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Motivation
TRACKING e Many applications require
g SATELLITES STATION QoS guarantees

PEERS

SR AL) — e.g., telecom, avionics,
WWW

, —
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S”TU;’N";/ / f) e Existing middleware doesn't
NETWORK | 7/ J/ // support QoS effectively
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TRANSFER — .4, CORBA, DCOM, DCE

e Solutions must be integrated

— Vertically and horizontally

GROUND
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PEERS
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Candidate Solution: CORBA

in args

O—.>
operation()

e Goals of CORBA

OBJECT
IMPLEMENTATION|

out args + return value

<+—O0
IDL
SKELETON
Hg;; ORB
o / INTERFACE
GIOP/1IOP

http: //www.cs.wustl.edu/~schmidt/corba.html

— Simplify distribution
— Provide foundation for
higher-level services

e Limitations of CORBA

OBJECT
ADAPTER

— Poor performance
— Lack of QoS features
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The ACE ORB (TAO)

in args

e TAO Overview

CLIENT operation() OBJECT
out args + return value IMPLEMENTATIO _ A h igh—perfOrma nce,
-« O

real-time ORB
x Networking and
avionics focus

RIDL
SKELETON

REAL-TIME
OBJECT
ADAPTER

ORB QoS
INTERFACE [

OS KERNEL OS KERNEL

0s 1/0 SUBSYSTEM o REIatEd Work
NETWORK ADAPTERS
— QuO at BBN

NETWORK

http://www.cs.wustl.edu/~schmidt/ TAO.html — ARMADA at U.
Mich.

framework

— Leverages the ACE

* Ported to VxWorks,
POSIX, and Win32
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The ADAPTIVE Communication Environment (ACE)

MIDDLEWARE () ACE OverVieW

DISTRIBUTED APPLICATIONS
SERVICES AND JAWS ADAPTIVE
COMPONENTS THE ACE ORB

WEB SERVER

— A concurrent OO
networking framework

— Very widely used in
industry

— Available in C++ and
Java

— Ported to VxWorks,

re T ovaaic || Mevony || oon POSIX, and Win32

S LINKING MAPPING

SERVER

DD[@

iii

SERVICE
HANDLER

FRAMEWORKS
AND CLASS
CATEGORIES

.................. CONFIG-
il REACTOR URATOR

THREAD
LIBRARY

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY R I t d k
SUBSYSTEM SUBSYSTEM SUBSYSTEM ® eiate wWOr

GENERAL POSIX AND WIN32 SERVICES

STREAM [
PIPES |/}

_ — x-Kernel
http: //www.cs.wustl.edu /~schmidt/ACE.html
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Applying ORBs to Real-time Avionics

=

3:PUSH (DEMARSHALED DATA)

EVENT
CHANNEL
< @

2:PUSH (EVENTS)

Sensor Sensor
proxy proxy

OBJECT REQUEST BROKER

e Domain Challenges

— Periodic hard

real-time deadlines
— COTS infrastructure
— Open systems

e Related work

— Deng, Liu, and J.
Sun '96

— Gopalakrishnan and
Parulkar '96

— Wolfe et al. 96

Washington University, St. Louis
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Applying ORBs to Real-time Network Management

C on C on
C on Proxy Proxy
Proxy

3:PUSH (DEMARSHALED DATA)

EVENT
CHANNEL

2:PUSH (EVENTS)

Attr Attr
Proxy Proxy

OBJECT REQUEST BROKER

e Domain Challenges

— Periodic statistical

real-time deadlines

— COTS infrastructure
— Open systems

e Related work

— Deng, Liu, and J.

Sun '96

— Gopalakrishnan and

Parulkar '96

— Wolfe et al. '96

Washington University, St. Louis
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Research Objectives

e |dentify features and architectural patterns needed for real-time ORBs
— Both hard real-time and statistical real-time

e Develop optimizations required to build high-performance ORBs
— e.g., Gigabit bandwidth and ~10 microsecond latency

e Determine changes needed to CORBA specification

— e.g., APlIs for defining end-to-end QoS requirements

Washington University, St. Louis
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Real-time Features and Optimizations in TAO

in args
CLIENT operation() OBJECT PRESENTATION
out args + return value IMPLEMENTATIO LAYER

<« O ? ——— OPTIMIZATIONS
; DATA COPYING
RIDL —¥ OPTIMIZATIONS
SKELETON ‘
RIDL ORB QoS REAL-TIME < REQUEST
STUBS

OBJECT
INTERFACE —— DEMUXING AND
ADAPTER

DISPATCHING
OPTIMIZATIONS
ORB
CORE PROTOCOL
ENGINE
— OPTIMIZATIONS
OS KERNEL OS KERNEL :
1/O SUBSYSTEM

0s 1/0 SUBSYSTEM
NETWORK ADAPTERS

0S 1/0 SUBSYSTEM M<€——— OPTIMIZATIONS

NETWORK ADAPTERS Ml €«——— NETWORK
ADAPTER
OPTIMIZATIONS

NETWORK
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Experimental Setup for CORBA/ATM Testbed

4 A /(Services ] /:,':'\\
2909 . ee
3!Requests o°  Object Adapter | E

[ORB Core ) \%/

Client Y, LServer
2 —12XF

| :
/ ATM Switch

Washington University, St. Louis 9
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Problem: Meeting End-to-End QoS Requirements

e Design Challenges

in args
operation()

out args + return value

— Specifying QoS
requirements

— Reducing
demultiplexing latency

— Meeting scheduling
deadlines

— Reducing presentation
layer overhead

OBJECT
ADAPTER

OS KERNEL

OS KERNEL ‘
@ crxrmm
m NETWORK

ORB
INTERFACE

\_/
1) CLIENT MARSHALING 5) THREAD DISPACHING

2) CLIENT PROTO QUEUEING  6) REQUEST DISPATCHING
3) NETWORK DELAY 7) SERVER DEMARSHALING

4) SERVER PROTO QUEUEING 8) METHOD EXECUTION

Washington University, St. Louis 10
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Problem: Reducing Demultiplexing Latency

'é 'é E LAVERED e Design Challenges
(X X J
DEMUXING L .
S| 2 E — Minimize demuxing
S: DEMUX TO L1 |
METHOD s IDL ayer§
\SKEL 1) (SKEL 2) eee — Provide O(1)
4: DEMUX TO operation demuxing
Rl (OBJECT 1) (OBJECT 2) ooe m — Avoid priority
I I Inversions
3: DEMUX TO | R ]
OBJECT (OBJECT ADAPTER) — Remain _
CORBA-compliant
ORB CORE
2: DEMUX TO
I/O HANDLE OS KERNEL

0S 1/0 SUBSYSTEM
1: DEMUX THRU
PROTOCOL STACK NETWORK ADAPTERS

Washington University, St. Louis 11
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Solution: De-layered Active Demultiplexing

= & Y = | e Solution Approach
DE-LAYERED | 8| € S s S
ACTIVE 2 || & é z E — Pre-negotiate
DEMUXING | & || = leoe| & |ose| Z [ses| Z demuxing keys
Oll © 3 3 = .
2| & > 2 § — Tunnel demuxing
| 0 S O key with Object key
: — Use ACT pattern
DE-LAYERED REQUEST ) )
3: DEMUX TO [ DEMULTIPLEXER ] for validation
METHOD

| OBJECT ADAPTER)] e Related Work
BEDEMUX O ORBICORE — Yau and Lam "97

I/O HANDLE
OS KERNEL — Dittia and Parulkar

7
0S 1/0 SUBSYSTEM 97
1:pE Y — Engler and
PROTOCOL STACK NETWORK ADAPTERS g

Kaashoek '96
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Demultiplexing Performance Experiments

— || ex § (A) LAYERED DEMUXING, — || e § (B) LAYERED DEMUXING, (C)DE-LAYERED ACTIVE DEMUXING
g g 8 LINEAR SEARCH g g 8 PERFECT HASHING =
2| & 2| & E =llal |E] |3 |3
8 =
LATA LA search(method) \hash(method) E E g é E
SKEL 1 SKEL 2 SKEL N SKEL S SKEL N == = g 7
|—l Ol © Q Q Q
[OBJECT lj [OBJECT 2] oo @BJECT 5(@ [OBJECT 1) COBJECT 2] eeo w ; ; % E %
A A .
search(object key) hash(method) index(object key)
—(OBJECT ADAPTER} (OBJECT ADAPT ER) (OBJECT ADAPTER)

e Linear search based on Orbix demuxing strategy
e Perfect hashing based on GNU gperf
— http://www.cs.wustl.edu/~schmidt/gperf.ps.gz

e Resultsathttp://www.cs.wustl.edu/~schmidt/GLOBECOM-97.ps.gz

Washington University, St. Louis 13
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Problem: Meeting CORBA Request Deadlines
e Design Challenges

in args
operation()

out args + return value

— Specifying/enforcing
QoS requirements
— Focus on Objects and
Operations
* Not on threads or
comm. channels

OBJECT
ADAPTER

OS KERNEL

OS KERNEL ‘
@ crxrmm
m NETWORK

ORB
INTERFACE

e Assumptions

— Static scheduling

N .
1) CLIENT MARSHALING 5) THREAD DISPACHING — Non-distributed
2) CLIENT PROTO QUEUEING 6) REQUEST DISPATCHING ( initia I y)
3) NETWORK DELAY 7) SERVER DEMARSHALING

4) SERVER PROTO QUEUEING 8) METHOD EXECUTION

Washington University, St. Louis 15
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Solution 1: Real-time Object Adapter

e Solution Approach

rPERIODIC SCHEDULING AND DISPATCHING
APPLICATIONN
APPLICATION | — Integrate RT dispatcher
APPLICATION .
e into ORB
T T+P TH2P .
P: PERIOD ) — Support multiple request
(REQUEST DEMUXER)

C. ] _
REQUEST COMPUTATION TIME ) Sch ed 4 I in g Strategles

! \ . Run-Time .
. Scheduler | CEALATVE * e.g.,, RMS, RMS with

=
Q .
----------------- mmeans | B Deferred Preemption,
i REQUEST 2
Sl e Related work
V4 02{0]
1N OBJECT ADAPTER ) — Zinky, Bakken, and

BUFFERS
Schantz, '95

— Lee, Rajkumar, and
Mercer '96

Washington University, St. Louis 16
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Solution 2: Real-time Scheduling Service

\ APPLICATION OBJECTS
|

(struct RT_Info
{ RT RT_T ask Work 5:REQUEST DISPATCHED
wc_exec_time_; k _>z Task
cached_exec_time ; Tas - |
li);r;zg{;n ce T4: REQUEST DEQUEUED
dependencies_; OFF-LINE G 1< BY THREAD WITH
s SCHEDULER | SUITABLE OS
2 RT_Task <[ PrioRT
RUN-TIME 4 _»z REQUEST _l 3
SCHEDULER QUEUES +REQUEST QUEUED
— RT_INFO ACCORDING TO
Priority/ REPOSITORY OBJECT ADAPTER RT_TASK'S PRIORITY
Subpriority ||<
Table Per ORB CORE
Mode 2:RUN-TIME SCHEDULER

. 2 —»2 2 —>2 2 DETERMINES PRIORITY
— —> —>
OF TARGET RT_TASK
1: OBJECT ADAPTER

OPERATING OS DISPATCHER
SYSTEM RECEIVES RIOP
REQUEST FROM

Washington University, St. Louis 17
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1: CONSTRUCT CALL
CHAINS
2: IDENTIFY THREADS

DEPENDS UPON =
EXECUTES AFTER

5: SUPPLY PRIORITIES
TO OBJECT ADAPTER

3: POPULATE
RT_INFO
REPOSITORY

RUN-TIME
SCHEDULER

DISPATCHER
OBJECT
-
ADAPTER

Priority/
Subpriority
Table Per
Mode

OFF-LINE
SCHEDULER

RT_INFO
REPOSITORY

3: ASSESS SCHEDULABILITY

4: ASSIGN OS THREAD
PRIORITIES AND DISPATCH
QUEUE ORDERING
SUBPRIORITIES

oo 0]

MobDE 1

MODE 2
'~ MobE 3

CURRENT
MODE —P»|
SELECTOR

Scheduling Service Roles

e Components

— Offline
x Assess schedule
feasibility
x Assign thread and
queue priorities
— Online
x Supply priorities to
Object Adapter's
dispatcher

http://www.cs.wustl.edu/~schmidt/TAQ.ps.gz

Washington University, St. Louis
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Scheduling Service Interfaces

RUN-TIME :truct RT Info ) Y Components
SCHEDULER meexeetime. L
Priority! cached erec.tme.s — Application interface
Subpriori 2 importance_;
'}lall));l(;)r;:.y OFF-LINE deg(e)ndincc(;es_; RT_TaSk X Use RT—InfOS
Mode ||| SCHEDULER ) J 53 — Privileged interface
APPLICATION — 1 U d b
~:‘\ INTERFACE | * S€ y system
7~ RI_INFO \ | tasks and services
/ REPOSITORY RT
PRIVILEGED
~ ~ INTERFACE Task
I
| \
E interface Scheduler
RT_Task % {
- REQUEST register_task(); RT_TaSk
s >i QUEUES schedule(); ’2
priority();

 EVENT CHANNEL ) 35

Washington University, St. Louis 19
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Scheduling Steps During Configuration Run

(struct RT_Info )

{ l/ 11: APPLICATIONS CONSTRUCT RT_INFOS
wce_exec_time_;

cached_exec_time_;

period_;
importance_; \ \ /

dependencies_;
. pendenciess @®2: COMPILE AND LINK PROGRAM
b
\ J (use -DSCHEDCONFIG=1)
T | )
| | —
— @ 3: RUN PROGRAM
RT_Task — |
_ as ( A° APPLICATIONS REGISTER WITH EVENT
REQUEST CHANNEL (WHICH REGISTERS OPERATIONS
QUEUES WITH SCHEDULER ) OR
B: APPLICATIONS REGISTER DIRECTLY WITH
K ) SCHEDULER
C: PROGRAM INFORMS EVENT CHANNEL
THAT REGISTRATIONS ARE COMPLETE
OFF-LINE
@ OFF-LINE SCHEDULER'S TASKS: | GCHEDULER |
A ASSESSES SCHEDULABILITY 4: COMPLETE PROGRAM
B' ASSIGNS PRIORITIES A EVENT CHANNEL CALLS SCHEDULER'S
C: GENERATES OUTPUT FILES SCHEDULE () METHOD
CONTAINING PRIORITIES RT_INFO B: PROGRAM EXITS
REPOSITORY

Washington University, St. Louis 20
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Scheduling Service Internal Repository

e Components

CALL-CHAIN 23 Ms/20 Hz => pRrRIORITY 1
LEAF P4 — RT_Info references

RT Task DEPENDENCIES RT_Task{ — Vector of RT_Tasks
—
2 /1y 8 ms/20 Hz called by each RT_Task
x Vector records
CALL-CHAIN 15 ms/10 Hz => PRIORITY 2 -
LEAF dependencies
RT Task DEPENDENCIES RT_Task, — (Called-task chains are
—»2 / ) 5 ms/10 Hz traversed to compute
total CPU time and
minimum period
Workr 4 DEPENDENCIES RT _Task3
Task 10 ms

Washington University, St. Louis 21
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Real-time Dispatching Experiments

a )
(A) FIFO Dispatching (B) RTU Dispatching (C) Threaded Dispatching
4: DISPATCH 4: DISPATCH
T 4: DISPATCH REQUEST REQUEST
REQUEST i Dispatcher Dispatcher
_»
Dispatcher > > >
\ 3:DEQUEUE l 3:DEQUEUE l l
REQUEST REQUEST
3:DEQUEUE 4 4 1 \ A /
REQUEST 0 1 2 3 4 (1] 1 2 3 4
==SEHNEBE BERETE
5. 2:ENQUEUE 2:ENQUEUE
e o\ REQuEST N\ REQUEST
Q Run-Time . Run-Time
_____ Scheduler Scheduler
1: INCOMING T 1: INCOMING 1: :NncoMING
REQUEST REQUEST REQUEST
L OBJECT ADAPTER P

e Available at http://www.cs.wustl.edu/~schmidt/oopsla.html

Washington University, St. Louis
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Key Patterns in TAO

e Definition

Acceptor : :
P — “A recurring solution
to a design problem in
Connector a particular context”
e Benefits of Patterns
Asynchronous S — Facilitate de5|.gn reuse
Completion — Preserve crucial design
Token (ACT) information
STRATEGIC PATTERNS . : :
— Guide design choices
TACTICAL PATTERNS — Document common
Abstract traps and pitfalls
Proxy || Strategy Factory Adapter

Washington University, St. Louis 23
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Real-time Event Channel Overview

e Real-time Event Channel

> push (even)/' — Scheduling
Consumer — Correlation dependencies
Proxies . .
— Filtering

Dispatching
Module

EVENT
CHANNEL Event Event
Correlation Flow

Subscription
& Filtering

Priority| Supplier
Timers| Proxies

LS N

B 4
i push (event) ﬂ

Washington University, St. Louis
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Collaboration in the RT Event Channel

Subscription Info

EVENT
CONNECT PUSH CHANNEL
CONSUMER
Object Ref Consumer
‘i Proxies
Schedulin 0S : :
9Q > Dispatching
: Module
Gonsumer Cogreéigon
P Event
™  Correlation

-

Timeout Registration

Subscription
& Filtering

CONNECT PUSH
SUPPLIER

J Publish Types

T

Priority| Supplier
Timers| Proxies

e d

Object Ref

Washington University, St. Louis
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RT Event Channel Use-cases

CONSUMERS CONSUMERS

Air

Frame

3:PUSH (DEMARSHALED DATA)

EVENT
CHANNEL
<

2:PUSH (EVENTS)

SUPPLIERS SUPPLIERS

Avionics Network management

Washington University, St. Louis
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Timeline for Multi-threaded Object Adapter

Task Time Line Viewer

timeout -
Supplierz - R T T ;o — e R T T :
1 1 1 1 1 1 1 1 1 1 1 1
et L0 b P et 0
Consummer2 i— - Josoooos doocsocos bodecoss o—_— focoooos e !
i i i i P oo i i i i
i : : : . o : : : . BMEnt)
Consutert oo - boosoesodoa oo e R ekt EETEEENY FEREREPE FRERRPRN - A
i i i i P N i i b i
I ! ! ! Lo Lo timeout ! Co "
Suppliert o= R T T R AR S » _ ~----
P dmen D01 F P E b
suppliero ==~ booeoees o M —— o — fooeeees S R
i i i i P o T i P i
i : : b . .o : oo : P :
__ 1 1 ' 1 ] 1 1 . 1 ' " 1 1 1 1
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1
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“ " Al
i
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Timeline for FIFO Object Adapter

Task Time Line Viewer

timeout
suppliep2—T-"""""- Haliaie SREEEELE SEREELLL :
1 1 0 H
CONSUmerz = """"""- dommon- deeee- e ;
1 1 0 H
CORSUREP] — -~ f-----oqoommoooy lscocoood :
i ‘ ‘ :
suppligpt —------- m ....... 4” ....... .m ........ m
suppliepn - ----- demene- aeeee-- ;
| i " ' 0
| seyent m ;
Coksumer =TT i
| s ldle g ! :
ldle = 0 b8
mNL.“ﬂm_u_ 28425 E32100 EB3STTS E29450 mAM._Nm.
: BZEEad f4cas
m E4306%
E24750 E44256

timeaut -

Washington University, St. Louis
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Applying CORBA to Medical Imaging

e Domain Challenges

— Large volume of “Blob”
data

DIAGNOSTIC x e.g., 10 to 40 Mbps

STATIONS — Lossy compression isn't
viable

— Prioritization of requests

: CLUSTER
BLOB
STORE

CENTRAL
BLOB STORE

MODALITIES

7%

Washington University, St. Louis
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Problem: Reducing Protocol Engine Overhead

in args

oO———»
CLIENT operation() OBJECT
out args + return value IMPLEMENTATION
<+«—O0 A A A
Y v \ / IDL
skeLETON | PST
DII SI::J%S ORB OBJECT
INTERFACE ( ADAPTER

ORB CORE

TYPECODE
INTERPRETER

TypeCode::traverse()

A
[de ep_fr ee()j [ el‘clzg())l(}er() j

CDR::
decoder()

TYPECODE
INTERPRETER

TypeCode::traverse()

A
de(c::](?(l;; ()] [deep_free()j

CDR::
encoder()

(ORB CORE RUN-TIME SYSTEM)

(ORB CORE RUN-TIME SYSTEM)

SENDER

RECEIVER

e Design Challenges

— Small memory footprint

— Predictable
performance

— Minimize the typecode
interpreter overhead

Washington University, St. Louis
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Solution: TypeCode Interpreter Optimizations

p

=

PARSING PARAMETERS

for each parameter

~

get the typecode, tc

CDR::decoder(tc,Val,O,‘ \
strm,env)

ServerRequest::params()

CREATE NVLIST AND
POPULATE IT WITH
PARAMETER TYPECODES

_ttep_sequence_
sendStructSeq_skel()

RECEIVER
TyrPECODE
INTERPRETER

s N
CDR::decoder(tc, data,

parent, strm, env)

switch(te->kind(env) {
case tk_char:
case tk_octet:
strm->get_char
(*(char *)data);
break;
case tk_short:
strm->get_short
(*(short *)data);
break;
case tk_long:
strm->get_long
(*(long *)data);
break;
case tk_double:
strm->get_longlong
(*(longlong *)data);
break;

( TypeCode::traverse(valuel, \

value2,visit,strm,env)

if (primitive typecode)
return visit(this,vall,val2,
strm,env);
switch(_kind){
/lcomplex typecodes
case tk_sequence:
OctetSeq *seq =
(OctetSeq *)vall;
bounds = seq->length;
valuel = seq->buffer;
goto shared_array_code;
case tk_array:
bounds=ulong_param(1, env);
shared_array_code:
TypeCode_ptr tc2 =
typecode_param(0, env);
size = tc2->size(env);
while(bounds--){
visit(tc2,vall,val2,strm,env);
valuel=size + (char*)vall;

case tk_sequence:

OctetSequence* seq =
(OctetSeq *)data;

strm->get_ulong
(seq->length);
seq->max=seq->length;
seq->buffer=0;
/I get typecode of elem
tc2=typecode_param(0);
size = tc2->size(env);
//allocate buffer
seq->buffer=new uchar [
size*seq->max];
//Fall thru these cases

case tk_struct:

case tk_array:
return tc->traverse
(data, 0, decoder,

strm, env);

val2 = size + (char *)val2;
! /

value2=size + (char *)val2;
}
case tk_struct:
create an encapsulation
CDR stream for our params
struct_traverse(&encap,vall,
val2,visit, strm,env);

struct_traverse(encap,
vall, val2,visit,strm,
env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {
skip_string; //member name
size =
calc_nested_size_
and_align(&tc,align);
visit(tc,vall,val2,strm,env);
vall = size + (char*)vall;

e Solution Approach

— Optimized Typecode
Interpreter

— Based on SunSoft
[IOP engine

e Related work

— Hoschka '97
— O’Malley, Proebsting,
and Montz '94

Washington University, St. Louis
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TypeCode Layout for Sequence of BinStructs

TCKIND_KIND (TK SEQUENCE /

ULONG LENGTH 128

OCTET *_BUFFER /

BYTE ORDER 0 ,
/
ELEMENT TYPECODE KIND | TK_STRUCT ,
/
ENCAPSULATION LENGTH 112
ENCAPSULATION
BOUNDS OF THE SEQUENCE 0 \
\
\
\
\
\
\
\
\
\
\
\
\
ENCAPSULATION
FOR ARRAY
MEMBER

S |- | & | @

TK_SHORT

TK_ARRAY

12

BYTE ORDER OF ENCAPSULATION

LENGTH OF STRING ID

ACTUAL STRING ID

LENGTH OF STRING STRUCT NAME

ACTUAL NAME OF STRUCT

NUMBER OF MEMBERS IN STRUCT

LENGTH OF STRING NAME FOR STRUCT MEMBER OF TYPE SHORT
ACTUAL NAME OF MEMBER OF TYPE SHORT

TyPECODE KIND FOR MEMBER OF T YPE SHORT

LENGTH OF STRING NAME FOR STRUCT MEMBER OF ARRAY TYPE
ACTUAL NAME OF MEMBER OF ARRAY TYPE
TyPECODE KIND FOR MEMBER OF TYPE ARRAY

ENCAPSULATION LENGTH FOR ARRAY MEMBER

N TK_OCTET

0 BYTE ORDER FOR ENCAPSULATION

TYPECODE KIND FOR ELEMENT OF ARRAY

N
N 8 SIZE OF ARRAY

e TypeCode Description
in CDR format

// 32 bytes

struct BinStructq{
short s; char c; long 1;
octet o; double d;
octet pad[8];

+;

typedef sequence<BinStruct>

StructSeq;

Washington University, St. Louis

32



Douglas C. Schmidt High-performance, Real-time ORBs

Throughput of the SunSoft IOP Implementation

e Experimental design

130.0

120.0 frs ; — Transfer 64 Mbytes of
1100 ¢ | “oneway"’ data
100.0 | ] :
., oo ! — Various types of data
ISy 2001 4——= chars/octets l
= 80.0 | A—a doubles
= ¥— structs
5 700 £ TCP/IP
Q.
£ 600 JK
E 50.0 | —
400
30.0 -
20.0 P
10.0 4

0-0 L L L L L L L
0.0 200 400 60.0 80.0 100.0 120.0 140.0

Sender Buffer Size in Kbytes

Washington University, St. Louis 33
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Challenges of Optimizing Complex Softare

e Problem

— Optimizing complex software is hard
— Small “mistakes” are costly over high-speed networks

e Solution Approach (lterative)

— Pinpoint sources of overhead via white-box metrics
* e.g., Quantify, TNF, etc.

— Apply optimization principles

— Validate via white-box and black-box metrics
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Optimization Principles

Number Principle
1 Optimize for the common case
2 Eliminate gratuitous waste
3 Replace inefficient general-purpose
methods with efficient special-purpose ones
4 Precompute values, when possible
Store redundant state to speed up expensive operations
6 Pass information between layers

&)
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Sender-side Analysis of SunSoft IOP Implementation
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Receiver-side Analysis of SunSoft IOP Implementation
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Problems and Solutions

e Problems

— Invocation overhead for small, frequently called methods

e Solution

— Inline method calls

e Principle

— Optimize for the common case
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Throughput After 1st Optimization
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Receiver-side Analysis of IIOP Implementation (1st Opt)

15.34

16.25

7.32

23.63

25.62

\

ETypecode::traverse
B CDR::get_longlong
Odeep_free

O CDR::decoder

B TypeCode::kind

-

10.56

11.30

/

double

Throughput for doubles and structs

\_

7.97

4.97

12.32

Ecalc_nested_size_an _\

alignment
W ptr_align_binar

Ostruct_traverse

O CDR::decoder

y

B CDR::skip_string

O TypeCode::traverse

W deep_free

—/

struct

Washington University, St. Louis

40



Douglas C. Schmidt High-performance, Real-time ORBs
Problems and Solutions

e Problems

— Lack of C++ compiler support for aggressive inlining

e Solution

— Replace inline methods with preprocessor macros

e Principle

— Optimize for the common case
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Throughput After 2nd Optimization
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Receiver-side Analysis of IOP Implementation (2nd Opt)
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Problems and Solutions

e Problems

— Too many method calls
— Computing the same quantity repeatedly

e Principles

— Precompute

— Add extra state

— Pass information through layers

— Convert generic methods to special-purpose ones

Washington University, St. Louis 44



Douglas C. Schmidt

High-performance, Real-time ORBs

Throughput After 3rd Optimization
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Receiver-side Analysis of IIOP Implementation (3rd Opt)
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Problems and Solutions

e Problems
— Expensive no-ops for memory deallocation
e Principles

— Eliminate gratuitous waste
— Specialize generic methods
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Throughput After Optimizations
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Receiver-side Analysis of IIOP Implementation after
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Throughput Comparisons
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Results for Typecode Interpreter Optimizations

e Our measurement-driven, principle-based optimization process improved
TAQ's IIOP protocol engine performance as follows

— 1.8 times for doubles

— 3.3 times for longs

— 3.75 times for shorts

— 5 times for chars/octets
— 4.2 times for structs

e Results available at http://www.cs.wustl.edu/~schmidt/II0P.ps.gz
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Current Status of TAO

e |IDL Compiler
— Based on Sun "IDL" front-end + our back-end
e RIOP Protocol Engine

— Optimized version of Sun’'s GIOP /IIOP protocol engine with real-time
enhancements

e ACE ORB Core

— Multi-threaded ORB run-time system based on ACE
e Real-time Object Adapter

— Demultiplex, schedule, and dispatch client requests in real-time
e Object Services

— Real-time Event Channels and Multimedia Streaming Service
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Developing an ORB Core with ACE
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Concluding Remarks

e Current Focus: High-performance, Real-time ORBs

— Reducing latency via de-layered active demuxing

— Applying optimization principles to TypeCode interpreter

— Enforcing periodic deadlines via Real-time Object Adapter
x I.e., support static request scheduling

— Applying optimization principles to presentation layer

e Future Work

— Pinpoint non-determinism and priority inversions in ORBs
— Dynamic scheduling of requests

— Distributed QoS and integration with RT |/O Subsystem
— TypeCode compiler optimizations
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