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A Statement of Work

The scope of this effort is to create a real-time ORB that’s
compliant with the new OMG Minimum CORBA [12] spec-
ification and embed this ORB within Cisco network ele-
ments, such as IP routers and ATM switches. This embedded
ORB will leverage and enhance the advanced real-time fea-
tures [21, 19] developed by Washington University’s Center
for Distributed Object Computing to implement network ele-
ment management and control protocols efficiently, scalably,
and predictably using standard-based middleware. This pro-
posal describes the specific tasks to be performed during the
12 months of the proposed project.

A.1 Background

During the past decade, there has been substantial R&D em-
phasis onhigh-speed networkingandperformance optimiza-
tionsfor network elements and protocols. This effort has paid
off such that networking products are now available off-the-
shelf that can support Gbps on every port,e.g., Gigabit Ether-
net and ATM switches. Moreover, 622 Mbps ATM connectiv-
ity in WAN backbones is commonplace with Gigabit Ethernet
and high-speed IP routers becoming more common. In net-
works and GigaPoPs being deployed for the Next Generation
Internet (NGI), such as the Advanced Technology Demonstra-
tion Network (ATDnet) [1], SONET interfaces operating at 2.4
Gbps (OC-48) link speeds are deployed while the industry is
looking to 10 Gbps links. Future service providers may also
deploy 10 Gbps Ethernet and IP. However, the general lack
of robust and flexible tools and middleware for provisioning,
and controlling these network elements has limited the rate at
which NGI applications have been developed to leverage ad-
vances in high-speed networks.

What is required is a high-performance, real-time and QoS
aware communications middleware embedded in network el-
ements, such as IP routers, as well as ATM and Gigabit Eth-
ernet switches. This embedded ORB middleware can provide
a uniform access interface to network management plane and
control plane activities. Below, we outline the key components
in such a middleware-oriented solution.

The ACE ORB (TAO): The TAO CORBA 2.3-compliant
Object Request Broker (ORB) is being developed at Wash-
ington University’s Center for Distributed Object Computing
(DOC) [3]. TAO is an open-source, standards-based, high-
performance, real-time ORB endsystem that supports appli-
cations with deterministic and statistical QoS requirements,
as well as “best-effort” requirements. [18]. TAO’s features
and optimizations include an ORB Core that minimizes con-
text switching, synchronization, dynamic memory allocation,
and data movement [22]; a highly-scalable Object Adapter that
demultiplexes requests in constant-time [19]; an optimizing
IDL compiler [6]; real-time I/O subsystem [9], and a global
resource allocation and scheduling framework [21, 5].

CORBA protocol model synopsis: CORBA Inter-ORB
Protocols (IOP)s define interoperability between ORB endsys-
tems. IOPs provide data representation formats and ORB mes-
saging protocol specifications that can be mapped onto stan-
dard and/or customized transport protocols. Regardless of the
choice of ORB messaging or transport protocol, a standard
programming model is exposed to the CORBA applications.
Figure 1 shows the relationships between these various com-
ponents and layers.
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Figure 1: Relationship Between CORBA Programming APIs,
Inter-ORB Protocols, and Transport-specific Mappings

A standard General Inter-ORB Protocol (GIOP) is de-
fined by the CORBA protocol interoperability architecture
specification [14]. The CORBA specification also defines a
transport-specific mapping of GIOP onto the TCP/IP protocol
suite. This mapping is called the Internet Inter-ORB Proto-
col (IIOP) and is required for an ORB implementation to be
considered “interoperability compliant.” Other mappings of
GIOP onto different transport protocols are allowed by the
specification. In addition, the standard allows entirely dif-
ferent inter-ORB protocols, known as Environment Specific
Inter-ORB Protocols (ESIOP)s, to be configured beneath the
standard CORBA programming APIs.

Regardless of whether GIOP or an ESIOP is used, a
CORBA IOP must define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport protocol
adapter, and an object addressing format [15].

Pluggable protocol framework: Within the scope of the
CORBA interoperability architecture, ORB developers are
free to optimize internal data structures and algorithms [19].
Moreover, ORBs may use specialized inter-ORB protocols
(ESIOPs) and ORB services and still comply with the spec-
ification.1

We have leveraged this aspect of the standard and developed
a pluggable protocol frameworkwithin TAO. A key feature

1An ORB must implement GIOP/IIOP, however, to be interoperability-
compliant.



Washington University 2

of this framework’s design is its decoupling of ORB messag-
ing and transport interfaces from its transport-specific protocol
components. Figure 2 shows the partitioning of responsibili-
ties for pluggable protocols and how it relates to other inter-
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Figure 2: TAO’s Pluggable Protocols Framework Architecture

nal ORB components and services. This new framework is
transparent to application developers because protocols can be
(re)configured without modifying the standard CORBA pro-
gramming API.

TAO’s pluggable protocols framework design allows cus-
tom ORB messaging and transport protocols to be configured
flexibly and used transparently by CORBA applications. For
example, if ORBs communicate over a high-speed networking
protocol with QoS support, such as ATM [4] or RSVP [20],
then simpler, optimized ORB messaging and transport pro-
tocols can be configured to eliminate unnecessary features
and overhead of the standard CORBA GIOP and IIOP proto-
cols. Likewise, TAO’s pluggable protocols framework makes
it straightforward to support customized embedded system in-
terconnects, such as CompactPCI or VMEBus, under the stan-
dard CORBA GIOP protocol.

TAO’s pluggable protocols framework also supports the cre-
ation of efficient, high performance inter-ORBin-line bridges.
An in-line bridge converts inter-ORB messages or requests
from one type of Inter-ORB protocol to another. This fea-
ture makes it possible to efficiently bridge disparate ORB do-
mains without incurring unnecessary context switching, syn-
chronization, or data movement. An interesting side benefit of
this feature is the ability to ”plugin” new ORB messaging pro-
tocols, such as the Simple Network Management Protocol [2]
(SNMP), Virtual Switch Interface (VSI) [23], or the General
Switch Management Protocol (GSMP) [17, 16], which are
widely used to manage and control network elements.

MIB and agents: A MIB is a logical store of information
that is controlled and managed by anagent. Agents and MIBs
export information onmanaged objects, which contain at-
tributes of network elements that must be tracked to ensure the
health of a system. Standard MIBs, such as SNMP and CMIP
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Figure 3: Architecture of Common Network Management
Components

MIBs, contain pre-defined objects corresponding to core re-
sources in an Internet environment,e.g., IP, TCP, UDP, net-
work interfaces, etc. In network management for traditional
wireline systems, for instance, managed objects maintain in-
formation about entities like protocol stacks. Likewise, in a
wireless system, managed objects include other information,
such as the status of power supplies and antennas, the number
of transceivers, and the current allocation of CDMA channels.

Figure 3 illustrates the structure and relationships among the
primary “logical” components in the IETF Internet network
management reference model. By using a standard schema
definition language, such as the SMI standard defined by the
IETF, it is possible to define MIBs for use by a variety of wire-
line and wireless networking systems. However, existing net-
work management and control protocols are tedious and error-
prone to use because they do not have standard programming
APIs. Moreover, they do not leverage the intense innovation
cycles that exist within middleware technologies emerging in
the commercial marketplace.

A.2 Proposal: Design and Optimize a Real-
Time Embedded ORB for Network Ele-
ment Management and Control

In our proposed effort we will combine our knowledge of In-
ternet and management and control protocols with our exper-
tise in ORB middleware technologies to conduct a 12 month
research program to enhance TAO so that it (1) conforms to the
Real-time CORBA [13], Minimum CORBA [12], and Fault
Tolerance [11] standards and (2) can be embedded in a Cisco
network elements to improve the management and control of
applications and services across a wide range of networks. In
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particular, we will add features and optimizations to create
an embedded TAO ORB. This ORB will be used to develop
a highly scalable and predictable network management and
control agent (NMCA) framework that uses standard CORBA
programming APIs and protocols to manage and control net-
work elements without having to develop proxy agents that
bridge,e.g., SNMP$ IIOP.

The result of this NMCA framework effort will be
middleware-based agent framework based on CORBA that
will manage and control resources within Cisco network el-
ements, such as high-speed IP routers. Within our framework
we will have ORBs (1) embedded on the network elements
and (2) resident on the client hosts, the network elements (e.g.,
router/switch controllers), and agents. The broader goal of our
work is to provide a standards-based framework that can pro-
vision and monitor end-to-end QoS guarantees for real-time
and high-bandwidth applications running over high-speed net-
works.

To provide a baseline architecture for this work, we will en-
hance TAO to create a network element embedded CORBA
ORB configuration to provide a uniform access interface to
network controls, services, and management resources. The
embedded ORB configuration will support standard network
element management and control operations and interfaces,
such as those specified by SNMP and VSI. Unlike conven-
tional middleware efforts, however, the embedded ORB con-
figuration using TAO will be a minimal footprint [12] and real-
time [13] version of CORBA that can be installed into Cisco
network elements based on ENA. This configuration will im-
prove the flexibility and control of applications and services
across high-speed networks without sacrificing performance.

Figure 4 shows a prototypical embedded configuration
where multiple management agents and signaling processors
communicate with a network element. In this case, all con-
trol and management communication occurs within the con-
text of an ORB. An application running on an endstation will
request that a connection be established from between itself
and another endstation. The signaling processors will process
the request, determine a route, and request each switch along
the route to allocate the necessary resources. The master con-
troller communicates with a slave controller using the exported
VSI-based interfaces. Likewise, an ORB can be used to com-
munication performance management, fault management, and
configuration management information between the network
elements and a network operations center or management sta-
tion.

By embedding the ORB in the network element and expos-
ing standard CORBA-based interfaces developers can take ad-
vantage of the flexibility and powerful features of CORBA.
There is the immediate advantage of simplifying the provi-
sioning, monitoring, and control of network management and
control applications. Plus, the applications and services devel-
oped using this ORB middleware will yield more modular, ex-
tensible, and standard solutions that can be reused across mul-
tiple projects and application families. For example, new man-
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Figure 4: Using the Embedded ORB Configuration for VSI
Signaling and Control

agement and control functionality or interfaces can be added
without exposing application developers to underlying details
or complexities. Likewise, we can add support for new signal-
ing standards or enhanced features while maintaining a consis-
tent interface to developers of management plane and control
plane applications.

The following subsections describe the specific tasks we
will perform during the 12 months of the proposed project.

Task 1: Create an OO Network Management and Control
Model

Activities: In this task, we will build on network control and
management work conducted earlier by Washington Univer-
sity to create an OO network management and control agent
(NMCA) model. The specific steps involved in this task in-
clude the following:

Step 1 – Develop an object model: We will survey ex-
isting SNMP and VSI-based implementations and simulators
that manage and control network elements. Using this infor-
mation, we will then create a CORBA-based object model.
This step is primarily concerned with defining CORBA IDL
interfaces for network management and control agents.

Step 2 – Map the object model onto a CORBA servant
architecture: In this step, we will determine an appropriate
mapping from (1) the IDL interfaces defined in step 1 to (2) a
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set of servants that implement these interfaces. Since one of
our goals is to support highly scalable network management
and control agents, this step is necessary to evaluate how to
apply important CORBA features, such as POAservant man-
agers[7], to implement servants for the control and manage-
ment interfaces.

Deliverables: The deliverables for Task 1 will include the
IDL interface definitions and the servant architecture for the
NCMA framework, along with a report documenting what we
have formulated. This report will identify and describe the
key components, policies, and mechanisms related to the OO
definition of network management and control using CORBA.
The NCMA framework deliverables in Task 1 will provide the
basis for subsequent tasks described below.

Task 2 – Enhance the TAO High-Performance, Real-time
ORB Middleware

Activities: This task will focus on enhancing the existing
TAO ORB to (1) include support for generic QoS specification
and QoS enforcement for specific network management and
control protocols and (2) produce a minimal footprint, fault
tolerant ORB that can be embedded in network elements, as
described in the following steps:

Step 1: Define IDL interfaces that map application-level
QoS requirements to underlying network and platform mech-
anisms, using pluggable protocols [8] as an enabling technol-
ogy.

Step 2: Make TAO comply to the Minimum CORBA
specification [12] and embed it in the network elements as an
agent, as well as on client hosts and the signaling processors
to provide an open network element management and control
framework for high-speed networks, such as ATM, Gigabit
Ethernet, and high-speed IP routers.

Step 3: Implement key components in the forthcoming
CORBA Fault Tolerance specification [11], which insults
client applications from managing redundant copies, failure
masking, and recovery. This fault tolerance functionality will
be supported via (1) multi-profile IORs, (2) passive replica-
tion, e.g., via checkpointing and the new OMG Persistent State
Service, and (3) active replication,e.g., via ordered multi-cast,
such as Totem and Eternal [10].

Deliverables: The deliverables for Task 2 will include the
QoS-enabled ORB interfaces and an embeddable version of
TAO that conforms to the Minimum CORBA and CORBA
Fault Tolerance specifications.

Task 3: Port TAO to a Cisco Network Element and Imple-
ment an Optimal IOP

Activities: In this task, we will embed TAO in a Cisco net-
work element and integrate the features from Task 2 using

TAO’s pluggable protocols framework[8]. The specific steps
involved in this task include the following:

Step 1 – Network element evaluation: This step involves
the following three activities:

1. Acquire Cisco network element hardware/software and
verify operation in our environment.

2. Evaluate the configurability of the network element and
develop mappings from network management and control
messages to element-specific control/management com-
mands or processing requirements.

3. Determine available computing resources,e.g., memory
footprint and processor cycles, that are necessary to sup-
port the ORB and management/control objects in the net-
work element.

Step 2 – Port TAO to the network element: Evaluate
both the network element and necessary ORB functionality to
determine which TAO and ACE subsets are required. Based
on this analysis, build a minimal TAO with only the compo-
nents required for the Cisco environment,e.g., QNX/Neutrino
and ENA. As part of this step, we will port ACE+TAO to
the Greenhills Embedded C++ (EC++) compiler. EC++ will
significantly reduce the memory footprint of ACE+TAO. This
porting effort will require removing the use of multiple inher-
itance in ACE, as well as other minor changes to conform to
the embedded C++ features.

Step 3 – Evaluate inter-ORB protocol requirements:
The standard CORBA general inter-ORB protocol (GIOP)
uses the Internet inter-ORB protocol (IIOP) as its transport
protocol [14]. Since IIOP is implemented over TCP cer-
tain functionality like adaptive retransmissions, deferred trans-
missions, and delayed acknowledgments can cause excessive
overhead and latency for some signaling applications with
real-time QoS requirements. Therefore, we will evaluate al-
ternate Environment-Specific Inter-ORB Protocols (ESIOP)
that are customized for the specific environment in which the
project is performed (based on the network element selected
in step 3.1).

Step 4 – Implement inter-ORB messaging protocols:
We will leverage TAO’spluggable protocols frameworkto de-
fine an optimized Inter-ORB Protocol that uses is optimized
for the particular environment. Three potential modification
to the Inter-ORB protocol will be considered during this phase
of the project. The first possibility is to use a modified version
of the IIOP. The modifications will be minimal and targeted to
supporting the ORB within the network element. For exam-
ple, a lighter weight version of GIOP [19] may be employed
to reduce overall message size. This IOP will operate over
TCP/IP.

The second set of modification will be centered on devel-
oping a new ORB transport protocol that will operate under
either GIOP or the lightweight version of GIOP identified
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above. In this case we will not require TCP/IP to be used as
the underlying transport protocol. Instead, we will develop
a lightweight ORB transport protocol using UDP or possible
AAL5. This will be augmented to provide a byte-stream inter-
face to the ORB messaging component (GIOP).

The third set of modification will consider the creation of
a new ORB messaging protocol. This new ESIOP will use
existing management and control protocols, such as SNMP or
VSI, as the ORB messaging protocol. This will operate over
an unreliable, datagram protocol, such as UDP. Naturally, it
will also be possible to use the standard GIOP/IIOP protocols
to interoperate with other CORBA ORBs.

We plan to conduct extensive empirical tests using these
three Inter-ORB protocols.

Deliverables: The deliverables for this step will be the em-
bedded ORB in the Cisco environment and the appropriate
Inter-ORB Protocol(s). In addition, we will write papers and
technical reports detailing the porting process and selection of
IOP for optimal network element management and control.

Task 4: Prototyping and Benchmarking the Real-Time
Embedded ORB for Network Switch Control and Manage-
ment

Activities: This task will bring together the elements devel-
oped in tasks 1, 2, and 3 to develop a prototype implemen-
tation of the network element management and control agent
(NCMA) framework using the TAO embedded ORB ORB. We
will perform extensive empirical testing of the embedded ORB
and agent framework implementation in the designated Cisco
network element. The specific steps involved in this task in-
clude the following:

Step 1 – Implement the NCMA framework within the
Cisco network switch and Embedded ORB environment:
We will first port our NCMA framework to the network ele-
ment.

Step 2 – Implement NCMA QoS features: Certain con-
trol protocols, such as VSI and GSMP, can be used to sup-
port different QoS classes required for multimedia support and
telecommunication call-setup. QoS-related features we will
explore include:

1. Real-time characterization and measurement;

2. Admission control policies at QoS-enabled network ele-
ments;

3. Mapping admission controlled method invocations to
real-time scheduling primitives,e.g., thread-per-request,
thread-per-object, and thread-per-client;

4. Embedded ORB modifications on the network element to
implement chosen policies.

A final dimension to be explored is providing a mecha-
nism for associating QoS guarantees to the network element
management and control messages,e.g., SNMP or VSI mes-
sages. For example, VSI switch configuration messages, such
asconnect commit , could be assigned a high priority both
within the network and the embedded ORB. While routine
management messages such as statics collection could have a
relatively low, best effort priority. Alternatively, network man-
agement event notification traps that signal an error condition
could have the highest priority and lowest latency.

As a part of this task we will explore the possibilities and
their impact on non-control traffic, connection establishment
latencies, error reporting latencies and overall endstation QoS
negotiation times.

Step 3 – Conduct fault tolerance experiment with the
NMCA framework: In this step, we will conduct experi-
ments using the fault tolerance mechanisms being added to
TAO to determine how well they can be used to support
NCMA fault tolerance policies.

Deliverables: The deliverables for this task will include a
modified implementation of the NMCA framework in the
QNX/Neutrino/ENA operating systems and TAO’s CORBA
IDL compiler, as well as sample applications and benchmark-
ing results. In addition, we will work with the OMG to inte-
grate TAO’s pluggable protocols framework and QoS exten-
sions into the CORBA standard.

B Personnel, Schedule, and Budget

The participants in this effort include the following personnel:

1. Faculty member (i.e., Douglas C. Schmidt – Ph.D., As-
sociate Professor, Washington University) at 15% during
the period of performance.

2. Senior research associate (i.e., Fred Kuhns, M.S.) at 75%
during the period of performance.

3. Graduate student (i.e., Jeff Parsons, M.S. candidate
Washington University) at 100% during the period of per-
formance.

The total cost of the proposed 12 month effort is$98,800.
The following table provides a cost breakdown for this project.

Description Amount
75% full time staff (salary & fringe) 51,000
1 graduate research assistant 35,300
15% Schmidt (salary & fringe) 12,500
total budget 98,800
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