CS242: Object-Oriented Design
and Programming

Program Assignment 2
Part 1 (Bounded Stack) Due Thursday, Feb 1%, 1996
Part 2 (Unbounded Stack) Due Tuesday, Feb 5, 1996

A stack isan Abstract Data Type (ADT) that implements a priority queue with “last-in, first-out” (LIFO)
behavior. Common operations on a stack include push, pop, top, is.empty and isfull. This part of your
programming assignment focuses upon building and using bounded and unbounded implementations of
stacks.

You will implement and profile two versions of the ADT St ack:

1. Bounded — the first one will use an array whose bounds are fixed at creation time. Implementing this
program should be trivial now that you' ve implemented the Ar r ay class.

2. Unbounded — the second one will use alinked list, which is*“unbounded” (at least in principle...) and
uses dynamic memory. Thiswill be much more challenging to write correctly...

Part 1 —Bounded Stack

Thefirst implementation you will writeis a“bounded” stack. Your task isto implement the methods that
operate upon objects of class St ack. Fed free to reuse the class Ar r ay you implemented for your first
assignment. Here's the class declaration for St ack:

/* _ ok _ C++ _ ok _ */
#i ncl ude <stdlib. h>

tenpl ate <class T>
cl ass Stack

/1l = TITLE

/1 | npl enent a generic LIFO abstract data type.

/1

/1 = DESCRI PTI ON

/1 This inplenentati on of a Stack uses a bounded array.
{
publi c:

typedef T TYPE

[l C++ trait.

/1 = 1Initialization, assignnent, and term nation nethods.

Stack (size_t size);
/1 Initialize a new stack so that it is enpty.

Stack (const Stack<T> &s);
/1 The copy constructor (perforns initialization).

voi d operator= (const Stack<T> &s);
/1 Assignment operator (perforns assignnent).

“Stack (void);

/1 Perform actions needed when stack goes out of scope.
/1 = dassic Stack operations.

voi d push (const T &new itenj;
/!l Place a newitemon top of the stack. Does not check if the
/1 stack is full.

void pop (T &tem;
/1 Renpbve and return the top stack item Does not check if stack
/1 is full.

void top (T & tem const;

/1 Return top stack itemw thout renoving it. Does not check if
/1 stack is enpty.

/1 = Check boundary conditions for Stack operations.

int is_enpty (void) const;
/! Returns 1 if the stack is enpty, otherw se returns O.

int is full (void) const;
// Returns 1 if the stack is full, otherwi se returns O.

i nt operator == (const Stack<T> &s) const;
/1 Checks for Stack equality.

int operator != (const Stack<T> &s) const;
/1 Checks for Stack inequality.

private:
/1 You fill in here..

b

Note that push, pop, andt op do not explicitly check whether the stack is empty or full. Therefore, it is
necessary tocal i s_enpty ori s_ful I before adding, removing, or viewing a stack element.

Part 2 — Unbounded Stack

A limitationof the bounded Stack implementation of the ADT Stack isthat stacks cannot grow beyondtheir
initial size. Therefore, your second implementation you will write is an “unbounded” stack using dynamic
memory. Note that this change only affects the stack representation, but does not affect the stack interface.

Test Driver Code

The following code implements atest driver to test your stack implementation:

/* _ ok _ C++ _ ok _ */

// Uses a stack to reverse a nane.
#i ncl ude <i ostream h>

#i ncl ude <assert. h>

#i ncl ude " St ack. h"

i nt
mai n (voi d)

const int MAX_NAVE LEN = 80
char nane[MAX_NAME_LEN] ;

St ack<char> s1 (MAX_NAME_LEN);

cout << "Please enter your nane..: ";
cin.getline (nane, MAX_NAME_LEN);
int readin = cin.gcount () - 1;

for (int i =0; i <readin & !sl.is_full (); i++)
sl. push (nanef[i]);

/1 Test the copy constructor
St ack<char> s2 (sl);
assert (sl == s2);

/1 Test the assignnent operator
sl = s2;
assert (sl == s2);

cout << "your name backwards is..: ";

while (!sl.is_enmpty ())

{
St ack<char>:: TYPE c;

sl.pop (c);
cout << c;

}

cout << endl

assert (sl.is_empty ());
assert (!s2.is_empty ());
assert (sl != s2);

return O;

Getting Started

You can get the “shells” and Makefile for part one of the program from your account on cec. Thesefiles
arestored in/ pr oj ect/ adapti ve/ cs242/ assi gnnent - 3/ St ack/ . Here's a script that showsyou
how to set everything up and get thesefiles:

% cd "/cs242

% nkdi r assi gnment - 3

% cd assi gnnment - 3

%cp -r /project/adaptivel/ cs242/ assi gnnent - 3/ St ack/ *
%ls

Makefil e

stack-test.C

St ack. h

Stack. C
% make

The Makefi | e, st ack-test. Cand St ack. h files are written for you. All you need to do is edit the
St ack. Cfilesto add the methods that implement the bounded stack.
I'll put the shells for part 2 out shortly.

