CS242: Object-Oriented Design
and Programming

Program Assignment 6
Due Thursday, March9”, 1998

This programming assignment focuses upon the use of inheritance and dynamic binding to build and test
bothboundedandunboundedmplementations of the AD$tack Both versions will inherit from the following
abstract base class

template <class T>
class Stack

{

public:
typedef T TYPE;
/[C++ trait.

/I = Pure virtual methods.

virtual “Stack (void) = 0;
/I Destructor.

virtual void push (const T &item) = O;
/I Place a new item on top of the stack.

virtual void pop (T &item) = O;
/l Remove and return the top stack item.

virtual int is_empty (void) const = 0;
/Il Returns 1 if the stack is empty, otherwise returns O.

virtual int is_full (void) const = O;
/I Returns 1 if the stack is full, otherwise returns O.

/I = Template Methods

void operator= (const Stack<T> &s);

/I Assignment operator (performs assignment). This should be

/I implemented in Stack.C and *not* overridden by derived classes.

void top (T &item) const;
/l Return top stack item without removing it. This should be
/I implemented in Stack.C and *not* overridden by derived classes.

int operator== (const Stack<T> &s) const;
/I Checks for Stack equality. This should be
/I implemented in Stack.C and *not* overridden by derived classes.

int operator!= (const Stack<T> &s) const;
/I Checks for Stack inequality. This should be
/I implemented in Stack.C and *not* overridden by derived classes.

virtual size t size (void) const = 0;
/I Return the number of elements currently in the stack.

virtual lterator<T> *iterator (void) const = 0;

/l Return the (dynamically bound) iterator for this Stack.

protected:
virtual void copy_elements (const Stack<T> &s);
/I Copy all the elements from <s> to <this>
/I using the lterator pattern.

virtual void delete_elements (void);
/I Delete all elements of <this>.

k

Note that most of the methods in this class jaee virtual functionswhich means they must be provided by
a subclass. In addition, there is povate: section in this class since there are no implementation details
in theStack abstract base class!

However, several methods (suchagerator= andtop can be implemented in the base class using the
Template Methogattern. Here's howperator= can be implemented, for example:

/I Assignment operator (performs assignment).
template <class T> void
Stack<T>::operator= (const Stack<T> &s)

/I Virtual calls.
this->delete_elements ();
this->copy_elements (s);

Naturally, there are other ways to implement this method, as well.
Given this abstract class, you will implement two versions that derive Btank :

1. Bounded- The first version will use an array whose bounds are fixed at creation time. Implementing
this program should be trivial since you can implement the boui@tadk class using youArray
class.

2. Unbounded- The second version will use a linked list, which is “unbounded” (at least in principle...)
and uses dynamic memory. Implementing this program will require you to implement an unbounded
Stack class using a linked list dNodes. It is not necessary to use the “free list” version of your
unbounded stack, though you are certainly welcome to do so.

Part 1 — Bounded Stack

The first implementation you will write is Bounded _Stack subclass oftack :

/* _*_ C++ _k_ */
#include <stdlib.h>
#include "Stack.h"

template <class T>
class Bounded_Stack : public Stack<T>
Il = TITLE
I Implement a generic LIFO abstract data type.
I
// = DESCRIPTION
I This implementation of a Stack uses a bounded array.

public:
typedef T TYPE;
/I C++ trait.

/I = Initialization, assignment, and termination methods.

Bounded_Stack (size_t size);
/I Initialize a new stack so that it is empty.

Bounded_Stack (const Stack<T> &s);
/Il The copy constructor (performs initialization).

"Bounded_Stack (void);
/I Perform actions needed when stack goes out of scope.

/I = Classic Stack operations.

virtual void push (const T &new_item);
/I Place a new item on top of the stack. Does not check if the
/I stack is full.

virtual void pop (T &item);
/l Remove and return the top stack item. Does not check if stack
Il is full.

/I = Check boundary conditions for Stack operations.

virtual int is_empty (void) const;
/Il Returns 1 if the stack is empty, otherwise returns O.

virtual int is_full (void) const;
/I Returns 1 if the stack is full, otherwise returns O.

virtual size t size (void) const;
/I Return the number of elements currently in the stack.

virtual lterator<T> *iterator (void) const;
/I Return the (dynamically bound) iterator for
/I this Bounded Stack.

protected:
virtual void copy_elements (const Stack<T> &s);
/I Copy all the elements from <s> to <this>.

virtual void delete_elements (void);
/I Delete all elements of <this>.

private:
/I You fill in here...

k

Note thatpush , pop, andtop do not explicitly check whether the stack is empty or full. Therefore, it is
necessary to cailf _.empty oris _full before adding, removing, or viewing a stack element.

Part 2 — Unbounded Stack

A limitation of the bounded implementation of the Stack ADT is th@aunded _Stack cannot grow
beyond their initial size. Therefore, your second implementation you will write is an “unbounded” stack using
dynamic memory. Note that this change only affects the stack representation, but does not affect the stack
interface.

/* _*_ C++ _k_ */
#include <stdlib.h>
#include "Stack.h"

/Il Forward declaration.
template <class T> class Node;

template <class T>
class Unbounded_Stack : public Stack<T>
Il = TITLE
I Implement a generic LIFO abstract data type.
I
// = DESCRIPTION

I This implementation of a Stack uses an "unbounded"
I linked list.
L
public:
typedef T TYPE;
/I C++ trait.
/I = Initialization, assignment, and termination methods.
Unbounded_Stack (size_t size_hint);
/I Initialize a new stack so that it is empty.
Unbounded_Stack (const Stack<T> &s);
/I The copy constructor (performs initialization).
“Unbounded_Stack (void);
/I Perform actions needed when stack goes out of scope.
/I ... Same as for the Bounded_Stack
private:
Node<T> *top_;
/I A pointer to the top of the stack. Note
/I The use of the “Cheshire Cat” technique for
/I information hiding.
h

The following Node class defines operations on a node in the linked list. Since your solution uses the
“Cheshire Cat” approach to information hiding, you can actually put this implementation into your Stack.C
file. Therefore, clients of this class won't have access to the implementation at all!

template <class T>

class Node
Il = TITLE
I Implement a generic <Node>.
"
/I = DESCRIPTION

I <Node>s can be chained together via their <next > field.

I This class also implements an efficient memory cache
I using class-specific overloaded operator new and delete.
public:

/I = Constructors.

Node (const T &val, Node<T> *next = 0);

/I Create and initialize a node to a certain value, assigning
/I <next> to <next_>.

Node (void);
/I Just create the node, no initializing.

Node (const Node<T> &from);
/I The copy constructor (performs initialization).

I/l = Accessors.
Node<T> *next (void) const;
/I Get the pointer to the next node.

void next (Node<T> *new_next);
/I Set the pointer to the next node.

const T &value (void) const;
/I Get the current value at this node.

void value (const T &a);
/I Set the current value of this node.

private:
T value_;
/l Value at this node.

Node<T> *next_;
/Il Pointer to the next node.

Iterators

The key to making your subclass implementationStafck work effectively is to define atterator
base class:

template <class T>

class lIterator

/I = TITLE

I Allows clients to access elements in
/[a container sequentially.

{
public:
virtual void first (void) = O;
I/l Resets the iterator to the beginning.

virtual void next (void) = O;
/I Advance the iterator to the next item.

virtual int is_done (void) const = 0;
/I True if we've seen all the items, else false.

virtual T current_element (void) const = O;
/I Return a const reference to the current item.

virtual void set_current_element (const T &item) = 0;
/I Set the value of the current item.

virtual “lterator (void) = O;
/I Virtual destructor ensures correct deletions.

Iterator is a pattern that allows clients to access elements in an aggregate collection sequentially without
revealing the collection’s implementation details. To apply this pattern to the current assignment, you'll need to
subclass the base cldtsrator ~ to define classes that iterate oB=runded _Stack andUnboundded _Stack
instances transparently.

template <class T>
class Bounded_Stack_lterator : public Iterator<T>

{
" ..

k

template <class T>
class Unbounded_Stack_lIterator : public Iterator<T>

{
" ..

k

Naturally, the factory methods for thierator ~ methods oBounded _Stack andUnboundded _Stack
will return the appropriate concrelerator

Test Driver Code

The following code implements a test driver to test your stack implementation:

/* K C++ K */
/l Uses a stack to reverse a name.

#include <iostream.h>
#include <assert.h>

#include "Bounded_Stack.h"
#include "Unbounded_Stack.h"

const int MAX_NAME_LEN = 80;

/I Factory that creates an appropriate Stack<char>
/I subclass.

Stack<char> *
make_stack (int bounded)

if (bounded)

return new Bounded_Stack<char> (MAX_NAME_LEN);
else

return new Unbounded_Stack<char> (MAX_NAME_LEN);

6

}

int
main (int argc)

char name[MAX_NAME_LEN];

Stack<char> *sl1
Stack<char> *s2

= make_stack (1);
= make_stack (0);
cout << "Please enter your name... "
cin.getline (name, MAX_NAME_LEN);
int readin = cin.gcount () - 1;

for (int i = 0; i < readin && !s1->is_full (); i++)
sl->push (nameli]);

cout << "doing the assignment...\n";
*s2 = *sl;

assert (*s2 == *sl);

cout << "done\n";

cout << "your name backwards is..: ";
while (Isl->is_empty ()

Stack<char>::TYPE c;
s1->pop (c);
cout << ¢;

}
cout << "\nand again...:\n";
while (Is2->is_empty ()

Stack<char>::TYPE c;
s2->pop (c);
cout << ¢;

}

cout << endl;
assert (sl->is_empty ();
return O;

Getting Started

You can get the “shells” and Makefile for part one of the program from your account on cec. These files
are stored inproject/adaptive/cs242/assignment-6/ . Here’s a script that shows you how to
set everything up and get these files:

% cd “/cs242

% mkdir assignment-6

% cd assignment-6

% cp -r /project/adaptive/cs242/assignment-6/* .

7

% Is

stack-test.C

Stack.h
Bounded_Stack.h
Iterator.h

Node.h
Unbounded_Stack.h

You'll need to create the other files you needg, the Makefile and thérray class, etc. from your
earlier assignments.

