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Abstract

Dynamic distributed real-time and embedded (DRE) systems
in which application requirements and environmental condi-
tions may not be known a priori, or which may vary at run-
time, can benefit from self-adaptive and reconfigurable ap-
proaches to quality of service (QoS) management. Adaptive
QoS management is particularly useful to address key con-
straints (such as solution quality and end-to-end timeliness)
that must be traded off in dynamic DRE systems. To meet
overall system constraints in complex DRE systems, moreover,
adaptive management of multiple QoS aspects must be coor-
dinated across multiple layers of applications and their sup-
porting middleware.

This paper makes three contributions to the study of apply-
ing adaptive QoS management techniques to DRE systems in
practice: (1) it presents an architectural resource management
model for integrating inter-related QoS management aspects
across multiple layers of common-off-the-shelf (COTS) mid-
dleware, (2) it describes our experience integrating multiple
middleware QoS management technologies to manage quality
and timeliness of imagery adaptively within a representative
DRE avionics system case study, and (3) is analyzes empir-
ical results that quantify the impact of our approach on key
trade-offs between timeliness and solution quality, both for the
avionics system case study and for the broader practice of de-
veloping adaptively managed DRE systems.

Keywords: Adaptive Middleware, Empirical Case Studies,
Distributed Real-Time and Embedded (DRE) Systems

1 Introduction

Over the past decade, various technologies have been devised
to alleviate many complexities associated with developing
software for distributed real-time and embedded (DRE) sys-
tems, such as tele-immersion environments, fly-by-wire air-
craft, industrial process automation, and total ship computing

environments. Some of the most successful emerging tech-
nologies have centered on middleware, which is systems soft-
ware that

� Functionally bridges the gap between application pro-
grams and the lower-level hardware and software infras-
tructure to coordinate how parts of applications are con-
nected and how they interoperate� Enables and simplifies the integration of components de-
veloped by multiple technology suppliers and� Provides common services that were formerly placed di-
rectly in applications, but in actuality are application-
independent and need not be developed separately for
each new application.

As middleware has matured and been applied to a variety of
use cases, there has been a natural growth in extensions, fea-
tures, and services to support these use cases. For example,
the Minimum CORBA [1] and Real-time CORBA [2] spec-
ifications, as well as the Real-Time Specification for Java
(RTSJ) [3], are examples of standards that have emerged
from research and experience supporting the quality of service
(QoS) needs of DRE systems.

DRE systems have historically been developed and vali-
dated using relatively static development and analysis tech-
niques (such as function-oriented design and rate monotonic
analysis) to implement, allocate, schedule, and manage their
resources. These static approaches have proven to be accept-
able for closed DRE systems, where the set of ap-plication
tasks that will run in the system and the loads they will place
on system resources change infrequently and are known in
advance. Static approaches are not well-suited, however, for
open DRE systems (such as collaborative mission re-planning,
adaptive audio-video streaming, or robotics applications de-
signed for close interaction with their environments), which
evolve more rapidly and must collaborate with multiple re-
mote sensors, provide on-demand browsing and actuation ca-
pabilities for human operators, and respond flexibly to unan-
ticipated situational factors that arise at run-time. Due to the
dynamic contexts in which these open DRE systems oper-
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ate, self-adaptation and reconfigurability are essential to main-
tain QoS assurances (1) under widely varying environmental
conditions, (2) across heterogeneous “systems of systems,”
(3) and at time scales that would consume an inappropriate
amount of attention from human operators if managed manu-
ally.

Previous research [4, 5] has shown the benefits of integrat-
ing multiple QoS management techniques in standards-based
middleware and applying single-layer adaptive resource man-
agement techniques real-world DRE systems [6, 7, 8]. Only
limited practical experience is available, however, with inte-
grating resource management techniques across multiple lay-
ers of standards-based DRE systems. To help fill this gap,
this paper presents an empirical case study of the vertical
integration of three layers of middleware QoS management
technologies within Boeing’s Bold Stroke [9, 10], which is a
standards-based DRE avionics platform that is representative
of a broader class of applications (including mission-critical
distributed audio/video processing [11] and real-time robotic
systems [12]) that require both static and dynamic support for
QoS. In this paper, we describe the integration of the following
three layered adaptive QoS management technologies, show
empirical results of their use in the Bold Stroke avionics sys-
tem, and analyze each technology’s contribution to adaptive
QoS management:
Quality Objects (QuO). QuO [13] is an adaptive middle-
ware framework designed by BBN Technologies to support the
development of QoS behavior of a system separate from - but
complementary to - the development of its functional behavior.
To enhance end-to-end adaptive behavior in our Bold Stroke
testbed we used three QuO capabilities: (1) contracts, which
specify desired and available QoS, along with the policies for
controlling QoS and adapting to changes, (2) delegates, which
are remote object proxies, with well-defined points to insert
adaptive behaviors into end-to-end paths, and (3) system con-
dition objects, which provide interfaces to parts of the system
that must be measured or controlled by contracts.
Real-Time Adaptive Resource Manager (RT-ARM). RT-
ARM [14] is a resource adaptation service developed by Hon-
eywell Technologies to evaluate one or more QoS metrics re-
peatedly during system operation and adaptively adjust re-
source allocations according to specified constraints on ac-
ceptable QoS. RT-ARM is designed to monitor a wide variety
of QoS metrics and enforce a wide variety of QoS constraints.
In this paper we only consider how the RT-ARM can moni-
tor one QoS metric (application progress) and one constraint
(timeliness with respect to a specified deadline).
TAO reconfigurable scheduler. The TAO Reconfigurable
Scheduler [8] is a CORBA-based scheduling service designed
for flexible support of hybrid static/dynamic scheduling devel-
oped at Washington University, St. Louis. It selects a feasible
set of rates of operation invocation and assigns priorities to the

operations according to the scheduling strategy with which it
was configured. When the RT-ARM modifies the ranges of
invocation rates, the TAO Reconfigurable Scheduler first pro-
vides criticality assurance for the hard real-time operations by
ensuring each operation is scheduled at a rate in its available
range and that all critical operations can be feasibly scheduled
at those rates. TAO’s Reconfigurable Scheduler then adds non-
critical processing (e.g., re-planning operations) and optimizes
processor utilization for the image processing operations by
maximizing their rates subject to schedule feasibility.

This paper is organized as follows: Section 2 presents the
example avionics system application that provides the context
in which we applied our three adaptive QoS management mid-
dleware technologies outlined above; Section 3 explains how
these adaptive technologies were integrated within the avion-
ics system and examines the issues and optimizations resulting
from the integration; Section 4 discusses the methodology and
overall design of our experiments with the integrated system;
Section 5 reports our results and analyzes trade-offs between
timeliness and solution quality under different adaptation ap-
proaches; Section 6 summarizes the lessons learned from our
experiences integrating and evaluating middleware technolo-
gies for adaptive QoS management; Section 7 compares our
efforts with related work; and Section 8 presents concluding
remarks.

2 An Avionics Case Study

This presents an overview of the example avionics system ap-
plication that provides the context in which we applied our
three adaptive QoS management middleware technologies out-
lined in Section 1.

2.1 Overview of the Application Testbed

The case study and experiments on DRE middleware adaptive
QoS management presented in this paper were conducted us-
ing an open experimentation platform (OEP)1 developed by
Boeing.

OEP application goals. As shown in Figure 1, the OEP con-
sisted of two aircraft (one playing the role of server and the
other playing the role of client) that interoperated in real-time
over a very low-bandwidth radio data link to enable operators
to (1) download imagery from the server to the client and (2)
collaboratively annotate the downloaded images on both the
client and server aircraft to enhance collaboration between

1An OEP is a hardware/software laboratory environment incorporating
COTS infrastructure and representative applications operating in it, which can
be modified and augmented with technology and application innovations, to-
ward evaluating their contribution to technical challenges in that context.
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personnel on the two remote aircraft. These capabilities in-
crease the ability of the aircraft to respond dynamically both to
rapidly changing environmental conditions and to new infor-
mation that arrives during the re-planning collaboration. These
capabilities offer potential improvements in the effectiveness
of a wide range of applications, from airborne search and res-
cue, to aerial suppression of forest fires, to disaster assessment
and response. Collaborative re-planning enables operators to
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Figure 1: Collaboration Scenario

respond more rapidly to changing situations in-flight, e.g., the
server sends links to downloadable imagery to the client air-
craft, which it then uses for re-planning. In our example sce-
nario used to evaluate the OEP, an off-board sensor detects
time-sensitive information that initiates re-planning and pro-
vides this information to the server node. The server node
has authority to initiate re-planning with the client node and
sends an alert to the client node, along with a “virtual folder”
that contains thumbnails of relevant images and the associ-
ated links to the complete images. Operators on the client
and server nodes collaborate to develop a new plan, which the
client then performs.

The research presented in this paper applies multi-layer
adaptive middleware techniques to alleviate the following lim-
itations that impede successful re-planning in existing sys-
tems:

1. Limits on radio data link bandwidth that constrain the op-
erational utility of existing systems to collaboratively re-
plan the activities of airborne nodes.

2. Static resource management schemes that often rely
on over-allocation strategies and reduce and sometimes
eliminate the amount of processor and network resources
available for re-planning and rehearsal.

A key goal of the OEP testbed illustrated in Figure 1 is
to use adaptation and reconfiguration to provide operators the
same level of confidence in the re-directed plan as in the orig-
inal pre-planned version, even in the face of dynamic envi-
ronmental factors, such as variations in network bandwidth
and unannounced re-planning alerts. Thus, in addition to pro-
viding client-side operators up-to-date information detected
by remote sensors (e.g., fresh images of the new destination)
about the environment encountered en-route to and from the

new destination, the OEP must manage key trade-offs be-
tween transmission quality and latency for that information.
Our solution involves implementing QoS-managed browser-
based collaboration capabilities to (1) enable client and server
nodes to view the same displays and information and (2) en-
sure image quality and transmission latency stay within ac-
ceptable bounds as independent as possible given the available
resources (obviously there is a minimum, below which noth-
ing useful can be accomplished).

This common browser view also allows server-side opera-
tors to decorate imagery with annotations that will be visible
on the client node rapidly, i.e., within one second. The ad-
vantage of this approach is that features can be located on an
image via an icon placed at a precise location relative to an
easily identified reference point. This capability in turn allows
operators on the client and server nodes to establish a common
frame of reference of the plan update and the new destination
environment while the client is en-route to that destination,
which is far better than the voice-only radio communications
previously available in conventional re-planning systems.

Our solution is readily extensible to scenarios encompassing
multiple client and server nodes, as well as other applications
(such as coordination within teams of autonomous agents in
rapidly changing environments or circumventing cascades of
failures in distributed critical infrastructure) that require adap-
tive run-time support for collaborative re-planning.
OEP client and server interactions. In our OEP applica-
tion testbed, a server-side operator first uses a user interface
to send an alert to the client along with a virtual target folder
containing a set of thumbnail images to the client. The collab-
oration client application on the client aircraft) also contains
a virtual folder manager component that provides it access to,
and storage of, virtual folders and their images. If sufficient
memory is available, the virtual folder manager can hold more
than one virtual folder, though only a single virtual folder was
downloaded for our OEP evaluation.

The client node determines which page of the virtual folder
is displayed. Operators on the client node can navigate the
virtual folder both forward and backward using “next” and
“previous” buttons on their cockpit display. The virtual folder
can also be reset to a home page by touching another button.
A thumbnail page in the virtual folder allows the operator to
select images to download and view without the overhead of
downloading each complete image. A bar next to each thumb-
nail indicates whether its corresponding image has been down-
loaded: the bar is green if so and if not is red.

Server and client node operators can draw annotations and
move commonly viewed individual cursors during the collab-
oration. To avoid problems with having both server and client
operators manipulate the image simultaneously, the client is
given control of image download and manipulation during
the collaboration, including panning side-to-side, rotation, and
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zooming. Server and client node operators can move their re-
spective cursors to indicate a specific location on the image.
They are also able to draw circle, line, rectangle, and triangle
annotations to designate larger regions on the image.

Update messages are sent between the collaboration server
and client to update cursor positions and annotations. The
server to client update message contains server cursor move-
ments and annotations drawn on the server. The client to server
update message contains image manipulation information in
addition to client cursor movements and client-drawn anno-
tations. Update messages are only sent as needed and only
contain updates since the last such message. Displays on both
client and server are updated with the update information to
maintain a common synchronized view of the virtual folder.

2.2 Improvements in the State of the Art

As discussed in Section 1, we implemented a prototype
of the OEP application described above using three lay-
ered adaptive QoS management technologies, i.e., QuO, RT-
ARM, and TAO’s Reconfigurable Scheduler. This layered
middleware design provides an open systems “bridge” be-
tween legacy on-board embedded avionics systems and off-
board information sources and systems. The technical foun-
dation of this bridge is a Real-time CORBA Object Re-
quest Broker (ORB) [2] called TAO [15]. TAO is a widely-
used, open-source (deuce.doc.wustl.edu/Download.html)mid-
dleware platform targeted for DRE applications with deter-
ministic and statistical QoS requirements, as well as best-effort
requirements.

In our OEP testbed, TAO uses a pluggable protocol to com-
municate over a very low bandwidth (approximately 2,400
baud in each direction) radio network. Network time slots
were allocated asymmetrically in the OEP so that the image
tiles were downloaded at close to 4,800 baud with a small frac-
tion of the bandwidth allocated to carry tile requests and up-
date messages from the client to the server. Middleware tech-
nologies were applied at several architectural layers to man-
age key resources and ensure the timely exchange and pro-
cessing of mission-critical information. In combination, these
techniques support Internet-like connectivity between server
and client nodes, with the added assurance of real-time perfor-
mance in a highly resource-constrained environment.

The OEP testbed leverages existing open systems client
and server platforms. On the client side, we used an Opera-
tional Flight Program (OFP) system architecture based upon
commercial hardware, software, standards, and practices [16]
that supports re-use of application components across multi-
ple client platforms. The OFP architecture includes the Bold
Stroke avionics domain-specific middleware layer [9] built
upon TAO. The Bold Stroke middleware isolates avionics ap-
plications from the underlying hardware and operating system

(OS), enabling hardware or OS advances from the commer-
cial marketplace to be integrated more easily with the avionics
application. This architecture uses the adaptive middleware
technologies outlined in Section 1 (and described in more de-
tail in Section 3) to address the limitations with existing time-
sensitive re-planning noted in Section 2.1.

2.3 System Resource Management Model

The layered adaptive resource management model for the OEP
testbed is illustrated in Figure 2. Figure 2 shows both (1)
end-to-end request and response paths for image transmission
in the OEP in detail and (2) QoS adaptation interactions be-
tween the different middleware technologies described in Sec-
tion 3. Sections 4 and 5 also reference the resource manage-
ment model shown in Figure 2. When client operators request
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Figure 2: Resource Management Model for OEP Testbed

an image, that request is sent from the browser application to a
QuO application delegate [16], which then sends a series of re-
quests for individual tiles via TAO over a low-bandwidth radio
connection to the server. The delegate initially sends a burst
of requests to fill the server request queue; after that it sends
a new request each time a tile is received. For each request,
the delegate sends the tile’s desired compression ratio, which
is determined by the progress of the overall image download
when the request is made.

On the server node, the ORBExpress Ada ORB receives
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each request from the radio connection, and from there each
tile goes into a queue of pending tile requests. A collabora-
tion server pulls each request from that queue, fetches the tile
from the server’s virtual target folder containing the image,
and compresses the tile at the ratio specified in the request.
The collaboration server then sends the compressed tile back
through ORBExpress and across the low-bandwidth radio link
to the client. Server-side environmental simulation services
emulate additional workloads that would be seen on the im-
agery server under realistic operating conditions.

After a compressed tile is received by the client from the
radio network, TAO delivers it to a servant that places the tile
in a queue, where it waits to be decompressed. When the tile is
removed from the queue it is decompressed and then delivered
by client-side operations to Image Presentation Module (IPM)
hardware, which renders the tile on the cockpit display. The
decompression and IPM delivery operations are dispatched by
the TAO Event Channel [17] at rates selected in concert by the
RT-ARM [14] and the TAO Reconfigurable Scheduler [18, 8],
as described in Sections 3.2 and 3.3, respectively.

3 Adaptive Middleware Applied

To address the challenges with in-flight re-planning described
in Section 2, we have designed, implemented, and flight-tested
an integrated QoS management architecture based on Real-
time CORBA [2]. A key theme in this architecture is that
coarser-grain adaptation is performed by higher layers of the
architecture (i.e., closer to the application), with finer grained
adaptation at each lower layer (i.e., closer to the OS, network,
and hardware). To enhance performance, our multi-layered
architecture (shown in Figure 2) tries to handle adaptation at
the lowest layer possible, with adaptation moving up to higher
layers only if QoS requirements cannot be met via adaptation
in the current layer, as follows:

� The finest granularity of adaptation in the OEP system
architecture is the lowest priority dynamic scheduling of
non-critical operations [8] by the dispatcher of the TAO
Real-Time Event Channel, which we developed in previ-
ous work [17].

� The second finest level of adaptation granularity is
achieved by a Real Time Adaptive Resource Manager
(RT-ARM) [14] and the TAO Reconfigurable Sched-
uler [8, 18], which reschedule rates of invocation of appli-
cation components, while maintaining deadline-feasible
scheduling of critical operations.

� The second coarsest level of adaptation is performed by
the Quality Objects (QuO) framework [11], which moni-
tors progress downloading and processing image tiles to-
ward the desired deadline for the entire image.

� Although QuO represents the highest middleware layer in
the OEP system architecture, the highest layer at which
adaptation can be performed is the application layer,
where the client personnel can specify the coarsest grain
requirements for image quality and timeliness.

The remainder of this section describes the adaptive middle-
ware in our multi-layered architecture, ranging from the coars-
est to the finest granularity of adaptation.

3.1 QuO: Second Coarsest Grain Adaptation

Figure 3 illustrates the overall architecture of QuO. QuO is a
general-purpose framework that supports a variety of adapta-
tion strategies. We therefore developed a reactive QoS adapta-
tion policy [19] for the OEP testbed that manages the overall
trade-offs of timeliness versus image quality. As Figure 2 in
Section 2.3 illustrates, we integrated QuO at the second coars-
est level of adaptation in the OEP system, just below the appli-
cation level. When the client node requests an image from the
server node, a QuO delegate breaks the image request up into
a sequence of separate tile requests-each tile is a smaller-sized
piece of the entire image for which a separate compression
ratio can be assigned.
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Figure 3: QuO Architecture Overview

The number of tiles requested by the delegate is based upon
the image size, while the compression level of an individual
tile can be adjusted dynamically based upon the deadline for
receiving the full image and the expected download time for
the tile. The image is tiled from the point of interest first. The
early tiles contain the most important data, so that decreased
quality of later tiles will have minimal impact on the overall
mission re-planning capabilities.

In our OEP testbed, a QuO delegate adapts the compres-
sion level of the next tile requested. A QuO contract monitors
progress of the image download through system condition ob-
jects and influences the compression level of subsequent tiles
based upon whether the image is behind schedule, on sched-
ule, or ahead of schedule. If the processing of the image tiles
falls behind schedule, the contract prompts the RT-ARM (de-
scribed in Section 3.2) to attempt to adjust invocation rates to
allocate more CPU cycles to tile decompression.
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The QuO delegate initially determines the number of tiles
into which the image will be broken. Due to constraints on
both the server tiling software and the client display software,
in the OEP testbed the choices were limited to 1, 16, or 64
tiles. Our experiments (described in Section 4) revealed that
breaking a 512 x 512 pixel image into 64 tiles introduced too
much overhead, which increased the download time dramat-
ically. We therefore always requested either 16 tiles or the
entire image.

The QuO delegate also determines the initial compression
ratio for the image. We used the lowest compression ratio
available for the initial tiles, because tiles are requested start-
ing from the region of interest first and subsequent tiles are not
as valuable. It therefore is more important for the application
to download image tiles at compression ratios greater than or
equal to that of the region of interest. After the number and
initial compression ratio of tiles have been set, the delegate
makes several calls to the server to request the first set of tiles.

The number of tiles requested initially is determined by the
size of a tile request queue that holds outstanding tiles re-
quested from the server, but not yet received by the client.
This queue enables the QuO encoded policy to delay request-
ing tiles until necessary to provide the maximum impact of
compression ratio adaptation, while ensuring that there is al-
ways a tile request ready for the server to process. Finally,
the delegate initiates periodic callbacks to its methods, so that
it can perform contract evaluation, adjust compression ratios,
and request subsequent tiles as needed to fill the tile request
queue. As tiles are received from the server node, QuO sys-
tem conditions count tiles received, processed, and displayed.

There are four operating regions specified by the QuO con-
tract: inactive, early, on time, and late. The inactive operating
region is entered when the entire image has been downloaded.
The on time operating region indicates that the image is on
pace to complete before - but close to - its deadline. Similarly,
the early region indicates that the image is on pace to finish
well before its deadline and the late operating region indicates
that the image will finish after the deadline at the current rate
of progress.

There is no change in the compression ratio if the current
operating region is on time. If the current region is early, then
the compression ratio is lowered to the initial compression ra-
tio, so that the remaining tiles can have the same quality as the
initial tiles. If the current operating region is late, the com-
pression ratio is increased in increments of 25:1 in the range
[50:1, 75:1, 100:1]. After checking progress - and if neces-
sary setting a new compression ratio and notifying RT-ARM
of any changes in the operating region - QuO checks the re-
quest queue’s depth and requests additional tiles until the tile
request queue is full or the last tile has been requested. QuO
can be downloaded in open-source format from quo.bbn.com.

3.2 RT-ARM: Second Finest Grain Adaptation

As Figure 2 in Section 2.3 illustrates, we integrated the Real-
Time Adaptive Resource Manager (RT-ARM) at the second
finest level of adaptation in the OEP system, just below QuO.
Figure 4 shows the structure of the RT-ARM service manager
we integrated within the OEP testbed. RT-ARM is used in
the OEP testbed to manage the progress of the thread(s) for
decompressing received tiles and delivering them to the ap-
plication by the client of the OEP. When triggered to react,
RT-ARM manipulates the CPU usage of key operations on the
request/tile path, such as tile decompression and delivery of
tiles to the IPM processor in the cockpit. RT-ARM does this
by manipulating subsets of task invocation event rates from
application-specified available rate sets. If image tile process-
ing falls behind schedule, the QuO contract prompts RT-ARM
to adjust ranges of invocation rates to reallocate more CPU
cycles to decompressing remaining tiles.

RT-ARM Service Manager


Adaptation

Control


Progress

Monitor


Rate Set

Specification


Figure 4: RT-ARM Service Manager

In response to changing environmental conditions, RT-
ARM can trigger such adaptation in two ways: (1) reactively
when the QuO contract notifies RT-ARM that the operating
region boundary has changed or (2) proactively when it peri-
odically checks the status of the system and notices a current
or impending violation of the operating region limits. We dis-
tinguish the case where RT-ARM simply evaluates its operat-
ing status and takes no action from the case where that evalu-
ation triggers a change in rate ranges and a corresponding re-
computation of rates and priorities by the TAO Reconfigurable
Scheduler described in Section 3.3.

RT-ARM attempts to keep operations within the on time
QoS region by shrinking or expanding their respective ranges
of selectable rates. This strategy was implemented by comput-
ing the average number of dispatches required by an operation
at a given time, then discarding the rates that would cause the
operation to complete too early or too late. As a result, rates
of image processing operations that begin to veer towards the
“early” and “late” regions are forced to adapt. If this level of
adaptation is insufficient to keep the overall image download
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on time, QuO steps in and adjusts both RT-ARM operating
region and the compression level of the next tile.

3.3 TAO Reconfigurable Scheduler: Second
Finest Grain Adaptation

We also integrated the TAO Reconfigurable Scheduler within
the second finest level of adaptation shown in Figure 2 in Sec-
tion 2.3, to manipulate the rates and priorities of operations
dispatched at the finest level of adaptation within the TAO
ORB core and Event Channel. Figure 5 illustrates the relation-
ship between the TAO Reconfigurable Scheduler and TAO’s
Event Channel Dispatcher.

Scheduler

sub-graph

rate
tuples

WCET propagation

selected
rates

rate propagation

propagated
rates

tuple
visitor

operation
visitors

Rate and 
priority policy

DispatcherDispatching 
configuration

RMS

LLF laxity

static

static

timers

Figure 5: TAO Reconfigurable Scheduler and TAO Event
Channel Dispatcher

In earlier work [4], we tried a simple integration of the TAO
Reconfigurable Scheduler with RT-ARM, in which RT-ARM
would propose a set of rates for operations and TAO’s Re-
configurable Scheduler would generate a schedule and then
evaluate that schedule’s feasibility. Unfortunately, that ap-
proach proved computationally inefficient since RT-ARM and
TAO’s scheduler operated too independently. Our initial re-
sults, however, pointed to the solution pursued in this work:
closer integration of adaptation mechanisms. We therefore
evolved TAO’s Reconfigurable Scheduler so that the rate se-
lection mechanism was pushed down into it, while the pol-
icy for rate selection was supplied by RT-ARM. Specifically,
RT-ARM provided a specific rate selection strategy to TAO’s
Reconfigurable Scheduler at system initialization time based
upon operation criticality and available rates.

The first revision we made to TAO’s Reconfigurable Sched-
uler for our OEP case study was to refactor its implementation
for greater re-configurability, extending similar efforts started
during earlier work. Our second revision incorporated rate se-
lection into the schedule generation and feasibility analysis
steps to determine an ordering of key operation characteris-
tics used by a particular scheduling heuristic, assign both rates
and priorities through different forms of sorting, and apply the
most efficient sorting algorithm for each case. This strategy

allows one scheduler to be used for efficient rate selection and
priority assignment, all adaptively at run-time. These revisions
are released in TAO’s Reconfigurable Scheduler, which can be
downloaded at deuce.doc.wustl.edu/Download.html in open-
source format along with the rest of the TAO middleware, doc-
umentation, and examples.

4 Methodology for Experiments

This section introduces the objectives and approach to a set
of adaptive middleware experiments completed during post-
flight ground tests of the OEP in January 2003, which followed
the actual flight tests conducted in December 2002. The four
primary goals of these experiments were to

� Quantify the ability of the multi-layered QoS manage-
ment mechanisms (Section 3) running within the Bold
Stroke OEP (Section 2) to maximize image fidelity while
meeting download deadlines;� Offer preliminary assessment of the relative contributions
of our different QoS management mechanisms within
the OEP resource management model (Figure 2 in Sec-
tion 2.3);� Profile the temporal performance of those mechanisms;
and� Quantify the relative benefits of this approach compared
to the same application running without adaptation.

These experiments also measure trade-offs between timeli-
ness and image quality in a controlled system environment
designed to remove influences outside the scope of the met-
rics considered here. This approach enabled us to establish a
baseline against which realistic parameters (e.g., network la-
tency jitter, traffic loads, or other factors) can be varied in a
controlled way and their contributions to system behavior also
quantified.

The remainder of this section describes the platform on
which our experiments were run, introduces the metrics we
used to evaluate the OEP architecture, explains the design of
the experiments. The results of these experiments are pre-
sented in Section 5.

4.1 OEP Platform Hardware and Software
Characteristics

Our experiments were run on realistic hardware in the Avion-
ics Integration Center (AIC) laboratory at Boeing, St. Louis.
The client platform was a 400 MHz Dy-4 PPC 750 processor
with 128 MB of memory, running the VxWorks real-time OS,
version 5.3.1, with TAO version 1.0.7. The server was hosted
on a flight-ready chassis incorporating multiple Alpha proces-
sors running the DEC Unix OS, with ORBExpress/RT version
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. A Boeing-owned operator console with dual Digital Alpha
480 MHz single board computers was used by the server-side
operator. The majority of server functionality was inherited
from a legacy Boeing project, whose software was tested on
Digital Alpha and Sun Solaris variants of the UNIX OS.

At the time of system design, only the Alpha platform
was available in a ruggedized, flight-worthy package. Alpha
UNIX represents a high-performance, soft real-time OS. Sys-
tem components were distributed across both computers, using
a simulated low-bandwidth (approximately 4,800 baud from
the server to the client) radio network over 100Base-T Ether-
net cabling.

4.2 Evaluation Metrics

The key metrics assessed by our experiments were:

1. Timeliness of image download, which is measured in
terms of whether the entire image was downloaded and
displayed before an advertised deadline relative to the
time of the image request from the application.

2. Quality of the downloaded image, which is measured in
terms of the compression ratios of the image tiles, com-
pared to the uncompressed version of each tile.

3. Scalability of the resource management approach, which
is measured in terms of the overheads of specific mech-
anisms in the critical path of the resource management
services, i.e., the QuO infrastructure, the RT-ARM ser-
vice, and the TAO Reconfigurable Scheduler.

The first two metrics assess the ability of the OEP to manage
multiple QoS properties simultaneously, as perceived by the
collaborative mission re-planning application. The third met-
ric assesses the underlying middleware infrastructure itself.

In addition to studying our overall resource management ap-
proach, we also sought to examine the relative contributions of
the individual mechanisms. In particular, we sought to iso-
late the impacts of mechanisms for (1) end-to-end reactive
image compression management and (2) client-side reactive
rescheduling of tile processing operation rates.

4.3 Experiment Design

Our experiments were conducted using the server and client
software systems developed for the OEP evaluations, includ-
ing a representative Operational Flight Program (OFP) on the
client aircraft and a remote imagery server. Resource man-
agement was conducted primarily on the client side, which is
where we focused the bulk of our analysis. We ran each ex-
periment using the client and server system terminals in that
laboratory and ran each set of trials over a range of download
deadlines. Each experiment consisted of requesting a virtual

folder containing compressed thumbnail renditions of the ac-
tual images being downloaded from the server. When the vir-
tual folder arrived at the client, it then immediately requested
four images in succession from the server.

Within each experiment, the same trial was then repeated
with different deadlines, except for the case of experiments
without adaptation where instead we set the compression ratio
explicitly, and measured the download time at each of 3 fixed
image compression ratios, i.e., 50:1, 75:1, and 100:1. Com-
pression ratios of 50:1 and 100:1 were selected by Boeing sys-
tem engineers as upper and lower boundaries of image quality
for the experiment. There was no noticeable degradation in
image quality below 50:1 compression (thus making it a base-
line calibration point for adaptation), while degradation was
significant at 100:1. Due to time and cost constraints, we did
not seek to examine the effects of different characteristics of
the images themselves, but instead experimented with an as-
sortment of images so that we could (1) quantify performance
of the adaptation techniques over a range of image effects and
(2) determine preliminary indications of sensitivity to image
makeup for future study.

In the experiments, processing is initiated by transmission
of an Alert from the server to the client, followed by a vir-
tual folder with two thumbnail images. Each thumbnail serves
as an additional icon to distinguish that image from the oth-
ers in the virtual folder. For evaluating the performance of
the OEP adaptation architecture we confine our attention to
the images themselves, though for completeness we also mea-
sured thumbnail download latencies and present them in Sec-
tion 5.

To assess the viability of the individual QoS adaptation
technologies and the overall OEP architecture, we ran four ex-
perimental trials:

Trial 1: No adaptation of compression or scheduling. We
first benchmarked the OEP application performance without
adaptation to establish a baseline against which we measure
improvement for the three other experiment trials. We mea-
sured the download time of each of the 4 images at each of
three compression ratios (50:1, 75:1, and 100:1). We note that
the available compression ratios used in all the trials defined
the range of perceivable image quality, which decreases mono-
tonically as image compression increases over the range from
50:1 to 100:1.

Trial 2: Reactive compression and scheduling adaptation.
We then measured the OEP system with adaptation of both im-
age compression parameters and operation scheduling param-
eters. We instrumented the system to record the (1) end-to-end
performance of the application, (2) performance of particular
segments of the data and computation paths affecting end-to-
end performance, and (3) overhead for key adaptation mecha-
nisms in the infrastructure.
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Trial 3: Reactive compression adaptation only. To assess
the relative contributions of compression vs. scheduling adap-
tation, we ran the same set of experiments used in the second
set of trials, but with scheduling adaptation disabled. The need
for this set of experiments was reinforced late in the system
development phase when Boeing engineers noticed the con-
tribution of scheduling adaptation to end-to-end performance
was not evident in the Boeing Windows NT-based Desktop
Test Environment (DTE). As the results in Section 5 reveal,
this was solely an artifact of the non-real-time performance of
the DTE, i.e., when the VxWorks real-time OS was used in
the ground and flight demo environments, the contribution of
scheduling adaptation to end-to-end timeliness became clear.

Trial 4: Linear control law experiments. During the ex-
periments in the AIC laboratory, we noticed that the reactive
style of compression adaptation used in the system design was
resulting in very coarse-grained transitions in the image tile
compression ratios, albeit with the resulting performance be-
ing suitable to the specific collaboration application. To fur-
ther explore the potential applicability of our adaptation tech-
nologies outside the particular application studied, we con-
ducted a narrowly focused set of experiments to examine the
responsiveness of the OEP evaluation system to finer-grained
image tile compression management.

In each trial the image was divided into 16 tiles, which were
sent from the region of interest outward. For each tile, a mes-
sage was sent from the client to the server with a request for
the tile to be sent at a given compression ratio. The server
selected the closest achievable compression ratio to that re-
quested, transmitted the tile to the client, and recorded the ra-
tio actually used. When the tile was received by the client,
it was queued pending processing by a decompression opera-
tion, which then decompressed the tile and delivered it via an
image transfer operation to the IPM for display on the client.

Since imagery tiling was done from the point of interest and
radiating outward, the net effect of the reactive adaptation pol-
icy was to show the largest possible area around the point of
interest at highest quality and then degrade the remaining tiles
as a step function to a lower resolution. While this approach
is suitable for our avionics application, it is reasonable that
other applications (such as opportunistic recognition of fea-
tures from real-time imagery) might show less bias toward a
particular single location in an image, and thus could benefit
from maximizing the quality of all tiles. We therefore exper-
imented with replacing the reactive tile compression adapta-
tion strategy encoded in the QuO contract with a simple con-
troller that sought to minimize image tile compression while
still meeting the image download deadline. When each tile
was received, the controller calculated a new minimum fea-
sible compression ratio based on the image deadline and the
download progress to that point.

All of the experiments conducted in this work were de-
signed to provide a first quantitative picture of the strengths
and weaknesses of our multi-layered adaptive QoS manage-
ment approach, while respecting the schedule and budget con-
straints of the OEP program itself. An even broader set of
experiments would be appropriate and in fact are motivated by
the results shown in Section 5, as we discuss in Section 8. For
these experiments, we found that 38, 42, 46, 50, 54, and 58
seconds represented a covering set of image download dead-
lines for the trials with both compression and scheduling adap-
tation, and ran only those deadlines for the two remaining tri-
als with compression adaptation but not scheduling adaptation.

5 Empirical Results

This section presents the results of the four experimental trials
described in Section 4.3. We first examine baseline end-to-
end image latencies for images compressed at the fixed ratios
of 50:1, 75:1, and 100:1. We next present latencies when us-
ing the adaptation techniques described in Section 3. After
this, we examine image tile compression adaptation response
under different strategies and present image tile queueing la-
tencies measured on the client node. We then explore the over-
head of the adaptation techniques. Finally, we present over-
head results for adaptive rescheduling of operation rates using
the integrated RT-ARM and TAO Reconfigurable Scheduler
described in Section 3.3.

End-to-end image latency at fixed compression ratios.
We first examine the total time from initial request to receive
and process each image, as well as the arrival latency of the
two initial thumbnail images downloaded in the virtual folder.
In the following analysis we focus our attention on the down-
load times for the entire images. For completeness, however,
we include fixed-compression download times for the thumb-
nails. From Trial 1, Figure 6 shows quantitative points of ref-
erence for the image download times achievable at the end-
points (50:1 and 100:1) and midpoint (75:1) of the image qual-
ity range in the OEP evaluation system. We use these points
of reference to compare results achieved with different kinds
and degrees of adaptation in the other trials, to assess the ef-
fectiveness of adaptation in each case and to establish quantita-
tive bounds on the image quality and download time trade-offs
achievable by adaptation in the OEP evaluation system. Over
the bandwidth-limited radio data link, images compressed at
the highest ratio (lowest image quality) of 100:1 took roughly
40 seconds to download (a lower bound on timeliness), and
each factor of 25 reduction in the compression ratio (corre-
sponding to improved image quality) cost another 6 to 7 sec-
onds to download the image, thus establishing a baseline for
the trade-off between timeliness and compression. We also
note latency variations between the images themselves, which
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Figure 6: Image Latency without Adaptation

are also seen in the other trials.

Image latency with adaptation to specific deadlines. We
next compare end-to-end image download times to respective
deadlines in the covering set - the respective deadline is shown
by the rightmost column in each group. We note that the 38
second deadline is lower than the measured latency for any
image downloaded without adaptation at the highest compres-
sion ratio of 100:1, so that meeting it is infeasible. Similarly,
a deadline of 58 seconds exceeds the maximum latency of any
image at the lowest compression ratio of 50:1, and thus does
not require any adaptation.
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Figure 7: Compression and Scheduling Adaptation

From Trials 2 and 3 respectively, Figure 7 and Figure 8 show
the end-to-end image download latencies for deadlines of 38,
42, 46, 50, 54, and 58 seconds, both with reactive adaptation
of compression ratios; in Trial 2, adaptation of operation in-
vocation rates was also performed, while in Trial 3 it was not.
These results demonstrate that compression adaptation alone
is insufficient to ensure key deadlines are met. Even with adap-
tation of both image tile compression and operation invocation
rates, however, the additional overhead of adaptation can make
tight deadlines (e.g., 42 seconds) infeasible even though with-
out adaptation they are (barely) achievable. Interestingly, the
benefit of adding adaptation of operation invocation rates out-
weighs its cost even with tight deadlines, e.g., Figure 7 and

Figure 8 show that more images made the 42 second dead-
line with adaptation of operation invocation rates than without
such rate adaptation.
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Figure 8: Compression Adaptation Only

Image compression adaptation response. We now con-
sider the recorded image tile compression levels in each of the
trials. In the cases where the sequence of compression ratios
was the same for more than one deadline in a given tile, we
plot only the latest deadline of each such equivalent set.

In Trial 3, we confined our attention to control of image tile
compression only. It is therefore most appropriate to compare
the experiments with simple compression control in Trial 4 to
those in Trial 3. Since the scheduling adaptation mechanisms
in the RT-ARM were deactivated in both experiments, the ef-
fects of scheduling adaptation are suppressed, letting us focus
on the effects of compression control in isolation.
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Figure 9: Reactive Compression Adaptation

From Trial 3, Figure 9 shows the compression level for each
of the 16 tiles of image 1 for deadlines of 38, 42, 46, 50, and
54 seconds, with reactive adaptation of both compression ra-
tios and scheduling. Similar results were observed for other
images with this strategy and for all images with the strategy
with reactive adaptation of both compression ratios and opera-
tion invocation rates. From Trial 4, Figure 10 shows the com-
pression for each tile of image 1 for deadlines of 38, 42, 46,
50, 54, and 58 seconds, with simple control of compression,
but no scheduling adaptation.

These results show that although it is possible to adapt
image download times effectively at coarse-granularity in
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Figure 10: Compression with Simple Control

the compression ratios (100:1, 75:1, and 50:1), the OEP is
amenable to much finer-grained compression adaptation man-
agement. This is a particularly important result when we con-
sider the excess laxity observed at the 46 and 50 second dead-
lines in Figure 7. In particular, some of the time by which
each image arrived early could potentially be traded back for
finer-grained improvements in image quality in practice.
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Figure 11: Tile Queuing Latency w/o Adaptation

Client-side image tile queueing latency. Upon receipt from
the network, each tile sent by the server is stored in a queue on
the client until it is retrieved from the queue by the tile de-
compression operation. The rate at which the decompression
operation is invoked, and thus at which tiles are retrieved from
the queue was fixed at 1 Hz in Trials 1, 3, and 4, and managed
adaptively in Trial 2. From Trial 1, Figure 11 shows tile queue-
ing latencies without adaptation of either compression ratios
or operation invocation rates. Similar queueing latencies were
seen in Trials 3 and 4, where no adaptation of invocation rates
was done. From Trial 2, Figure 12 shows the tile queueing la-
tencies measured on the client with reactive adaptation of both
compression and operation invocation rates.

These results identify the client-side tile receive queue as a
crucial stage of the end-to-end QoS performance model for the
OEP. They also highlight the importance of adaptively manag-
ing client-side tile processing operations. Adjusting the rates
at which those operations are run significantly decreases the
time image tiles spend idly in the queue.
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Figure 12: Tile Queuing Latency with Adaptation
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Figure 13: Adaptive Schedule Computation Latency

Scheduler re-computation latency under RT-ARM man-
agement. Our next area of study was the measurement of
schedule re-computation overhead resulting from narrowing
of rate ranges by the RT-ARM and priority and rate re-
assignment by the TAO Reconfigurable Scheduler. From Trial
2, Figure 13 plots schedule re-computations with adaptation
of both compression and scheduling, at deadlines of 48, 42,
and 38 seconds. The key insight from these results is that the
number and duration of re-scheduling computations is both (1)
reduced overall compared to our earlier results in the ASTD
program [4] and (2) proportional to the degree of rate adapta-
tion that is useful and necessary for each deadline. All trials
showed an initial schedule computation time identical to the
initial schedule computation times without rate adaptation.

Overhead of QoS management mechanisms. In addition
to examining the performance of the application as a whole,
we quantify overhead of the individual adaptation services, for
preliminary evaluation of scalability and possible optimiza-
tion, and to guide further expansion of our resource manage-
ment approach to both systems with constraints at smaller time
scales and larger-scale systems of systems. Table 1 summa-
rizes these results. These results suggest scalability of our ap-
proach will be reasonably good overall. It is important to note
that the timing capabilities of the VxWorks OS where these
experiments ran was only accurate to within 5 ms, which is
relevant to the overhead measurements in Table 1, many of
which are in the range of 0 to 10’s of ms.
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Table 1: QoS Management Latency

Mechanism Trial 2 Trials 1, 3, 4
QuO Contract 0 - 30 msec 0 - 10 msec
Region Transition 0 - 10 msec ¡ 5 msec
QuO Delegate 0 -20 msec 0 - 5 msec
RT-ARM Triggering 0 - 10 msec N/A
Initial Schedule 185 msec N/A

6 Lessons Learned from Empirical
Studies

This section summarizes the implications of the empirical re-
sults presented in Section 5 and describes the key lessons
learned from our experiments with the multi-layered adaptive
middleware techniques presented in Section 3.

Adaptation of both tile compression and operation rates
improves timeliness, but at some overhead cost. As shown
in Figure 7, image 4 missed the 42 second deadline by a small
margin with adaptation of both compression ratios and oper-
ation scheduling. The same image missed that deadline with
all of the adaptive strategies, however, even though this dead-
line is achievable with a fixed compression ratio of 100:1 as
shown in Figure 6. Imprecision of the adaptation strategies
contributed to missing the deadline, i.e., reactive adaptation al-
ways started with the first two tile requests being at the lowest
compression ratio of 50:1 and control adaptation started at a
lower compression ratio (and finished at a lower compression
ratio after the deadline was missed).

We surmise that the overhead of adaptation - though small
- contributed to the difficulty in attaining this deadline. It is
possible that a variation on the adaptation strategy would ex-
hibit better results in similar situations. For example, while
our adaptation policy could degrade all but the initial tiles con-
taining the area of interest, it did not consider dropping any of
the later tiles. The tightest feasible deadlines, i.e., 42 seconds,
could only be met by compressing the whole image at 100:1
as Figure 6 shows. With looser deadlines, however, it might
be preferable to get the first tiles at high quality and drop the
last few tiles rather than degrade the whole image.

Choice of adaptation strategy is important. Overall, the
strategy without scheduling adaptation sent fewer tiles at the
lowest compression ratio of 50:1 before changing to the high-
est compression ratio of 100:1. This effect reflects an attempt
by the strategy to compensate for fixed rates of tile process-
ing operations. This strategy was somewhat (but not entirely)
successful per the latency-to-deadline comparison in Figure 8.

The principal feature of interest with the simple control
strategy is the more continuous arc of the compression levels

shown in Figure 10, in contrast to the coarser-grained transi-
tions shown in Figure 9. In future work the linear interpolation
used by the controller itself should be replaced with the more
rigorous control-theoretic approach described in Section 8.
The experimental application and supporting middleware in-
frastructure appear to be amenable to fine-grained adaptation,
however, as shown by the fairly continuous response of the
image tile management infrastructure.
Operation rate adaptation reduces image tile queueing la-
tencies. The main feature of interest in the image tile queue-
ing measurements on the client is the much larger magnitude
and jitter of queueing latencies without adaptation seen in Fig-
ure 11, compared to Figure 12, which shows tile queueing
measurements for the strategy with adaptation of both com-
pression ratios and tile processing operation scheduling pa-
rameters. The other two strategies without scheduling adap-
tation (i.e., with reactive adaptation or simple control of image
tile compression only) showed similar results to those without
any adaptation at all, which singles out operation scheduling
adaptation as a key contributor to end-to-end QoS. It is espe-
cially interesting that improvements were seen in both the pre-
cision and tightness of the latency bound - operation rate adap-
tation can therefore give increased confidence in how close to
that bound we can come in improving image quality without
risking missed deadlines.
Overhead for adaptive QoS management is acceptable.
The first feature of interest for the overhead results reported
in Table 1 is the relatively low latency of QuO contract eval-
uation, region transitions, and delegate processing. With
scheduling adaptation, contract evaluations had the highest la-
tencies but were bounded by 30 msec, and most of these evalu-
ations took much less time than that. Without scheduling adap-
tation, the latencies are bounded by 10 msec and the common
case is that the latencies are negligible. The version of QuO
used for these experiments was designed for predictable low-
latency response in DRE systems [11], and our results confirm
the efficacy of that design.

The second feature of interest in these results is the differ-
ence in contract evaluation latency between these two strate-
gies. Due to the low latencies seen with adaptation of com-
pression only, we suspect that much of the increased latency
seen when scheduling adaptation is added arises from preemp-
tion by OFP operations. We also observed an increased num-
ber of contract evaluations with rate adaptation enabled, how-
ever, so further studies are motivated to assess relative scala-
bility in terms of both load and responsiveness.

We also note the relatively low latency of RT-ARM trig-
gering operations, bounded by 10 msec, so that in concert the
QuO and RT-ARM adaptation mechanisms imposed suitably
low overheads. When computing the initial assignment of pri-
orities and rates to operations, the TAO Reconfigurable Sched-
uler showed highly predictable timing of 185 msec. With the
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same initial set of scheduling parameters when no schedul-
ing adaptation was involved, there was one invocation of the
scheduler at system initialization. We note that in comparison
to the latency of other adaptation mechanisms, initial schedule
computation latency is an order of magnitude greater. How-
ever, the optimizations described in Section 3.3 significantly
reduce the post-initialization cost of rescheduling, which we
consider next.

Scheduler re-computation latency under RT-ARM man-
agement is reasonable. The main feature of interest in Fig-
ure 13 is the downward settling of schedule computation times
toward a similar level of overhead as for QuO contract evalu-
ation, as RT-ARM narrowed ranges of available rates and thus
reduced the input set over which the scheduler performs its
computation. We also observed an interesting phase transition
in the number of re-computations between the infeasible and
barely feasible deadlines. If we arrange trials in descending
order according to the number of re-computations in each, we
get 42, 46, 48, 50, 52, 54, and then 58 seconds, and then finally
38 second and 1 second deadlines showed the same minimal
number of computations. The duration of the experiment for
the 42 second deadline was comparable to that for other dead-
lines.

Our results show that RT-ARM was in fact triggering
scheduling adaptation more frequently. As Section 5 showed,
42 seconds was the most difficult feasible deadline, with im-
age 4 missing that deadline in all of the adaptive strategies.
RT-ARM performed very little adaptation for infeasible dead-
lines since this is futile. It did perform more adaptation for
feasible deadlines, however, but at a level proportional to the
difficulty of achieving the deadline.

7 Related Work

This section describes related work on QoS management mid-
dleware technologies. We first summarize two projects that are
representative of earlier foundational research on QoS man-
agement frameworks. We then describe several recent projects
related to our work, in which results of earlier work on QoS
management have been abstracted into modeling tools, made
configurable in QoS-aware component technologies, and wo-
ven at finer granularity and across a variety of levels through-
out complex DRE systems.

Previous focus: QoS management middleware frame-
works. A number of earlier projects developed self-
contained QoS frameworks to manage end-to-end QoS in dis-
tributed systems. These efforts set the stage for subsequent
work on finer-grained integration of QoS management mecha-
nisms and policies. Two major examples of those foundational
research efforts are the Realize and ARMADA projects.

� UCSB Realize. The Realize project at UCSB [6] sup-
ports soft real-time resource management of CORBA dis-
tributed systems. Realize integrates distributed real-time
scheduling with fault-tolerance, fault-tolerance with totally-
ordered multicasting, and totally-ordered multicasting with
distributed real-time scheduling, within the context of OO pro-
gramming and existing standard operating systems. The Re-
alize resource management model can be hosted on top of
TAO [6].

� ARMADA. The ARMADA project [20, 7] defines a set
of communication and middleware services that support fault-
tolerant and end-to-end guarantees for real-time distributed ap-
plications. ARMADA provides real-time communication ser-
vices based on the X-kernel and the Open Group’s MK micro-
kernel. This infrastructure provides a foundation for construct-
ing higher-level real-time middleware services.

New focus: QoS aspect integration. Recent work on end-
to-end QoS management has focused on integrating multiple
QoS aspects end-to-end throughout complex DRE systems.
Research is being conducted on several related fronts, includ-
ing integration of systemic QoS aspects and QoS-aware com-
ponent models. The following projects are representative ex-
amples of a larger and rapidly growing field of research.

� dynamicTAO. In their dynamicTAO project, Kon and
Campbell [21] apply reflective middleware techniques to ex-
tend TAO to reconfigure the ORB at runtime by dynamically
linking selected modules, according to the features required
by the applications. Their work is similar to QuO in that both
provide the mechanisms for realizing dynamic QoS provision-
ing at the middleware level. QuO offers a more comprehen-
sive QoS provisioning abstraction, however, whereas Kon and
Campbell’s work concentrates on configuring middleware ca-
pabilities.

� QoS-enabled component middleware. Middleware
can apply the Quality Connector pattern [22] to meta-
programming techniques for specifying the QoS behaviors and
configuring the supporting mechanisms for these QoS behav-
iors. The container architecture in component-based mid-
dleware frameworks provides the vehicle for applying meta-
programming techniques for QoS assurance control in com-
ponent middleware, as previously identified in [23]. Con-
tainers can also help apply aspect-oriented software devel-
opment [24] techniques to plug in different systemic behav-
iors [25]. Miguel de Miguel further develops the work on
QoS-enabled containers by extending a QoS EJB container in-
terface to support a QoSContext interface that allows the
exchange of QoS-related information among component in-
stances [26].
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8 Concluding Remarks

This paper describes and quantifies the integration of several
adaptive middleware technologies, including QuO, RT-ARM,
and several layers of The ACE ORB (TAO), including its
scheduling and event services capabilities. The paper’s R&D
contributions involve (1) presenting an architecture for multi-
layer adaptive middleware that is applicable to QoS-managed
DRE systems, (2) applying that middleware architecture to a
real-world avionics DRE application case study, and (3) con-
ducting and analyzing empirical results that quantify the bene-
fits and costs of this architecture for the avionics environment.

Our analysis of the overheads associated with key QoS man-
agement mechanisms offers insight into the types of evolution
and further experiments needed to apply our approach in other
contexts, such as QoS-managed real-time audio/video stream-
ing for disaster response, coordination of multiple autonomous
vehicles, and optimization of sensing-decision-actuation paths
in industrial control systems. For example, the latencies seen
in the face of preemption by other operations establish bounds
on responsiveness of adaptation. These bounds, however, to
not imply limitations on the ability of the computational and
adaptation load to scale with the resources made available.
In particular, for system-of-systems approaches (of which the
avionics OEP described here is a canonical example), it is rea-
sonable to expect the resources supplied by additional plat-
forms integrated with the system would be commensurate with
the new demands they place on the system.

Careful analysis and integration of mechanisms across ser-
vice boundaries are crucial to achieving necessary perfor-
mance of adaptive middleware for DRE systems, e.g., the re-
engineered interaction between the RT-ARM and TAO Recon-
figurable Scheduler described in Section 3.3 shows improved
performance over that observed previously [27] in a simple in-
tegration of those technologies. The settling effect in the adap-
tation performed by the RT-ARM in conjunction with TAO’s
Reconfigurable Scheduler (and the questions it raises about
the stability of particular schedules with respect to additional
adaptation) is intriguing and worthy of further study. These re-
sults demonstrate that we have achieved a more efficient mech-
anism for interactive scheduling adaptation, but now need to
focus new work on the policies for, and environmental influ-
ences on, that interaction. We have begun investigating imple-
menting various control strategies within our adaptive middle-
ware framework [28, 29].

The main conclusions we draw from the results in this paper
are that

� Our integrated QoS management middleware showed
successful adaptation of multiple QoS parameters, with a
quantitative improvement in managing trade-off between
image quality and download times in comparison to the
same approach without adaptation.

� Factors in DRE system environments are important and
can have a significant impact on the behavior of the sys-
tem, e.g., our trials revealed interesting latency effects
due to interactions (notably preemption) between avion-
ics mission computing operations and the adaptation in-
frastructure mechanisms.� Case studies of actual DRE systems provide valuable in-
sights on the maturity and capability of adaptive middle-
ware, i.e., it is an important achievement to have flown
and measured the OEP evaluation system in a representa-
tive avionics mission-computing context.

Our future work will expand these studies to examine the per-
formance effects of image contrast and size (e.g., to determine
why image 3 took longer to download at a compression ratio
of 50:1 than any of the other images, and yet took less time to
download at a compression ratio of 100:1 than either image 2
or 4), network latency, and traffic loads.
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