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Keywords: Middleware, Model-Integrated Computing, Regardless of the domain that middleware is applied in, it
Model Driven Architectures, Architectural and CORBA Conhelps expedite the application development process by shield-
ponent Model ing programmers from many accidental and inherent complex-
ities, such as platform and language heterogeneity, resource lo-
) cation, and fault toleranc€omponent middlewais a rapidly
1 Introduction maturing type of middleware that enables component services
. ) to be composed, configured, and installed to create applica-
Commercial-of-the-shelf (COTS) middleware technologiggns rapidly and robustly. In particular, component middle-
have matured considerably over the past decade. They\gife offers application developers the following reusable ca-
now widely used to help enhance the quality and reducejﬁbilities:
time to develop an increasingly broad range of application dos Connector mechanisms between componentsh as re-
mains. Historically, middleware has been appliedmuarprise mote method invocations and message passing
applications which comprise a large class of applications thate Horizontal infrastructure servicesuch as request bro-
perform important business functions, such as planning enter- kers, and
prise resource usage, automating key business functions, ard Vertical models of domain conceptsuch as common
managing supply chains and customer relationships. Exam- semantics for higher-level reusable component services
ples of enterprise applications include airline reservation sys- ranging from transaction support to multi-level security.
tems, bank asset management systems, and just-in-time inE@&@mples of COTS component middleware include the
tory control systems. CORBA Component Model (CCM) [1], Java 2 Enterprise Edi-
More recently, middleware has been applied to distributédn (J2EE) [2], and the Component Object Model (COM) [3],
real-time and embedded (DRE) applications with stringemhich use different APIs, different protocols, and different
quality of service (QoS) requirements for latency, efficienagpmponent models.
scalability, dependability, and security. There are many typedronically, one of the original motivations for middleware
of DRE applications, but they have one thing in commihre was to reduce system heterogeneity via layers that made the
right answer delivered too late becomes the wrong answasftware infrastructure appeartually homogeneous [4]. Un-
Examples of DRE applications inclu@elustrial process con- fortunately, the proliferation of middleware technologies over
trol systemssuch as hot rolling mill control systems that prahe past decade has created a new level of heterogeneity that
cess molten steel in real-time, aadionics systemsuch as needs to be addressed. Since the cost of abandoning existing,
mission management computers that help aircrafts navigateking middleware can be prohibitively high, there is a trend
through their route legs. DRE applications are an increasingiiyvards so-calledVeb service$5] that help integrate differ-
important domain since over 99% of all microprocessors agt types of middleware technologies. Emerging Web services
now used for embedded systems to control physical, chetechnologies are positioning themselves to become the “mid-
cal, or biological processes or devices in real-time. dleware of middleware” [6] by intentionally accommodating



heterogeneity in various layers, including applications, netid-place machines or total ship computing environments, re-
work protocols, operating systems, and the middleware itsedfuire stringent QoS demands that must be satisfied simulta-
To achieve these goals, Web services use ubiquitous preeusly in real-time. In large-scale DRE systems, these QoS
tocol infrastructure (such as TCP/IP, HTTP, and SMTP) addmands cross-cut multiple system layers and require end-to-
XML-based messages and metadata (such as SOAP [7kd enforcement. Today's Web services technologies were
WSDL [8]) to exchange information with clients. By exchangidesigned for applications with conventional business-oriented
ing XML-formated messages, Web services for business apQleS requirements, such as data persistence and transactional
cations can easily adopt existing business standards, sucbuaport, so they do not yet enforce the stringent QoS require-
Electronic Data Interchange (EDI). Web services can supparents of DRE applications effectively.
either RPC-styled or message-passing communication modefoS-aware Web services are particularly useful for integrat-
depending on the requirements of the applications. Clients ¢agn DRE systems where application requirements constrain
bind to Web services using location services, such asitite the choice of hardware, languages, operating systems, and
versal description, discovery, and integrati@dDDI) service middleware. Military command and control (C2) and intel-
that queries the locations and the descriptions of available Wliglence, surveillance, and reconnaissance (ISR) systems (such
services. as AWACS and JSTARS), are a good example of such sys-
Although today’s Web services offerings strive to integratems since they monitor enemy air and group movements and
software applications that use different middleware technotteliver tracks and targeting information to coalition forces in
gies, a number of key technical challenges remain. Chieél-time. By necessity, these large-scale “systems of sys-
among these challenges include the following: tems” are heterogeneous since different sensors and process-
1. Reconciling different middleware technologies. To pro- ing equipment are provided by different suppliers at different
vide sufficient QoS support and take advantage of new tephints in time. Moreover, they must link together many di-
nologies as they arise, middleware must inevitably work witterse hardware devices, such as sensors, that communicate in-
heterogeneous OS platforms, interface with legacy systeimsnation, such as track reports and GPS coordinates, across
written in different languages, and interoperate with multipWgreless links. This information can be readily exchanged as
technologies from many suppliers. Support for heterogenetylL data if DRE applications are composed of QoS-enabled
is essential since different middleware technologies have dfeb services.
ferent pros and cons for different types of system environment3 here are many benefits of enhancing Web services to meet
and application requirements. For example, the middlew#ne QoS requirements of DRE applications. For example,
capabilities needed to manage supply chains over the Intechet to constraints on weight, power consumption, memory
are different than those needed to intercept and destroy crifigaprint, and performance, development techniques for DRE
missiles in flight. application software have lagged those used for mainstream
Web services can be extended to integrate systems thegktop and enterprise software. In particular, DRE appli-
comprise many existing component middleware technologieations have historically been custom-programmed to imple-
some of which are wedded to particular programming lament their required QoS properties, making them so expensive
guages and platforms. For example, Microsoft's .NET [9] sut® build and maintain that they cannot adapt readily to meet
ports XML/SOAP Web services and is based on a commoew functional or QoS requirements, hardware/software tech-
language runtime (CLR) and COM [3]. Conversely, Sunfmlogy innovations, or market opportunities. What is needed
ONE [10], IBM’s WebSphere [11], and BEA's WebLogic [12}herefore is a flexible component middleware infrastructure
are based on Java, J2EE, and CORBA. These technolofpesVeb services that preserves the existing support for het-
provide tools that can expose existing middleware applicati@regeneity, yet also provides multiple dimensions of QoS en-
as Web services so they can be accessed by any clients cagatdement.
of using Web services. 3. Accidental complexities in integrating software systems.
Integrating different middleware technologies using Welo reduce lifecycle costs and time-to-market, application de-
services remains hard, however, since different middlewaetopers are attempting to assemble and deploy distributed ap-
technologies have their own interaction model, such as castieations that make up the backbone of Web services by se-
ponent lifecycle, component addressing, and error notifidaeting the right set of compatible COTS components, which
tion [13]. What is needed is a way to ensure the behavioiralitself is a daunting task. The problem is further exacer-
differences between middleware technologies are represeiagd by the existence of myriad strategies for configuring and
and reflected across Web service points. deploying the underlying component middleware to leverage
2. Satisfying multiple quality of service (QoS) require- the environment advantages. Moreover, integrating applica-
ments in real-time. An increasing number of DRE application using multiple middleware technologies demands multi-
tions, such as controllers for surface-mount component pigite skill sets which makes the task even more complicated.



Application developers therefore spend non-trivial amounts of XML [17], and the CORBA Component Model [1] can be
time debugging problems associated with the selection of in- used to enhance and complement Model-Integrated Com-
compatible strategies and components. What is needed is an puting technologies, thereby providing a standards-based
integrated set of processes and tools that can (1) select and val- approach to assemble and deploy Web services.

idate a suitable configuration of middleware components and

(2) generate optimized Web service configurations automati- "€ remainder of this paper is organized as follows: Sec-
cally. tion 2 describes how Model-Integrated Computing and com-

o o __ponent middleware can be combined to resolve key chal-
~ A promising way to addres; the apphca}tlon-tO'apm'Ca“@éhges associated with DRE application integration; Sec-
integration challenges described above is to apdydel- tion 3 jllustrates how the OMG Model Driven Architecture
Integrated Computingechnologies [14]. Model-Integrated,nq cORBA Component Model are standardizing the Model-
Computing is an emerging paradigm for expressing appli¢aegrated Computing paradigm that QoS-enabled Web ser-
tion fu.nctlonall'ty and QoS re.qwrements athlgherlevels of a}ﬁ'ces can leverage; Section 4 explains how we are apply-
straction than is possible using third-generation programming these technologies to synthesize component-based appli-
languages, such as Visual Basic, Java, C++, or C#. In the GQl}ions from high-level models in th@omponent-Integrated
text of DRE. applications, Model-Integrated Computing toojgcg ORB(CIAO) and Component Synthesis with Model-
can be applied to _ ~Integrated ComputingCoSMIC) projects; Section 5 com-

1. Analyze different—but interdependent—characteristigfared our work on CIAO and CoSMIC with related research;

of SyStem behaVior, such as Scalab”ity, pred|Ctab|l|t¥nd Section 6 presents Conc|uding remarks.
safety, and security. Tool-specific model interpreters

translate the information specified by models into the in-

put format expected by analysis tools. These tools c2n  Component Middleware and Model-

check whether the requested behavior and properties are R

feasible given the conqstraints. Prop Integrated Computing: A Powerful
2. Synthesizeplatform-specific code that is customized for ~ Approach to Building DRE Applica-

specific_ component middlewar_e gnd DRE_ application tions

properties, such as end-to-end timing deadlines, recovery

strategies to handle various runtime failures in real-ti . . .
and authentication and authorization strategies modeSe%E appllgatlons have a range Of. QO.S requirements, includ-
at a higher level of abstraction. ing bandwidth, b'ounded comml'J'nlcatlon, Ia'lt.ency, guarantged
resource allocation, dependability, scalability, and security.
Understanding how to integrate Model-Integrated Compituch of the complexity of implementing QoS-aware Web ser-
ing and component middleware is essential to resolve the coices from composing reusable middleware components arises
figuration, management, and deployment challenges of irftem interactions between the software and its environment,
grating DRE applications using the Web services technoie., the structure, actuator response times, and event intervals
gies described above. This paper provides the followingth which the software interacts. For example, an intelligent
three contributions toward the successful integration of Modalitomotive engine management system must interact with the
Integrated Computing and component middleware that is &snsmission control system and anti-lock brake system to ac-
sential to develop QoS-enabled Web services to addressttlae the fuel injection circuit in time to provide responsive
challenges presented above: performance. This section presents an overview of compo-
e We illustrate how the Model-Integrated Computingent middleware and Model-Integrated Computing and then
paradigm can be applied to simplify the development déscribes how combining the best elements of these two tech-
large-scale DRE applications that integrate reusable comogies can address the complexities associated with devel-
ponent middleware services using QoS-enabled Web sging DRE applications.
vices.
e We describe hpw QoS-enabIe'd component' middlew§_el Overview of Component Middleware
enables modeling and synthesis tools to rapidly develop,
assemble, and deploy flexible Web services that suppditidleware capabilities. Middleware is reusable software
heterogeneity, yet can be tailored readily to meet thiat resides between the applications and the underlying op-
needs of DRE applications with multiple simultaneowerating systems, network protocol stacks, and hardware [4].
QoS requirements. Its primary role is to bridge the gap between application pro-
¢ We discuss how emerging standards, such as the Ot@ms and the lower-level hardware and software infrastruc-
Model Driven Architecture [15] based on UML [16] andure to coordinate how parts of applications are connected and



how they interoperate. When implemented properly, middle- object model, however, does not provide sufficient mech-
ware can help to: anisms to prevent tight coupling among collaborating ob-
ject implementations. For example, object implementa-
e Shield application developers from low-level, tedious, tions that depend on other objects need to discover and
and error-prone platform details, such as socket-level net- connect to these objects explicitly. To construct complex
work programming. distributed applications, therefore, application developers
¢ Simplify the development of distributed applications by  need to program the connections among interdependent
providing a consistent set of capabilities that are closer to services, which can yield brittle and non-reusable imple-
design-level abstractions than to the underlying comput- mentations.
ing and communication mechanisms. e Lack of generic application servers.CORBA 2.x does
e Amortize software lifecycle costs by leveraging previous not specify a generiapplication serverframework to
development expertise and capturing implementations of perform common “bookkeeping” work, including initial-
key patterns in reusable frameworks, rather than rebuild- izing the broker and its QoS policies, providing com-
ing them manually for each use. mon services (such as an event service), and manag-
 Provide a wide array of developer-oriented services, such ing the runtime environment of components. Although
as transactional logging and security, that have proven CORBA 2.x standardized the interactions between ob-
necessary to operate effectively in a distributed environ- ject implementations and object request brokers (ORBs),

ment. server developers are still responsible for determining
o Simplify the integration of software artifacts developed —hOoWw object implementations are installed in an ORB and
by multiple technology suppliers. the interaction between the ORB and object implementa-

tions. The lack of a generic application server standard

Various technologies, such as OSF’s Distributed Comput- has yielded tightly coupledad-hocapplication server
ing Environment (DCE) [18], IBM’s MQ Series [19], and implementations, which increase the complexity of soft-
CORBA [20], emerged over the past two decades to allevi- ware upgrades and reduce the reusability and flexibility
ate complexities associated with developing software for en- of CORBA-based applications.
terprise applications. Their successes have added the mid- ) i
dleware paradigm to the familiar operating system, progralfomising solution — component middleware. In recent
ming language, networking, and database offerings us(e(jyg§1r:s,componentmlddlewal[QZ] has emerged to address the

previous generations of software developers. By decouplfHBitaﬁons with object-oriented middlewar(_a outlined aboye.
application-specific functionality and logic from the accidefz0mpenent middieware addresses these issues by creating a

tal complexities inherent in the infrastructure, middlewa}d/tual boundary around application components with well-
Sefined interfaces and composing and executing components

enables application developers to concentrate on progrg . N ,
ming application-specific functionality, rather than wrestlinf} 9eneric application servers. Popular COTS component mid-
leware platforms being used for various distributed applica-

repeatedly with lower-level infrastructure challenges. Mor !
over, since emerging Web services standards only address H8(# today include the CCM [1], J2EE [2], and COM (3],

information can be exchanged—not how to implement tM¢hich provide the foundation for many Web services devel-
services—Web service developers can also benefit from gignent frameworks. . _ _
abstraction provided by middleware to make Web service im--arge-scale DRE applications require seamless integration

plementations themselves more efficient and portable. ~ ©f many hardware and software systems. As shown in Fig-
ure 1, these systems may be separated physically from each

Limitations with object-oriented middleware. The Object qihar5e g an air traffic control system processes flight infor-
Management Architecture (OMA) in the CORBA 2.X SpeClyation from multiple regional radars. These systems can also
flcatlo.ns. [20] defines an o'bject-orlent'ed mlddleware stand%réj collocated physically, yet be disjoivittually. For exam-

for building portable distributed applications. The CORBRe 4 custom real-time flight bulletin board may reside in the
2.X specn‘lqatlon focuses omterfaces_whlch are gontracts same airport as the approach flight management system that
between clients and servers that define how cliere&and ,nq o1 2 mainframe computer and processes the information
accesobject services provided by a server. These objects ¢afjireq by the bulletin board. It is important for component

be distributed or collocated throughout a network. Altho“grtl‘iddleware to meet the designed QoS requirements for Web
this model has certain virtues, such as location transparencyeit ices to deliver the expected quality of service.

has the following limitations [21]:

Figure 1 also shows hosomponentamplement the DRE
e Lack of functional boundaries. The CORBA 2.x object processing and control logic and hasentainersprovide a
model treats all interfaces as client/server contracts. Th@mmon interface that allow different components to interact



Chicago s Fleld Radar— aitime 2.2 Overview of Model-Integrated Computing

Center System SFtEEts Model-Integrated Computing (MIC) [14] is a development
Contral Blenn paradigm that applies domain-specific modeling languages
;itrae systematically to engineer computing systems ranging from
small-scale real-time embedded systems to large-scale dis-

tributed enterprise applications. MIC provides rich, domain-

Real-time specific modeling environments, including model analysis
%eoersggur:frr;t : and model-based program synthesis tools [23]. In the MIC
[ Compose Deploy A’Sgr‘géh paradllgm, appllcathn develppgrs mpdel an mtegrgted, end-to-

| Control end view of the entire application, including the interdepen-

= WWW

v
System Development i

Middleware Framework
Application Server

Figure 1: Integrating DRE Applications with Component
Middleware

with the underlying middleware platform. In addition, this fig-
ure shows how generic application servers can be used to i
stantiate and manage containers and execute the compo

configured into them. Metadata associated with componeggs,
provide instructions that application servers use to config%rﬁdc

and connect components.

dencies of its components. Rather than focusing on a sin-
gle, custom application, therefore, MIC models capture the
essence of a class of applications. MIC also allows the model-
ing languages and environments themselves to be modeled by
so-calledmeta-modelf24], which help to synthesize domain-
specific modeling languages that can capture the nuances of

PR domains they are designed to model.
c(;;ﬁtgtgattion When implemented properly, MIC technologies help to:

etadata . . .

I~ Fiight ot e Free application developers from dependencies on par-
Deployment Schedule Gateway ticular software APIs, which ensures that the models can
& — Processing Component . . -

Configuration | 1" be used for a long time, even as existing software APIs
Mechanism Containers Containers become obsolete and replaced by newer ones.

¢ Provide correctness proofs for various algorithms by ana-
lyzing the models automatically and offering refinements
to satisfy various constraints.

e Synthesized code that is highly dependable and robust
since the tools can be built using provably correct tech-
nologies.

¢ Rapidly prototype new concepts and applications that can
be modeled quickly using this paradigm, compared to the
effort required to prototype them manually.

e Save enterprises significant amounts of time and effort,
while also reducing application time-to-market.

rEarly computer-aided software engineering (CASE) tech-
ies have evolved into sophisticated tools, sucbbgec-
din-Stepfrom MicroTool andParadigm PlusVISION
OOLfrom Computer Associates. This class of products
has evolved over the past two decades to alleviate complex-

The many interdependent components in complex DRIes associated with developing software for enterprise ap-

applications often reside in multiple—possibly distributed-plications. Their successes have added the Model-Integrated
application servers. Each application server consists of soGmmputing paradigm to the familiar programming languages
number of components that implement certain services fd language processing tool offerings used by previous gen-
clients. These components in turn may include other collerations of software developers. Popular examples of MIC
cated or remote services. In general, component middlewt@s being used today include the Generic Modeling Environ-
helps reduce initial software development efforts by integratent (GME) [23] and Ptolemy [25] (which are used primarily
ing custom application components with reusable COTS coimthe real-time and embedded domain) and UML/XML tools
ponents into generic application server frameworks. Motgased on the OMG Model Driven Architecture (MDA) [15]
over, as the requirements of DRE applications change, cdused primarily in the enterprise application domain thus far).
ponent middleware can help make it easier to migrate and reAs shown in Figure 2, MIC uses a set of tools to

distribute certain services to adapt to new environments, while Analyze the interdependent features of the system cap-
preserving key application QoS properties. tured in a model and
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Figure 2:The Model-Integrated Computing Process Mlddle\_f]gare

er%(:)(;nlznt Middleware
Assembly Specific Code

e Determine the feasibility of supporting different non-, 3 | ind Model-| dc . q
functional system aspects, such as QoS requirementggﬂf"e j nt'\t/algdrgltlng odel-Integrated Computing an
the context of the specified constraints. omponent Middleware

Another set of tools then translates models into executable
specifications that capture the platform behavior, constraints, lead to inefficient. bloated code that was hard to optimize
and interactions with the environment. These executable spec- ' P '

ifications can in turn be used to synthesize application soft- validate, evolve, or integrate with legacy code.
Y PP e Due to the lack of sophisticated domain-specific lan-

ware. guages and associated modeling tools, it was hard to
achieveround-trip engineeringi.e, moving back and
2.3 Application Integration using Model- forth seamlessly between model representations and the
Integrated Computing and Component synthesized code.
Middleware e Since CASE tools and modeling languages dealt primar-

ily with a restricted set of platforms (such as mainframes)
As described above, MIC and component middleware have and legacy programming languages (such as COBOL)
evolved independently from different perspectives. Although they did not adapt well to the distributed computing
these two paradigms have achieved relatively good success in- paradigm that arose from advances in PC and Internet
dependently, each also has the following limitations: technology and newer object-oriented programming lan-

Complexity due to heterogeneity. Conventional compo- guages, such as Java, C++, and C#.

nent middleware is developed using separate tools and intpg jimitations with Model-Integrated Computing and com-

terfaces written and optimized manually for each middiggnent middieware outlined above can largely be overcome by
ware technology, such as CORBA, J2EE, and .NET, and ergrating them as follows:

each target deployment, such as various OS, network, and . . .

hardware configurations. Developing, assembling, validating.” Combining MIC with gomponent mlddlgware helps to
and evolvingall this middleware manually is costly, time- overcome problems W.'th earl|er-ger_1erat|on CASE tools
consuming, tedious, and error-prone, particularly for run-time since it does not require the ”?Ode"”g toqls t.o generate
platform variations and complex application use-cases. This allthe code. Instead, large pornpns of ap.phcatlons can be
problem is getting worse as more middleware, target plat- composedrom reusable, prevalidated middleware com-

forms, and complex applications continue to emerge. ponen-tsl, as shown in Figure 3. i
e Combining MIC and component middleware helps ad-

dress environments where control logic and procedures

change at rapid pace, by synthesizing and assembling

newer extended components that implement the new pro-

cedures and processes.

e They attempted to generate entire applications, includinge Combining component middleware with MIC helps to
the infrastructure and the application logic, which often make middleware more flexible and robust by automating

Lack of sophisticated modeling tools. Previous efforts at
model-based development and code synthesis attempted by
CASE tools generally failed to deliver on their potential for
the following reasons [26]:



the configuration of many QoS-critical aspects, such as Chicago Flight Field Radar

L . : Scheduling Control Real-time
concurrency, distribution, resource reservation, security, CD;‘; System Sanht
il ; tat
and dependability. Moreover, MIC-synthesized code can T Bt
help bridge the interoperability and portability problems an;ral = e[ Board
ata ——— =

between different middleware for which standard solu- | giore
tions do not yet exist.

e Combining component middleware with MIC helps to
model the interfaces among various components in ter component

of standard middleware or Web services, rather th{ Repository Airport
language-specific featu-res or proprietary APIs. Compose Deploy Approach
e Changes to the underlying middleware or language map- {

Component
Assembly

ping for one or many of the components modeled can

be handled easily as long as they interoperate with other
. . System Development

components. Interfacing with other components can bﬁ/ﬂ

modeled as constraints that can be validated by mof' =5 Application

eployment Logic

checkers. &
Configuration

i o

Figure 4 illustrates six points at which Model-Integrate \_Metadata " iight
Computing can be integrated into component middleware || peployment Schedule Gateway

. . . . . & ! Processing Componen
chitectures and applied to DRE applications. We describe e configuration I
of these six integration points below: Mechanism Containers Containers e
1. Configuring and deploying application services end-to- :
end. As discussed in the explanation of Figure 1, developi ( Conﬁg“lj';g‘t’ifmr:tadatae Middleware Framework

complex DRE applications requires application developers
handle a variety of configuration and deployment challenges,
such as 0 Configuring and deploying an application services end-to-end

e Locating the appropriate existing services Composing components into application server components
¢ Partitioning and distributing application processes amo
application servers using different middleware technol
gies and defining the Web services necessary and e Synthesizing application component implementations
¢ Partitioning and distributing application processes amog

Application Server

g Configuring application component containers

L . . Synthesizing middleware-specific configurations
application servers using the same middleware techno Y 9 P g

gies and
e Provisioning the QoS required for each service that com-

prises an application end-to-end. Figure 4: Integrating Model-Integrated Computing with

Itis a daunting task to identify and deploy all these capabilitie®mponent Middleware

into an efficient, correct, and scalable end-to-end application

configuration. For example, to maintain correctness and effi-

ciency, services may change or migrate when the DRE applid-to-end application and QoS requirements. In particular,

cation requirements change. Careful analysis is thereforer=Simulinktool allows DRE application developers to model,

quired to partition collaborating services on distributed nodggalyze, simulate, verify, and rapidly protoype applications.

so the information can be processed efficiently, dependat&lyCom osing components into application servers. Infe-
and securely. : posing p pp .

Integrating MIC and component middleware to deploy DR%ating MIC with c.omponentmiddleware provides capabilitigs
application services end-to-end can help developers config[ /A help application developers to compose components into

the right set of services into the right part of an application ﬁppllcatlon servers by

the right way. MIC analysis tools can help determine the ap-e Selecting a set of suitable, semantically compatible com-
propriate partitioning of functionality that should be deployed ponents from reuse repositories.

into various application servers throughout a network. For ex-e Specifying the functionality required by new components
ample, tools likeMatlab, Simulink TimeWiz, andRapidRMA to isolate the details of DRE systems that (1) operate in
allow DRE application developers to model and visualize their environments where DRE processes change periodically

Synthesizing middleware implementations



and/or (2) interface with third-party software associatede SimuLinkandStateFlowfrom MathWorks, which gener-

with external systems. ate signal processing and control applications from high-
e Determining the interconnections and interactions be- level models
tween components in metadata. e The Reactis product family from Reactive Systems,

e Packaging the selected components and metadata into an Which provides a modeler, simulator, validator, and a

assembly that can be deployed into the application server. c0de generator for embedded software systems

o . ) ¢ ObjecTimefrom Rational, which generates call process-
CASE tools, such asglatlabandSimulink provide visual tools ing applications from state chart models and

for composing DRE application servers. e +1Reusefrom +1 Software Engineering, which uses

3. Configuring application component containers. Ap- modeling concepts to synthesize application component
plication components use containers to interact with the ap- ntegration.
plication servers in which they are configured. Containers
provide many policies that distributed applications can use%to Synthesizing middleware-specific configurations. The
fine-tune underlying component middleware behavior, suchiaiastructure middleware technologies used by component
its security, transactional, and quality of service propertiggiddleware provide a wide range of policies and options to
Since DRE applications consist of many interacting compeenfigure and tune their behavior. For example, CORBA
nents, their containers must be configured with consistent &fdBs often provide the following options and tuning parame-
compatible QoS policies. ters:

Due to the number of policies and the intricate interactionse Various types of transports and protocols
among them, it is tedious and error-prone for a DRE applica- \/grious levels of fault tolerance
tion to manuallyspecify and maintain its component policies o Middleware initialization options

and semantic compatibility with policies of other components. | Efficiency of (de)marshaling event parameters
MIC tools can help automate the validation and configura-. Efficiency of demultiplexing incoming method calls

tion of these container policies by allowing system designers Threadi del d thread priority setti d
to specify the required system properties as a set of models. reading models and thread priority SEtlings an

Other MIC tools can then analyze the models and generate th® Buffer sizes, flow control, and buffer overflow handling
necessary policies and ensure their consistency. Certain combinations of the options provided by the middle-

. L . ) ware may be semantically incompatible when used to achieve
4. Synthesizing application component implementations. multiple QoS properties.

Developing complex DRE applications t'oda}y involvgs PrO- Eor example, a component middleware implementation
gramming new components that add application-specific UGy g offer range of security levels to the application. In the

tionality. Likewise, new components must be programmegl e security level, the middleware exchanges all the mes-

to interact with external systems and sensors, such as a 8%%es over an insecure channel. The highest security level, in

chine vision module controller, that are not internal to the aPsntrast encrypts and decrypts messages exchanged through

plication. Since these components involve substantial knowTé channel using a set of dynamic keys. The same middleware

edge of appl:ccauor.n domain conceptksﬂ, SUCT as mechamt;}algﬁﬂd also provide an option to use zero-copy optimizations to
signs, manufacturing process, workflow planning, and haiimize jatency. A modeling tool could automatically detect
ware characteristics, it would be ideal if they could be devegl, incompatibility of trying to compose the zero-copy opti-

oped in conjunction with mechanical engineers or domain exy, o with the highest security level (which makes another
perts, rather than programmed manually in isolation by So&ipy of the data during encryption and decryption).

ware devglopers. ) . . Advanced meta-programming techniques, such as adaptive
The shift toward high-level design languages and modeliggy reflective middleware [28, 29, 30, 31] and aspect-oriented

tools is creating an opportunity for increased aUtomatiO”dPogramming [27], are being developed to configure middle-

generating and integrating application components. The g@ale options so they can be tailored for particular DRE appli-
is to bridge the gap between specification and implementatiofio use cases.

via sophisticated aspect weavers [27] and generator tools [23] o . ) i

that can synthesize platform-specific code customized for spe- Synthesizing middleware implementations. Model-

cific application properties, such as resilience to equipmé&figgrated Computing can also be integrated with component
failure, prioritized scheduling, and bounded worst-case e@iddleware by using MIC tools to generate custom middle-

cution under overload conditions. Research in this area is nf© implementations. This is a more aggressive use of mod-
transitioning into commercial products that support narro@ing and synthesis than integration point 5 described above
well-defined domains. such as since it affects middlewarenplementationsrather than their



configurations. Application integrators could use these ¢
pabilities to generate highly customized implementations

component middleware so that Finance

¢ It only includes the features actually needed for a part
ular application and T
¢ Itis carefully fine-tuned to the characteristics of partict ;
lar programming languages, operating systems, and r ¥ ' ._;f
works. g

Manufacturing | E-Commerce

The customizable middleware architectural framewo 4
Quarterware [32] falls under this category of integration g
Quarterware abstracts basic middleware functionality and Space =
lows application-specific specializations and extensions. T % ]
framework can generate core facilities of CORBA, RMI, an =)
MPI. The framework-generated code is optimized for perfc
mance, which the authors demonstrate is comparable—anc
ten better—than many commercially available middleware ir
plementations.
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. _ Transportation | HeaithCare
3 An Overview of the Model Driven
Architecture and CORBA Compo- More...
nent Model Figure 5: Overview of the OMG Model Driven Architec-

i ture (Copyright OMG, reproduced by permission)
The Object Management Group (OMG) has recently adopted

the Model Driven Architecture (MDA) [15] to standardize

the integration of MIC paradigm with component middleware )

technologies. This section describes how the OMG MDA cQhchanging platform technology. These two levels of models
be used to develop, assemble and deploy complex DRE appii? Pe differentiated as follows:

cations based on QoS-enabled Web services. In particular, we The PIMs describe at a high-level how applications will
show how the application functionality specified as models can be structured and integrated, without concern for the
be used to synthesize new components that implement the web middleware/OS platforms or programming languages, on
service, as well as to assemble them with semantically com- which they will be deployed. PIMs provide a formal defi-
patible reusable components provided by the CORBA Com- nition of an application’s functionality, as well as a repre-
ponent Model [1] and Real-time CORBA [33]. Section 4 then  sentation of the application as a computation-independent
presents how we are synthesizing QoS-enabled CCM applica- business model or a military strategy, also referred to as a
tions from UML models and exposing them as Web services. Domain Model For example, a transaction in a business
system or target tracking and identification in a military

. . . ISR mission, can be modeled in generically using model-
3.1 Overview of the OMG Model Driven Archi- ing tools based on UML.

tecture e The PSMs are so-callabnstrainedormal models since

The OMG MDA defines standard ways to address many of the they express platform-specific details. The PIM mod-
challenges facing complex applications, such as the DRE ap- €IS are mapped into PSMs via translators. For example,
plications outlined in Section 1. The MDA builds upon years ~the generic operation that is SpeCIflgd in th.e. PIM cogld
of research on model-integrated computing [14, 34, 35] to pro- b€ mapped and refined to the domain-specific operation,
vide standard modeling notations based on the Unified Mod- Such as information exploitation of sensor data, in the un-
eling Language (UML) [16]. Figure 5 illustrates the structure  derlying Real-time CORBA platform.
of the MDA. Both PIM and PSM descriptions of applications are for-
The MDA defines platform-independent models (PIMs) amdal specifications built using modeling standards, such as
platform-specific models (PSMs) that streamline platform iklML, which can be used to model application functionality
tegrationissues and protect investments against the uncertanty system interactions. The MDA also defines a platform-



independent meta-modeling language that allows platfor@©RBA are also related to the Microsoft COM family of mid-
specific models to be modeled at an even higher level of alteware technologies. Unlike CORBA, however, Microsoft's
straction. COM was designed to support a collocated component pro-
Figure 5 also references the Meta-Object Facility (MORJramming model initially and later DCOM added the ability
which provides a framework for managing any type of mettn distribute COM objects.
data. The MOF has a layered metadata architecture with &igure 6 shows an overview of the run-time architecture of
meta-meta-modeling layer and an object modeling languag¢éke CCM model Componentare the implementation entities
closely related to UML—that ties together the meta-models

and models. The MOF also provides a repository to store
meta-models.
Component [T US@S
refresh |

The Common Warehouse Model (CWM) provides stan-, ... S
dard interfaces that can manage many different databases gﬁqheat
schemas throughout organizations as diverse as a militgQju
command and control system or a financial services enterprig@uotie pos.
The CWM interfaces are designed to support manageme it
decision making and exchange of domain-specific busin¢$s e
metadata or between diverse warehouse tools to help present

a coherent picture of business conditions at a single point in

time. The OMG has defined the XML metadata Interchange

(XMI) for representing and exchanging CWM metamodels in L 1
XML. ORB

The OMG defined three levels where MDA-based specifi-
cations are useful: Event Channel
Price Changes
Event Channel
Offer Prices

1. ThePervasive servicedevel constitutes a suite of PIM
specifications of essential CORBA services, such a
events, transactions, directory, and security, that are use- Notioaton Service
ful for large-scale application development. Additional
services may be added at a later date from the broad ran
of existing CORBA object services.

2. TheDomain facilities level constitutes a suite of PIM
specifications from different domains, such as defenggat export a set of interfaces to clients. Components can also
manufacturing, healthcare, and life science reseaggthress their intent to collaborate with other components by

rate
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%?gure 6:Overview of the CCM Run-time Architecture

within the OMG. defining interfaces callegorts There are three types of ports
3. TheApplications level constitutes a suite of PIM create¢h CcCM:
by software developers for their applications. e Facets which define an interface that accepts syn-

The three levels outlined above allows a broad range of ser- chronous method invocations from other components

vices and application designs to be reused across multiple plag; Receptacles which indicate a dependency on a syn-

forms. For instance, some domain-specific services from the .honous method interface provided by another compo-

OMG could be reused for other technology platforms, such as ant and

.NET or J2EE, rather than designing them from scratch. e Event sources/sinkswhich indicate a willingness to ex-
change messages asynchronously with other components.

3.2 Overview of the CORBA Component _ . _ _
A containerprovides the run-time environment for a com-

Model ponent. It contains various pre-defined hooks that provide
The OMG has addressed the limitations with object-orientstilategies, such as persistence, event notification, transaction,
middleware described in Section 2.1 by defining the CORBd security, to the component it manages. Each container
Component Model (CCM) [1]. CCM is modeled closely omanages one type of component and is responsible for initial-
the Enterprise Java Beans (EJB) specification. Unlike EJBng this component and connecting it to other components
however, CCM uses the CORBA object model as its uand ORB services. Developer-specified metadata can be used
derlying object interoperability architecture and is therefote instruct the CCM deployment mechanism how to create
not bound to a particular programming language. CCM atitese containers.
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In addition to the building blocks outlined above, the CCMn the current draft [1], includin@penCCMby the Universite
also standardizes component implementation, packaging, dad Sciences et Technologies de Lille, Frat@ Containers
deployment. The CCM Component Implementation Framgy iCMG, MicoCCM by FPX, andCIAO by the DOC groups
work (CIF) helps generate the component implementatiahWashington University St. Louis, Vanderbilt University, and
skeletons and persistent state management automatically usinigersity of California Irvine. The influence of the architec-
the Component Implementation Definition Language (ClIDLtural patterns found in CCM is also evident in other popular
The CCM also extends the Open Software Description (OSBdmponent middleware technologies, such as J2EE [38] and
which is a vocabulary of XML defined by W3C, to specifyNET.
component packaging and assembly descriptors that is used by

the CCM deployment mechanisms to configure the component . .. . .
connections and container configurations. The CCM depl(%- ReSO|V|ng Distributed Appllcatlon

ment mechanism enables an MDA model to be synthesized Challenges with Model-lntegrated
to configure and deploy distributed applications, as shown by

integration point 1 in Figure 4. Computing and Middleware

The CCM is an effective component middleware technology , , . , ,
to serve as the basis for composing DRE applications usfiydescribed in Section 1, developing and deploying DRE ap-

MDA and hosted as a Web service for the following reasonglications and Web services using today’s COTS middleware
1 Metadat ifies the int . technologies requires application developers to handle the pro-
' ne?nz :n% zppepCIiIcIZtSion ié?vi:ZOWrﬁgﬁogfozggsng fg; ration of middleware technologies, satisfy multiple QoS re-

hanism for MDA t d-t 4D rements simultaneously, and eliminate accidental complex-
mechanism for 0 COMPOSE hew enad-to-en R fes arising from the manual assembly of components and ap-

applicationfunctionality and to des.cribe Web seryices 'rEI'cations. A promising way to address these challenges is
terface using WSDL, as shown by integration point 1 a integrate MIC modeling tools with component middleware.

3 in Figure 4', i i _As discussed in Section 2.3, this integration helps developers
2. The well-defined virtual boundaries of components ST more effectively

plifies the validation of individual component functional- T . . .

ity, as well as the functionality of Web services in DRE * Mode_l application functionality at a higher level of ab-
applications, and helps to address the challenges shown straction and - . C
by integration points 1 and 4 in Figure 4. e Analyze and partition responsibility of application

. L . . servers.
3. Arrich set of existing common middleware services, such

as the CORBA Notification and Scheduling services, cAHC tools can then be used to synthesize, assemble, and de-
be componentized and reused to compose complex Vi@#y the component assemblies based on the models and the

services, which helps to address the challenges identifig@sibility analysis. _
by integration points 1 and 2 in Figure 4. Figure 7 |Ilystr§1tes how we are developmg t@empo-

4. The portability and mature QoS capabilities of Real-tinnt Synthesis with Model Integrated Computing (CoSMIC)
CORBA enables CCM to run predictably on most 0§0°ISeét, which provides MDA-based tools designed to (1)
platforms, which makes it easier to integrate and interdpPdel and analyzelistributed application functionality and
with legacy DRE systems written in a variety of progranpos requwgments asa pl_atform-lndependent model (PIM) and
ming languages and running on a wide range of OS p|£\%) synthesmé?(_:M—speuflc deploym(_ant metadgta, whichis a
forms. Dynamically configurable CORBA immementa@latform-speuﬁc model (PSM), required to deliver end-to-end

tions, such as dynamicTAO [36] and TAO [37], can heIQOS- Rather than using the CORBA Interface Definition Lan-
address integration points 5 and 6 in Figure 4. guage (IDL) as the PSM, the synthesized CCM-specific PSM
5. CCM can be extended to specify component QoS requffé.COSMIC consists of metadata in XML format describing

ments in the metadata. The CCM container mechanisﬁ:‘qglponentcompositions using existi_n_g componentdefinitions
provide a standard interaction point to extend the Qo§@t can be mapped to modeling entities using MDA tools. A

related interaction between components and the O S-enabled CCM provides a good target platform for MDA

These extensions provide the enabling mechanisms q’g}c.e multiple QoS properties required by components can be
QoS-aware Web services and address integration polfi@ized by modifying QoS-related meta-information.
1,2, and 3 in Figure 4. The CoSMIC project is therefore developing synthesis tools
targeted at theComponent-Integrated ACE OREIAO),
Although the CCM specification has recently been finalizedhich is our CCM implementation based dine ACE ORB
by the OMG, it is still not part of the Core CORBA specificafTAO) [33]. TAO is an open-source, high-performance, highly

tion. A number of CCM implementations are available basednfigurable Real-time CORBA ORB that implements key
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0 Configuring and deploying an application services end-to-end

e Composing components into application server components

e . L . trates the interfaction between CoSMIC and CIAO.
Configuring application component containers

e Synthesizing application component implementations . ) )
Challenge 1: Reconciling Different Middleware Technolo-

e Synthesizing middleware-specific configurations gies

G Synthesizing middleware implementations . . .
Problem. There are increasing number of component mid-

Figure 7:Synthesizing CCM Middleware from MDA Tools dleware technologies, such as CCM, J2EE, and .NET. Al-
though each has its strengths and weaknesses, no technol-
ogy provides a comprehensieme-fits-allsolution. For ex-

patterns [39] to meet the demanding QoS requirements of @isiple, middleware technologies, such as Sun’s J2EE and the

tributed systems. CIAO abstracts component QoS requikicrosoft's emerging .NET web services, may be challenged
ments into metadata that can be specified in a comporterprovide a complete end-to-end solution to build distributed
assembly after a component has been implemented. Bjplications due to their dependence on an implementation
coupling QoS requirements from component implementatidasguage, such as Java, or a platform, such as Windows, re-
greatly simplifies the conversion and validation of an applicgpectively. Integrating DRE applications using the appropri-
tion model with multiple QoS requirements into CCM deployate middleware via Web services allows developers to leverage
ment of DRE applications. technologies best suited for a particular task.

The remainder of this section describes how we are combinBusiness organizations, government agencies, and armed
ing the CoSMIC design tools and procedures with the ClA&rvices have a considerable investment in legacy applications
component middleware platform to address key challengasl equipment that do not use today’s middleware technolo-
faced by the developers of DRE applications. Figure 5 illugies. In particular, large-scale DRE applications often con-
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sist of components and subsystems based on multiple softwmreomplicated.
technologies developed over long periods of time. Althoughy| «ion A benefit of MDA is its ability to employ complex

Web services provide a starting point to integrate these applise|ing tools that can check for certain properties of the im-
catlons. together, itis a non-.tr|V|aI task since dlfferent qompﬂrementation,e.g, check the correctness of an algorithm or
nent middleware technologies have their own unique interagis e that a series of constraints are enforced. Although the
tion model. For example, applications can not pass CORBf\1 MDA standard has adopted the UML-based PIM and
object references via a Web service request since thg receB&l/ for CORBA, it does not yet adequately address a broad
may not understand CORBA object reference semantics. gpectrym of DRE application QoS issues. In particular, it does
Solution.  Using the MIC paradigm can help to shield DRiot address the integration of priority propagation, resource al-
applications from the differences between diverse middlewggseations, dependability, and predictability that are crucial to
technologies and avoid tightly coupling applications to SpBRE applications.

cific middleware. For example, the tools offered by COSMIC Therefore, the tools we are developing in CoSMIC are de-
help resolve these challenges by using higher level modelgigned to model both the application functionality and its end-
languages, such as UML [16], to model application and systeftend QoS requirements. With CIAO’s support for QoS-

behavior as indicated by integration point 1 and 2 in Figurednabled, reusable CCM components, it is possible to
Other CoSMIC tools can be used to synthesize middleware-

i . - . e Model the QoS requirements of applications using UML

specific assemblies. In our work, we are initially targeting the . o i
CCM and Real-time CORBA to demonstrate concretely how* Assomat.e the model with different .Qos proﬁles. and. .
MDA tools can generate and compose components and assem_Synthesme the QoS_—enabIed application functionality in
blies. There is no reason, however, why different middleware COmMponent assemblies.
technologies, such as J2EE or .NET, cannot be supported skigeire 7 illustrates how CoSMIC can be used to synthesize
the component models are based on similar patterns. and assemble QoS-enabled, CCM middleware for DRE appli-

Due to the clean separation of component implementations. This synthesis uses the following iterative process to
tions in the CCM, MDA provides a natural extension to conassemble and deploy QoS-enabled distributed applications:
pose component interconnection for the CCM. Moreover, thg nodel the overall application using CoSMIC visual
CCM provides the mechanisms for composing an applications modeling tools and specify the application’s QoS require-
by reusing existing components and middleware infrastruc-  mens as constraints. This step defines and partitions the
ture. To achieve this, COSMIC takes advantage of the de- fynctionality and QoS requirements demanded by each
ployment facility provided by CIAO. We are using thimdel- application module based on the overall model of the ap-
first/generate-nexstrategy to implement finer grained func- plication, as described by integration point 1 of Figure 7
tionality of components. As shown by integration point 4 in2_ Compose application serversusing CoSMIC applica-
Figure 7, we are developing tools that help model and syn- - yjo server composition tools to combine component as-
thesize component implementations based on the component semblies by mixing and matching existing off-the-shelf
function specification defined in higher level modeling tools. components and partitioning or defining the functional-

o . . . ity of new components, as needed, as shown in Point 2
Challenge 2: Satisfying Multiple Quality of Service (QoS) of Figure 7. The metadata in a component assembly also
Requirements Simultaneously contain QoS requirements for each components that the

Problem. DRE applications demand stringent QoS support composition tools dgnved from the model.

from their middleware. For example, DRE applications sucts: Model and synthesize components-If new component

as controller for high-speed surface mount component pick- MmPlementations are needed from the previous step, each
and-place machines require real-time predictability and per- 21 F)e modeled by using CoSMIC's modeling tool. CoS-
formance guarantees. Due to (1) the complexity of these Qos MIC'S component implementation synthesizer will gen-
requirements, (2) the heterogeneity of the environments in €rate the actual implementations based on the models, as
which they are deployed, and (3) the existing legacy systems ndicated by integration point 4 of Figure 7.

and data, it is infeasible to develop a single-vendor, end-to?- Validate applications via's CoSMIC tools that check
end solution that can address all these challenges. Instead, Whether an application composition implements its
integrating highly configurable, flexible, and optimized COTS ~ model definitions correctly.

components from several different providers based on standafd Deploy the resulting system for testing and tuningvia
component middleware via Web service enables developers to tools that fine-tune CIAO’s QoS requirements for assem-
assemble and deploy these systems rapidly and robustly. En- blies. Later iterations of this process can use these adjust-
suring application QoS requirements end-to-end, however, can ments as feedback to improve the overall system model.
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Challenge 3: Addressing Accidental Complexities in Inte- 5 Related Work
grating Software Systems
Large-scale application integration using Web services is an

Problem. QoS-enabled component middleware, such glscreasmgly popular' research.top|c. Integrating Web services
|msplemented with different middleware technologies is hard

CIAO, provides libraries of reusable, configurable componen e 10 the lack of a standard interaction model for Web ser-

that can be used to assemble and deploy app_llcanons thatv|oces [6, 13]. There are R&D efforts to define languages that
fer QoS-aware Web services. However, a naive approach,to . . - .

X : describe the interaction models of Web services, such as Web
assemble and configure these components can yield con%‘ -

nents with incompatible, non-interoperable QoS requireme ervices Flow Language [41] and X-Lang [42]. Research on

- . k o SdS-enabIed Web Services currently focuses on either QoS
thereby increasing accidental complexities. Manual asse . : o .
. S : . roperties related to business applications or the design of Web
bling components and configuring their QoS requirements are

tedious and error-prone, which adversely affects applicat% R CeS protocols, such as SOAP and HTTP [43]. Recently,

, . ere have been efforts on an embedded SOAP implemen-
lifecycle costs and time-to-market. Moreover, to ensure thes
. : ation, calledeSOAP(www.embedded.net/eSOAP ) used

requirements are met end-to-end across Web services, appjica- : !
of data exchange in network appliances.

tion servers often explicitly require complex policies and cus- . .
tomized middleware plugins. Manually specifying and confri]%— Our research on QoS-enabled middleware and model driven
p

. o itecture extends earlier work on Model-Integrated Com-
\ljg)r(li%;hese policies makes the development process even %Qng (MIC) [14, 44, 35] to model and synthesize component

middleware code for DRE applications. The MIC infrastruc-
ture provides a unified software architecture and framework
for creating a Model-Integrated Program Synthesis (MIPS)

Solution. The iterative process described in the solution féhvironment [23]. The core components of the MIC infras-
Challenge 2 above helps DRE application developers mantigéture include (1) a customizable generic model editor for
the accidental complexity of assembling components by pfgeation of multiple-view, domain-specific models, (2) model
viding rich semantics in models and automatically propagégtabases for storage of the created models, and (3) a model in-
ing these semantics into assemblies through metadata. THiretation technology that assists in the creation of domain-
is, however, a need to ensure that the application servers s@cific, application-specific model interpreters for transfor-
the underlying middleware are configured properly to satigijation of models into executable/analyzable artifacts. The

the QoS requirements demanded by the installed componet¥ environment is domain-specific and includes tools and
functionality to support the creation and storage of system

, The CCM specification dpes not ygt address how to aSKBdels, in addition to generation of executable/analyzable ar-
ciate component QoS requirements with a component depll‘ﬂ‘)é'cts from these models

ment. Our CCM implementation (CIAO) therefore supports
the configuration of certain component QoS properties via Et,}
component deployment metadata shown by integration poi%

of Figure 7. Since we providing component QoS managem QJ’adigm is constructed that specifies the syntax, static se-

services through containers in our CCM implementation[4 antics, and the presentation semantics of the domain-specific

the synthesizing tools will also generate container Co”ﬁgufﬁbdeling paradigm. The metamodel uses a Unified Modeling

tions in a component assembly, as depicted in Point 3 of FL%Inguage (UML) class diagram to capture information about
ure 7. the objects that are needed to represent the system informa-
To support QoS requirements that were not foreseen tlon and the inter-relationships between different objects. The
the component middleware implementation, CoSMIC can alseta-modeling language also provides for the specification of
synthesize middleware modules that CIAO uses to customvigual presentation of the objects in the graphical model editor.
its behavior to support non-native QoS supports required byPopular examples of MIC technology being used today in-
other systems using the Web services. CIAO’s deploymehide GME [23] and Ptolemy [25] (which are used primar-
framework then uses these customized modules to conifig-in the real-time and embedded domain) and MDA [15]
ure application servers before deploying the componentspased on UML [16] and XML [17] (which is used primarily
shown by integration point 6 of Figure 7. The automation af the business domain). Our work uses the GME tool and
semantic propagation described here ensures that all applifdt. modeling language to model and synthesize component
tion servers providing Web services in an integrated DRE apiddleware for use in provisioning collaborative DRE applica-
plication perform their work as specified in the overall moddipns. In particular, we are enhancing the GME tool to produce
without undue programmer intervention. meta-models for DRE applications, as well as developing and

In the MIC technology, the modeling concepts to be in-
ntiated in the MIPS environment are specified in a meta-
deling language [24]. A metamodel of the modeling
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validating new UML profiles to support DRE applications. 6 Concluding Remarks

To support QoS-enable Web services, the implementatiomgfe to tight coupling between software modules, conventional
a service must be able to honor the QoS requirements that#i@hods for building distributed applications increase the time
service advertises. Our past research on building Real-tigig| effort required to develop and evolve the software. More-
CORBA middleware to support DRE systems with stringesyer, many application quality aspects, such as persistent data
QoS requirements has identified key patterns [39] that we hawsre, security, and management of run-time resources, cut
applied to implement a highly configurable [45], QoS-enablgdross multiple layers, which also tightly couples application
ORB called TAO [33, 46]. Our current research builds upgftware modules with the middleware infrastructure and its
these results to provide the foundation to support the Q@Ssociated housekeeping tasks. These tight couplings yield
enabled CCM. brittle application implementation that are hard to reuse, main-

. . tain, and evolve.
Kon and Campbell [28] apply reflective middleware tech- One way to address these coupling issue is by refactor-

hiques to extend TAO to reconfigured the ORB at run-ti ilg common application logic intobject-oriented application

by dynamically Imkmg in the requ.|red. modules accordmg tf?ameworks{Sl]. This solution has limitations, however, since
the features required by the applications. Although their

re- .. K b . R .
: , . lication objects can still interact directly with each other,
search provides a proof-of-concept for dynamic conﬂgura% P ) y

middleware framework, their research may not be suitable ich encourages tight coupling. Moreover, framework-

o ! . . ) ecific bookkeeping code is also required within the appli-
DRE applications since dynamic loading and unloading O jons to manage the framework, which can tightly couple
components may incur m:]due overhead and prevent the O lications to the framework they are developed upon. It is
from meeting application’s QoS demands. Our work on t

: erefore non-trivial to reuse application objects and port them
Component-Integrated ACE ORB (CIAO) relies upon Mi o different frameworks.

;??er&?oigalﬁitge rreqwrr]eanRrB c&mrggeBnitr']s arr:d thTi'r Ct?n'Component middlewarf22] has emerged as a promising
9 - pproach ensures the an applicatigl), ion to many limitations with object-oriented application
server contains only the required components without compa; . . .
mising the predictability of the system rameworks. This type of middleware consists of reusable
9 P y y : software artifacts that can be distributed or collocated through-
Container architectures provide a useful way to app(wtanetwork.Aproliferation of component middleware tech-
meta-programming techniques [47] to provide QoS assfjRlogies have emerged recently to address various require-
ance control in component middleware, as previously iderffients of d|§tr|buted_appllcatlons. These types of applications
fied in [40]. Containers can also apply aspect-oriented pf§€ increasingly being assembled from components belong-
gramming (AOP) [27] techniques to plug in different norl09 t© disparate middleware technologies, which increases the
functional behaviors [48]. Pluggable ORB components c&ffort required to integrate and deploy semantically compati-

also be used to plug in QoS assurance mechanisms as chigyand interoperable components across multiple middleware
will support. platforms. Moreover, distributed applications must increas-

ingly support multiple simultaneous QoS properties, such as
The QoSketframework [49] developed at BBN Technolodependability, security, and scalability.

gies provides reusable QoS behaviors that can be used teroliferation of incompatible middleware technologies,
modify application QoS behaviors by packaging and installimgpwever, has become an impeding force against developers
these behaviorsinto an application. A QoSket s a collectiontoftake advantage of existing applications using different tech-
these behaviors that bundles QoS specifications, middlewapkogies. The emerging trend of exposing application func-
components that implement, monitor, and control QoS prop#onality via Web serviceseduce the cost of middleware and
ties, and application specific adaptive behaviors in one plagpplication integration. Nonetheless, developers still face
The QoSket is build on th®uality Objects(QuO) [50] dis- the problems outlined above when implement the services.
tributed object computing middleware, which applies aspe@ur solution to these problems involves combining Model-
oriented programming (AOP) [27] techniques to adaptive dptegrated Computing with QoS-enabled component middle-
plications running over wide-area networks. Our CIAO projesfare to create flexible Web services that support heterogene-
provides a QoSket-like mechanism to install QoS behavidng yet can be tailored readily to meet the needs of DRE appli-
for component middleware. CIAO behavior components arations with multiple simultaneous QoS requirements.
reusable by themselves, however, and can be composed alofidpis paper explores the benefits of Model-Integrated Com-
with metadata to specify the actual behaviors. By separatpging for developing DRE applications. Our focus is on the
the behavioral metadata from the implementation, MDA todBMG Model Driven Architecture (MDA) standard and the
can translate QoS constraints into specifications. CORBA Component Model (CCM). We describe how com-
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ponent middleware enables modeling and synthesis toolg§1f8] Steve Vinoski, “Web Services Interaction Models — Part 1:
rapidly develop, assemble, and deploy middleware and appli-

cations that possess multiple, simultaneous QoS requirements.
This combination is important because it does not require
modeling tools to generate all the code. Instead, large portions
of applications can be reused and/or customized from ex'[§
ing middleware components. These middleware components
handle many critical QoS aspects, such as concurrency, diigi

bution, transactions, security, and dependability.
We are developing a Model-Integrated Computing toolsuite
called CoSMIC, which extends the popular GME modeliig’]

and synthesis tools [23] to support the development, assem-

bly, and deployment of QoS-enabled distributed applicatio[ljré]

using component middleware. To ensure these QoS require- . ; o
ments can be realized in the middleware layer, we are aé%] IBM, "MQSeries Family,
developing a QoS-aware CCM implementation called CIA

which is based on our TAO Real-time CORBA ORB. CIA!

]

allows Model-Integrated Computing tools to specify the Qc[§l]
requirements of components in the accompanying metadata.
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