
Virtual Component

A Design Pattern for Memory-Constrained Embedded Applications

Angelo Corsaro, Douglas C. Schmidt, Raymond Klefstad, Carlos O’Ryan
fcorsaro,schmidt,klefstad,coryang@ece.uci.edu

Electrical and Computer Engineering Department
University of California, Irvine, CA 92697, USA

Abstract

The proliferation of embedded systems and handheld de-
vices with limited memory is forcing middleware and ap-
plication developers to deal with memory consumption as
a design constraint [1]. This paper uses thePOSA for-
mat [2] to present the Virtual Component compound pat-
tern [] that helps to reduce the memory footprint of mid-
dleware, particularly standards-based middleware such
as CORBA or J2EE, by transparently migrating compo-
nent functionality into an application on-demand. This
compound pattern applies the Factory Method [3], the
Proxy [3], and Component Configurator [4] design pat-
terns to achieve its goals. We describe the Virtual Compo-
nent pattern as a separate named abstraction since each
of these constituent pattern does not independently re-
solve the set of forces addressed by the Virtual Component
pattern.

Keywords: Design Patterns, Embedded Systems,
Memory Footprint, CORBA, Abstract Factory, Compo-
nent Configurator.

1 Intent

The Virtual Component design pattern provides an
application-transparent way of loading and unloading
components that implement middleware software func-
tionality. This pattern ensures that the middleware pro-
vides a rich and configurable set of functionality, yet oc-
cupies main memory only for components that are actu-
ally used.

2 Example

There is a trend to develop memory-constrained applica-
tions, such as embedded systems, using feature-rich mid-
dleware, such as Java RMI [5], COM+ [6], or CORBA [7].
Memory-contrained applications have historically been
developed manually and hard-coded to use low-level lan-
guages and software tools, which is tedious and error-
prone. The growing use of middleware provides a more
powerful distributed computing model that enables clients
to invoke operations on reusable components without
hard-coding dependencies on their location, programming
language, OS platform, communication protocols and in-
terconnects, and hardware [8].

However, middleware (particularly standards-based
middleware) often has many features that are not be
needed by all applications that use it. For example, in
the context of CORBA:

� A server application may not actually use all three
versions (i.e.version 1.0, 1.1 and 1.2) of the standard
CORBA Internet inter-Orb protocol (IIOP).

� A client application may not need to use all the col-
location optimizations, interceptors, or smart proxy
mechanisms specified in the CORBA standard.

� “Pure client” CORBA applications that invoke re-
quests, but do not service requests from other clients,
do not require a portable object adapter (POA) (a
POA maps client requests to the appropriate servant
in a CORBA server).

Providing all these features in one monolithic imple-
mentation increases middleware footprint, which may

1



make it unsuitable for use in memory-constrained appli-
cations. Two types of footprint are important to memory-
constrained applications:
� Static footprint , which is the amount of storage

needed to hold an image of an application. This
storage can reside in the ROM where the program
is stored, on secondary disk storage, etc. The static
footprint of a particular version of a particular appli-
cation is time-invariant since it does not change as
the application runs.

� Dynamic footprint , which represents the amount of
memory used by a running instance of the applica-
tion. Thedynamic footprintis essentially the sum of
thecode, theheap, andstacksize. Based on this def-
inition, it is clear that thedynamic footprintis time-
dependent. For memory-constrainted applications, it
is essential to have a hard upper bound on the dy-
namic footprint size.

One way to reduce middleware footprint is to provide
compile-time options that produce subsets of middleware
tailored for the needs of each specific application. As the
number of capabilities in the middleware grows, however,
this solution does not scale well since it either
� Forces application developers to know in advance

what features they will require or
� Increases the development cycle by forcing applica-

tion developers to recompile the middleware when-
ever they change the set of features they require.

In addition, compile-time subsetting approaches may
not reduce middleware dynamic memory footprint suffi-
ciently since the resources associated with infrequently
used components will be allocated during execution–even
if they are not used during a particular run of an appli-
cation. It is therefore necessary to devise a more effec-
tive technique to reduce static and dynamic footprint of
middleware by removing unneeded functionality and pro-
viding fine-grained control over the different middleware
components used by an application at run-time.

3 Context

Componentized middleware, where configurability and
customizability is needed to meet memory constraints im-
posed by application requirements and the run-time plat-
form.

4 Problem

Middleware provides developers with a powerful and
reusable set of abstractions for building applications. Im-
plementing memory-constrained applications via reusable
middleware remains hard, however, since the following
forces must still be resolved:

1. The specifications for features and options for mid-
dleware (particularly standards-based middleware)
are large and continually growing

2. Middleware implementations can incur a large static
and dynamic memory footprint unless they are de-
signed in advance to avoid this and

3. Memory-constrained applications cannot afford to
waste storage on unnecessary or rarely used func-
tionality.

In addressing the previous forces, care must be taken to
provide a solution that:

1. Presents a clean architecture that is amenable to
reuse and can be retargeted easily.

2. Does not introduce accidental complexity in the ex-
posed API,i.e. is transparent.

Supporting all the features and options specified by
middleware can therefore create a large memory foot-
print, making the middleware unsuitable for memory-
constrained applications.

Few applications use all the functionality provided by
middleware. However, implementers of middleware can-
not wantonly eliminate capabilities from their products
based on the needs of any particular application. Mid-
dleware must therefore be designed to support easy cus-
tomization to meet application functionality requirements
andmemory constraints.

,! Implementations of standard CORBA must be pre-
pared to provide all the services in the specification, even
though applications rarely use all its features. For exam-
ple, business applications use only a few transport proto-
cols or QoS policies. Likewise, embedded applications
may not use the CORBAAny data type, or may choose
to useAnys in a limited way. Moreover, real-time ap-
plications rarely use middleware meta-programming fea-
tures [9], such as the CORBA dynamic invocation inter-
face (DII) that discovers and invokes operations on ob-
jects at run-time.

2



5 Solution

Identifycomponentswhose interfaces represent the build-
ing blocks of the middleware being developed and imple-
ment these capabilities usingconcrete components. Use
factoriesto create the concrete components needed by an
application via a set ofloading/unloading strategiesthat
provide different ways to instantiate and manage the con-
crete components occupying memory at run-time. This
patternvirtualizeseach component since the middleware
does not know whether a component is present or when it
will be instantiated until its functionality is actually used.

In detail: each component identified during the mid-
dleware decomposition should be implemented in a man-
ner that is as decoupled from other components as pos-
sible. A concrete component should be associated with
a loading strategy to support different application use-
cases,e.g., some concrete components should be loaded
eagerly, whereas others should be loaded lazily. Compo-
nent unloading can also be done eagerly (e.g., as soon as
the instance reference count goes to zero) or lazily (e.g.,
when when memory gets low, unload components with
zero reference count based on a least-recently-used al-
gorithm, etc.). The Virtual Component pattern provides
component-level control over the subset of functionality
that is needed for a given application, thereby minimiz-
ing the overall static and dynamic footprint by controlling
when, how, and what components will be instantiated as
the application runs.

6 Structure

The participants in the Virtual Component pattern include
the following:

� Component, which defines the interface to the capa-
bilities provided by a component and represents the
contractbetween a component and its clients.

,! For example, if an ORB’s Portable Object
Adapter (POA) is designated as a component, its
component interface is thePortableServer API
specified by the OMG CORBA specification [7].

� Concrete component, which provides the actual im-
plementation of a component. The Virtual Compo-
nent pattern avoids loading and/or deploying con-

Component

Class

Responsibility

Define an interface for a well
defined and encapsulated service
provided by the middleware

Collaborator

crete components into applications that do not re-
quire their capabilities.

,! For example, the implementation of a POA in a
particular ORB is a concrete component.

ConcreteComponent

Class

Responsibility

Provide an implementation for the
service defined by the Component

Collaborator

� Component factory, defines an interface and a fac-
tory method that creates components.

,! For example, the component factory in CORBA
is the CORBA::ORB interface, whoseresolve_
initial_references() operation is a factory
method that returns an object reference to a compo-
nent based on a string parameter passed to the op-
eration. Other factory methods in CORBA include
CORBA::Object::_narrow() and CORBA::
ORB::string_to_object() .

ComponentFactory

Class

Responsibility

Provide an interface for the creation
of Components

Collaborator

� Concrete component factory, a concrete imple-
mentation of the component factory that produces
concrete components.

,! For example, the implementations of the
CORBA::ORBorCORBA::Object interfaces pro-
vided by a specific ORB are concrete component fac-
tories.

� Loading strategy, which defines how and when a
concrete component is loaded and instantiated.

3



ConcreteComponentFactory

Class

Responsibility

Create ConcreteComponents, using
the appropriate loading strategy

Collaborator

Loading Strategy

,! For example, an embedded application that needs
to minimize its dynamic footprint can use a loading
strategy that loaded and instantiated a POA concrete
component lazily,i.e., on-demand at run-time. Con-
versely, a real-time application that cannot tolerate
the jitter introduced by this lazy initialization can use
a loading strategy that pre-loaded and initialized the
POA eagerly,i.e., at ORB initialization time.

LoadingStrategy

Class

Responsibility

Provide a way of loading and
instantiating components

Collaborator

� Unloading strategy, which defines how and when a
concrete component and its associated resources are
unloaded.

,! For example, components could be reference
counted, and once the instance count reaches zero the
associated resources are unloaded,i.e., the compo-
nent instance can be released and its associated DLL
could be unloaded. Unloading may be lazy or ea-
ger. Lazy unloading means a component is unloaded
only when available memory becomes low, at which
point classes with a zero instance count may be un-
loaded. Eager unloading means a component class is
unloaded immediately whenever the instance count
goes to zero.

UnloadingStrategy

Class

Responsibility

Provide a way of unloading
components

Collaborator

The structure of participants in the Virtual Component
pattern is shown in the class diagram in Figure 1.

ComponentFactory
+CreateComponent()

ConcreteComponentFactory

+CreateComponent()

«interface»
Component

ConcreteComponent

LoadingStrategy

<<create>>

UnloadingStrategy

Figure 1:Virtual Component Static Structure.

7 Dynamics

To illustrate the collaborations performed by participants
in the Virtual Component pattern, we examine three dif-
ferent loading scenarios. In this paper, we distinguish be-
tween theloadingand theinstantiationof a component:

� Loading refers to the activities performed to make
the implementation of a component available for in-
stantiation. For example, in a C++ application where
components are packaged in DLLs, loading a com-
ponent corresponds to loading the DLL associated
with a component. Conversely, in a Java application
the loading phase corresponds to loading the classes
that implement the component within the JVM.

� Instantiation corresponds to actually creating and
initializing an instance of a particular component.
Clearly, to be instantiated a component must first be
loaded.

Scenario 1. This scenario shows aneager staticloading
strategy, where the application loads the entire concrete
component during program startup.

� At application startup time, all needed components
are loaded and initialized.

� The application code creates a concrete component
via a component factory, which can either provide
a pre-initialized component or create a new one.
No subsequent dynamic loading is necessary in this
case.

� The application code then uses the component.
� In this scenario the unloading policy does nothing,

i.e., it is a no-op. Unloading a component that is not
used at a particular time or during a particular path

4



through a program defeats the purpose of eager static
loading since additional latency will be required to
reload the component if its needed later in the pro-
gram. The main goal of eager static loading is to
ensure that whatever is used by the system will al-
ready be in place when it is needed. This property
is desirable for applications that cannot tolerate jitter
introduced by lazy loading and instantiation.

The following figure illustrates the eager static loading
strategy:

aClient aComponentFactory aComponent

CreateComponent

aMethod

<<create>>

Scenario 2. This scenario shows aneager dynamic
loading strategy. In this strategy, a concrete component
factory loads the entire concrete component when the ap-
plication resolves the component at run-time, rather than
loading it eagerly during program startup.

� The application code creates a concrete component
via a component factory.

� The eager dynamic loading strategy associated with
the concrete component factory loads the concrete
component. Depending on how the middleware was
configured, the factory can create different types of
concrete components.

� The application code then uses the component.

� Component use is reference counted, and when a
component reference count drops to zero the unload-
ing strategy associated with the component is in-
voked.

The following figure illustrates the eager dynamic load-
ing strategy:

aClient aComponentFactory aComponent

CreateComponent

aMethod

<<create>>

aLoadingStrategy

loadComponent

Scenario 3. This scenario shows alazy dynamicloading
strategy. This strategy defers loading the concrete com-
ponent until it is actually accessed by a client, rather than
loading it when it is requested by the application.

� The application code creates a concrete component
via a component factory.

� The concrete component factory creates and returns
a reference to a proxy for the concrete component.
This proxy knows how to load the component’s func-
tionality and data when it is accessed.

� The application code then uses the component via its
proxy, which triggers the proxy to load the compo-
nent’s functionality and data. Depending on how the
middleware was configured, the proxy can load dif-
ferent types of concrete components.

� Component use is reference counted, and when a
component reference count drops to zero the unload-
ing strategy associated with the component is in-
voked.

The following figure illustrates the lazy dynamic load-
ing strategy:

aClient aComponentFactory aComponentProxy

aMethod

<<create>>

aLoadingStrategy

loadComponent
createComponent

aComponent

<<create>>

8 Implementation

This section describes the activities associated with im-
plementing the Virtual Component pattern.

5



1. Partition the middleware into a set of decou-
pled components with well-defined interfaces. Re-
quired componentsare those required by any application
that might use the middleware since they are fundamental
to its internal operational behavior. In contrast,optional
componentsare those that may be used by specific ap-
plications. Identify the optional components that exist in
the middleware and make them into virtual components.
Each virtual component will be represented by a common
abstract interface, a concrete implementation, and a load-
ing strategy.

,! The ACE ORB (TAO) [10], which is an open-source
implementation of CORBA, decomposes its C++ imple-
mentation of CORBA [7] into many core ORB compo-
nents, such as the Portable Object Adaptor (POA), Real-
time CORBA, CORBA Messaging, transport protocols,
and interface repository, that are optional for memory-
constrained applications.

2. Define implementation strategies for concrete com-
ponents. Some components identified in implementa-
tion activity 1 may have more than one implementation
alternative. Where alternative implementations exist for
a component, or where a set of different subcomponents
work together to implement a component, apply the Strat-
egy pattern [3] to define each concrete component imple-
mentation for the virtual component interface. For ex-
ample, there may be three different types of POAs: a
standard POA, a real-time POA, and a multicast POA [].
When the POA is needed, only the concrete class of the
desired type of POA is loaded and instantiated.

,! Common examples of optional middleware compo-
nents in TAO include:

� Excess components.Certain applications may or
may not need a particular CORBA feature, such
as Any data types or portable interceptors. The
middleware—and in some cases even application
developers—may not be able to determine before
run-time if a feature is needed.

� Role-dependent components.The CORBA stan-
dard defines a large set of related capabilities, such
as CORBA IIOP message marshalers/demarshalers,
portable object adapters (POAs), or interoperable ob-
ject reference (IOR) format parsers. Only a subset of
these capabilities are actually used at run-time, de-
pending on the role that an application play,e.g.,

client, server, or both client and server. However,
all capabilities must be available in case they are
needed.

� Component implementation alternatives.
CORBA capabilities, such as buffer allocation,
object adaptor, network protocol, or dynamic thread
scheduling, can be implemented using a variety of
different strategies, yet only one (or in some cases,
none) is actually needed at any given time.

These optional implementations of TAO’s components
described above are implemented as strategies that reside
on secondary storage until they are needed or wanted, at
which point they are linked into the application’s address
space.
3. Define the component component loading strate-
gies. Define a mean to configure which loading strate-
gies should be used for each concrete component in the
middleware. There are several sub-activities involved
here:

3.1. Determine how to associate component iden-
tity with concrete component implementations. Con-
crete components can be named using integer values or
strings. Strings can be read more easily by programmers
and simple management tools, but integer values require
less space and may be compared more efficiently.

,! For example, CORBA’sresolve_initial_
references() operation is passed a string containing
the component to be resolved.

To prevent name clashes, interface identifiers can be
generated algorithmically.

,! For instance, Microsoft COM identifies components
using 128 bit globally unique identifiers (GUIDs) based
on the address of the network interface, the date, and the
time.

The component factory includes a method that returns
component references to clients. The type of information
returned from this method depends largely on the pro-
gramming language.

,! For example, CORBA and Java clients will receive
an object reference, whereas pointers may be an appropri-
ate choice for C++.

3.2. Determine the loading strategy for concrete
components. Some applications are more concerned
about footprint, while others may be more concerned

6



about predictable real-time performance. We therefore
differentiate the following binding times:

� Eager static, which loads the entire concrete compo-
nent immediately during program initialization. This
strategy is intended for those applications concerned
with real-time performance. In this case, the loading
strategy may pre-load user-selected concrete com-
ponents at initialization time to eliminate jitter that
would result if a lazy component faulting strategy
were used. The implementation of this strategy relies
on implementation language mechanisms to perform
static initialization. For example Java providesstatic
blocks, while in C++ there are idioms that can be
used to simulate a Javastaticblock. The code that is
executed at application startup time then ensures that
all components are loaded and instantiated.

� Eager dynamic, where the concrete component fac-
tory loads the entire concrete component when it is
instructed to resolve the component at run-time. This
strategy is suited for applications that are concerned
about minimal footprint, but can tolerate initial de-
lays from dynamic loading. The implementation of
this strategy could use the Component Configurator
pattern [4] to implement the different components.
When a component needs to be created, the com-
ponent factory will use the services provided by the
component configurator to load and initialize it.

� Lazy dynamic, which defers the loading of a concrete
component until it is actually accessed by the client.
This strategy is suited for footprint-sensitive appli-
cations that can tolerate the latency of loading a con-
crete component into memory on-demand. The im-
plementation of this strategy would require the com-
ponent factory to create component proxies that will
lazily create their associated concrete components
only when a component is actually accessed.

,! TAO uses the eager dynamic scheme in which
the ACE Service Configurator [11] framework (which
implements the Component Configurator pattern [4]) is
used to load and initialize components, which are cre-
ated via factory methods. For example, a POA pro-
vides a series of services needed to dispatch upcalls to
CORBA servants in a portable, efficient, and type-safe
manner. This optional component need not be loaded
and initialized in the ORB until an application tries to re-

solve it via theCORBA::ORB::resolve_initial_
reference() operation. At this point, the appropriate
POA class is loaded and an instance is created. A simi-
lar approach is used for the other TAO components men-
tioned above.

Likewise, ZEN [12] is a Java implementation of
CORBA that uses Java’s dynamic class loading (or JVM
support for on-demand class loading) to load concrete
components at the appropriate time. ZEN uses naming
conventions to construct class names from the values,
such as version number, message type, or IOR format
name, that lead to the use of the class, so that the ORB
can know what classes to load. These uniform naming
conventions enable new classes to be added easily later.

In both these CORBA implementations, optional mid-
dleware components can either be

� Eager static, e.g., when a developer knows a partic-
ular set of core ORB services are required or

� Eager dynamic, i.e. loaded on-demand only when
needed and optionally cached in primary memory for
fast reuse.

4. Define the concrete component unloading strate-
gies. Depending on application characteristics, different
unloading strategies can be used. At one end of the spec-
trum, we could have an unloading strategy that does noth-
ing, i.e., it could be a Null Object [13]. Conversely, we
could have an unloading strategy that unloads all the re-
sources associated with a component, including the DLL
associated with the component.

Naturally, unloading DLLs must be performed in a way
that is consistent with how DLLs are opened and loaded.
For instance, one approach might rely on the reference
counting provided by the OS for opened DLLs. Another
approach would implement this reference counting in the
middleware to avoid unnecessary system calls and pro-
vide greater control over resource management.

9 Example Resolved

Applications written using CORBA rely on astubto make
operations invoked on CORBA objects appear local, even
if they are remote. A stub is an instance of the Proxy pat-
tern [3, 2] that marshals and demarshals parameters and
forwards client requests to a target object. Internally, an

7



ORB may need to use different stub implementations for
the same CORBA object or for different instances of the
same CORBA object. For example, different stub im-
plementations can be used to implement collocation op-
timizations [14], interceptors [15], or smart proxies [16].

The Virtual Component pattern has been applied to
TAO. TAO uses this pattern to control how it loads and
initializes stubs associated with CORBA objects. To see
how TAO uses the Virtual Component pattern, consider
the following code that defines the IDL interface for a
Bank Account application.

interface Account {
float get_balance ();
float withdraw (in float amount);
void deposit (in float amount);

};

The class diagram depicted in Figure 2 represents the
structure of the classes created by the TAO’s IDL com-
piler for theAccount interface. This set of collaborating

Account

+get_balance()
+widraw()
+deposit()

Account_Proxy_Broker

+select_proxy()

Account_Proxy_Impl

Remote_Account_Proxy_Broker Remote_Account_Proxy_Impl

ThruPOA_Account_Proxy_Impl

Direct_Account_Proxy_Impl

<<creates>>

Strategized_Account_Proxy_Broker

<<creates>>

delegates

Figure 2: Static Structure of the Virtual Component
Pattern Applied in TAO

classes implements the Virtual Component pattern. Fig-
ure 2 and Figure 1 shows how theAccount_Proxy_
Impl class plays the component role, while the imple-
mentation of this class plays the concrete component
role. TheAccount_Proxy_Broker plays the role of
the component factory, while theRemote_Account_
Proxy_Broker and theStrategized_Account_
Proxy_Broker play the role of the concrete component
factory. In this incarnation of the Virtual Component pat-
tern, the loading strategy is associated with the concrete
factory rather than the concrete component.

Figure 3 shows the interaction diagram for this instance
of the Virtual Component pattern. In this use case, the

proxies are loaded lazily.

aClient anAccount

get_balance

anAccount_Proxy_Broker

select_proxy

anAccount_Proxy_Impl

get_balance

<<create>>

Figure 3: Interaction Diagram of the Virtual Compo-
nent Pattern Applied in TAO

The C++ code fragment below shows the base class for
the stub implementation associated with theAccount
interface. This stub code is generated by the TAO IDL
compiler. TheTAO_Account_Proxy_Impl provides
exactly the same methods defined in theAccount in-
terface, but each method has an additional argument of
typeCORBA::Object , which represents the target ob-
ject on which the method is invoked. This argument
is needed to make theTAO_Account_Proxy_Impl
concrete implementation stateless; thus, all theTAO_
Account_Proxy_Impl instances areflyweights[3].

class TAO_Account_Proxy_Impl
: public virtual TAO_Object_Proxy_Impl

{
public:

virtual ˜TAO_Account_Proxy_Impl (void) {}

virtual CORBA::Float get_balance
(CORBA::Object *obj) = 0;

virtual CORBA::Float withdraw
(CORBA::Object *obj,

CORBA::Float amount) = 0;

virtual void deposit
(CORBA::Object *obj,

CORBA::Float amount) = 0;

protected:
TAO_Account_Proxy_Impl (void);

};

Concrete implementations ofTAO_Account_
Proxy_Impl provide different ways of performing a

8



call on a CORBA object. Decorators [3] could also be
used to add behavior to existing concrete implementa-
tions.

The TAO_Account_Proxy_Broker class shown
below is the base class for the various concrete stub im-
plementation factories.

class TAO_Account_Proxy_Broker
{
public:

virtual ˜TAO_Account_Proxy_Broker (void);

virtual TAO_Account_Proxy_Impl &
select_proxy (Account *obj) = 0;

protected:
TAO_Account_Proxy_Broker (void);

};

The role of this class is to create the appropriate stub to
perform a call on a given CORBA object, based on prop-
erties of the running application. In TAO, this factory rep-
resents the portion of code that encapsulates the loading
strategy for stub implementations. In fact, depending on
how the application is compiled, different instances of the
component factory will allow either eager or lazy loading.

The actual instance of theTAO_Account_Proxy_
Broker subclass created for anAccount object de-
pends on both static configuration and runtime properties.
TAO then dynamically uses theCORBA::Object::
_narrow() operation as a factory method to create
the appropriate subclass ofTAO_Account_Proxy_
Broker . The appropriateTAO_Account_Proxy_
Broker factory will be created when the following client
code runs:

// Get the object reference somehow.
CORBA::Object obj = ...

// Narrow the object down to the right type.
Account_var an_account =

Account::_narrow (obj);

// ...

After this operation is performed, the appropriateTAO_
Account_Proxy_Broker implementation will have
been set for theAccount object.

Now let’s consider what happens when the following
code is executed:

// ...
CORBA::Float balance =

an_account->get_balance ();
// ...

This fragment of code results in the invocation of the fol-
lowing method:

CORBA::Float Account::get_balance () {
TAO_Account_Proxy_Impl &proxy =

this->the_TAO_Account_Proxy_Broker_->
select_proxy (this);

return proxy.get_balance (this);
}

At this point, depending on the instance of the
TAO_Account_Proxy_Broker subclass that was
associated with theAccount object, the most ap-
propriate TAO_Account_Proxy_Impl will be re-
turned. The code executed by the concrete in-
stance of theTAO_Account_Proxy_Impl , (e.g.,
if we consider theTAO_Account_Strategized_
Proxy_Broker ) would behave as described below:

TAO_Account_Proxy_Impl &
TAO_Account_Strategized_Proxy_Broker::

select_proxy (Account *object)
{

int strategy =
TAO_ORB_Core::collocation_strategy

(object);

if (this->proxy_cache_[strategy] != 0)
return *this->proxy_cache_[strategy];

// This call loads and creates the
// appropriate instance of the proxy
// depending on the strategy.
this->create_proxy (strategy);

return *this->proxy_cache_[strategy];

}

In this code fragment, the TAO_Account_
Strategized_Proxy_Broker uses a strategy

9



to determine the most appropriate proxy for performing
the requested operation. It then lazily obtains an instance
of the needed proxy implementation. Depending on
how thecreate_proxy() method is implemented, a
combination of both lazy creation and lazy loading are
possible. In the current implementation, no unloading
take place.

As shown in this example, the Virtual Component pat-
tern can be used to control the way in which different con-
crete components in a software system are loaded and ini-
tialized. In the context of TAO, this pattern helps to re-
duce the dynamic footprint for CORBA applications, es-
pecially for applications that have many different CORBA
object instances. Moreover, the Virtual Component pat-
terns frees application developers from having to know
which features it will need, while providing a mechanism
to ensure that what is needed will be in the right place at
the right time.

10 Known Uses

The ACE ORB (TAO) [10] is a C++ implementation of
CORBA that uses the Virtual Component pattern to im-
plement its portable object adapter (POA), client-side sup-
port for its Interface Repository, pluggable protocols, han-
dling of multiple IOR formats, and to support the CORBA
dynamic invocation interface (DII) and dynamic skeleton
interface (DSI).

The ZEN ORB [12] is a Java implementation of
CORBA that uses the Virtual Component pattern for a
wide range of optional capabilities, including pluggable
object adapters, object resolvers, IOR parsers, GIOP mes-
sage handlers, message buffer allocation, CDR stream
reader/writers, protocol transports, and Any data types.
Since ZEN’s design was heavily influenced by the lessons
learned on the TAO project, it is more aggressive in its
uses of the Virtual Component pattern throughout the
ORB.

Java Virtual Machines (JVMs) use a variation of this
pattern in which a component is essentially represented
by a class. In order to avoid loading classes that may not
be used, JVMs defer the loading of a particular class up
until its first active use. Moreover, JVMs unload classes
for which there are no instances. Unfortunately, there is
no standard way of specifying eager loading of classes,

so JVMs always use lazy loading. For applications that
cannot tolerate the jitter introduced by lazy class loading,
the Virtual Component pattern could be used to provide
eager class loading in Java middleware and applications.

Product demosare an example of the Virtual Compo-
nent pattern. To reduce theft, many stores have resorted to
displaying either non-functional mock-ups of some prod-
ucts, such as electronic devices, or only the boxes that
contain the products, such as with software. The actual
products reside somewhere back in the warehouse. From
the outside, the box appears like it has the real product
inside, but it is just a virtual product. When a customer
wants to purchase such a product, they place the box in
their cart and carry it to the checkout. This “product fault”
results in the checkout clerk fetching the real product to
place it in the box. This entire process happens (almost)
transparently to the customer. When the customer gets
home, they have their real product in hand.

11 Consequences

The Virtual Component design pattern has the following
benefits:

� The static and dynamic footprint of the middleware
can be adapted to suit the needs of the application.
For example, any particular component that is known
to be unused can be eliminated from the static foot-
print. In addition, only those components in active
use are included in the dynamic footprint.

� It allows middleware developers to offer alternative
implementations for components of their system,
which improves middleware flexibility by support-
ing different application requirements. For example,
alternative algorithms for buffer allocation may be
offered, via the Strategy pattern [3], yet only one al-
ternative at a time must be “plugged in.”

� It provides fine-grained control over the timing of
component loading and unloading. The strategy
for loading and unloading a component can be cus-
tomized to suit the needs of each application. For
example, components that cause jitter when loaded
lazily can be configured to be loaded eagerly. Like-
wise, those not contributing to jitter may be loaded
and instantiated lazily to minimize the dynamic foot-
print.

10



However, this pattern also incurs the followingliabili-
ties:

� The use of a decoupling layer between the compo-
nents in the middleware introduces some overhead.
Whether this overhead is acceptable or excessive de-
pends on the application, implementation language,
compiler technology, and the role that the compo-
nent plays in the critical path of the application. Ad-
vanced software techniques, such as global compiler
optimizations or aspect-oriented programming, can
be used to reduce or eliminate much of this overhead.

� Certain loading and unloading strategies—i.e., eager
dynamic and lazy dynamic—can cause processing
delay and jitter that may be unacceptable for real-
time applications. Eager static loading may be used
to eliminate these delays, however, if adequate mem-
ory is available for the resulting dynamic footprint
expansion.

12 See Also

The Virtual Component pattern can be viewed as a com-
pound pattern [] that combines elements of the Factory
Method [3], Proxy [3], and Component Configurator [4]
patterns. The Factory Method pattern defines an interface
for creating an object, but allows subclasses to decide the
particular type. Essentially, a factory method defers the
instantiation of an object to subclasses. The Proxy pattern
provides a surrogate or placeholder for another object to
control access to it. The Component Configurator pattern
is a dynamic component configuration mechanism that
uses ascripting mechanism to define what components
are created, brought into the system, and removed from
the system. The Virtual Component compound pattern
combines these patterns to create a dynamic component
configuration mechanism that relies on a implicitfaulting
mechanism to load in a required component.

It is worth noting that the patterns constituting the Vir-
tual Component pattern used in isolation do not address
all the forces addressed by the Virtual Component pat-
tern. It is the synergy provided by this compound pattern
that make it possible to address all the forces outlined in
Section 4.

One variation of the Proxy pattern [2, 3] has a simple
implementation of an object that can be substituted with

the full implementation of that object upon demand. The
Proxy pattern can be used to implement component proxy
in the lazy dynamic variant of the Virtual Component pat-
tern. In particular, a factory would instantiate a compo-
nent proxy instead of a concrete component. The proxy
would then create the concrete component at its first ac-
tive usei.e., when the first method call is invoked on the
object.

The Strategy design pattern [3] defines a common inter-
face with alternative implementations so different objects
may be plugged-in to allow variations in desired behavior.
Some virtual components may be defined by a strategy
applied to optional components identified by application
developers.

The Lazy Acquisition [17] design pattern provides a
way of deferring resource acquisition. This pattern could
be used un synergy with the Virtual Component pattern
for the lazy loading strategies.

Early real-time operating systems provided
programmer-controlled memory segment overlays.
For example, DEC RT-11 allowed programmers to define
segments of code and/or data to load at different times
to overlay the same area of memory. These memory
segments were hard to implement, however, because pro-
grammers had to decidebefore run-timewhich functions
to group into segments. They also had to decideat run
time how to explicitly switch from segment to segment.
This approach and its corresponding Segmentation
pattern is described by [1].

Systems with abundant primary and secondary storage
and virtual memory can rely on operating system virtual
memory mechanisms to subset the footprint of middle-
ware and application software. In turn, OS virtual mem-
ory mechanisms are based on patterns such as Copy-on-
Write and Paging described in [1]. Virtual memory may
not be predictable enough for many types of real-time em-
bedded systems, however. In addition, many embedded
systems have primitive operating systems and hardware
that make conventional virtual memory solution infeasi-
ble.

13 Concluding Remarks

As embedded applications are increasingly developed
with standards-based, reusable middleware, there is a

11



growing mismatch between what is provided by the mid-
dleware and what is needed by any particular application.
This mismatch can yield wasted memory resources for sit-
uations where the middleware does not provide an effec-
tive level of configurability. For example, if a CORBA
ORB is used to support an embedded application it is cru-
cial to avoid paying memory footprint costs for function-
ality that is not needed by the application.

Developers of middleware must therefore make hard
choices about what functionality to include and what
functionality to omit. If too much functionality is in-
cluded, middleware footprint will be unsuitable for em-
bedded applications that have stringent constraints on the
size of their EPROM and RAM memory. Conversely, if
too little functionality is included, the middleware may
not support application needs adequately, which pushes
more development effort and cost onto application devel-
opers.

The Virtual Component pattern described in this paper
allows developers of standards-based middleware to offer
a large set of functionality to their users while keeping the
static and dynamic memory footprints proportional to the
features they actually use. This patternvirtualizeseach
component since the middleware does not know whether
a component is present or when it will be instantiated un-
til its functionality is actually used. The Virtual Com-
ponent pattern has been applied successfully in a variety
of standards-based middleware, including TAO, ZEN, and
Java virtual machines.

14 Acknowledgments

Thanks to the DOC Group at Washington University, St.
Louis and the University of California, Irvine for apply-
ing the Virtual Component pattern in the TAO and ZEN
ORB middleware projects. Thanks also to Don Hinton
for helpful comments on the paper.

References

[1] J. Noble and C. Weir,Small Memory Software: Patterns
for Systems with Limited Memory. Boston:
Addison-Wesley, 2001.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal,Pattern-Oriented Software Architecture – A
System of Patterns. New York: Wiley and Sons, 1996.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriented
Software. Reading, Massachusetts: Addison-Wesley,
1995.

[4] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. New York:
Wiley & Sons, 2000.

[5] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed
Object Model for the Java System,”USENIX Computing
Systems, vol. 9, November/December 1996.

[6] D. Box, Essential COM. Addison-Wesley, Reading,
Massachusetts, 1997.

[7] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.6 ed., Dec.
2001.

[8] M. Henning and S. Vinoski,Advanced CORBA
Programming With C++. Reading, Massachusetts:
Addison-Wesley, 1999.

[9] N. Wang, D. C. Schmidt, O. Othman, and
K. Parameswaran, “Evaluating Meta-Programming
Mechanisms for ORB Middleware,”IEEE
Communication Magazine, special issue on Evolving
Communications Software: Techniques and Technologies,
vol. 39, Oct. 2001.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The
Design and Performance of Real-Time Object Request
Brokers,”Computer Communications, vol. 21,
pp. 294–324, Apr. 1998.

[11] D. C. Schmidt and T. Suda, “The Service Configurator
Framework: An Extensible Architecture for Dynamically
Configuring Concurrent, Multi-Service Network
Daemons,” inProceedings of the Second International
Workshop on Configurable Distributed Systems,
(Pittsburgh, PA), pp. 190–201, IEEE, Mar. 1994.

[12] R. Klefstad, D. C. Schmidt, and C. O’Ryan, “The Design
of a Real-time CORBA ORB using Real-time Java,” in
Proceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing, IEEE,
Apr. 2002.

[13] B. Woolf, “The Null Object Pattern,” inPattern
Languages of Program Design(R. Martin, F. Buschmann,
and D. Riehle, eds.), Reading, Massachusetts:
Addison-Wesley, 1997.

[14] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation
Optimizations for CORBA,”C++ Report, vol. 11,
pp. 47–52, November/December 1999.

12



[15] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith,
“Using Interceptors to Enhance CORBA,”IEEE
Computer, vol. 32, pp. 64–68, July 1999.

[16] N. Wang, D. C. Schmidt, M. Kircher, and
K. Parameswaran, “Towards a Reflective Middleware
Framework for QoS-enabled CORBA Component Model
Applications,”IEEE Distributed Systems Online, vol. 2,
July 2001.

[17] M. Kircher, “Lazy acquisition.”

13


