection for an example PLA; Section VI compares one way to overcome the speed and correctness deficiencies

our approach with related work; and Section VII preseni manyal variant selection is to capture a formal model of
lessons learned and concluding remarks. the PLA's commonality and variability so that automation
can take place. In addition to capturing the composition
rules for building variants, a model is needed to analyze the
non-functional requirements of a variant to avoid selegtin
The following are three key challenges associated with creariants that are compositionally correct, but whose fiomet
ating an automated variant selector in a pervasive envieotm requirements fail due to being deployed on incompatible or
e Unknown device signaturesAlthough devices may shareinsufficient infrastructure. Figure 1 shows the cycle ofidev
common communication protocols and resource descriptidiscovery, variant selection based on requirements, ananta
schemas, a variant selection service will not know all devicdeployment on a train.
signatures at design time. To provide on-demand variant sefor example, a ticket reservation service for a train may
lection when a new device is encountered, the selection mechquire 1 megabyte of memory and 256 kilobits of data transfe
anism must be fast. Moreover, devices may possess differemer a General Packet Radio Service (GPRS) connection. If
signatures. On the one extreme, a laptop may be carried otite reservation service is deployed to a device with ingefiic
a train with a relatively powerful Intel Core Duo processofree memory, it will not function properly even if it adheres
and a gigabyte or more of RAM. On the other extreme, ta the PLA compositional rules. To properly configure and
Treo mobile phone may be discovered with a 312mhz XScaelect a variant dynamically, therefore, both compositi@amd

II. CHALLENGES OFAUTOMATED VARIANT SELECTION
FORMOBILE DEVICES

Ceuiae THRAORely il feeds the device specification, provided by a discovery
Characterization)
service, and Prolog knowledge base created by the
Scatter compiler, to the constraint solver. The selection
engine then translates the results from the constraint
solving back into configuration decisions for the variant.
Scatter is implemented using the open-source Generic
Eclipse Modeling System (GEMS) [26], [27], which is part of
the Eclipse Generative Modeling Technologies (GMT) prbjec
GEMS provides a convenient way to define the metamodel,
i.e, the visual syntax of the modeling language. Based on
the metamodel, GEMS automatically generates a graphical
editor that enforces the grammar specified in the metamodel.
Scatter extends our previous work using Role-based Object
Constraints (ROCs) and Model Intelligence [20], [25]. Mtzde
created in Scatter are transformed via the ROCs infrastreict
into formats that can be operated on by a constraint solver.

Device \%

Requests N
Variant @*

Variant Delivery

Variant Selection
and Assembly

Product Line Companonts B. Scatter Graphical PLA Models
Fig. 1: Selecting a Train Ticket Reservation Service for a 10 facilitate the analysis of the variant solution space
Device requires a formal grammar to describe the structure, com-

monality, and variability (SCV) analysis of the PLA and its
valid configurations. This customization grammar can then
non-functional requirements must be considered and matche used to automatically generate and explore the variant
against the target device. solution space. Scatter provides a visual modeling tool for
Capturing and relating composition and non-functional reapturing the SCV of a PLA, as seen in Figure 2. This
quirements to a mobile device is hard. The remainder of thiew allows developers to formalize which components are
section describes key challenges of building a compositioravailable in the PLA, what applications can be constructed,
and non-functional requirements model of a PLA and outlinesd how each application is composed. The components can
how our Scatter tool addresses them. be used as an abstraction to describe a PLA both on system
structure [16] or using feature modeling [2], [12]. In our
approach, configurations of components or features can be
The Scatter tool helps automate variant selection for reobihodeled as variabilities using Scatter's SCV model.
devices by providing: To capture a formal definition of the PLA, the components
1) A graphical modeling tool that defines a domain-specifan which it is based must be modeled. TiR®@mponent
modeling language (DSML) for specifying variant comelement is the basic building block in the Scatter DSML that
position rules via a visio-like interface, as shown imepresents an indivisible unit of functionality, such asasal
Figure 2. Scatter allows developers to visually modelass or specific feature. For instance, the various foodrord
(1) the components of their PLA, (2) the dependenciepplications ar&Componentsn our train example.
and composition rules of components, and (3) the non-Dependencies between components can be created by spec-
functional requirements of each component. ifying a composition predicate (Required, Exclusive ORy-Ca
2) A compiler that converts the graphical models from théinality, or Exclusion) and th€omponentso which the predi-
Scatter modeling tool into a both a Prolog knowledgeate should be applied. For our train example, fbedService
base and a Constraint Satisfaction Problem (CSP) [L&€hmponent is connected to the Exclusive OR predicate, which
[24] that can be operated on using a Prolog constraictn be connected to thirst classand coach class menu
solver. Scatter’'s formulation of the CSP is an extensia@omponents. This composition indicates that BoedService
of the model presented in [2], that includes resoura@mponent can be deployed with exactly one of these menus.
constraints between components or features. The same composition rule could also be specified using the
3) A remoting mechanism that allows a device discove@ardinalty predicate by specifying that.1 of thefirst class
service to communicate discovered devices to Scatteard coach class menaomponents can be deployed with the
variant selection engine. The remoting mechanism d@eodServicecomponent.
lows the discovery service to report back key device non- Componentiependencies can be constructed hierarchically
functional properties, such as OS, memory, and CPtbm other components with dependencies to capture the
speed. compositional variability in a PLA. Components can alsoéhav
4) A variant selection engine, based on a Prolog constraggmposition rules with predicates that refer to arbitratlyeo
solver, that can automatically select a correct and optiemponents in the model. This mechanism is identical to the
mal variant for a device. The Scatter selection engirsncept of feature references [8]. To specify the compmsai

A. Scatter Overview

PLA Composition Rule

« The Name specifies the name of the resource on the
3 device that it is restricting.
« The Type specifies the type of requirement, either’,

<=L =<, >=" or ' =
« The Value indicates the target amount of the resource to

E which constraint is being applied.
sy <ot For example, if a JVM with a version greater than 1.2 is

needed, the requirement would have the Name "JVMVersion’,
Type '>’, and Value '1.2". For a Resource constraint, such as

Wk <2 the amount of memory consumed by a software component,
. R . the '—" Type is used.e.g, if a component consumed 200kb
Non-functional ot e e K of memory, the constraint would be Name 'RAM’, Type’,

Reguirement S gl and Value '200'.
5o — Scatter’s approach strikes a careful balance between®xpre
sivity and formalness outlined above by blending both the
) N] _ flexibility and intuitiveness of a textual approach with the
Fig. 2: Scatter PLA Composition and Non-functional Requirgoncrete meaning of a constraint solver format. The Name
ments can be any string and thus modelers can create meaning by
providing very descriptive names. The Type provides a clear

variability in the PLA, developers builBomponenandPredi- def|_n|t|on of how the (_:onstra|nt_|s compared to the resources
vailable on a candidate device. The Type also indicates

categraphs that show the dependencies and composition rules . .
.) . : exactly which constraint solver must be used to analyze the
of the applications and their constituent pieces. .
; - Lo constraint.
By capturing PLA compositional variability, developersica

formally specify how valid variants are composed. With a A" types, except the ™’ type, are local constraints gov-
T . : erning the placement of one component and are solved by
formal specification of the variant construction rules, t8ga

can then automatically explore the variant solution Space fi\n inferencing engine. These constraints are considerad o
y &xp e because their satisfaction is independent of the satisfacf

discover all valid compositional variants of the PLA for aeji) :
. : . . constraints for other components. For example, if a compione
device, as discussed in Section IV. : o . .)
requires a specific OS, that constraint does not restricthvhi
C. Non-functional Requirements Capture other components it can be deployed with. If a component
consumes a certain amount of memory, however, its placement

One challenge when building a tool to model a PLAS nond[l a device will restrict the other components that can be
a

ReesourceType:(=), Value [first], External Lnk Targets(], Tags (]

functional requirements is providing a mechanism that ng ced with it

only allows modelers to express a wide variety of constraiR A kev challenge in a pervasive environment is that variant
types, but also captures them in a form that can be operated o y 9 P

by a constraint solver. At one end of the spectrum are textt?ﬁpecuon must take into account requirements based on busi

specifications, such as “this component should only be Jaess and context data. For example, on a train, the firss-clas

ployed to devices located in the first-class cabin runnir1g1Paand (r:]oat\ch-cllass cabmbs m‘a’ otffer dlffe(rjentfmedal _serwcrest.).ll
OS.” Although these specifications are intuitive to prodacd coach, ravlg etr_s mzy ¢ (?['I? € to Ere—_or”er 00 c\j“a. elld:llﬂot e
understand, they are imprecise in meaning and require mar@gone appiication, but stil must physically go and pickip

translation to the format expected by a constraint solver. oo_d. In first-class, however, trz’;un staff may be required to
deliver food orders to a traveler’s seat.

At the other end of the spectrum are the native formats, first cl theref iant that id
such as matrices representing systems of linear equation o':Or rstclass, theretore, a variant tnat prov esacompbn_e
7 notifying the ordering system of where the traveler is

constraint networks, used by constraint solvers to specify,. b ired while it id not b iod |
requirements, such as required OS. These native constrd FH”Q may be required while 1t would not be required in
oach. Cabins may also offer different meal selections alme

solver formats are easy to operate on with a constraint sohvE’) ; . .
ces, in which case the variant selection must account for

It is hard, however, to map these formats back to the variaﬁ‘qﬂ location-based rul h lecti hich o el
selection for mobile devices, which makes it hard for agplic € location-based rules when selecting which menu to @eliv

tion developers and quality engineers to use with the ordering service. This train variant selectionnsg@®

Scatter provides a graphical modeling tool to address tH%sShown in Figure 3. . .
challenge and allow developers to express requirements. T(f‘t one extreme, a tool can limit the types of c_onstralnts
specify non-functional requirements, users drag-ang-des Fhat can be solved to a small subset that is considered most
quirements from the palette onto components. The child rgaportant. At the other extreme_, a tool can _aIIow developers
quirement elements of a component specify the non-funatior® cap'_[ure any type of con_stramt, b.Ut provide no guarantee
requirements that must be satisfied by a device’s resourc fshavmg a way of deducing a variant that satisfies them.

Each requirement has hame Type and Value attribute apturing a wide variety of these types of non-functional
associated with it: business and location-based constraints is hard.

Coach Class

W *pda.deployz 5

~
TrainFoodService <<Component>>

TR

Classieny & <Component>| ~
Coachten <<Component >>

DiscoveredDevice <<tode>>

< | >

Prolens Javados | Declaration [T
Property Value

Annotation

Oeployatie ase

External Link Target

Name FirstClassMenu

Context/Business
Requirement

First Class

Resource
Requirements

Hardware
Capability
Requirements

Requres/cabinclass ResourceType:[=], Vobue{first], External ik Target{], Tags{]
uuuuu peil 0

First Class Menu

Software Stack Requirement

) . ~ Coac;CIass Menu
Variant Selection Server

Fig. 4: Capturing Mixed Non-functional Requirement Types
Fig. 3: Cabin Class Constraints for Train Menu Variant Selet) Scatter
tion
types of constraints are needed, Scatter provides mechsinis
Scatter employs a strategy that focuses on allowing tHY Plugging in new types and solvers.
datasources to change while the types of constraints remgin piscovery and Device Signatures

constant. This strategy allows it to capture and solve a wide

. . The non-functional properties of a device, such as
variety of constraint types. For example, a modeler COU\IR/MVersion and Cabin

specify the constraints:

JVWersion > 1.2
WfiCapable = true

Class can be used by the variant
selection engine to select a variant only if values are pleyi

for them. The values for these variables can be obtained from
a mobile device discovery service, as shown in Figure 5.

CabinC ass = first

CPU - 100

RAM - 200

Di spl ayHResol ution > 128
Di spl ayVResol ution > 64

Discovery

This specification mixes multiple different types of domain
constraints. A segment of a Scatter requirements model-show
ing these constraints is seen in Figure 4. ThéviVersion Device
constraint relates to the software stack on the dewiiey Characterization
and RAM are resource consumption constraintéfiCapable &
and DisplayXResolutiorare hardware capability constraints, N
and CabinClassis a business/location based constraint.

2

o . oo Scatter ..

The restrictions imposed by the specification format are Variant

only on the types of comparisons that can be done and not Constraint.
on the data that the comparison is based upon. This freedom Solver)

in constraint specification allows Scatter’s variant sédecto ‘,ﬁ"
incorporate a large array of datatypes that a device disgove PLA Variant'

service could provide. This setup allows other services¢s p

process the data used by the variant selector and thus dllow i Fig. 5: Scatter Integration with a Discovery Service
to operate on very complex data sets.

For example, context processors based on GPS or RFIDScatter exposes a SOAP-based web service and a CORBA
can calculate a device’s position or type and correlatencabiemoting mechanism for remotely communicating device-char
class. Business-rule engines can calculate customeiiti@$or acterizations as they are discovered. The properties ofiaale
and provide business analysis. Scatter’s architecturetblds are reported back to Scatter as key/value pairs. The keyshmat
constant the complex portions of variant selection—the- cothe names of the non-functional properties constrainechby t
straint solvers—while still allowing the incorporation noéw non-functional requirements in the Scatter graphical rhode
datatypes from a discovery service. For scenarios wheer ots discussed in Section IV, these constraints and key/value

pairs are used by the variant selection engine to filter t#te IFor example, with the constrainX"<Y", X=3)Y =4 is a

of variants that can be deployed to a device. correct labeling of the values fot andY. Typically, the more

variables and constraints that are involved in a CSP, themor

complex it is to find a correct labeling of the variables.
Scatter provides an automated variant selector that lgeera Selecting a a product variant can be reduced to a CSP.

Prolog’s inferencing engine and a CLP(FD) constraint solveScatter constructs a set of variab®8y. .. DC,, with domain

The Scatter solver uses a layered solving approach to h@pl], to indicate whether or not the ith component is present

reduce the combinatorial complexity of satisfying the tese in a variant. A variant therefore becomes a binary stringrehe

constraints. Scatter prunes the solution space using tie Ptheit" position represents if thi' component (or feature) is

composition rules and the local non-functional requireteerpresent. Satisfying the CSP for variant selection is deyisi

so that only variants that can run on the target infrastmectdabeling ofDCy...DC, such that the composition rules of the

are considered. The resource constraints are a form of bieature model are adhered to.

packing an NP-Hard problem [5]. This layered pruning helps Resource consumption constraints are created by ensuring

improve selection speed and enables more efficient soldisg. that the sum of the resource demands of binary string rep-

shown in the Section V, this layered pruning can signifigantresenting a variant do not exceed any resource bound on

IV. SCATTER VARIANT SELECTION ENGINE

improve variant selection performance. the device (e.gy variant_componentresourcedemands<
i _ deviceresourcey For eachComponent Cthat is deployable
A. Layered Solution Space Pruning in the PLA, a presence variabBC;, with domain [0,1] is

Initially, the variant solution space contains many miio created to indicate whether or not t@®mponenis present
or more possible component compositions. Solving the ri the chosen variant. For every resource type in the model,
source constraints is thus time consuming. To optimize thésich as CPU, the individuaComponentdemands on that
search, Scatter first prunes the solution space by elimigatresourceCi(R), when multiplied by their prescence variables
components that cannot be deployed to the device becaasd summed cannot exceed the available amount of that
their non-functional requirements, such a JVMVersion ob-CaresourcePvc(R), on theDevice
inClass, are not met. After pruning away these components|f the presence variable is assigned 0, indicating the com-
Scatter evaluates the PLA composition rules to see if apgnent is not in the variant, the resource demand contdbute
components can no longer be deployed because one of thgirthat component to the sum falls to zero. The constraint
dependencies has been pruned in the previous step. Affel;i(R)+DC < Dvc(R) is created to enforce this rule. Com-
pruning the solution space using the PLA composition rulggonents that are not selected by the solver, therefore, will
the resource requirements are considered. After solvieg thave DC; = 0 and will not add to the resource demands of
resource constraints, Scatter is left with a drasticaljuced the variant.
number of deployment solutions to select from. At this point The solver supports multiple types of composition relation
if there is more than one valid variant remaining, Scatt@susships betweerComponentsFor eachComponent ¢ that C
a branch and bound algorithm to iteratively try and optimizéepends on, Scatter creates the constréints 0 — Cj = 1.
a developer-supplied cost function by searching the reimgin Scatter also supports a cardinality composition condtthert
valid solutions. allows at leastMin and at mostMax components from the
The first two phases of the solution space pruning usedapendencies to be present. The cardinality operatoresreat
constraint solver based on standard Prolog inferencingilé r the constraintC; > 0— 3y Cj > Min, 5 C; < Max The standard
is specified that only allows a component to be deployed ¥OR dependencies from the metamodel are modeled as a
a device, if for every local non-functional requirement be t special case of cardinality wheiin/Max= 1. Finally, the
component, a resource is present that satisfies the reqeritemsolver supports component exclusion. For e@dmponent ¢
For example, if aComponentequires a JVMVersion greaterthat cannot be present wi@, the constrain€; >0—C,=0is
than 1.2, the targeDevice must contain aResourcenamed created. The variables that can be referred to by the camistra
JVMVersion with a value greater that 1.2 or the component iigeed not be direct children of a component or feature and thus
pruned from the solution space and not considered. are references.
) i To support optimization, a variab{@ost(V) is defined using
B. Using CLP(FD) to Solve Resource Constraints the user supplied cost function. For examglestV) = DCy *
After performing this initial pruning of the solution spaceGPRSG + DC; * GPRSG + DC3 x GPRSG...DC, * GPRSG
the resource and PLA composition constraints are turned irdould be used to specify the cost of a variant as the sum of the
an input for a CLP(FD) solver. The transformation is anosts of transferring each component to the target deviog us
extension of the model proposed in [2] to include resouree GPRS cellular data connection. This cost function would
consumption constraints. The model is also extended tavallattempt to minimize the size of the variant deployed withia t
for feature references. resource and PLA composition limits. Once the requirements
A Constraint Satisfaction Problem (CSP) is a problem thhtive been translated into CLP(FD) constraints, Scattes ask
involves finding a labeling (a set of values) for a set adhe CLP solver for a labeling of the variables that maximizes
variables that adheres to a set of labeling rules (cons$jainor minimizes the variabl€ostV), which allows the variant

selector to choose components that not only adhere to the
compositional and resource constraints but that maxintige t
value of the variant. The user therefore supplies a fithess
criteria for selecting the best variant from the populatain
valid solutions.

V. SCATTER PERFORMANCERESULTS

A key question is how fast Scatter performs and whether or
not online variant selection is possible. To test Scattees
formance, we developed a series of progressively larger PLA
models to evaluate solution time. We also tested how various
properties of PLA composition and local non-functional con

Variant Selection Time (seconds)

straints affected the solution speed. Our test were peddrm 5
on an IBM T43 laptop, with an 1.86ghz Pentium M CPU and
1 gigabyte of memory. 0
Note that optimization and satisfaction of resource con- 0 10 20 30 40 50 60
straints is an NP-Hard problem, where it is always possible t Total Components

play the role of an adversary and craft a problem instande tha
provides exponential performance [5]. Constraint satigfa Fig. 6: Scatter Performance on Pure Resource Constraints
and optimization algorithms often perform well in practice
however, despite their theoretical worst-case performaoe

challenge when developing a PLA that needs to support online 40
variant selection is ensuring that the PLA does not induce

35
worst-case performance of the selector. We therefore ptesin \
to model realistic PLAs and to test Scatter’s performanak an 30 1%
better understand the effects of PLA design decisions.

25
A. Pure Resource Constraints

20

We first tested the brute force speed of Scatter when
confronting PLAs with no local non-functional or PLA com-
position requirements that could prune the solution spéke.
created models with 18, 21, 26, 30, 40, andG@mponents
Our models were built incrementally, so each successively

15 \
10

Variant Selection Time (seconds)

larger model contained all of the components from the pre- 5

vious model. In each model, we ensured that not all of the

components could be simultaneously supported by the dsvice 0 ! : ‘] !
resources. Our device was initially allocated 100 units BEC G 200 1000 <500 2000 2500 9000
and 16 megabytes of memory. Scatter’s performance results o CPU Units on Target Device

this model can be seen in Figure 6. As can be seen from the
large jump in time from the time to select a variant from 4@ig. 7: Scatter Performance as CPU Resources Expand on
to 50 Componentssolving for a variant does not scale well ifDevice

resource constraints alone are considered.

B. Testing the Effect of Limited Resources Figure 8. Doubling the memory immediately halved the solu-
We next investigated how the tightness of the resourtién time. Doubling the memory again to 128 megabytes pro-

constraints affected solution time. We incrementally éased Vvided little benefit since the initial doubling to 64 megadsyt

the available CPU on the modeled device from 100 to 2,500ade deployment of all of the components possible. As we had

units for the 50 Component model. The results can be sd@pothesized initially, the solution speed when pure ressu

in Figure 7. As shown in Figure 7, expanding the CPU unigpnstraints are considered is highly dependent on how tight

from 100 to 500 units dramatically dropped the time requirdhe resource constraints are.

to solve for a variant. Moreover, after increasing the CPitisun) »)

to 2,500, there was no increase in performance indicatiag i~ Testing the Effect of PLA Composition Constraints

the tightness of the CPU resource constraints were no longeOur next set of experiments evaluated how well the depen-

the limiting bottleneck. dency constraints within a PLA could filter the solution spac
We then proceeded to increase the memory on the devared reduce solution time. We modified our models so that

while keeping 2,500 units of CPU. The results are shown the Componentgomposed sets of applications that should be

As can be seen from the results in Figure 9, by adding
dependencies between components and creating a dependency
tree, there was an immediate drop in selection time. This
is presumably because it reduces the number of possible
combinations of the components that must be considered for a
variant. Adding more dependencies to the model to add other
trees provided only a very small gain over the original large
performance increase.

-
o

D. Results Analysis: Mobile PLA Design Strategies

Based on the results we collected from the experiments, we
devised a set of mobile PLA design rules to help improve
variant selection performance. The remainder of this sacti
presents the lessons we learned from our results.

a) Exploit non-functional requirementdNon-functional
requirements can be used to further increase the perfoenanc
of Scatter. Each component with an unmet non-functional re-
Fig. 8: Scatter Performance as Memory Resources Expandtrement is completely eliminated from consideration.efvh
Device PLA dependency trees are present, this pruning can have

a cascading effect that completely eliminates large number

of components. One PLA construction rule based on non-
deployed together. For example, olmainTicketReservation- functional requirements that was particularly powerfudan
Servicewas paired with theTrainScheduleServicand other natural to implement in Scatter exploited the relative latk
complementary components. variation in packaging of a PLA variant.

As with the first experiment V-A, we used our 50 component b) Prune using low-granularity requirementsthe re-
model as the initial baseline. We first constructed a tree @#irements with the lowest granularity filter the largestmau
dependencies that tied 10 components into an application Bers of variants. For example, when deploying variantse-esp
that led the root of the tree, the reservation service, ty orfiially from a PLA with high configuration-based variability
be deployed if all children where deployed. Each level in thgich as varying input parameters, the disk footprint ofoussi
tree depended on the deployment of the layer beneath it. THasses of variants can be used to greatly prune the solution
max depth of the tree was 5. We continued to create ngRace. If a PLA with 50 components is composed of 5 Java

dependencies between the components to produce trees Afffive Resource (JAR) files, although there are a large
see the effect. The results are shown in Figure 9. number of ways that the PLA can be composed, there are

relatively few valid combinations of the JAR files.

Many variants may also require common sets of these JAR
files with various footprints. These variants can be grouped
based on their JAR configurations. For each group, a non-
functional requirement can be added to the components to
ensure that a target Device provide sufficient disk space or
communication bandwidth to receive the JARs. For small
devices that usually have little availabe disk space, where
resource constraints are tighter and solving takes more, tim
large numbers of Components can be pruned solely due to the
lack of packaging variability and need for disk space. This
footprint-based strategy works even if there are few fuumal
- PLA dependencies between components.

c) Limit resource tightnessDue to the increased cost
of finding a variant for small devices where resources are
more limited, we developed another design rule. To decrease
the difficulty of finding a deployment on small devices, PLA
0 0.5 1 1.5 2 25 developers should provide local non-functional constgain
Total Dependency Trees to immediately filter out unessential resource consumptive
Componentsvhen the resource requirements of the deployable
Componentggreatly exceed the available resources on the
Fig. 9: Scatter Performance as PLA Dependency Trees aevice. Although the cost function can be used to perform
Introduced this tradeoff analysis and filter thes@omponentsduring

Variant Selection Time (seconds)

O == N W & OO O N 0 ©

T T

0 50 100 150

Total Device Memory

40

[}
(&)}

(25}
o

[}
[}

[N
o

-
()]

-
o

Variant Selection Time (seconds)

»
.

o
-

optimization, this method is time consuming. Filtering ®om In [13], Lemlouma et. al, present a framework for adapting
components out ahead of time may lead to less optimahd customizing content before delivering it to a mobile de-
solutions but it can greatly improve solution speed. Even bce. Their strategy takes into account device preferenoes
selecting only the least valued components to exclude frarapabilities, as does Scatter. The approaches are congarab
consideration, performance can be increased significantly that each attempts to deliver customized data to a devide tha
d) Create service classedAnother effective mechanism handles its capabilities and preferences. Resource edamtstr

for pruning the solution space with non-functional requireare a key difference that makes the selection of software
ments is to provide various classes of service that dividier a device more challenging than adapting content. Unlike
the components into broad categories. In our train exampl&3], Scatter not only provides adaptation for a device, but
for instance, by annotating numero@mponentsvith the also optimizes adaptation of the software with respectdo it
CabinClassand other similar context-based requirements, tiggovided PLA cost function.
solution space can be quickly pruned to only search theMany complex modeling tools are available for describing
correct class of service for the target device. In geneha, tand solving combinatorial constraint problems, such ase¢ho
more non-functional requirements that can be specified, theesented in [17], [6], [22], [3], [10]. These modeling tsol
quicker Scatter can prune away invalid solutions and honepnovide mechanisms for describing domain-constraintsta s
on the correct configuration. Moreover, each non-funclionaf knowledge, and finding solutions to the constraints. €hes
requirement gives the solver more insight into how Compdteols, however, do not provide a high-level mechanism to
nents are meant to be used and thus reduces the likelihoodt&pture non-functional requirements and PLA composition
unanticipated variants that fail. rules geared towards mobile devices. These tools also do not

From our experiments, we have seen that when a PLA fprovide a mechanism for incorporating data from a device
a mobile device is properly specified with good constraintdjscovery service. Finally, these papers have not addfesse
Scatter can solve models involving 50 or fewer componentshww PLA design decisions influence variant selection speed.
seconds. This performance should be more than adequate for
many pervasive environments, particularly when devicaaig
ture and variants are cached to eliminate repetitive sglfan
known solutions. In future work, we intend to test Scattehwi Online PLA variant selection for mobile devices is a
larger models and evaluate more characteristics of PLAs ti§fallenging domain that can benefit from automation since
can be used to reduce variant selection time. there are too many complexities and unknown device char-
acteristics to manually account for all possibilities ahea
of time. Constraint-solver based automation is a promising
technique for online variant selection. This paper dessrib

In [14], Mannion et al present a method for specifyingiow our Scatter tool supports efficient online variant sedec
PLA compositional requirements using first-order logiceThMoreover, by carefully evaluating and constructing a PLA
validity of a variant can then be checked by determining if gelection model based on the rules we presented, developers
PLA satisfies a logical statement. Although Scatter's agpino can alleviate the effects of worst-case solver behavior.
to PLA composition also checks variant validity, it extends From our experience developing and evaluating Scatter, we
the work in [14] by including the evaluation of non-functan |earned the following lessons:
requirements not related to composition. In particulagtte « PLA composition and non-functional requirements can be
automates the variant selection process using these Imolea used to efficiently prune the variant selection space and
expressions and augments the selection process to take into provide good performance. There are many patterns of

VII. CONCLUDING REMARKS

VI. RELATED WORK

account resource constraints, as well as optimizatioergait

Although the idea of automated thereom proving is enhanced

in [15], this approach does not provide a requirementsetriv
optimal variant selection engine like Scatter. Furthefedif
ences between Scatter’s constraint-based and Manni@ics lo
based approaches is available in [2].

A mapping from feature selection to a CSP is provided by

Benavides et al. [2]. Scatter uses this same reduction bat al
extends it with the capability to handle references andueso

constraints. Resource constraints are a key requirempst ty «

in mobile devices with limited capabilities. Moreover, the

requirements specification that can be used to optimize a
PLA for automated variant selection. In future work, we
intend to further explore these patterns.

Although Scatter can automate variant selection, it works
best when a PLA is crafted with performance in mind.
An arbitrary PLA may or may not allow for rapid variant
selection. PLA's that will be used in conjunction with an
automated variant selector should be carefully constducte
to avoid poor performance.

A key challenge of automating product variant selection is
debugging mistakes in the product-line’s specification. A

approach presented by Benavides does not show how this simple mistake, such as a misplaced exclusion constraint
constraint-based mechanism could utilize a mobile device between components, can cause variant selection to fail.
discovery service as Scatter does. Finally, Benavides. eloal Moreover, the failure may only appear intermittently
not address how PLA design decisions can be used to improve for certain device types and be hard to identify during
constraint solver performance as this paper does. testing. Even once it is discerned that there is a problem,

identifying the source of the problem can be extremelyes] T. Mannists, T. Soininen, and R. Sulonen. Product Caméiion View

challenging (we have experienced this phenomenon). to Software Product Familied0th International Workshop on Software
Configuration Management (SCM-10), Toronto, Canapages 14-15,
o More work must be done to understand how to merge 5591

and integrate the various information sources that witl7] L. Michel and P. V. Hentenryck. Comet in Context. RCKS50:

provide device characterizations. Device characternati Proceedin_gs of the Paris C. Kanellakis memorial workshoanciples
. . of computing & knowledgepages 95-107, New York, NY, USA, 2003.
may come from customer databases, discovery services, ey press.

and location services. Finding the right transformationss] S. Mittal and F. Frayman. Towards a generic model of gumition

to correlate and utilize these diverse information streams tasks. Proceedings of the Eleventh International Joint Confeecon
.. . . . Artificial Intelligence 2:1395-1401, 1989.
is important to provide customized and correct variaifo) p. Muthig, I. John, M. Anastasopoulos, T. Forster, J.rDéand

selection. K. Schmid. GoPhone-A Software Product Line in the Mobile fho
« Developers normally focus on the functional variabilit)ﬁ Domain. IESE-Report Np25.

. . L 20] A. Nechypurenko, J. White, E. Wuchner, and D. C. Schmiftplying
na product, |00klng at other aspects of Va”ab'“ty’ suc Model Intelligence Frameworks to Deployment Problems iralRiene

as packaging variability, is important too. As we have and Embedded Systems. Rroceedings of MARTES: Modeling and

shown, although a product may have high functional vari- Analysis of Real-Time and Embedded Systems at the Sth atiteral

o Conference on Model Driven Engineering Languages and Bigste
ability, it can be significantly less variable with respect bl s/uUML 2006 2006.

to packaging or memory footprint. These non-functiongd1] D. Sabin and R. Weigel. Product configuration framewseaksurvey.
aspects can be exploited to reduce the complexity of Intelligent Systems and Their Applications, IEEE [see dBBE Intel-
. . ligent Systems]13(4):42—49, 1998.
automated variant Se'eCt'Qn- . .[22] G. Smolka. The Oz Programming Model. JELIA '96: Proceedings of
In future work, we plan to integrate and test various dis- ~ the European Workshop on Logics in Artificial Intelligengage 251,
covery mechanisms and resource, context, and device eharac London, UK, 1996. Springer-Verlag.

terization schemas to see how Scatter performs We also '2I'.Oe)/an der Storm.Variability and Component CompositiorSpringer,
’ 4.

to extend Scatter to interface with various types of runtimes] p. van HentenryckConstraint Satisfaction in Logic ProgramminiyliT

deployment middleware infrastructure. Press Cambridge, MA, USA, 1989.

[25] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schniitelligence
frameworks for assisting modelers in combinatorically liemaing do-

REFERENCES mains. InProceedings of the Workshop on Generative Programming and
. . Component Engineering for QoS Provisioning in Distribut®gstems
[1] M. Anastasopoulos. Software Product Lines for PenasBomputing. at the Fifth International Conference on Generative Pragraing and
IESE-Report No. 044.04/E versioh. Component Engineering (GPCE 200@006.

[2] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. AutordaReasoning [26] J. White, D. Schmidt, and A. Gokhale. The J3 Process foildBig
on Feature Models17th Conference on Advanced Information Systems ~ Aytonomic Enterprise Java Bean Systeritsic, 00:363—364, 2005.

Engineering (CAISES05, Proceedings), LNG520:491-503, 2005. [27] J. White and D. C. Schmidt. Simplifying the DevelopmentProduct-

[3] Y. Caseau, F.-X. Josset, and F. Laburthe. CLAIRE: CoinigirSets, Line Customization Tools via MDD. IiWorkshop: MDD for Software
Search And Rules To Better Express Algorithnheory and Practice Product Lines, ACM/IEEE 8th International Conference on délo
of Logic Programming2:2002, 2004. Driven Engineering Languages and Syste@stober 2005.

[4] P. Clements and L. NorthropSoftware Product Lines: Practices and [28] W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid. Reeagng a
Patterns Addison-Wesley, Boston, 2002. PC-based system into the mobile device product li@eftware Evolu-

[5] E. Coffman Jr, G. Galambos, S. Martello, and D. Vigo. Biacking tion, 2003. Proceedings. Sixth International Workshop oind#ples of
approximation algorithms: combinatorial analysidandbook of Com- pages 149-160, 2003.

binatorial Optimization. Kluwer Academic Publishers998.

[6] J. Cohen. Constraint Logic Programming Languagésmmun. ACM
33(7):52-68, 1990.

[7] J. Coplien, D. Hoffman, and D. Weiss. Commonality andisfility in
Software EngineeringlEEE Software 15:37—-45, Nov.-Dec. 1998.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged ocorafimpn
through specialization and multi-level configuration oétiere models.
Software Process Improvement and Practit@(2):143-169, 2005.

[9] D. P. D. Oppenheimer, A. Ganapathi. Why do Internet SmwiFail,
and What can be Done about PPoceedings of the USENIX Symposium
on Internet Techinologies and Systemdarch 2003.

[10] R. Fourer, D. M. Gay, and B. W. KernighanAMPL: A Modeling
Language for Mathematical Programminduxbury Press, November
2002.

[11] J. Jaffar and M. Maher. Constraint Logic Programming:SArvey.
constraints 2(2):0.

[12] K. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility
Study Carnegie Mellon University, Software Engineering Inggf
1990.

[13] T. Lemlouma and N. Layaida. Context-aware Adaptation ¥lobile
Devices. Mobile Data Management, 2004. Proceedings. 2004 IEEE
International Conference grpages 106-111, 2004.

[14] M. Mannion. Using First-order Logic for Product Line Mel Valida-
tion. Proceedings of the Second International Conference orwanst
Product Lines 2379:176-187, 2002.

[15] M. Mannion and J. Camara. Theorem Proving for ProduateLi
Model Verification. Fifth International Workshop on Product Family
Engineering, PFE-5, Siengages 4-6, 2003.

