CORBA: Integrating Diver se Applications Within Distributed Heterogeneous
Environments

Steve Vinoski
vinoski @iona.com
IONA Technologies, Inc.
60 Aberdeen Ave.
Cambridge, MA USA 021381

Thispaper will appear inthefeaturetopicissueof the| EEE
Communications Magazine, Vol. 35, No. 2, February 1997.
Itispresentedinthisformat to ensuretimely dissemination of
scholarly and technical work. Copyrightand al rightstherein
areretained by the author and by other copyright holders. All
persons copying this information are expected to adhere to
the terms and constraintsinvoked by the author’s copyright.
In most cases, this work may not be reposted without the
explicit permission of the copyright hol der.

1 Introduction

An important characteristic of large computer networks such
asthe Internet, the World Wide Web (WWW), and corporate
intranets is that they are heterogeneous. For example, a
corporate intranet might be made up of mainframes, UNIX
workstationsand servers, PC systems running variousflavors
of Microsoft Windows, IBM OS/2, or Apple Macintosh, and
perhaps even devices such as telephone switches, robotic
arms, or manufacturing testbeds. The networksand protocols
underlying and connecting these systems might be just as
diverse: Ethernet, FDDI, ATM, TCF/IP, Novell Netware,
and various remote procedure cal (RPC) [1] systems, for
example. Fundamentally, the rapidly-increasing extents of
these networks are due to the need to share information and
resources within and across diverse computing enterprises.

Heterogeneity in such computing systems is the result of
severa factors:

¢ Engineering tradeoffs. Thereisrarely only asingle ac-
ceptable solution to a complex engineering problem. As
a result, different people across an enterprise often choose
different solutionsto similar problems.

o Cost effectiveness; Vendorsvary intheir abilitiesto pro-
vide the “best” systems at the lowest cost. Though thereis
some amount of “brand nameloyalty,” many consumerstend
to buy the systems that best fulfill their requirements at the
most reasonabl e price, regardless of who makes them.

1Copyright ©1996 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
thiswork in other works must be obtained from the IEEE.

e Legacy systems. Over time, purchasing decisions accu-
mulate, and al ready-purchased systems may betoo critical or
too costly to replace. For example, a company that has been
successfully runningits order fulfillment applications, which
arecritica to itsday-to-day operations, on its mainframe for
thelast fifteen yearsisnot likely to simply scrap their system
and replace it with thelatest fad technologies. Alternatively,
acompany may have spent large sums of money on its cur-
rent systems, and those systems must be utilized until the
investment has paid off.

Ideally, heterogeneity and open systems enable us to use
the best combination of hardware and software components
for each portion of an enterprise. When the right standards
forinteroperability and portability between thesecomponents
areinplace, theintegrationof thecomponentsyiel dsasystem
that is coherent and operational .

Unfortunately, dealing with heterogeneity in distributed
computing enterprisesisrarely easy. In particular, the devel -
opment of softwareapplicationsand componentsthat support
and makeefficient useof heterogeneousnetworked systemsis
very chalenging. Many programming interfaces and pack-
ages currently exist to help ease the burden of developing
software for a single homogeneous platform. However, few
help deal with the integration of separately-developed sys
tems in a distributed heterogeneous environment.

In recognition of these problems, the Object Manage-
ment Group (OMG)? was formed in 1989 to develop, adopt,
and promote standards for the development and deployment
of applications in distributed heterogeneous environments.
Since that time, the OMG has grown to become the largest
software consortium in the world, with over 700 develop-
ers, vendors, and end users on its membership roster. These
members contribute technology and ideas in response to Re-
questsFor Proposal s(RFPs) issued by theOMG. Throughre-
sponses to these RFPs, the OM G adopts specifications based
on commercially-available object technology.

This article describes the OM G’ s Object Management Ar-
chitecture (OMA) [2] and focuses on one of its key com-
ponents, the Common Object Request Broker Architecture

20MG and Object Management are registered trademarks of the Ob-
ject Management Group. CORBA, OMG Interface Definition Language,
CORBAmed, CORBAtel, and CORBAnet are trademarks of the Object
Management Group.

Application Domain Common
Interfaces Interfaces Facilities

Object Request Broker

Object

Services

Figure1: OMA Reference Modd Interface Categories

(CORBA) specification[3]. First, abrief high-level overview
of the OMA is provided, followed by a detailed outline of
CORBA and each of its subcomponents. The summary sec-
tion lists some of the OMG’s current and future plans for
further promoting distributed object technol ogy.

2 The Object Management Architec-
ture (OMA)

The OMA is composed of an Object Model and a Refer-
ence Model. The Object Model defines how objects dis-
tributed across a heterogeneous environment can be de-
scribed, while the Reference Model characterizes interac-
tions between those objects. The OMG RFP process is used
to adopt technology specifications that fit into the Object
Model and the Reference Model and work with the other
previoudy-adopted specifications. Through adherenceto the
OMA, these specifications allow for the development and
deployment of interoperable distributed object systems in
heterogeneous environments.

In the OMA Object Model, an object is an encapsul ated
entity with adistinct immutable identity whose services can
be accessed only through well-defined interfaces. Clients
issue requests to objectsto perform services on their behalf.
The implementation and location of each object are hidden
from the requesting client.

Figure 1 shows the components of the OMA Reference
Model. The Object Request Broker (ORB) component is
mainly responsible for facilitating communication between
clients and objects. Utilizing the ORB component are four
object interface categories:

1. Object Services. These are domain-independent inter-
faces that are used by many distributed object programs. For
example, aservice providingfor thediscovery of other avail-
able services is amost aways necessary regardless of the

application domain. Two examples of Object Services that
fulfill thisrole are:

e The Naming Service — which alows clients to find ob-
jects based on names,

e The Trading Service — which alows clients to find ob-
jects based on their properties.

There are also Object Service specifications for lifecycle
management, security, transactions, and event notification,
aswell as many others[4].

2. Common Facilities: Like Object Service interfaces,
these interfaces are aso horizontally-oriented, but unlike
Object Services they are oriented towards end-user appli-
cations. An example of such a facility is the Distributed
Document Component Facility (DDCF) [5], a compound
document Common Facility based on OpenDoc.® DDCF
allowsfor the presentation and interchange of objects based
on adocument model, for example, facilitating the linking of
a spreadsheet object into a report document.

3. DomainInterfaces. Theseinterfacesfill rolessimilarto
Object Services and Common Facilities but are oriented to-
wards specific application domains. For example, one of the
first OMG RFPsissued for Domain Interfacesisfor Product
Data Management (PDM) Enablers* for the manufacturing
domain [6]. Other OMG RFPs will soon be or already have
been issued in the telecommunications, medical, and finan-
cia domains. In Figure 1, multiple boxes are shown for
Domain I nterfaces to indi cate the existence of many separate
application domains.

4. Application Interfaces: These are interfaces devel-
oped specifically for a given application. Because they are
application-specific, and because the OM G does not develop
applications (only specifications), these interfaces are not
standardized. However, if over time it appears that certain
broadly useful services emerge out of a particular applica
tion domain, they might become candidates for future OMG
standardization.

Figure 2 illustrates the other part of the OMA Refer-
ence Model, the concept of Object Frameworks. These are
domain-specific groups of objects that interact to provide a
customi zabl e solution within that application domain. These
frameworks are typically oriented towards domains such as
telecommunications, medical systems, finance, and manu-
facturing. In Figure 2, each circle represents a component
that uses the ORB to communicate with other components.
The interfaces supported by each component are indicated
on its outer circle. As the figure shows, some components
support application-specific interfaces, aswell asdomainin-
terfaces, common facilities interfaces, and object services.
Other components support only a subset of these interfaces.

30OpenDoc is atrademark of Apple Computer, Inc.

4“Enabler” is aterm derived from Total Quality Management principles.
It is simply defined as any entity, such as a computer program or human
activity, that providesor supportsan abstract businessprocess, e.g., handling
engineering change orders.

Object
Framework

CF=Common Facilities
0OS=0bject Services

Al=Application Interfaces

Di=Domain Interfaces

Figure2: OMA Reference Model Interface Usage

Withinan object framework likethe one showninfigure 2,
each component communicates with others on a peer-to-peer
basis. That is, each component is both a client of other
servicesand aserver for theservicesit provides. In CORBA,
theterms“client” and “server” are merely rolesthat arefilled
on aper-request basis. Very often, aclient for onerequest is
the server for another.

Throughout most of its existence, much of the OMG's
attention was focused on the ORB component of the OMA.
This was necessary because everything else in the OMA
depends on the ORB. The rest of this article will focus on
the ORB, its components, and how it is used to support
distributed object systems. For more information about the
upper layers of the OMA, see [7] or visit the OMG home
page onthe WWW at ht t p: / / www. ong. or g/ .

3 TheCommon Object Request Broker
Architecture (CORBA)

One of the first specifications to be adopted by the OMG
was the CORBA specification. It details the interfaces and
characteristics of the ORB component of the OMA. Asof this
writing, the last major update of the CORBA specification
was in mid-1995 when the OMG released CORBA 2.0 [3].
The main festures of CORBA 2.0 are:

e ORB Core

¢ OMG Interface Definition Language (OMG IDL)
¢ Interface Repository

¢ Language Mappings

e Stubsand Skeletons

e Dynamic Invocation and Dispatch

o Object Adapters

e Inter-ORB Protocols

Most of these areillustratedin Figure 3, which al so shows
how the components of CORBA relate to one another. Each
component is described in detail below.

3.1 ORBCore

As mentioned above, the ORB delivers requests to objects
and returns any responses to the clients making the requests.
The object that a client wishes the ORB to direct a request
tois caled thetarget object. The key feature of the ORB is
the transparency of how it facilitates client/object communi-
cation. Ordinarily, the ORB hides the following:

¢ Object location: The client does not know where the
target object resides. It could reside in adifferent process on
another machine across the network, on the same machine
but in adifferent process, or within the same process.

¢ Object implementation: The client does not know how
thetarget object isimplemented, what programming or script-
ing language(s) it waswrittenin, nor the operating system (if
any) and hardware it executes on.

e Object execution state: When it makes a request on a
target object, the client does not need to know whether that
object is currently activated (i.e., in an executing process)
and ready to accept requests. The ORB transparently starts
the object if necessary before delivering the request to it.

e Object communication mechanisms. The client does
not know what communication mechanisms (e.g., TCF/IP,
shared memory, local method call, etc.) the ORB uses to
deliver the request to the object and return the response to
theclient.

These ORB festures allow application developers to worry
more about their own application domain issues and less
about low-level distributed system programming issues.

To make aregquest, the client specifies the target object by
using an object reference. When a CORBA object is created
an object reference for it is aso created. When used by a
client, an object reference always refers to the same object
for which it was created, for as long as that object still ex-
ists. In other words, an object reference only ever refers
to one single object. Object references are both immutable
and opague, so a client can't “reach into” the object refer-
ence and modify it. Only an ORB knows what's “inside”
an object reference. Object references can have standard-
ized formats, such as those for the OMG standard Internet
Inter-ORB Protocol and Distributed Computing Environment
Common Inter-ORB Protocol (both of which are described
in Section 3.8), or they can have proprietary formats.

Clients can obtain object references in severa different
ways.

e Object creation: A client can create a new object in
order to get an object reference. Note that CORBA has no
special client operationsfor object creation — making objects
isdoneby invoking crestion requests, which are just ordinary
operationinvocations, on other objectscalled factory objects.

N

object implementation J

Dynamic

1 Object
Invocation

Adapter

ORB Core

Same for all ORBs There may be multiple

object adapters

B interface-specific = ORB-private
stubs and skeletons interface

Figure 3: Common Object Request Broker Architecture

A creation request returns an object reference for the newly-
created object to the client.

e Directory service: A client can invoke alookup service
of some kind in order to obtain object references. Two Ob-
ject Services mentioned above, the Naming Service and the
Trading Service, dlow clients to obtain object references
by name or by properties of the object, respectively. Un-
likefactory objects, these services do not create new objects.
They storeobject references and associated information(e.g.,
names and properties) for existing objects, and supply them
upon request.

e Convert tostring and back: An application can ask the
ORB to turn an object reference into a string, and this string
can be stored into afile or a database. Later, the string can
be retrieved from persistent storage and turned back into an
object reference by the ORB. Even &fter being stringified
and de-stringified in this manner, it can still be used to make
requests on the object as long as the object still exists.

Since CORBA has no special object creation operations,
object references are aways obtained by making requests on
other objects. This begs the question of how an application
can bootstrap itsef and obtain an initia object reference.
Not surprisingly, the ORB provides a small, simple “nam-
ing service” of its own to provide applications with object
references of more general directory services like Naming
and Trading. For example, by passing the string “Name-
Service’ tothe ORB’sr esol ve.i ni ti al ref erences
operation, an application can obtain an object reference for
the Naming Service that isknown to its ORB.

The fact that CORBA has no special object creation func-
tionsor built-indirectory servicesisindicativeof akey theme
of CORBA: Keep the ORB as simple as possible, and push
as much functionality as possible to other OMA components
such as Object Services and Common Facilities® The job

5Thistheme of “ separating components” occursagain later in the discus-

of the ORB is to simply provide the communication and
activation infrastructure for distributed object applications.

3.2 OMG Interface Definition Language
(OMGIDL)

Beforea client can make requests on an object, it must know
the types of operations supported by the object. An object’s
interface specifies the operations and types that the object
supports and thus defines the requests that can be made on
the object. Interfaces for objects are defined in the OMG
Interface Definition Language (OMG IDL). Interfaces are
similar to classes in C++ and interfacesin Java. An example
OMG IDL interface definition is shown below:

/1 OMG | DL
interface Factory {
Obj ect create();

This definition specifies an interface named Fact or y that
supports one operation, cr eat e. The cr eat e operation
takes no parameters and returns an object reference of type
hj ect . Given an object reference for an object of type
Fact ory, aclient could invoke it to create a new CORBA
object. This interface might be supported by one of the
factory objects mentioned above, for example.

Animportant feature of OMG IDL isitslanguageindepen-
dence. Since OMG IDL is a declarative language, not a pro-
gramming language, it forces interfaces to be defined sepa-
rately from object implementations. Thisallowsobjectsto be
constructed using different programming languages and yet
still communicate with one another. Language-independent
interfaces areimportant within heterogeneous systems, since
not al programming languages are supported or available on
al platforms.

OMG IDL providesa set of typesthat are similar to those
found in a number of programming languages. It provides
basic types such as | ong, doubl e, and bool ean, con-
structed types such as st ruct and discriminated uni on,
and templatetypessuchassequence and st ri ng. Types
are used to specify the parameter types and return types for
operations. As seen in the example above, operations are
used withini nt er f aces to specify the services provided
by those objects that support that particular interface type.
To define exceptional conditions that may arise during the
course of an operation, OMG IDL provides excepti on
definitions. Like structs, OMG IDL excepti ons may
have one or more data members of any OMG IDL type. The
OMG IDL nodul e construct alows for scoping of defini-
tion names to prevent name clashes. The OMG IDL type
system is described bel ow.

3.2.1 Built-in Types
OMG IDL supportsthe following built-in types:

sion of other ORB components such as the Object Adapter.

| ong (si gned and unsi gned) — 32-bit arithmetic
types.

e |l ong | ong(si gnedandunsi gned)—64-bitarith-
metic types.

e short (si gned andunsi gned) — 16-bit arithmetic
types.

o fl oat, doubl e, and | ong doubl e — IEEE 754-
1985 floating point types.

e char andwchar — character and wide character types
e bool ean —Boolean type.

e oct et —8-bitvalue®

e enum- enumerated type.

e any — atagged typethat can hold avalue of any OMG
IDL type, including built-in types and user-defined
types.

The CORBA specification precisely definesthesizesof al the
basic types to ensure interoperability across heterogeneous
hardware platforms.

3.22 Constructed Types
OMG IDL aso supports constructed types:

e st ruct —dataaggregation construct (similar to structs
in C/C++).

o discriminated uni on —atype composed of atypedis
criminator and a value of one of severa possible OMG
IDL types that are specified in the union definition.
OMG IDL uni ons are similar to unions in C/C++,
with the addition of the discriminator that keeps track
of which alternativeis currently valid.

3.2.3 Template Types

In addition, OMG IDL supports template types whose exact
characteristics are defined at declaration time;

e string and wstring — string and wide-character
string types. Both unbounded st ri ngs/wstri ngs
and bounded st ri ngs/wst ri ngs can be declared.
For example, a string with a maximum length of 10
characters requires angle brackets to specify the bound:
string<10>. An unbounded string, which has no
length limit, is simply specified as st ri ng with no
angle brackets or bound numbers.

e sequence —adynamic-length linear container whose
maximum length and element type can be specified in
angle brackets. For example, sequence<Fact ory>
defines an unbounded sequence of Fact ory object
references, while sequence<stri ng, 10> defines
a bounded sequence of no more than 10 strings.

6Anoct et isguaranteed not to undergo conversionswhen transmitted
over anetwork by the ORB.

o fi xed —afixed-point decimal valuewith no morethan
31 significant digits. For example, fi xed<5, 2> has
a precision of 5 digits and a scale of 2, which might
be used to represent a monetary value in dollars, up to
$999.99, with accuracy to 1 cent.

3.24 Object Reference Types

OMG IDL object reference types can simply be declared by
naming the desired interface type. For example:

/1 OMG | DL
interface FactoryFi nder {

/1 define a sequence of Factory
/] object references
typedef sequence<Factory> FactorySeq;

FactorySeq find_factories(
in string interface_nane
)

}s

This OMG IDL specification defines an interface named
Fact or yFi nder 7 that contains the definition of a type
named Fact or ySeq. TheFact or ySeq typeisdefined as
an unbounded sequence of Fact or y object references. The
find_factories operationtakesan unboundedst ri ng
typeas aninput argument and returnsan unbounded sequence
of Fact or y object references asitsresult.

3.25 Interface Inheritance

Animportant feature of OMG IDL interfacesisthat they can
inherit from one or more other interfaces. Thismakes it pos-
sibleto reuse existing interfaces when defining new services.
For example, given the following OMG IDL specification:

/1 Same as OMG | DL exanpl e above
interface Factory {
Obj ect create();

/'l Forward decl arati on of Spreadsheet
// interface (full definition not shown)
interface Spreadsheet;

/'l Spreadsheet Factory derives from Factory
interface Spreadsheet Factory : Factory {
Spr eadsheet create_spreadsheet();

In thisexample, the Spr eadsheet Fact ory interfacein-
herits from the Fact or y interface, so an object supporting
the Spr eadsheet Fact or y interface provides two oper-
ations:

1. Thecr eat e operationinherited from Fact ory.

2. The creat e_spreadsheet operation defined di-
rectly in the Spr eadsheet Fact or y interface.

"The notion of a“factory finder” comesfrom the OMG Common Object
ServicesLifecycle Specification. Itisadirectory service object for factories
that helpsapplicationscontrol thelocationsat which they create objects. For
simplicity, the Fact or yFi nder interface shown here is not the same as
the standard interface defined in the Lifecycle Specification.

Interface inheritance is very important in CORBA. It d-
lows the system to be open for extension while keeping it
closed for modification, which is called the Open-Closed
Principle[8, 9]. Since aderived interface inheritsall opera-
tions defined in all of its base interfaces, objects supporting
the derived interface must aso support al inherited opera-
tions. This allows object references for derived interfaces to
be substituted anywhere object references for base interfaces
are allowed.

For example, a Spr eadsheet Fact ory object refer-
ence can be used anywhere that a Fact ory object refer-
ence is expected because a Spr eadsheet Fact ory sup-
ports all Fact ory operations. The new capabilities of
Spr eadsheet Fact or y objects can therefore be added to
the system without requiring changesto either existing appli-
cationsthat use the Fact or y interface, or tothe Fact ory
interface itself.

OMG IDL has one specia case of interface inheritance:
all interfaces are implicitly derived from the Obj ect inter-
face defined in the CORBA module. It'sas if each interface
definition were written as follows:

/] CORBA:: nject is the base interface
/1 for all interfaces
interface Factory : Cbject { ... };

Since thisinheritancefrom CORBA: : Qbj ect & isautomatic
for every OMG IDL interface, it need not be explicitly de-
clared as shown here,

The OMG IDL type system is sufficient for most dis-
tributed applications, yet at the same timeit is minimal and
will be kept that way. Keeping OMG IDL assimpleas possi-
ble means that it can be used with many more programming
languages (e.g., ranging from COBOL to Javato C++) than
it could if it contained types that could not be redized in
some popular programming languages. Given theinevitable
heterogeneity of distributed object systems, the simplicity of
OMG IDL iscritical tothe success of CORBA as anintegra-
tion technol ogy.

3.3 Language Mappings

As mentioned above, OMG IDL is just a declarative lan-
guage, not a full-fledged programming language. As such,
it does not provide features like control constructs, nor isit
directly used to implement distributed applications. Instead,
language mappings determine how OMG IDL features are
mapped to the facilities of a given programming language.
At thetime of thiswriting, the OMG has standardized lan-
guage mappings for C, C++, Smdltalk, and Ada 95. Like-
wise, mappings for the UNIX Bourne shell and for COBOL
are nearing completion. A mapping for the Java language
isjust beginning, but is dated to finish quickly to keep up
with the high demand for Java/lCORBA integration. Lan-
guage mappings for other languages such as Perl, Eiffd, and

8Within an IDL specification, the keyword Qbj ect is used to mean
CORBA: : Onj ect —use of the fully-scoped nameis not allowed.

| OMGIDL Type | C++ MappingType |

| ong, short | ong, short
fl oat,doubl e fl oat,doubl e
enum enum
char char
bool ean bool
oct et unsi gned char
any Any class
struct struct
uni on class
string char*
wstring wchar _t *
sequence class
fixed Fi xed template class
object reference pointer or object
interface class

Table 1: C++ Mappingsfor OMG IDL Types

Modula-3 have aso been written by various interested par-
ties, but have not been submitted to the OMG for approval.

To understand what alanguage mapping contains, consider
the mapping for the C++ language. Not surprisingly, OMG
IDL interfaces map to C++ classes, with operations mapping
to member functionsof those classes. Object references map
to objects that support the oper at or - > function (i.e., ei-
ther anormal C++ pointer to an interface class, or an object
instance with an overloaded oper at or - >). Modules map
toC++ nanespaces (ortonested cl asses for C++ com-
pilersthat do not yet support nanmespaces). Mappings for
therest of the OMG IDL typesare shown in Table 1.

Another important aspect of an OMG IDL language map-
ping is how it maps the ORB interface and other pseudo-
objectsthat are found in the CORBA specification. Pseudo-
objects are ORB interfaces that are not implicitly derived
from CORBA: : Qbj ect , such as the ORB itsalf.® In other
words, pseudo-objectsare not real CORBA objects, but spec-
ifying such interfaces just like normal object interfaces are
specified allows applications to manipulate the ORB much
like they manipulate normal objects.

A third important part of any language mapping specifi-
cation is how CORBA objects are implemented in the lan-
guage. In object-oriented languages such as Java, Smalltalk,
and C++, for example, CORBA objects are implemented as
programming language objects. In C, objects are written as
abstract data types. For instance, a typical implementation
consists of ast ruct that holds the state of the object and
agroup of C functions (which correspond to the OMG IDL

9For some of the pseudo-objectsin the CORBA 2.0 Specification, an-
other differentiating characteristic is that they are defined using non-IDL
expressions. Some people consider this a feature, while others consider it
adefect in the specification. Because of such disagreements, groupswithin
the OMG are currently working to eliminate pseudo-objectsand ensurethat
al CORBA interfaces are defined in normal OMG IDL.

operations supported by the object) to manipulate that state.

OMG IDL language mappings are where the abstractions
and concepts specified in CORBA mest the “real world” of
implementation. Thus, their importance for CORBA appli-
cations cannot be overstated. A poor or incomplete mapping
specification for agivenlanguage resultsin programmers be-
ing unable to effectively utilize CORBA technology in that
language. Language mapping specifications are therefore
always undergoing periodic improvement in order to incor-
porate evolution of programming languages, aswell asto add
features that fulfill new requirements discovered by writing
new applications.

3.4 Interface Repository

Every CORBA -based application requires accessto the OMG
IDL type system when it is executing. This is necessary
because the application must know the types of values to
be passed as request arguments. In addition, the application
must know the types of interfaces supported by the objects
being used.

Many applications require only static knowledge of the
OMG IDL type system. Typicaly, an OMG IDL specifica-
tion is compiled or trandated into code for the application’s
programming language by following the trandlation rulesfor
that language, as defined by itslanguage mapping. Then, this
generated codeisbuilt directly intothe application. With this
approach, the application’ sknowledge of the OMG IDL type
system is fixed when it is built. If the type system of the
rest of the distributed system ever changes in a way that is
incompatible with the type system built into the application,
the application must berebuilt. For example, if aclient appli-
cation depends on the Fact or y interface, and the name of
thecr eat e operationintheFact or y interfaceis changed
tocreat e_obj ect, the client application will have to be
rebuilt beforeit can make requestson any Fact or y objects.

There are some applications, however, for which static
knowledge of the OMG IDL type system isimpractica. For
example, consider a Gateway that alows applications in a
foreign object system (such as Microsoft Component Ob-
ject Model (COM) applications) to access CORBA objects.
Having to recompile and rebuild the Gateway every time
someone added anew OMG IDL interface typeto the system
would result in avery difficult management and maintenance
problem. Instead, it would be much better if the Gateway
could dynamically discover and utilize type information as
needed.

The CORBA Interface Repository (IR) alows the OMG
IDL typesystemto be accessed and written programmeatically
at runtime. ThelRisitself aCORBA object whose operations
can beinvoked just like any other CORBA object. Using the
IR interface, applications can traverse an entire hierarchy of
OMG IDL information. For example, an application can
gtart at the top-level scope of the IR and iterate over all
of the nodul e definitions defined there. When the desired
nodul e isfound,itcanopenitanditerateinasimilar manner
over al the definitionsinside it. This hierarchica traversa

approach can be used to examine dl the information stored
withinan IR.

Another way to access IR information, perhaps more
efficiently, is to obtain an | nt er f aceDef object refer-
ence from the get _i nt er f ace operation defined in the
CORBA: : bj ect interface. Since al interfaces are de-
rived from CORBA: : Cbj ect, every object supports the
get . nterface operation. Thus, an | nt er f aceDef
object reference can be obtained for every object without
having to know the derived types of interfaces supported by
that object.

Since the IR allows applications to programmatically dis-
cover type information at runtime, its red utility liesin its
support of CORBA dynamic invocation (described in Sec-
tion 3.6). It can also be used as a source for generating static
support code for applications, as described in the next sec-
tion, sincethe OMG IDL definitionsin the IR are equivalent
to those writtenin an OMG IDL file.

3.5 Stubsand Skeletons

I n additionto generating programming languagetypes, OMG
IDL language compilers and trand ators a so generate client-
side stubs and server-side skeletons. A stub is a mecha
nismthat effectively creates and issues requests on behalf of
a client, while a skeleton is a mechanism that delivers re-
gueststo the CORBA object implementation. Sincethey are
trandated directly from OMG IDL specifications, stubs and
skeletons are normally interface-specific.

Dispatching through stubs and skeletons is often called
static invocation. OMG IDL stubs and skeletons are built
directly intotheclient application and the object implementa:
tion. Therefore, they both have complete a priori knowledge
of the OMG IDL interfaces of the CORBA aobjects being
invoked.

Language mappings usually map operation invocation to
theequiva ent of afunction call inthe programming language.
For example, givenaFact or y object referencein C++, the
client code to issue arequest lookslikethis:

/] C++
Factory_var factory_objref;

/1 Initialize factory_objref using Nam ng or
/1 Trading Service (not shown), then issue request
Obj ect _var objref = factory_objref->create();

This code makes the invocation of the cr eat e operation
on thetarget object appear asaregular C++ member function
call. However, what this call isredly doing is invoking a
stub. Because the stub essentialy is a stand-in within the
local process for the actual (possibly remote) target object,
stubs are sometimes called surrogates or proxies. The stub
works directly with the client ORB to marshal the reguest.
That is, the stub helps to convert the request from its repre-
sentationin the programming language to onethat is suitable
for transmission over the connection to the target object.

Oncetherequest arrivesat thetarget object, theserver ORB
and the skeleton cooperate to unmarshal the request (convert

it from its transmissible form to a programming language
form) and dispatch it to the object. Once the object com-
pletesthe request, any response is sent back the way it came:
through the skeleton, the server ORB, over the connection,
and then back throughthe client ORB and stub, beforefinally
being returned to the client application. Figure 3 shows the
positions of the stub and skeleton in relation to the client
application, the ORB, and the object implementation.

This description shows that stubs and skeletons play im-
portant roles in connecting the programming language world
to the underlying ORB. In this sense they are each a form
of the Adapter and Proxy patterns [10]. The stub adapts the
function call style of its language mapping to the request
invocation mechanism of the ORB. The skeleton adapts the
request dispatching mechanism of the ORB to the upcall
method form expected by the object implementation.

3.6 Dynamic Invocation and Dispatch

In addition to static invocation via stubs and skeletons,
CORBA supportstwo interfaces for dynamic invocation:

¢ Dynamic Invocation Interface (DII) — which supports
dynamic client request invocation;

o Dynamic Skeleton Interface (DSI) —which providesdy-
namic dispatch to objects.

The DIl and the DSI can be viewed as a generic stub and
generic skeleton, respectively. Each isan interface provided
directly by the ORB, and neither is dependent upontheOMG
IDL interfaces of the objects being invoked.

3.6.1 Dynamiclnvocation Interface

Using the DII, a client application can invoke requests on
any object without having compile-time knowledge of the
object’sinterfaces. For example, consider the foreign object
Gateway described above. When an invocation is received
from the foreign object system, the Gateway must turn that
invocation into a request dispatch to the desired CORBA
object. Recompiling the Gateway program to include new
static stubs every time a new CORBA object is created is
impractical. Instead, the Gateway can simply use the DII
to invoke requests on any CORBA object. The DIl is aso
useful for interactive programs such as browsers that can
obtain the values necessary to supply the arguments for the
object’s operations from the user.

It is through the cr eat e_r equest operation provided
by the CORBA: : Obj ect interface that applications creste
Request pseudo-objects. Since every OMG IDL interface
is derived from CORBA: : Qbj ect , every object automati-
caly supportscr eat e_r equest . By callingthisoperation
on an object reference for the target object, an application
can create a dynamic request for that object. Before the re-
guest can be invoked, argument values must be provided for
theregquest by invoking operationsdirectly on the Request

pseudo-object. Thetypesof theargumentscan bedetermined
using the Interface Repository.

OnceaRequest pseudo-object has been created and ar-
gument values have been added to it, it can beinvoked in one
of three ways:

e Synchronous Invocation — The client invokes the re-
guest, and then blocks waiting for the response. From the
client’s perspective, thisisessentially equivalent in behavior
to an RPC. Thisisthe most common invocation mode used
for CORBA applicationsbecauseitisalso supported by static
stubs.

o Deferred Synchronous Invocation —Theclientinvokes
the request, continues processing while the request is dis-
patched, and later collectsthe response. Thisis useful if the
client has to invoke a number of independent long-running
services. Rather than invoking each one serialy and block-
ing for each response, all requests can be issued in paralld,
and responses can be collected as they arrive.

e Oneway Invocation —Theclientinvokesthereguest and
then continues processing; thereis no response. Thisformis
sometimes called “fire and forget” because the only way the
client can tell that the request is received is by some other
means, e.g., having the object invoke a separate callback
request when thefirst request completes successfully.

Currently, CORBA applicationsthat require the ability to
invoke requests using something other than a synchronous
or oneway model must use the DII. This is because the
deferred synchronous request invocation capability is cur-
rently only provided by the DIl. However, this restriction
will soon be removed. Recently, the OMG issued an RFP for
an Asynchronous Messaging Service[11] that shouldresultin
the adoption of technology for higher-level communications
models, such as store-and-forward services for the ORB.
This RFP aso requests technology for supporting deferred
synchronous request invocation via static stubs.

WhiletheDII offersmoreflexibility than static stubs, users
of the DIl should aso be sure they are aware of its hidden
costs[12, 13]. In particular, creating aDlI request may cause
the ORB to transparently access the IR to obtain information
about the types of the arguments and return value. Since
thelR isitself a CORBA aobject, each transparent IR request
made by the ORB couldin fact bearemoteinvocation. Thus,
the creation and invocation of a single DIl request could in
fact require several actual remote invocations, making a DI
request several times more costly than an equivaent static
invocation. Static invocations do not suffer from the over-
head of accessing the IR since they rely on type information
already compiled into the application.

3.6.2 Dynamic Skeleton Interface

Analogousto the DIl isthe server-side Dynamic Skeleton In-
terface(DSI). Just asthe DIl allowsclientsto invokereguests
without having access to static stubs, the DSI allows servers
to be written without having skeletons for the objects being
invoked compiled statically into the program.

The foreign object Gateway described above is a good
example of an application that requires DSI functionality. A
bidirectiona Gateway must be ableto act as both aclient and
a server — it must trandate requests from the foreign object
system into requests on CORBA objects, and turn requests
from CORBA applications into foreign object invocations.
As mentioned above, it can use the DIl when it wantsto act
asaclient. To act asaserver, however, it needs a server-side
equivalent of the DI, dlowing it to accept requests without
requiring static skeletons for each object’s interface type to
be compiled intoit. Requiring the Gateway to be recompiled
each timeanew OMG IDL interface wasintroduced into the
CORBA side of the system would not work well in practice.

Unlike most of the other CORBA subcomponents, which
were part of the initial CORBA specification, the DSI was
only introduced &t CORBA 2.0. The main reason for its
introduction was to support the implementation of gateways
between ORBs utilizing different communi cations protocols.
Even though inter-ORB protocols were also introduced at
CORBA 2.0, it was thought by some at the time that gate-
ways would become the method of choice for ORB inter-
operation. Given that most commercially-available ORB
systemsalready support the standard I nternet Inter-ORB Pro-
tocol (I1OP) (which is described below in Section 3.8), this
prediction does not appear to have come true. Still, the DSI
is a useful feature for a certain class of applications, espe-
cialy for bridges between ORBs and for applications that
serve to bridge CORBA systems to hon-CORBA services
and implementations.

3.7 Object Adapters

The final subcomponent of CORBA, the Object Adapter
(OA), serves as the glue between CORBA object implemen-
tations and the ORB itself. As described by the Adapter
pattern [10], an object adapter is an object that adapts thein-
terface of another object to the interface expected by acaller.
In other words, it isan interposed object that uses delegation
to allow acaller to invoke requests on an object even though
the caller does not know that object’strueinterface. Figure4
illustratesthe role of an object adapter.

Object adapters represent another aspect of the effort to
keep the ORB as simple as possible. Responsihilities of
object adapters include:

o Object registration — OAs supply operationsthat allow
programming language entities to be registered as im-
plementations for CORBA objects. Details of exactly
what is registered and how the registration is accom-
plished depends on the programming language.

o Object reference generation — OAs generate object ref-
erences for CORBA objects.

e Server process activation — If necessary, OAs start up
server processes in which objects can be activated.

o Object activation — OAs activate objects if they are not
already active when requests arrive for them.

interface A interface X
- Object .
Caller < Adapter > Object

[

Object Adapter adapts
interface X to interface A

Object provides
interface X

Caller expects
interface A

Figure4: Role of an Object Adapter

o Reguest demultiplexing— OAs must cooperate with the
ORB to ensure that requests can be received over mul-
tiple connections without blocking indefinitely on any
single connection.

o Object upcalls — OAs dispatch requests to registered
objects.

Without object adapters, the ability of CORBA to sup-
port diverse object implementation styles would be severely
compromised. Thelack of an object adapter would mean that
object implementationswoul d connect themsel ves directly to
the ORB to receive requests. Having a standard set of just a
few object upcall interfaceswould mean that only afew styles
of object implementation could ever be supported. Alterna-
tively, standardizing many object upcall interfaceswould add
unnecessary size and complexity to the ORB itself.

CORBA, therefore, alowsfor multipleobject adapters (as
shown in Figure 3). A different object adapter is normally
necessary for each different programming language. For ex-
ample, an object implemented in C would register itself with
the object adapter by providing a pointer to a struct holding
itsstatealong with aset of function pointerscorresponding to
the operations defined by its OMG IDL interfaces. Contrast
that with a C++ object adapter, which would alow an ob-
ject implementation to be derived from a standardized object
adapter base class that provides the upcdl interface. Using
the C language object adapter for C++ object implementa-
tions or vice-versa would be unnatural to programmers in
either language.

Though CORBA states that multiple object adapters are
allowed, it currently only provides one: the Basic Object
Adapter (BOA). When it was first specified, it was hoped
that the BOA would suffice for the majority of object im-
plementations, and that other object adapters would only fill
niche roles. What the BOA designers failed to realize was
that object adapters tend to be very language-specific due to
their close proximity to programming language objects. As
aresult of the goal to make the BOA support multiple lan-

guages, the BOA specification had to be made quitevaguein
certain areas, such ashow to register programming language
objects as CORBA objects. Thisin turn has resulted in non-
trivial portability problems between BOA implementations
because each ORB vendor has filled in the missing pieces
with proprietary solutions.

Fortunately, the OMG has recognized this problem and
is currently actively working to solve it. It recently is
sued a Portability Enhancement RFP [14] that will result
in the adoption of specifications for standard portable ob-
ject adapters. The OMG should complete its work on the
RFP around mid-1997, meaning that portabl e object adapters
should be commercially available by the end of 1997.

3.8

Before CORBA 2.0, oneof thebiggest complaintsabout com-
mercial ORB productsisthat they did not interoperate. Lack
of interoperability was caused by the fact that the CORBA
specification did not mandate any particular data formats or
protocols for ORB communications. The main reason that
CORBA did not specify ORB protocols prior to CORBA 2.0
was simply that interoperability was not afocus of the OMG
at that time.

CORBA 2.0 introduced a general ORB interoperability
architecture that provides for direct ORB-to-ORB interop-
erability and for bridge-based interoperability. Direct in-
teroperability is possible when two ORBsreside in the same
domain—in other words, they understand the same obj ect ref-
erences, the same OMG IDL type system, and perhaps share
the same security information. Bridge-based interoperability
is necessary when ORBs from separate domains must com-
municate. The role of the bridge is to map ORB-specific
information from one ORB domain to the other.

The general ORB interoperability architecture is based
on the General Inter-ORB Protocol (GIOP), which speci-
fiestransfer syntax and astandard set of message formatsfor
ORB interoperation over any connection-oriented transport.
GIOP is designed to be ssimple and easy to implement while
till allowing for reasonabl e scal ability and performance.

The Internet Inter-ORB Protocol (I10P) specifies how
GIOP is built over TCP/IP transports. In a way, the rela
tionship between [10OP and GIOP is somewhat like the rela-
tionship between an object’s OMG IDL interface definition
and its implementation. GIOP specifies protocol, just as an
OMG IDL interface effectively defines the protocol between
an object and its clients. [1OP, on the other hand, deter-
mines how GIOP can be implemented using TCF/IP, just as
an object implementation determines how an object’s inter-
face protocol is realized. For a CORBA 2.0 ORB, support
for GIOP and I1OP is mandatory.

The ORB interoperability architecture also provides for
other environment-specific inter-ORB protocols (ESIOPS).
ESIOPsallow ORBstobebuiltfor special situationsinwhich
certain distributed computing infrastructures are aready in
use. The first ESIOP, which utilizes the Distributed Com-
puting Environment (DCE) [15], is called the DCE Common

Inter-ORB Protocols

10

Inter-ORB Protocol (DCE-CIOP). It can be used by ORBsin
environments where DCE is already instdlled. This allows
the ORB toleverage existing DCE functions, and it allowsfor
eas er integration of CORBA and DCE applications. Support
for DCE-CIOP or any other ESIOP by a CORBA 2.0 ORB
isoptional.

In additionto standard interoperability protocols, standard
object reference formats are al so necessary for ORB interop-
erability. While object references are opaque to applications,
ORBs use the contents of object references to help deter-
mine how to direct requests to objects. CORBA specifies
a standard object reference format called the Interoperable
Object Reference (I0R).2° An |OR storesinformation needed
to locate and communicate with an object over one or more
protocols. For example, an |OR containing | 1OP information
stores hostname and TCP/IP port number information.

Most commercially-available ORB products aready sup-
port [1OP and 10Rs and have been tested to ensure inter-
operability. Interoperability testing is currently done di-
rectly between ORB vendors rather than by an indepen-
dent conformance-testing body. One interesting exception
to thisrule is an interoperability testbed called CORBANet
[16], which was established by the OMG to help facilitate
ORB interoperability testing and prove commercia viabil-
ity. CORBAnet is an interactive meeting room booking sys-
tem implemented over a number of interoperating commer-
cia ORB products on a variety of hardware platforms. It
can be used interactively via a Web browser by accessing
http://corbanet. dstc. edu. au/.

4 OMG Activities and Future Plans

With over 700 members, the OMG is a very active consor-
tium. Its many task forces and specia interest groups cover
nearly theentirespectrum of topicsrel ated to distributed com-
puting, including real -time computing, Internet, telecommu-
nications, financial systems, medical systems, object analysis
and design, €l ectronic commerce, security, database systems,
and programming languages. RFPs and technology adop-
tionsin amost all of these areas have either aready occured
or soon will.

When there were fewer OMG members and CORBA was
still under development, most of the OMG'’stechnical activi-
tieswere focused withinits ORB Task Force, whichiswhere
the CORBA specification was created. Thiseffectively gave
ORB vendors afair bit of clout when it came to determining
thetechnical direction of the OMG, which tended to keep the
technical focus directed at the CORBA component.

In early 1996 the OMG reorganized itself to give users of
the CORBA component the power to set their own technical
directions. Part of this reorganization involved splitting the
OMG Technica Committee into two parts:

1Applications use IORs just as they use any other object reference. In
OMG IDL terms, thereis nothing different about |ORs as compared to other

object references, i.e., thereis no special OMG IDL typefor an |OR. Object
interfaces are independent of object reference format.

e Domain Technical Committee(DTC): Focuseson tech-
nologies that are vertically-oriented (i.e.,, domain-specific).
Task Forceschartered under theDTCincludeFinancia, Man-
ufacturing, Medical, Business, and Telecommunications.

o Platform Technical Committee (PTC): Focuses on
technologies that are horizontally-oriented (i.e., domain-
independent). Task Forces chartered under the PTC include
ORB/Object Services (ORBOS) and Common Facilities.

Thissplit hasresulted in ashiftinthe OMG focusfromthe
CORBA component to the other higher-level components
of the OMA. Such a shift is precisely what should occur
as an architecture like the OMA matures. Separating the
DTC groups from the domain-independent groups has made
it easier for them to issue their own RFPs and adopt suitable
domai n-specific technol ogy.

To ensure the continued integrity of the OMA even with
two technical committees, the OMG aso created, as part of
the same reorganization, an Architecture Board (AB). The
AB, which is composed of ten elected members and a chair-
person, has the power to regject RFPs and technologies that
do not fit intothe OMA. The AB isa so charged with finding
and defining answers for broad technica issuesrelated to the
OMA, such as clarifications of the OMA object model.

Aress that are currently being investigated by OMG task
forcesinclude:

e Medical: Master Patient Indexing —Patient i dentification
can be surprisingly difficult, due to multiple people with the
same name, illegal use of identification numbers, etc. At the
timeof thiswriting, the CORBAmMed Medical Task Forcewas
very close to issuing an RFP for technology related to the
identification of patients.

e Telecommunications; Isochronous Streams — Streams
for audio and video data have specia quality of service re-
guirements due to their isochronous nature. The CORBAtel
Telecommuni cations Task Force recently issued an RFP [17]
seeking technol ogy for the management and mani pulation of
isochronous streams.

e Business. Business Objects — Portions of many business
processes are very similar, and thus can be abstracted out
into frameworks. The Business Objects Task Force will
soon begin eval uating responses to its Business Objects RFP
[18], which seeks object frameworks to support business
processes.

e Common Facilities: SystemsManagement Facility—The
OMG has nearly completed the adoption of the X/Open sys-
tems management specification [19], which defines a set of
extended services for the monitoringand management of dis-
tributed systems. These services complement those specified
in the existing OMG Common Object Services Lifecycle
Specification [4].

¢ ORBOS: Objects by value — CORBA currently alows
object references to be passed as arguments and return val-
ues, but it does not allow objectsto be passed by value. This
makes the use of encapsulated data types (e.g., linked lists)
difficult to use from languages such as C++. The ORBOS

11

Task Force will soon begin evaluating responses to its Ob-
jects By Value RFP [20], which will describe technology for
passing objects by val ue between CORBA applications.

Another special area of interest of the ORBOS Task Force
is providing specifications that alow for the bidirectiona
interoperation of Microsoft COM and Distributed COM
(DCOM) applications with CORBA applications. A spec-
ification for COM/CORBA interoperability has aready been
approved, while work on DCOM/CORBA interworking has
just begun. Contrary to industry rumors, the OMG does not
view COM or DCOM as CORBA competitors; rather, it sees
them as another set of technologies that can be integrated
under the CORBA umbrella.

The end goal of the development of standard OMG speci-
ficationsisthe realization of atrue commercia off-the-shelf
(COTS) software component marketplace. The OMG will
continue working to help create a market in which buying
and using software componentsin distributed heterogeneous
environmentsis a redlity. To this end, many OMG member
companies have devoted some of their “best and brightest”
expertsto the OMG to assist with the devel opment of practi-
cal, complete, and relevant standards.

The OMG is aso working to establish an OMA compli-
ance“branding” program that would prove whether or not an
OMA-based product complies properly with the appropriate
OMG specifications. Such branding will be necessary in a
component marketplace to ensure that OMA-based compo-
nents interoperate and cooperate correctly.

Of particular importance to the OMG community isare-
cent press rel ease by Netscape Corporation stating that they
will build 11OP and an ORB intofuturerel eases of their prod-
ucts, including their Navigator web browser software [21].
They intend to allow remote CORBA objects and servicesto
appear as browser plug-ins, using I1OP to forward requests
to them. Because of the popularity of Netscape Navigator,
this decision effectively brings CORBA to 40 million desk-
tops around the world. Moreover, it unifies Web technol ogy
with distributed object technology, alowing the strengths of
each to enhance the other. The deployment of these unified
technologieswill finally providethe beginningsof asoftware
component marketplace infrastructure.

5 Conclusion

This article has described the Common Object Request Bro-
ker Architecture (CORBA) portion of the OMG Object Man-
agement Architecture (OMA). CORBA provides a flexible
communication and activation substrate for distributed het-
erogeneous object-oriented computing environments. The
strengths of CORBA include:

e Heterogeneity: The use of OMG IDL to define object
interfaces allowstheseinterfacesto be used from avariety of
programming languages and computing platforms. The fact
that CORBA systems have aready been written in such di-
verse programming languagesas C, C++, Smalltalk, Ada 95,

Java, COBOL, Modula-3, Perl, and Python, and successfully
deployed across everything from mai nframesto test and mea-
surement equipment, is strong evidence that CORBA can be
used to implement real-life heterogeneous distributed appli-
cations.

o Object Modd: The Object Mode and Reference Model
provided by the OMA definetherulesfor interaction between
CORBA objects such that the interactions are independent
of underlying network protocols. Unlike typical distributed
software systems, which are tied closely to underlying net-
working protocol s and mechanisms, CORBA -based applica-
tions are abstracted away from the networking details and
thus can be used in avariety of environments.

e Legacy integration: Because CORBA doesnot mandate
implementation, a well-designed ORB does not require that
components and technologies already in use be abandoned.
Instead, the CORBA specification isflexible enough to alow
ORBs to incorporate and integrate existing protocols and
applications, such as DCE or Microsoft COM, rather than
replace them.

o Object-oriented approach: CORBA itsdf and applica-
tionsbuilt on top of it are best designed using obj ect-oriented
(O0) software development principles. For example, the
fact that object interfaces must bedefinedin OMG IDL helps
devel opersthink about their applicationsin terms of interact-
ing reusable components. The management of complexity
afforded by OO software devel opment techniquesisvery im-
portant for the practical implementation and deployment of
CORBA applications.

Both the Internet and corporate intranets will inevitably
remain heterogeneous. Having to deal withtheintegration of
diverse applications, as well as having to manage their asso-
ciated complexities, are absolute requirements for our ever-
expanding networked systems. The on-going work to unify
the World Wide Web with CORBA will soon alow the new
“universal user interface,” the web browser, to cleanly and
transparently make use of the varied technologiesand legacy
systemsthat exist acrosstoday’ scomputing enterprises. With
the capabilities and flexibility of CORBA serving to unify
the infrastructure, we can focus more on providing solid so-
[utions for higher-level problems and worry less about how
to make simple thingswork in our distributed heterogeneous
environments.

Acknowledgements

Thanks to Doug Schmidt for encouraging me to write this
article, for his patience while waiting for me to complete
it, and for his excellent suggestions on how to improve it.
Thanks aso to Cindy Buhner, Kevin Currey, Bart Hanlon,
Brent Modzelewski, and several anonymous reviewers for
their reviews of early drafts of thisarticle.

12

References

[1] A.D.Birrell and B. J. Nelson, “Implementing Remote Proce-
dure Calls,” ACM Transactionson Computer Systems, vol. 2,
pp. 39-59, February 1984.

Object Management Group, Description of New OMA Refer-
ence Model, Draft 1, OMG Document ab/96-05-02 ed., May
1996.

Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

Object Management Group, CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 95-3-31 ed., Mar.
19095.

Apple Computer, Inc., Component Integration Laboratories,
Inc., International Business Machines Corporation, Novell,
Incorporated, Compound Presentation and Compound Inter-
change Facilities, Part |, OMG Document 95-12-30 ed., De-
cember 1995.

Object Management Group, Product Data Management En-
ablers Request For Proposals, OMG Document mfg/96-08-
01 ed., August 1996.

Richard Mark Soley, Ph.D., ed., Object Management Archi-
tecture Guide. John Wiley & Sons, Inc., Third ed., 1995.

B. Meyer, Object Oriented Software Constr uction. Englewood
Cliffs, NJ: Prentice Hall, 1989.

R. C. Martin, “The Open-Closed Principle,” C++ Report,
vol. 8, Jan. 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

Object Management Group, Messaging Service RFP, OMG
Document orbos/96-03-16 ed., March 1996.

S. Vinoski, “Distributed Object Computing with CORBA,”
C++ Report, vol. 5, July/August 1993.

A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skeleton
Interface over High-Speed ATM Networks,” in Proceedings
of GLOBECOM '96, (London, England), pp. 50-56, |EEE,
November 1996.

Object Management Group, ORB Portability Enhancement
RFP, OMG Document 1995/95-06-26 ed., June 1995.

W. Rosenberry, D. Kenney, and G. Fischer, Understanding
DCE. O'Reilly and Associates, Inc., 1992.

Object Management Group, OMG Unveils CORBAnet
Initiative, May 13, 1996. Press release. URL:
http://www.omg.org/pro6/corbanet.htm.

Object Management Group, Control and Management of A/V
Streams Request For Proposals, OMG Document telecom/96-
08-01 ed., August 1996.

Object Management Group, Common Business Objects and
Business Object Facility RFP, OMG Document cf/96-01-
04 ed., January 1996.

Object Management Group, Systems Management: Common
Management Facilities, Volume 1, Version 2, OMG Document
1995/95-12-02 through 1995/95-12-06 ed., December 1995.

Object Management Group, Objects-by-value Request For
Proposals, OMG Document orbos/96-06-14 ed., June 1996.

Netscape Communications Corporation, New Netscape
ONE Platform Brings Distributed Objects To the Inter-
net and Intranets, July 29, 1996. Press release. URL:
http://home.netscape.com/newsref/pr/newsrelease199.html.

(2]

(3]
[4]

(5]

(6]

[7]
(8]
(9]

[10]

[11]
[12]

[13]

[14]
[19]

[16]

[17]

[18]

[19]

[20]

[21]

