The Design and Performance of Meta-Programming
Mechanisms for Object Request Broker Middleware

Nanbor Wang Kirthika Parameswaran Douglas Schmidt Ossama Othman

{nanbor, kirthikd @cs.wustl.edu {schmidt, ossamja@uci.edu
Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine
Abstract management, data transfer, parameter (de)marshaling, end-

. oint and request demultiplexing, error handling, multi-
Distributed object computing (DOC) middleware shields d yreading, and synchronization; and

velopers from many tedious and error-prone aspects of pro- o)]
gramming distributed applications. Without proper support 3- Amortizing software lifecycle costs by leveraging pre-
from the middleware, however, it can be hard to evolve didous developmentexpertise and capturingimplementations of
tributed applications after they are deployed. Therefore, DO®Y patterns in reusable middleware frameworks and common
middleware should support meta-programming mechanis$fVICes.
such as smart proxies and interceptors, thatimprove the adapt-the case of standards-based DOC middleware, such as
ability of distributed applications by allowing their behavioCORBA [1], these capabilities are realized via an open specifi-
to be modified without changing existing software drasticallgation process. The resulting products can interoperate across
This paper presents three contributions to the study of metaany OS/network platforms and programming languages [2].
programming mechanisms for DOC middleware. First, it il- To date, CORBA middleware has been used successfully to
lustrates, compares, and contrasts several meta-programméngible developers to create applications rapidly that can meet a
mechanisms from an application developer’s perspective. Sgarticular set of requirements with a reasonable amount of ef-
ond, it outlines the key design and implementation challenges. CORBA has been less successful, however, at shielding
associated with developing smart proxies and portable intefevelopers from the effects of requirement or environmental
ceptors features for CORBA. Third, it presents empirical rehanges that occur late in an application’s life-cyck, dur-
sults that pinpoint the performance impact of smart proxi@sy deployment and/or at run-time. To address this problem,
and interceptors. Our goal is to help researchers and develahis paper describes and evaluatesta-programming mecha-
ers determine which meta-programming mechanisms best gigitns which improve the adaptability of distributed applica-
their application requirements. tions by allowing their behavior to be modified with little or
not change to existing application software.

. The two meta-programming mechanisms we focus on in

Motivation: Developers of distributed applications face ® Smart proxies, which are application-provided stub im-
many challenges stemming from inherent and accidental cdigmentations that transpa}rently override Fhe default gtubs cre-
plexities, such as latency, partial failure, and non-portal§d Py an ORB to customize client behavior on a per-interface
low-level OS APIs. The magnitude of these complexitie®8Sis-

combined with increasing time-to-market pressures—make i Interceptors, which are objects that an ORB invokes in
increasingly impractical to develop distributed applicatiomise path of an operation invocation to monitor or modify the
manually from scratch. Commercial-off-the-shelf (COTS) digehavior of the invocation transparently.

tributed object computing (DOC) middleware helps addregfiese two meta-programming mechanisms can be used to
these challenges by: configure new or enhanced functionality into CORBA appli-
1. Defining standard higher-level programming abstragations with minimal impact on existing software. The mate-
tions, such as distributed object interfaces, that provide logial presented in this paper is based on our experience imple-
tion transparency to clients and server components; menting and using smart proxies and interceptors in TAO [3],

2. Shielding application developers from low-level corwhich is a open-source, CORBA-complaint ORB designed to

current network programming details, such as connect@#port applications with demanding quality-of-service (QoS)
requirements.

Paper organization: The remainder of this paper is struc- such as the amount of CPU or network bandwidth avail-
tured as follows: Section 2 presents an overview ofsimart able at run-time.

proxy and interceptormeta-programming mechanisms; Sec- o . .
tion 3 illustrates how to use smart proxies and interceptors!n applications based on CORBA middleware with conven-

Section 4 describe the patterns that guided the developmerit@si@! fixed stubs/skeletons, these types of changes often re-
TAO'’s smart proxy and interceptor mechanisms and resoh@{e re-engineering and re-structuring of existing application
key design challenges; Section 5 illustrates the performafedware. One way to minimize the impact of these changes
characteristics of TAO's smart proxy and interceptor mecHg-10 devisemeta-programming mechanisntisat allow appli-

nisms; Section 6 compares our work with related research; &&40NS to adapt to various types of changes with little or no
Section 7 presents concluding remarks. modifications to existing software. For example, stubs, skele-

tons, and certain points in the end-to-end operation invocation
path can be treated aseta-object$6], which are objects that
2 QOverview of Smart Proxies and In- refine the capability of base-level objects, which are the ob-
jects comprising the bulk of application programs.
terceptors As shown in Figure 1, CORBA ORBs are responsible

)]) for transmitting client operation invocations to target objects.
DOC middleware providestubandskeletormechanisms that\xjhen a client invokes an operation, a stub implemented as

serve as a “glue” between the client and servants, respec-

tively, and the ORB. For example, CORBA stubs implement ,
. . . . in args Object
the Proxy pattern [4] and marshal operation information and Client (Servant)
data type parameters into a standardized request format. Lik Operation () "
wise, CORBA skeletons implement tedapterpattern [4] outargs + reur valu :
and demarshal the operation information and typed parame- | Slertside e
ters stored in the standardized request format. (stub) oRE (Sketeton)
CORBA stubs and skeletons can be generated automati- Interfaces \
cally from schemas defined using the OMG Interface Defi- [POA J
o . meta-object
nition Language (IDL). A CORBA IDL compiler transforms L
application-supplied OMG IDL definitions into stubs and [—————— E———
skeletons written using a particular programming Ianguag# CIE ‘

such as C++ or Java. In addition to providing program-
ming language and platform transparency, an IDL compiler))
eliminates common sources of network programming errigure 1: Interactions Between Requests and Meta-objects

and provides opportunities for automated compiler optimiZatd-to-End

tions [5].
Traditionally, the stubs and skeletons generated by an IBLmEta'ObJeCt can act in conjunction with transport-protocol

compiler ardfixed i.e., the code emitted by the IDL compilelmect;'iggj?ﬁ:g t: ;(;CSE;S Zn;jrll (()jr ttrr::::]%;nil ?chegércz/%errag%?r'g_'
is determined at translation time. This design shields appIi(\,/g— 9 '

tion developers from the tedious and error-prone network p%)_ondlng meta-objects on the server's request processing path

gramming details needed to transmit client operation invoC4N access and/or perform inverse transformations on th.e op-
tions to server object implementations. Fixed stubs and skeeire"’-‘tlon invocation message and dispatch the message to its ser-
tons make it hard, however, for applications to adapt readl nt. An invocation result is delivered in a similar fashion in
to certain types of changes in requirement or environment j reverse dlrgcthn. . .

As all operation invocations pass through meta-objects, cer-

conditions, such as:) L . :
tain aspects of application and middleware behavior can be

e The need to monitor system resource utilization may r@fiapted transparently when system requirements and envi-

be recognized until after an application has been dénmental conditions change by simply modifying the meta-
ployed. objects. To modify meta-objects, the DOC middleware can

. . . . either (1) provide mechanisms for developers to installed cus-
. Certa!n remote operations may require adgiltlonal parapsied meta-objects for the client or (2) emtremksimple-
eters in order to execute securely in a particular env'r%énting ameta-object protocMOP)[6] in the meta-objects
ment. and provide mechanisms to install objects implementing the
e The priority at which clients invoke or servers handle [OP to strategize these meta-object behaviors. In the context
request may vary according to environmental conditiora$, CORBA, smart proxiesare customized meta-objects and

interceptorsare objects that implement the MOP. interface. Thus, if smart proxies are installed before a client
accesses these interfaces, the client application can transpar-

2.1 Overview of Smart Proxies ently use the new behavior of the proxy returned by the fac-
tory.

Most CORBA application developers use the fixed stubs genSmart proxies are not yet standardized in CORBA, though

erated by an IDL compiler without concern for how the stulbsany ORBs support this feature as a proprietary extension.

are implemented. There are situations, however, where the de-

fault stub behavior is inadequate. For example, an applica

developer may wish to change stub code transparently in o

to: The smart proxies feature outlined above is a meta-

é)_rogramming mechanism that increases the flexibilitglieit

ging: applications. Interceptorsare another meta-programming
mechanism used in DOC middleware to increase the flexibility

* Add parameters to a request; of both clientand server applications. In CORBA, intercep-

e Cache requests or replies to enable batch transfer or mins are standard meta-objects that stubs, skeletons, and certain

:ge% Overview of Interceptors

e Perform application-specific functionality, such as lo

imize calls to a remote target object, respectively; points in the end-to-end operation invocation path can invoke
« Supportadvanced quality-of-service (QoS) features, siitPredefined “interception points.” 3
as load balancing and fault-tolerance; or Prior to CORBA 2.3.1 interceptors were under-specified

« Enforce security mechanisms, such as authenticationag therefore non-portable. In contrast, the interceptors dis-
credentials ' cussed in thls_papgr are basgd on thg so—cgl!ed “Portable Inter-
' ceptors” specification [7], which is being ratified by the OMG.
To support these capabiliti@éthoutmodifying existing client Two types of interceptors are defined in the CORBA Portable
code, applications must be able to override the default stokerceptor specification:
implementations selectively. These application-defined stubs .)) o
are calledsmart proxieswhich are customizable meta-objects ® Reduest interceptorsvhich deal with operation invoca-
that can mediate access to target objects more flexibly than the 10NS:
default stubs generated by an IDL compiler. Smart proxiese IOR interceptorswhich insert information into interop-
allow developers to modify the behavior of interfaces without erable object references (IORs).
re-implementing client applications or target objects.
The two main entities in smart proxy designs are (1) tioth types of interceptor are described below.
smart proxy factory and (2) the smart proxy meta-object,
which are shown in Figure 2. When using a smart progy2.1 Request Interceptors

Request interceptors can be decomposediligat requesin-
terceptors anderver requesnterceptors, which are designed
creates

SR operation() to intercept the flow of a request/reply sequence through the
PROXY Cj OBJECT

SMART

PROXY

CLIENT o args

FACTORY ORB at specific points on clients and servers, respectively. De-

velopers caninstall instances of these interceptors into an ORB
via an IDL interface defined by the Portable Interceptor speci-
ey fication. Regardless of what interface or operation is invoked,
—— D SKELETON R after request interceptors are installed they will be called on
proxy || INTERFACE Ryvey everyoperation invocation at the pre-determined ORB inter-

ception points shown in Figure 3.

(SERVANT)
out args + return value

- e}

ORB CORE) As shown in this figure, request interception points occur
in multiple parts of the end-to-end invocation path when a
Figure 2: TAO’s Smart Proxy Model client sends a request, when a server receives a request, when

a server sends a reply, and when a client receives a reply. Dif-
to modify the behavior of an interface, the developer impléerent hook methods will be called at different points in this
ments the smart proxy class and registers it with the ORBterceptor chain. For example, teend _request hook is
After installing the smart proxy factory, the ORB automatzalled on the client before the request is marshaled and the
cally uses the application-supplied factory to create object refeeive _request hook is called on the server after the re-
erences when a client invokes thearrow operation of an questis demarshaled.

ing nested invocations in an interceptor.
CLIENT REQUEST

NFO Accessing request information: Request interceptors can
Sl (%%;i%no CETET access various informatipn associated with an invocg—
Sutargs + remum value (SER‘VANT) t'|on, such as the operation name, parameters, exceptlon
: 3 lists, return values, and the request id via the MOP in-
4 BT / »%Eﬁ)@'é; terface as defined in the Portable Interceptor specifica-
— tion. Interceptors cannot, however, modify parameters
"lD,_ SKE"LDELTON or return values. This request/reply information is en-
sTuBs ORTABLE ORCT ADAPTER capsulated in an instance cﬂllenthquestlnfo or
73 ServerRequestinfo classes, which derive from the
> i Requestinfo class and contain the information listed above
(v < _ } for each invocation.
- For example, client request interceptors are passed
PORTABLE INTERCEPTOR AP| ° ClientRequestinfo and server request interceptors are
1) send_request()/send_poll() passedServerRequestinfo . TheseRequestinfo -
g FEE@133{23332%5??&55%"82&??5 0 derived objects can use features provided by the CORBA
4) send_reply()/send_exception()/send_other() Dynamic module. This module is a combination of pseudo-
5) receive_reply()/receive_exception()/ IDL types, such aRequestContext and Parameter |,

ive_oth
recelve_omer) declared in earlier CORBA specifications. These types fa-

Figure 3: Request Interception Points in the CORBA Portabiate on-demand access of request information from the
Interceptor Specification Requestinfo to avoid unnecessary overhead if an inter-
ceptor does not need all the information available with the

. . . . R Inf
Compared to a client invocation path, a server mvo_equest °

cation path has an additional interception point call&krvice context manipulation: As mentioned earlier, re-
receive _request _service _contexts , which is in- quest interceptors cannot change parameters or the return
voked before the POA dispatches a servant manager. Waikie of an operation. They can, however, manipusae
interception point prevents unnecessary upcalls to a servgle contextshat are piggybacked in operation requests and
For example, in the CORBA Security Service [8] frameworigeplies exchanged between the clients and servers. A service
this interception point can be used to inspect security-relatgshtext is a sequence field in a GIOP message that can transmit
credentials piggybacked in a service context list entry. If theut-of-band” information, such as authentication credentials,
credentials are valid the upcall can proceed to other intercg@nsaction contexts, operation priorities, or policies associ-
tors (if they exist) or to the servant; if not, an exception will bgted with requests.
returned to the client. For example, the CORBA Security Service uses request in-
The behavior of an interceptor can be defined by an aprceptors to insert user identity via service contexts. Like-
plication developer. An interceptor can examine the statevite, the CORBA Transaction Service uses request inter-
the request that it is associated with and perform various aeptors to insert transaction-related information into service
tions based on the state. For example, interceptors can invedstexts so it can perform extra operations, such as com-
other CORBA operations, access information in a request, mit/rollback, based on the operation results in a transaction.
sert/extract piggybacked messages in a request’s service &ith service context entry has a unique service context iden-
text list, redirect requests to other target objects, and/or thrgfer that applications and CORBA components can use to ex-
exceptions based on the object the original request is invokettt the appropriate service context.

upon and the type of the operation. Each of these capabilities .)
is described below: Location forwarding: Request interceptors can be used to

forward a request to a different location, which may or may
Nested invocations: A request interceptor can invoke opemot be known to the ORE priori. This can be done via
ations on other CORBA objects before the current invocatitire Portablelnterceptor::ForwardRequest ex-
it is intercepting completes. For example, monitoring and deeption, which allows an interceptor to inform the ORB that
bugging utilities can use this feature to log information assoaitetry should occur upon the new object indicated in the ex-
ated with each operation invocation. To avoid causing infiniteption. The exception can also indicate whether the new ob-
recursion, developers must be careful to act only on targetjagt should be used for all future invocations or just for the
interfaces and operations they intend to affect when perforforwarded request.

Since theForwardRequest exception can be raised aR.2.2 IOR Interceptors

most interception points, it can be used to provide fault t?, P version 1.1 introduced an attribute cal ponents

erance and load balancing [9]. For example, the IOR of &, . .

replicated object can be used as the forward object in this }Qé,(-'c.h contains a list ofagged'corponens to be embedded

ception. When the object dies for some reason—and this sitwgb'.n an IOR. When an IOR is created, tagged components

tion is conveyed to the interceptor—this exception can be rai é8‘{'de a pIacehoIder for an .ORB to.store extra mformapon

even before the POA tries to make an upcall. pertinent to thg ObjeCt.'ThIS information can contain various
types of QoS information related to security, server thread

Multiple interceptors: Multiple request interceptors can b%riorities, network connections, CORBA policies, or other
registered with an ORB, which will then iterate through theﬁbmain-specific information

and invoke the appropriate interception operation at every iNrhe original 1IOP 1.0 specification provided no standard

terception point according to the following rules: way for applications or services to add new tagged compo-
e For each request interceptor, only ostarting inter- NeNts into an IOR. Services that require this field were there-

ception point can be called for a given invocation. K)rg forced t_q use proprietary ORB interfaces, whi-c.h impeded
starting interception point is the first point invoked itheir portability. The Portable Interceptors specification re-

a request/reply sequence. For instance, the startifes this problem by definin®R interceptors -
points for a client ORB includesend _request and OR interceptors are objects invoked by the ORB when it

send poll . Likewise, the starting point for a servefreates IORs. They allow an IOR to be customized, by ap-
ORB isreceive _request _service _contexts . pending tagged components. Whereas request interceptors ac-
F h tint i | lingint i cess operation-related information R&questinfo s, IOR

* roreachrequestinterceplor, only Inginterception _interceptors access IOR-related information MRInfo s.

point can be gallgd fora given Invocation. Th‘? ending '.&"lgure 4 illustrates the behavior of IOR interceptors. A server
terception point is the last juncture where an interception L Create obioct
. Create objecl

may occur in the request/reply sequence. The ending in- refe,encej

terception points on a client ORB aneceive _reply

. . . i
receive _excep'.tlon , andreceive _other and the Interceptor contains p—
ending interception points for a server ORB consist of Repository / Builder

IOR Server ORB

send _reply ,send _exception ,andsend _other . @
&
. S €
e There can be multiple intermediate interception points. @ °Q° g8
. o] & . 29
¢ Intermediate interception points cannot be invoked in the § " @W < §
case of an exception. & - °
e The ending interception point for a given interceptor will ORI 3. add_ior_ (CRITTC
. . . . B TEEEr component ~| | Effective Polici
be called only if the starting interception point runs to P

completion.]
Figure 4: IOR Interceptors

Multiple interceptors are invoked using a flow-stack model.
When initiating an operation invocation, an interceptor 8RB responsible for creating an IOR contains I@R in-
pushed onto the stack after its starting interception point cot@rceptor repository In turn, this repository contains a se-
pletes successfully. When an invocation completes, the intégs of IOR interceptors that have been registered with the
ceptors are popped off the stack and invoked in reverse or@RB. When the server process requests the ORB to cre-
The flow-stack model ensures that only interceptors execuégel an IOR, the ORB iterates through the IOR intercep-
successfully for an operation can process the reply/exceptiaoss in the repository using thestablish ~ _components

Exception handling: Request interceptors can affect theperation. The IOR interceptors then add tagged com-
outcome of a request by raising exceptions in the iAonents to the IOR being generated by refering to the
bound or outbound invocation path. In such cases, #§RInfo passed in by callingadd .ior _component or
send _exception ~ operation of a server request intercefdd _ior _component _to _profile

tor is invoked on the reply path and is received at the

client in thereceive _exception interceptor hook. When 2.3 Eva|uating Alternative Meta_Programming

a send _exception or receive _exception operation Mechanisms for ORB Middleware
raises @&orwardRequest exception, the other interceptors

have theirsend _other andreceive _other interception We presented an overview of smart proxies and interceptors
points invoked, respectively. above. We now evaluate these two mechanisms, and then

compare and contrast them with two other meta-programmindn general, design problems that require pre-invocation or

mechanisms—pluggable protocols and servant managers-fhainterface extensions are well-suited for smart proxies.

are provided by most CORBA implementations. Portable interceptors, in contrast, provide a suitable solution

for applications that require a semantically richer—albeit some-

2.3.1 Smart Proxies vs. Interceptors what more expensive—meta-programming abstraction.

Smart proxies a.nd interceptors are similar in that they extepd o gervant Managers

ORB-mediated invocations and functions. They differ, how-

ever, in their architecture and have their own pros and consTae CORBA POA specification [1] allows server applications

described below. to registerservant manageobjects that activate servants on-

. . demand, rather than creating all servants before listening for

Intent: A smart proxy can be used for a variety of purposes ;)
. . X . ~féquests. There are two types of servant managers in CORBA:

such as improving performance via caching, whereas inter-

ceptors are used primarily to (1) audit and verify information ® Servant activators,which provide a hook method called

along the invocation path and (2) redirect the operation if nd@carnate that creates a servant the first time an object is

essary. Forinstance, a server request interceptor can deter@§gssed by a client.

whether the server should handle certain operation invocations Servant locators,which provide a hook method called

by inspecting the incoming requests and forwarding some pgeinvoke that are invoked by a POA to create a servant for

quests to other servers that can handle them. every request on an object. Figure 5 illustrates how servant

Scope of control: A different smart proxy can be Conﬁg_locators are used in a CORBA application' to perfprm various

ured for each interface, whereas the same set of intercepfBR9Urce management activities before dispatching an opera-

will be invoked atall the ORB mediated points of an invocallon to a servant.

tion. Moreover, a smart proxy is solely a client mechanism,

whereas request interceptors are invoked on the request path
from client-to-server and on the reply path from server-to-
client?

Invocation points: A smart proxy invocation point occurs

whenever an operation is invoked through a stub. In contrast, (1) upcall

interceptors are invoked at many points, including IOR cre- s o
ation time and/or before a call is sent by the POA to the ser- erver
vant.

o _ _ Figure 5: Managing Resources with a Servant Locator
Cardinality: A client can have only a single smart proxy for

each interface, whereas multiple interceptors can be registered o .)
with the ORB. A servant locator is similar to an interceptor in several re-

e]) spects. For example, both are implementations of the Inter-
Modifiability: ~ Since smart proxies replace default ORBgpior pattern [10]. Moreover, both can (1) intercept requests

generated stubs completely, smart proxies can modify the Barqre they are dispatched to servants, (2) invoke extra opera-

rameters or results of an operation. In contrast, the Portallpétﬁsy and (3) affect the outcome of request invocatiens,
Interceptor specification does not allow request interceptorg{pi rowing exceptions. Unlike interceptors, however, servant
change operation parameters or return values. locators only affect the POAs that install them and can only
Overhead: A smart proxy mechanism incurs minimal overprovide access to a limited subset of the request-related infor-
head,.e., a single extra method call per-operation invocatiomation. As a consequence, they are more tightly coupled with
In contrast, request interceptors can incur additional overh@4dAs and servant implementations than are interceptors.

to access request information because information related to

the request is bundled intmy s, which have higher overhead 3.3 pluggable Protocols Frameworks

for their insertion and extraction operations.

o . Another type of meta-programming mechanisms provided
Standardization: Smart proxies have not yet been standargy some DOC middleware igluggable protocols frame-

ized in the CORBA specification. CORBA interceptors will bﬁ/orks[ll, 12], which is in the process of being standardized

standardized after the Portable Interceptor specification is {Ja)}'the OMG in the Extensible Transport Framework [13] spec-

ified. ification effort. These frameworks decouple the ORB’s trans-
LIOR interceptors are just invoked during object reference creation. port protocols from its component architecture. Developers

can therefore add new protocols without requiring changes to High 4

existing application software. Portable

Figure 6 illustrates TAO’s pluggable protocols framework, Interceptors
which allows developers to install new protocols into the
ORB by implementing customized pluggable protocol objects. ~ Overhead
Higher-level application components and CORBA services

Pluggable
Smart Proxies Protocaols,
CLIENT operation (args) OBJECT (SERVANT) Low
SCOpe: gpecific interface All interfaces

Arg. manipulation: Read-write Read-only

OTHER

ORB MESSAGING COMPONENT ORB core
SERVICES

oo || |[wormns |[evecooeo Figure 7: Comparing Alternative Meta-programming Mecha-

IoP 10P IoP CONTROL n Isms
l ESIOP l FACTORY CONNECTION

MANAGEMENT

i
RELIABLE ADAPTER FACTORY PROFILE
BYTE-STREAM VME MANAGEMENT . .]
i o = 3 Programming with Smart Proxies

ORB TRANSPORT ADAPTER COMPONENT Ry an d P 0 rtab I e I nte rce ptO I’S

ADAPTIVE Communication Environment (ACE)
COMMUNICATION INFRASTRUCTURE
This section describes two examples that illustrate how the
ginart proxy and interceptor meta-programming mechanisms
can be used to adapt existing systems as requirements change

without impacting client and server application software ap-

use the Component Configurator pattern [10] to dynamica'ﬂrecl.'g:tl.);nlsntgar:]tgcdqlart'hser.r;egterﬁ)go?(c'ssbag?];?]te.gce?gzrf):#;v‘f
configure custom protocols into TAO’s pluggable protoco. piicati ify thei vior by ging v

frameworkwithoutrequiring obtrusive changes to themselveg" of their meta-objects, rather than by redesigning interfaces

or the ORB and application implementations.

PLUGGABLE PROTOCOLS FRAMEWORK

Figure 6: TAO's Pluggable Protocols Framework Architectu

As with interceptors and smart proxies, pluggable proto-
cols frameworks are meta-programming mechanisms that &d Using Smart Proxies for Secure Transac-
functionality to ORBs. However, whereas other two mecha- tions
nisms alter the semantic of objects, pluggable protocols frame-
works alter the underlying ORB transport mechanism. Thiédverview: Below, we illustrate the use of smart proxies to
they do not permit fine-grained control over objects since th&ijnplify the addition of security to a stock quote system after
affectall objects in an ORB and it is hard to vary the transpdkthas been deployed. A sample system configuration consist-
mechanism at the level of object references. Moreover, siffe@ Of a remote database server and two clients is shown in
pluggable protocols deal directly with the communication ifrigure 8.
frastructure, they are usually more complex to program than
interceptors or smart proxies.

REQUEST

REQUEST

retval =
get_quote (
stockname);

retval =
get_quote (
stockname);

stockname
stockname

retval
retval

dednuAINE

Figure 7 compares the various meta-programming mech- SMART PROXY
anisms along a number of dimensions described above. |:|
Portable interceptors have the highest overhead since they are

URE CLI

the most flexible meta-programming mechanism. Although CLIENT \ /SEC
other mechanisms have less overhead compared to portable SERVER

interceptors, they are targeted at more specific system mech- I:I ‘\\‘ @

ENT

anisms. When combined with patterns, such as Qompongnt = AUTHENTICATION
Configurator [10] and OS features, such as explicit dynamic —+= SERVICE

linking [14], these meta-programming mechanisms can all be . . _
configured dynamically into CORBA clients and servers. ~ Figure 8: A Secure Transaction System Using Smart Proxies

Originally, clients accessed stock quotes via the following PROXY FACTORY DEFAULT SMART
L ADAPTER PROXY PROXY
IDL definition: { SINGLETON} FACTORY FACTORY
pf: Default_Proxy_Factory
module Stock Eock Luses) | +ereate_proxy() +create_proxy()
+register_factory (df: Default_Proxy_Factory]
+unregister_factory ()
/I The interface for which with a smart proxy R)
/I will be provided for authentication of the « instantiates$)
/I client to the Quoter for validation purposes. & instantates)y /
interface Quoter { SMART PROXY SMART PROXY
Il Exception raised when stock_name does P BASE
Il not exist. coltocaten [T
exception Invaht_:l_Stock { OBIECT RS +method_1 0
' string reason; Cuse§y| (Piproxy) +method_2 ()
}, PROXY FOR +method_1 ()
REMOTE < +method_2 ()
/I Two-way operation to retrieve current stock OBJECT
/I value. This method will be customized by
/I the smart proxy to include authentication.
long get_quote (in string stock _name) * GENERATED BY THE IDL

raises (Invalid_Stock);

. iy Figure 9: The Classes in TAO’s Smart Proxy Framework
/I One-way operation for auditing purposes.

y oneway log_quote (long quote);

p ¢ Default proxy factory, which is the default factory ob-
y o ject that returns the default proxyg., the stub that communi-

cates with target objects. This factory registers itself with the

Our goal is to avoid changing this existing IDL, while addingdapter singleton during program initialization. It is deleted
the ability to authenticate clients. By using smart proxies, W@#her (1) when it is replaced by another proxy factory or (2)
can extend the original application transparently to invokendien the program terminates and the singleton proxy factory
security mechanism that performs authentication. Moreovadapter is destroyed; and

if the security mechanism must be revised in the future, a new |nterface-specific smart proxy basewhich is a class ap-
smart proxy can be used and the old one removed without@feations inherit from to define their custom smart proxies.
fecting application code.
Generating smart proxies in TAO: TAO's IDL compiler
parses IDL files containing CORBA interfaces and data ty
and generates stubs/proxies and skeletons, which are the®mart proxy factory: This factory class is defined by
tegrated into client and server application code, respectivelpplication developers. It creates a smart proxy when
The front-end of TAO’s IDL compiler parses OMG IDL in-a client application calls the standard CORBAarrow
put files and generates an abstract syntax tree (AST). Dperation. The smart proxy factory class must inherit
back-end of TAO's IDL compilewisits the AST to generatefrom the default proxy factory class generated by TAO'’s
CORBA-compliant C++ source code [15]. IDL compiler. This design ensures the factory is reg-
To add smart proxy support we added a new visitor to tlstered automatically with the singleton [4] proxy factory
back-end that can traverse every interface in the AST and gedlapter via a base class constructor. For example, a
erate the smart proxy framework classes shown in FigureT®QStock _Quoter _Default _Proxy _Factory classis
TAO's IDL compiler can be instructed to generate these smgenerated from thQuoter interface and can be inherited
proxy framework classes for every interface in an IDL filétom as shown below:

Below, we described each of the classes shown in Figure 9:
L . . . class Smart_Quoter_Factory : public virtual
e Smart proxy factory, which is provided by an application TAO_Stock_Quoter_Default_Proxy_Factory

developer to create a custom smart proxy. ublic:

: . . p _ _
e Proxy factory adapter, which provides a singleton [4] / This factory method will create the
| smart proxy.

container that manages the lifetime of the smart proxy factor)(,irtual Stock-:Quoter _ptr create_proxy
registered with it. When a smart proxy factory is created by (Stock::Quoter_ptr proxy);,

an application it registers itself automatically with this single- p

ton. The proxy factory adapter takes ownership of this factgry

object and deletes it before the program terminates to ensure

there are no memory leaks. Applications can also requesis#pending on policies set by applications, the scope of a smart
adapter to unregister its factory.

Below, we illustrate how to programming using TAO's
p%rglart proxies framework.

proxy factory in TAO can be defined orpar-interfaceor per- public:

ObJeCtba.‘SIS’ as f0”0W§' .) Il Store the default proxy to perform the
e Per-interface: With this policy the same smart proxy is Z actur?l work of passing the request
H H H H H to the server.
used for all target ob;ects associated with a paryculgr IDL IN-giack_Quoter Smart_Proxy_Base
terface. When an object reference to a target object is obtained (Stock::Quoter_ptr proxy)
via_narrow , a smart proxy is created to act as the stub for all : proxy_ (proxy) {}
operation invocations on this object. This policy is the mostyiiyal coreA::Long
transparent because after a smart proxy factory is instantiategkt_quote (CORBA::String stock_name)
for an interfacd 00, all calls toFoo:: _narrow will use this throw Invalid_Stock;

factory to create their smart proxies. virtual void

o Per-object: With this policy each target object can have '°9-9ucte (CORBA:Long quote);
a different smart proxy factory, which is less transparent huittected: N
more flexible. After the first invocation on a target object ’étoccak_c_rgug{‘; ariginal proxy reference.
the smart proxy factory is unregistered from the proxy factogy N —ar proxy—

adapter. Thus, unless a new smart proxy factory is installed

explicitly for a new object, new object references to target oRpplications can inherit from this class and implement meth-
jects of the same interface will use the default proxy. A neygs that they want to override. For example, authentication

smart proxy factory could either be another instance of the aig) be added to validate the client before it receives the stock
that was created earlier or a different smart proxy factory thfote from theQuoter object, as follows:

will create another type of smart proxy for the target object.

class Stock_Quoter_Smart_Proxy :
The proxy factory adapter delegates the task of creatiNgpiic Stock Quoter Smart_Proxy Base

a smart proxy to the factory registered with it. By default,

this factory creates the default proxy. The following factory ’(’:OSF?‘B"JXT_L%%V method.

method [4] shows how a smart proxy is created and how the;tock_(jgoter_s_mart_proxy;;get_quote
default proxy is passed as the formal parameter to the factory gﬁgRﬁﬁii;angt OSéick_quote)
methodcreate _proxy : W invalid_

CORBA::Long result = 0;
Stock::Quoter_ptr

Smart_Quoter_Factory::create_proxy try {
(Stock::Quoter_ptr proxy) II" Authenticate the client using the
{ _ _ /I CORBA security service.
/I Verify the default proxy and use it result =
/I to create the new smart proxy. security_service_->authenticate (key_);
if ({CORBA::is_nil (proxy))
proxy = new Stock_Quoter_Smart_Proxy (proxy); Il Verify result, else throw exception.
return proxy; ...
}

/I Call down to the default proxy to
In the _narrow ~ operation used to obtain the target object, a ~ // send request to the target object.
default proxy will be created. As shown in the method above, Quoter_Smart_Proxy_Base::get_quote
this default proxy is passed along to theeate _proxy } catch ((Sgckt_nalme):l_d Stock &) {
. . . caltcl uoter::invall oC
invocation on theSmart _Quoter _Factor . This factory /I Deal with the exception caught ...
method stores the default proxy in the smart proxy, which it return -1;

}

can use to communicate with the target object.

Smart proxy class: TAO's IDL compiler generates a proto- }
type of the smart proxy that inherits from the default proxy ar}1;d//
the smart proxy base class. For example, the smart proxy base
class generated for ti@uoter interface is shown below:

return result;

Client implementation: Below, we show a function

Z Xgisncca'ﬁzi_shgé%sﬁcdes‘ﬁg? ;t‘(fx;";fgésg?xy- that illustrates the per-interface smart proxy factory pol-
/I inherit from this class. icy, where the client application explicitly creates one
class Stock_Quoter_Smart_Proxy_Base Smart _Quoter _Factory instance. This factory then cre-

: p;ubt','”cc virtual Sstﬂf;rtQ;gf; Base ates &Stock _Quoter _Smart _Proxy object on each call to

{ _harrow on theStock::Quoter interface:

int main (int argc, char *argv[])
{
..

Initialize the ORB ...

Install the smart proxy factory for the
<Stock::Quoter> interface. By default, the
factory created is per-interface. If more
flexibility is needed, the factory can be
per-object, which is enabled by passing a 0
to its constructor.

Smart_Quoter_Factory *quoter_factory
= new Smart_Quoter_Factory (1);

/I ... Call the <current_quote> method for
/I various IORs ...

}

CORBA::Long current_quote (CORBA::ORB_ptr orb,
const char *ior)

CORBA::Object_var obj =
orb->string_to_object (ior);

Stock::Quoter_var server
= Stock::Quoter::_narrow (obj.in ());

return server->get_quote ("ACME ORB");
}

3.2 Using Portable Interceptors for Secure
Transactions

Overview: As shown above, smart proxies can authenticate
clients transparently via a trusted third-party. However, more
powerful authentication mechanisms allow user information,
such as credentials, to be sent for each request. To leverage
these mechanisms in CORBA transparently, interceptors can
be used to pass user information via the service context list
that is tunneled with each GIOP request.

Below, we revise our stock quoter system so it uses intercep-
tors to provide authentication information on a per-request ba-
sis via service context lists. In addition, we show how CORBA
Dynamic module types can be used within interceptors to ob-
tain additional request information, such as parameters, return
values, and request ids.

Client interceptor: On the client, we use the following
send _request interceptor hook to bundle authenticationin-
formation into the service context.

class Secure_Client_Request_Interceptor : public
Portablelnterceptor::ClientRequestinterceptor
{

public:

. /-
As shown above, the only change required to exist-yoig send_request

ing client application code is to create an instance
Smart _Quoter _Factory before any calls tanarrow are
made. Note thaBmart _Quoter _Factor must be heap al-

located since TAO'’s smart proxy framework classes is respon-
sible for destroying this object. This design simplifies the tasks
of (1) application developers, who need not manage smart
proxy factory lifetimes at all and (2) smart proxy developers,

who can manage the lifetime of their smart proxies more pre-

cisely.

Smart proxies can also be installed dynamically into an ap-

of (Portableinterceptor::ClientRequestinfo_ptr ri)
/I The <password> is the authentication
/I information we send to the server.

/I Create the context to send the context
/I to the target.
IOP::ServiceContext sc;
sc.context_data.replace (strlen (password_),
strlen (password_),
password_,
1);
/I Add this context to service context list.
ri->add_request_service_context (sc, 0);

plication via the Component Configurator pattern [10]. F‘BFi\}/ate:
example, the smart proxy factory can be stored in a dynami# Password we send to the server per-request.

cally linkable library (DLL). To accomplish this in TAO, we

simply add an entry into thevc.conf
to load this DLL on-demand:

configuration script

dynamic Smart_Quoter_Factory Service_Object *
JSmart_Quoter_Factory :
_make_Smart_Quoter_Factory() ™

const char *password_;

A client request interceptor uses thend _request hook
method above to create a new service context entry that
adds a password into the existing request’s service con-
text list. The ClientRequestinfo object encapsu-
lates the request's service context list so that it can
be accessed by an interceptor. Next, we register the
Secure _Client _Request _Interceptor instance with

As shown above, the smart proxy factory class r#ie client ORB, as follows:

sides in a DLL with the factory function entry point

_make_Smart _Quoter _Factory ,whichis called automat-

/I This is code that would reside in a
/I concrete implementation of an

ically when the TAO ORB is initialized. This design allows // ORBinitializer::post_init() method, for

smart proxies to be configured transparently without requirin

anychanges to existing client application implementations!

| example.
d

/I Create and Install the client interceptor.

Portablelnterceptor:: /I This is code that would reside in a

ClientRequestinterceptor_var /I concrete implementation of an
interceptor = new /I ORBInitializer::post_init() method, for
Secure_Client_Request_Interceptor; /I example.
/I "info" is the ORBInitinfo argument /I Create and install the server interceptor.
/I passed to this Portablelnterceptor::
/I ORBInitializer::post_init() method. ServerRequestinterceptor_var
info->add_client_request_interceptor interceptor = new
(interceptor.in ()); Secure_Server_Request_Interceptor;

This interceptor hook is one of the first interception points in-Z "info” C;Stth?h_ORBlnitlnfO argument
H : . passe (0] IS
voked on the client, as shown in Figure 3. /I ORBlnitializer::post_init() method.

Server interceptor: On the server, we use an interceptor to inffg;g?ggst%fr\ﬁr_(f)(;gUest_interceptor
verify the password sent via the service context list, as shown pror. ‘

in thereceive _request interceptor method below:

_ After this interceptor has been installed, it will be invoked
class Secure_Server_Request_Interceptor : public

Portablelnterceptor:ServerRequestinterceptor at all interception points along the server’s invocation path.

_ The particular point that will call theeceive _request
p“l\’/'(')‘i:a receive_request_service_contexts method is after parameter demarshaling, but just before the
(Portablelnterceptor::ServerRequestinfo_ptr ri) POA makes the upcall to the servant. For example, we could

first authenticate and then use the information passed to set
policies for the access rights granted to the client for a partic-
ular target object.

IOP::ServiceContext *sc
= ri->get_request_service_context (1);

const char *buf = reinterpret_cast
<const char *,
sc->context_data.get_buffer ()>;

Il Verify the password. 4 Key Design Challenges and Pattern-
if (strcmp (sc->context_data.get_buffer (), .
“root’) 1= 0) based Resolutions
/I throw exception ...

' In this section, we explore how smart proxies and intercep-
depéﬁ%%%?ﬁf%?féru ServerReauestinfo ofr i tors are implemented in TAO. To clarify and generalize our

(pror a -ptr 1) approach, the discussion below focuses on the patterns [4] we

/I Now check the parameters passed. applied to resolve the key design challenges faced during our

if (strcmp (ri->operation (),
"get_quote”) == 0) {
/I Obtain parameter list.
Dynamic::ParameterList paramlist
= *ri->arguments ();

development process.

CORBA:Long stock_quote; 4.1 Smart Proxy Design Challenges and Reso-

II' Extract from the any. lutions

paramlist[0].argument >>= stock_quote;

/I if invalid stock quote throw exception As mentioned in Section 2.1, the goal of using smart proxies

is to change/add behaviors to existing programs with minimal
} ! modifications to client applications. Below, we discuss the key

design challenges we faced while refactoring TAO’s existing

The receive _request _service _contexts hook stub architecture to support smart proxies.

method obtains the service context from the service context

list stored in theServerRequestinfo object and verifies

the password. Theaeceive _request hook method 4.1.1 Challenge: Providing Flexible Support for Smart
then uses types defined in the ORBynamic module to Proxies

check the request parameters to ensure the quote is valid.

The Dynamic module helps to build the parameter liseontext: The proxy framework generated by TAO's IDL
on-demand and inseany variables that can be extracted bgompiler should allow applications to use customized prox-

the interceptor as needed. ies transparently. For example, changes to client applications
Finally, theSecure _Server _Request _Interceptor that use customized proxies must be localized. In particular,
is registered with the server ORB, as shown below: developers should be able to install customized proxies with

little or no change to client application code.

Problem: TAQO's original IDL compiler generated only fixedcustomized meta-objects calledllocated proxie$o optimize
default proxies. In particular, thearrow operation it gen- performance for collocated objects. Smart proxies should pro-
erated for each interface returned a default proxy. If develgfde similar functionality to collocated and remote proxies
ers require more flexibility, however, thearrow operation since the ability to differentiate remote and collocated smart
must be able to return either an IDL-generated default proproxies provides developers with greater flexibility.

Oor a custom smart proxy. Problem: Depending on where a target object resides, a de-
Since the_narrow operation is generated by TAO’s IDLyeloper may or may not wish to invoke the smart proxy in-
compiler as part of the client’s stub it is not possible to mogtajled for the object. For example, a developer may not
ify this method externally from a client application. Morewant to cache operation results in a collocated smart proxy be-
over, since fixed default stubs were generated any changeggrse these calls are already resolved locally. Originally, TAO
quired manually modifying the IDL-generated code. Clearleated the generation of collocated stubs as a special case and
this solution was inflexible and had to be solved at the Stqpsmart proxies were installed they would supercede the de-
generation level. fault stubs, even if the stubs were collocated.
Solution — Apply the Factory Method, Adapter, and Sin- Ignoring collocation optimizations, however, may cause un-
gleton patterns: We applied these design patterns [4] inecessary waste by trying to optimize a bottleneck that does
TAO's smart proxy framework to provide the necessary flerot exist. Therefore, it is necessary to distinguish the remote
ibility to create different types of proxies transparently iand collocated case to take full advantage of this construct and
TAO'’s IDL-generated code, as follows: avoid unnecessary waste of system resources, such as memory
e The Factory Method pattern defers instantiation of var‘all-nd -CPp cyclgs. In addmo_n, smart proxies must (1) provide
: applications with the same interface as default proxies and (2)
ous types of meta-objects to subclasses.

)] be able to call down to the default proxy to communicate with
e The Adapter pattern provides a higher level of abstragmote target objects.

tion for TAO’s proxy faqtories and to delegate creatiogOlution _s Apply the Composite pattern: The Composite

reque-sts to the appropriate factory. pattern [4] supports part/whole relationships and allows all ob-
e The Singleton pattern makes the proxy factory adaptefedts in such composite structures to be processed uniformly.

global access point for factory registration from progragve applied the Composite pattern to TAO to provide a uniform

initialization to termination. view among different proxies available to clients. As shown in
Figure 10 illustrates how we applied these three patternd #§ure 11, in this design (1) smart proxy classes inherit from
TAO to provide flexible support for smart proxies. By using N
Default Proxy Erv->authentlcate 0: .
ase_proxy->get_quote (stockname);
Proxy Eacton/ Adapter Default Proxy Facotry +long get_quote (in string stockname);
{Slngleton} — " base_proxy
+create_proxy () /\
pf: Default_Proxy_Factory
I lock Z} ‘ ‘ ‘
) Smart Proxy
: Remote Prox Local Prox
1?%55?;;;? (:ffc%(r)??)féuIt_Pme_FaCtmy i Smart Proxy Factory 4 4 svc: Authentication Service
+create pr(;(y 0; ’ +long get_quote (in string | +long get_quote (in string +long get_quote (in stringo
| o +create_proxy () stockname); stockname); stockname);

E TAO IDL compiler generated classes E Users defined classes Figure 11: Applylng the CompOSite Pattern to TAO’s Smart

Figure 10: Applying Patterns to Provide Flexible Support fc';)rrOXy Design

Smart Proxies the default proxy and (2) also store a pointer to the default

these patterns, applications can obtain either the default ITFFOXY t0 make invocations to target object. Collocated and
generated proxy or a smart proxy without changing existiﬁ%mme proxies are children of the default proxy. Thus, smart

code manually. For example, after an application registerB'gXi€s can make calls to the remote or collocated proxy trans-
per-interface smart proxy factory, thearrow operation call parently, while providing the same application interface as the

will create the appropriate proxy automatically. default proxies.
4.1.2 Challenge: Treating Remote and Collocated Smart 4.2 |.ntercept0r Design Challenges and Resolu-
Proxies Uniformly tions

Context: A target object can be either remote or it can b&s discussed in Section 2.2, interceptors can extend the behav-
collocated in the client's address space [16]. TAO provides of CORBA operations with minimal changes to client and

server applications. In this section, we discuss the key desiygeptions. To minimize the overhead of copying multiple ar-
challenges faced while enhancing TAO’s existing invocatigquments and the return value of the upcall, we only store a
architecture to support interceptors. reference, rather than a copy of the parameters, results, and
exceptions.

We added TAO-specific methods to edghquestinfo
class and used these methods internally to update the re-
sult and the exception thrown, rather than instantiating a
Context: Request interceptor hook methods are invokedR@w Requestinfo class before every interception point
different interception points along the invocation path. Theisecalled. For instance, the result of an operation is ob-
interceptors must be able to (1) verify and audit informatid@ined only after the POA makes the upcall and the client
being passed to the target object as the invocation continigggives a reply. At this point, the client can verify the re-
and (2) potentially terminate the invocation before it reachgdlt in thereceive _reply interceptor hook by querying the
the target object. Requestinfo object, making it necessary to update the re-

L . sult before this interception point is invoked. Thus, temporal
Problem: An ORB must provide information in respoNns&.tormation can also be propagated to interceptors.
to interceptor queries. This information may be operation-

specific and even temporal. For example, the result of an op- o)
eration may be available only after the POA makes an upch#-2 Challenge: Avoiding Gratuitous Waste Construct-
to a servant and the operation executes. ing Requestinfos

An OR'T’ m:;;t ftherefore ha;jvz'algene;:p \,N"’f‘y to aCCEEBntext: Interceptors can access any request-related infor-
operation-level information and disclose this information {4tion Their interface must therefore be sufficiently general
interceptors that are invoked at ORB-mediated mterceptll(a)nincorloorate any type of data. In CORBaqy is a generic

points. Originally, TAO did not maintain this information to[ype that can hold information of any other types, which are
avoid degrading the normal execution of the invocation in sit,lsltbred using type/value tuples.

ations where this information was not required by applications.

However, TAO’s 0rigina| design made it hard for app"ca‘[ior‘%roblem: In general, notall interceptors installedin an ORB

to influence invocation behavior. are interested in handling all information, or even all opera-
.] tions. For example, security-related interceptors may not be

Solution — Generation of nested Requestinfo classes forjnerested in what operation is being invoked, but only want

each interface operation: To provide invocation informa- 1 know the contents of the service context list. Likewise, an

tion dynamically and efficiently, we modified TAO's IDL com-,iting interceptor may only be interested in the parameters

piler to generat&kequestinfo classes for each operationyf certain operations of certain objects, while ignoring others
Requestinfo classes are instantiated for each operation Brogether.

vocation and passed to the interceptors during the invocationAlthough CORBAsany type is flexible, it is less efficient

Thus, interceptors can access operation-related informatighy more resource consumptive than other common CORBA
as shown in Figure 12. Every operation in an IDL interfagg;4 types, such dsng orstruct . We need to avoid the

4.2.1 Challenge: Making Information Retrieval Possible
Per-Operation

REQUEST INFO

QUOTER
INTERFACE

long get_quote(
in string
stockname);

log_quote(long
quote);

void shutdown

il

GET QUOTE
REQUEST INFO

request_id:long
op tring

“+reply_status ()
+arguments ()
+exceptions ()

T
| << yses >>
L 2

1

LOG QUOTE
REQUEST INFO

MODULE DYNAMIC

Figure 12: TAO's Portable Interceptor Design

"e:long

ParameterList

ContextList

ExceptionList

RequestContext

overhead ofany insertion operators if installed interceptors
are not interested in certain operation information. There is no
way, however, to predict what interceptors will be interested
in a priori.
Solution —+ On-demand creation of operation information:
To avoid unnecessary waste of resources, we applied the Lazy
Initialization pattern [17] to make sure the operation informa-
tion is only inserted intany objects thefirst timea related
interface is accessed by an interceptor vikiésjuestinfo -
derived interface. This design ensures that pertinent informa-
tion in Requestinfo -derived objects will only be created
if an interceptor is interested in the information. In TAO,
we retrieve this information via types defined in the CORBA
Dynamic module.

The Dynamic module defines the collocation of request

may have different formal parameters, result types, and uparameters, results, and exceptiongity in a sequence of

structures that an application interceptor can extract and ul@es this increase the static footprint of the ORB, but it also
In TAO, methods returning Dynamic objects are implementattreases run-time ORB memory requirements, which may be
to minimize the gratuitous waste of storing all informati® unacceptable for embedded applications.

facto into lists ofany s as shown in Figure 13. In particu-
y g P In addition to inherent problems with real stack implemen-

et tations detailed above, another common problem can occur.
Dynamic::ParameterList holder arguments; Since interceptors are invoked during a request, they are in the
Dynamic::ExceptionList holder exceptior|s;
critical path. This means that interceptor support code, such as
Dynamic::ParameterList get_arguments (); H
Dynamic:-ExceptionList get exceptions () a flow stgck, can have an adver:'sg affect on performance |f that
support is not implemented efficiently. In particular, adding
4} locking mechanisms in the flow of a request can degrade per-
formance since threads waiting for a lock can block. The act of

if argument contains nothing
Rl el O Solution — Apply optimization principle patterns: Opti-
mization principle patterns [19] define a set of principles that
Figure 13: TAO applies Lazy Initialization building DynamiGan be applied to improve performance in various ways. To
objects in Requestinfo implement time and space efficient flow stacks, heap alloca-
tions must be minimized to avoid degrading performance and
lar, this information is inserted intany s only when queried, increasing footprint. Both can be avoided by taking advantage
which occurs just once. Subsequent queries simply return $a@re-computedesources and the properties associated with
any variables created previously. Thus, unless an intercegitdm.
needs to query a particular piece of request information, it in-ps dictated by the Portable Interceptor specification, inter-
curs no additional overhead. This optimization is targeted ft%ptors are registered with the ORB when the ORB is boot-
the common case where interceptors are used to pass Se@ﬂ%&)ped,i.e., during the initial CORBA::ORBinit call.
contexts. This means that storage for the interceptors will already have
been allocated by the time the interceptors are invoked so there
4.2.3 Challenge: Implementing Time and Space Efficient should ideally be no need for additional allocations at a later
Flow Stacks pointin time.

Context: The Portable Interceptor specification defiges- By keeping the orQer_wnh which the Interceptors are stgred
: . . ._unchanged for the lifetime of the ORB, it is possible to im-
eral flow rulesto which a portable interceptor implementation ; . .
lement highly efficient staceushandpopoperations. Inter-

should adhere. These rules ensure that o_nIy mtgrceptors@enptors will always be pushed on to the stack with the same

voked successfully from a starting interception point will ever, .. . : .

. S i . Felative ordering they are stored in the ORB. This property en-

be invoked at an ending interception point. Conceptually, in- :

e sures that the number of elements on the stack will be equal

terceptors are pushed on to a stack if invoked successfully in . .

A . ; t0 the ORB storage location of the last interceptor pushed on

starting interception point and popped off that stack when the :

. A : . the stack. Hence, the general flow rule semantics can be
invoked at ending interception points.

. T implemented using bbgical flow stack.
Problem: Toimplement the semantics dictated by CORBA , . .
plying the solution to TAO: TAO stores pointers to reg-

general flow rules, some type of stack implementation i : X) 2
needed. However, implementinglaw stack with a general- istered interceptors in a pre-allocated array, which avoids in-

purpose stack container class, such as the one in the stanfﬂﬁfﬂsed footprmt and run-ﬂme memory reqwrementg. Rather
C-++ library [18], has the following problems: than having to instantiate a stack for each type of intercep-
' ' tor (i.e., client and server request interceptors), a single array

* T|'m'e|ove;head: The St?le énj]!o!en“antatlon may '”‘#'for each type of request interceptor is created. The order in
non-trivial per ormance overnead | Ita ocaf[es space off gk, interceptors are stored in the array remains unchanged
the heap dynamically for each mtercgptor or mte.rcepto.r ref F the lifetime of the ORB. Thugushandpopoperations can
enct()al pushedf onto ';hg stack.I_quam|c memory 1S parUcuIatS implemented by simply incrementing and decrementing a
problematic for real-ime applications. variable, respectively, as illustrated in Figure 14.

» Space overhead: The stack implementation itself adds The following example presents a scenario that illustrates
to the ORB footprint since a template must be instantiated f@§w TAO's logical flow stacks are implemented:

each type of request interceptag, client or server request 1 Three request interceptors are registered when the ORB
interceptors. Moreover, other auxiliary templates may negdnitialized. Specifically, theCORBA::ORRBinit method
to be instantiated for internal stack support code. Not orifwokes all ORB initializers registered by the application.

Operation_specific_Requestinfo T acquiring and releasing the lock also imposes further delays.
nts

TAO’s logical flow stack implementation allows the

CORBA general flow rule semantics to be implemented ef-
(request | Clen: Requeatinierceptar - Logisal Eow St |-+ Server ficiently and with minimal impact on ORB footprint. These
™7 1 send_request() | H = benefits arise from the fact that flow stack storage is pre-

allocated prior to the first use of the flow stack. In addition,
the TAO implementation ensures the order of the interceptors
3. operation() stored in the ORB's interceptor array remains unchanged for
. decr stack_size() the lifetime of the ORB.
One other aspect of this implementation is the fact that it is
not necessary to acquire a lock to prevent other threads from
L] a L] modifying the logical stack. Only one thread ever services a
Figure 14: An Efficient Flow Stack Implementation reqL!est ata givgn time. Thus, .there is no.need_to implemen.t a
locking mechanism for the logical stack, in which case addi-
tional overhead is not incurred.
Those ORB initializers then register the interceptors by us-
ing the appropriate methods in tRBInitinfo argument

passed to the ORB initializer by theORBA::ORBint 5 Empirical Benchmarking Results
method. An example of this interceptor registration code fol-

2. incr_stack_size()

5. receive_reply()

lows: Developers of distributed applications must often make trade-
o offs between time/space overhead and flexibility. Selecting

/I Code that would reside in a . . .
/I concrete implementation of an which meta-programming mechanism to us@, smart prox-
/I ORBlnitializer::post_init() method, for ies or interceptors, is an example of this tradeoff. This section
/I example. presents benchmarking results that quantify the time/space
/I Create and install a client interceptor. overhead and tradeoffs of using smart proxies and portable in-
PortableInterceptor:: terceptors.

ClientRequestinterceptor_var
interceptor = new

Secure_Client_Request_Interceptor; 5.1 Overview of the Testbed Environment and
/I "info" is the ORBInitinfo argument. Benchmarks
info->add_client_request_interceptor . .
(interceptor.in ()); The experiments were conducted using a Bay Networks Lat-

tisCell 10114 ATM switch connected to two dual-processor
2. Two interceptors are successfully invoked atarting Ugtr?jsﬁgfegshﬂﬁ;gg%ss:vﬂﬁi 15|;/7|égai?/(t::cgc|:trr1?asp|:¢-%%5
::t;rgﬁfetlizpomt during a request. This corresponds to stng Mbytes of RAM, and an ENI-155s-MF ATM adapter carq
that supports 155 Megabits per-sec (Mbps) SONET multi-
3. Each successful request interceptor invocation increede fiber. The experimental testbed is shown in Figure 15.
ments the stack size by one, which results in a stack sizeTag benchmarking programs were compiled using the Sun CC
two. Stack elemenbne corresponds to request interceptd.0 compiler with all optimizations enabled. We conducted
one as stored in the ORB’s interceptor array. Similarly, stadwo different benchmarks: one measured the performance of
elementwo corresponds to intercepttwo in the ORB’s in- smart proxies and the other the performance of interceptors.
terceptor array. Again, dbgical stack is in use here. This

corresponds to step 2 in Figure 14. 5.1.1 Smart Proxy Results

4. An endinginterception point is invoked. The overhead of calling an operation via a smart proxy is

5. Within the ending interception point, each of the intefduivalent to calling the default proxie., it is the cost of
ceptors in the logical stack is invoked. Prior to invoking eaéhloc@! virtual method call. Therefore, we designed our smart
interceptor, the stack size is decreased by one (step 4 in B§Xy benchmark to show how performance can be improved
ure 14), effectively popping an interceptor off of the Iogicéi smartprome's are used as a cache.to minimize the number'of
flow stack. Since only the first two interceptors were pushEg/note operations. Here is the IDL interface we used for this
on to the stack, only the first two of the three interceptors wiftSt
be invoked (step 5 in Figure 14) in the ending interceptiQf tace Broadway Show
point and the third interceptor will never be invoked. {

(Services)= 5.1.2 Portable Interceptor Results

‘ @ @ ‘ @ = Our portable interceptor benchmarks quantify the cost of sup-
C, C, .. C, —&% | ObjectAdapter = porting_ and using interpeptc_)rs in.TAO. Moreover, these tests
i = = = quantified the costs of individual interceptor features, such as
3! Requests ORB Core = accessing a parameter list and accessing a service context list.
In the benchmark program, the following three IDL operations

were defined in th&ecure _Vault interface:

interface Secure_Vault

{

exception Invalid {};

Ultra 2 Ultra 2 struct Record { long check_num; long amount; };
Figure 15: Testbed for Meta-programming Mechanlsm” No args/exceptions operation.
Benchmarks short ready ();

/I Throws a user exception.
void authenticate (in string user)

/I Get th i for the b
O o Prices Tor e hoX raises (Invalid);

/I seats of the Broadway show.

short box_prices ();
P 0 /I updates a struct and returns a count.

/I Order tickets. long update_records (in Iong id, '
long order_tickets (in short number); in Record val);

I3 i

. . . , Each operation takes a different number and different
The servant in the test is a virtual box office that allows
. . . ength of parameters and return values. Moreover, the
clients to purchase tickets to Broadway shows. A client can : . :

Lerv the prices of box seats and if thev are within a riauthentlcate operation throws a user exception, whereas
query P y P'6€% other two do not. This diversity allowed us to measure

range, It l;?uys them.. Thus, the client normally make; two '%e cost of preparing different types of generic information re-
vocations: (1pox _prices and (2)order _tickets ifthe uired by interceptors

prices are rea§onable. By de_fault, every time a client enquﬁ;esrhe interceptor benchmarks were run using the five differ-
about ticket prices, a remote invocation occurs. X : ;]
L o . ent configurations summarized below:
We can minimize overhead significantly by using a smart .)] o

proxy that makes just one remote invocation and then cache3: No interceptor support: In this configuration, inter-

the result and reuses it when subsequent enquiries occur. FRR{Or support was disabled completely in the ORB, which

caching improves the performance significantly, as shown'igasured TAO's baseline performance.

Figure 16. This figure illustrates that omitting unnecessary2. No interceptorinstalled: This time the ORB was com-
piled with interceptor support, although the test was performed
without installing an interceptor into the ORB. This configura-

tion measures the performance penalty applications must pay

for the potential of flexibility.

700

500

3. No-opinterceptor installed: This configuration uses a
no-op interceptor to measure the cost of invoking interceptors.

8
8

208.32

Throughput (events/sec)
8
8

4. Accessing the service context list: The interceptor in-
stalled in this configuration manipulates the GIOP request’s

8
8

ServiceContextList . On the client, a request inter-
ceptor creates a ne®erviceContext containing an en-
’ smanposy capsulated password string of 7 bytes and inserts the ser-
Figure 16: Performance Improvement Using a Smart ProxyMg€ context object into theServiceContextList of
Cache Information the invocation using th®equestinfo interface. On the

server, a different request interceptor performs the reverse
remote operation calls improve the performance~80%, operation by (1) extracting the password string from the
even over a high-speed ATM network. ServiceContextList using theRequestinfo inter-

face and (2) examining the password via a string comparison.

5. Accessing Dynamic information: TAO implements authenticate , andupdate _record operations, respec-
theDynamic module types in request/reply operations, sutikiely, compared with no-op interceptor configuration. The
as parameters, results and exception list of an invocation,ggyformance penalty comes not only from the accessing pa-
creating these information on-demand. The interceptor mameters using thBynamic module types, but also from the
stalled in this configuration accesses the dynamic informatmmdemand creation of the dynamic information. The results
of the operations by checking their parameters and return \&tlow that the preparation &fynamic module types are ex-
ues. pensive, which justifies our decision not to create them if they

. , i are not accessed by interceptors.
Figure 17 shows the cost of supporting and using these vari-

ous features and configurations in interceptors. In the first con-)
5.2 Memory Footprint Results

600

TAO is an open-source ORB that is used for real-time and em-
bedded systems with memory constraints. Therefore, smart
proxies and interceptors can be conditionally compiled in or
out at ORB compile-time. To measure the memory increment
greaty necessary to support smart proxies and interceptors, we com-

owaae recots | PI1€0 the Secure _Vault DL interface shown above with
three different operations using the following configurations:

500

400

300

200

Throughput (events/sec)

1. Interceptors and smart proxies disabled.

update_records 2. Interceptors and the smart proxies both enabled;

authenticate

nrcepor M0 ready cperions 3, Interceptors enabled but smart proxies disabled, which is
support e merceptor ACESSING g the default configuration in TAO; and
Context Dynamic g
Interceptor Types 4. Interceptors disabled and smart proxies enabled.

Figure 17: Cost of Using Various Interceptor Features tap1e 1 shows the resulting sizes for different configura-

])) tions. Not counting the application-specific proxy and factory
figuration (no interceptor support), all three measured opera-

tions perform similgrly becguse there is no significant diffe_- Supporting Stub | % Inc. | Skeleton | % Inc.
ence between the information these operations exchange. Thggnfig, size (KB) size (KB)
results are similar for the second conﬁgura’qon, WhICh adq ‘dNeither 1.288) 1277)
interceptor support to the ORB but without installing any iNmSmart proxies 1321 55 1277 0
terceptors. There is only-a9% performance penalty for usingnterceptors 1479| 148 1485| 163
the ORB with interceptor support. Both 1517 17.8 1,489 16.6
The no-op interceptor provide the baseline cost of invoking
an interceptor. There is26% of performance penalty com-Table 1: Footprint Comparison for Smart Proxies and Inter-
pared to not installing the interceptor due to invocations @éptors
interception points on every operation invocation. As shown
in Figure 17, however, all three operations reveal similar per-
formance characteristics, regardless of the number and sizenethod, smart proxies increase TAO’s client memory footprint
their parameters and return values. by ~2.5%. In contrast, interceptors requitd5% extra foot-
Similar performance degradation is also observed for intgrint to handle on-demand creation of parameters lists, excep-
ceptors that access ti8zrviceContextList . This con- tions list, etc.
figuration measures the cost of adding and extracting a shoiVe also performed the same test using the OMiGimum
string from theServiceContext . Again, all three opera- CORBAconfiguration [20], which defines a subset of the com-
tions experience-8% degradation in performance compargslete ORB CORBA specification to reduce embedded system
to using the no-op interceptor. memory footprints. By default, TAO’s Minimum CORBA
The interceptor that access tlyynamic module types, footprintis less than 1 MB. To determine the footprint growth
however, demonstrates more diversity in performance degr&en smart proxies and/or interceptors are used, we measured
dation among the three operations we tested. There the size of the ORB again using the same IDL interface, as
~7%, ~19%, ~and 40% performance hits to theady , shown in Table 2: The footprint increase for TAO’s smart

Supporting Stub | % Inc. | Skeleton | % Inc. the proxies. However, their framework does not allow users to

Config. size (KB) size (KB) install user-defined proxies and the MOP interfaces are specif-
Neither 923 0 896 0 ically designed for QoS purpose.
Smart proxies 974 5.5 896 0

Interceptors 1115 507 1104 531 Orb_ix filters: Orbix de_fines the concept of filters, whif‘:h are
Both 1148 543 1,105 532 an interceptor mechanism based on the concept of “flexible
bindings” [23]. By deriving from a predefined base class, de-
Table 2: Footprint Comparison for Smart Proxies and Inté’r‘é_'l_c’perS can inFer(.:ept eventg. Common events include client-
ceptors in TAO's Minimum CORBA Configuration initiated t_ransmssmn and_arrlyal .of remote opergtlons, as vyell
as the object implementation-initiated transmission and arrival
of replies. Developers can choose whether to intercept the
request or result before or after marshaling. Orbix program-
proxies in this configuration is 5.55% and the support for intgfrers can leverage the same filtering mechanism to build multi-
ceptors causes a significant 20-23% increment. These restifisaded servers [24, 25, 26].
are not surprising since both these meta-programming features , i
are new and have not yet been optimized for TAO’s Minimudynam'CTAO: The dynamicTAO reflective ORB [27] sup-
CORBA configuration. ports mterceptors for monltorlng and §ecur|ty. Pgrtlcular |'n-
In general, the results in this section show that corgRrceptor implementations are loaded into dynamicTAO using

meta-programming mechanisms can provide developers witfi Component Configurator pattern [10]. Using component

significant improvements in functionality, performance, a%ﬁ;flgurators to install interceptors in dynamicTAO allows ap-

convenience without drastic changes to existing applicatigifations to exchange monitoring and security strategies at

software. Depending on which features are used, howe\FHP't'me' Moreover, there are extensive use of reflective pro-

developers need to consider the affect of time and space of&@TMiINg technique in dynamicTAO to determine the module
head. the ORB requires.

Fault-tolerant ORB frameworks: Interceptors have been
applied in a number of fault-tolerant ORB frameworks such as
6 Related Work the Eternal system [28]. Eternal intercepts system calls made
CORBA is i inalv bei q q he middl by clients through the lower-level 1/O subsystem and maps
Is increasingly being adopted as the middleware it oo system calls to a reliable multicast subsystem. Eternal

;:hmcepl:or a \t/wde—ran?e of d'Stf”bLtjted ;31pp||_cat|on§”a£)nd Zy oes not modify the ORB or the CORBA language mapping,
€MS. AS Systems evolve, new features/services will be a eby ensuring the transparency of fault tolerance from ap-

to the system. Smart proxies and interceptors are good w. Sati
" R ations.
to adapt existing applications to take advantage of these new
features. The following work on middleware technologies ©@OM interceptors: Hunt and Scott [29] describe how to
related to our research. implement interceptors in COM. The concept they use to im-

QuO: The Quality Objects(QuO) distributed object mid- plgment inFerceptors is similgr to TAO'’s collocated stup [16].
dleware is developed at BBN Technologies [21] by appg_hls techn_lque uses alternative wrappers around the obj_ectlm-
ing Aspect-Oriented Programming (AOP) [22] techniques péementatlon to masquerade as operation targets, which are
adaptive network applications. QuO is based on CORBA arighilar to TAO's smart proxies.

supports:

1. Run-time performance tuning and configuratio ;
through the specification of operating regions, behavin Concludlng Remarks

alternatives, and reconfiguration strategies that allows B

QUO run-time to adaptively trigger reconfiguration as SY8iied widely to domains ranging from telecommunications to

tem conditions change, represented by transitions betwgen . :
. S aerospace, process automation, and e-commerce. DOC mid-
operating regions; and

o _dleware shields developers from many distribution challenges
2. Feedbackacross software and distribution boundariegq allows applications to invoke operations on target objects
based on a control loop in which client applications and Serficiently without concern for their location, programming
objepts request levels of service and are notified of change&ﬂbuage, OS platform, communication protocols and inter-
service. connects, and hardware [30]. Historically, however, many
QuoO achieves this functionality via customized smart pro®ROC middleware solutions have tightly coupled interfaces and
ies, calleddelegatesand embedded MOP interfaces withitmplementations, which makes it hard to adapt to requirement

Rtributed object computing (DOC) middleware has been ap-

or environment changes that occur late in an application’s |iAcknowledgements
cycle,i.e., during deployment and/or at run-time.

Meta-programmingnechanisms are techniques that help if 12nks to Brian Wallis<brfan.wallis@ot.gom.au for help-
crease the flexibility and adaptability of applications, witH9 With the design of TAO’s smart proxy interface.
out degrading performance significantly. This paper de-
scnbps two meta-programming mechanisgmsart proxies References
and interceptors- that we added recently to TAO, is an im- _ _
plementation of CORBA that is targeted for applications witf (c)hbi{gg{u'\r/leagggesmeégfg;zgggeegor?mglggéed Request Broker: Ar-
high-performance and real-time QoS requirements. These tw _ P o ' _
mechanisms allow CORBA applications to adapt to chan r%? M. Henning and S. VinoskiAdvanced CORBA Programming With

pp p 9INg C++. Addison-Wesley Longman, 1999.

requirements or environmental conditions that occur late in 3§ p. c. schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-

application’s life-cycle without requiring obtrusive changesin mance of Real-Time Object Request Broke@gmputer Communica-
ot tions, vol. 21, pp. 294-324, Apr. 1998.
existing software.

. . . . é4 E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Patterns: El-
Based on our experience using smart proxies and intercep- ements of Reusable Object-Oriented Softw&eading, MA: Addison-

tors to develop TAO applications, we have observed the fol- Wesley, 1995.

lowing tradeoffs and limitations with smart proxies and inter5] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A

tors: Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
ceptors: '97 Conference on Programming Language Design and Implementation
(PLDI), (Las Vegas, NV), ACM, June 1997.

. .] C. Zimmermann, “Metalevels, MOPs and What the Fuzz is All About,”
Performance: Interceptors incur more overhead than smarf in Advances in Object-Oriented Metalevel Architectures and Reflection

proxies because they influence the processing of operations at(C. Zimmermann, ed.), Boca Raton, FL: CRC Press, 1996.
multiple points along the invocation path. The portable intef7] Adiron, LLC, et al, Portable Interceptor Working Draft — Joint Revised
ceptor results in Section 5.1.2 illustrate the overhead of sup- SuPmissionObject Management Group, OMG Document orbos/99-10-

" int i dth i ts of ific int 01 ed., October 1999.
porting interceptors an € run-time costs of specific in e[é] Object Management Grouggecurity Service 1.8 Specificatjio@MG

ceptor features. Document security/00-11-03 ed., November 2000.

In general, smart proxies perform better and consume lefg$ O. Othman, C. O'Ryan, and D. C. Schmidt, “The Design and Perfor-
memory than interceptors. The smart proxy results in Sec- t”r‘if)‘L‘tC:d‘gyg[‘eﬁgagg‘l’i;G%PEBSeégﬁ]%e'?a;ggg'.”g ServidEEE Dis-
tion .5.1.1 show the circumstances where using smart pro i%? D. C. Schmidt, M. Stal. H. Rohnert, and F. Buschmamatter-
can improve performance. Even thought there is an extra layer oriented Software Architecture: Patterns for Concurrency and Dis-
of indirection, the overall performance can be improved by tributed Objects, Volume.New York, NY: Wiley & Sons, 2000.

removing the gratuitous overhead of unnecessary remotel}al C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for Real-

vocations. time Distributed Object Computing Middleware,” Rroceedings of the
Middleware 2000 ConferencACM/IFIP, Apr. 2000.

lity: b lied ith %2] T. Nakajima, “Dynamic Transport Protocol Selection in a CORBA
Generality: Interceptors can be applied to either servers 0r" system,” inProceedings of the International Symposium on Object-

clients and can access operation-specific information. There- Oriented Real-time Distributed Computing (ISOR@yewport Beach,
fore, they provide an effective meta-programming mechanism A 'EEE/IFIP. Mar. 2000. _

to handle advanced features, such as authentication and aﬁ%ﬁb%ﬁ{?&%"g%ﬁe&%ﬂteftr?;ﬁlﬁgg;%%jzgﬁgﬁgg'gggﬁt""grﬂgjg’r Seal
rization, transparently end-to-end. In contrast, smart proxies Document orbos/2000-09-12 ed., Feb. 2000.

only apply to specific interfaces accessed by clients. In pg# w. w. Ho and R. Olsson, “An Approach to Genuine Dynamic Linking,”
ticular, smart proxies can only influence the behavior at the Software: Practice and Experienceol. 21, pp. 375-390, Apr. 1991.

beginning of an invocation. [15] A. B. Arulanthu, C. O'Ryan, D. C. Schmidt, and M. Kircher, “Apply-
ing C++, Patterns, and Components to Develop an IDL Compiler for
CORBA AMI Callbacks,”C++ Report, vol. 12, Mar. 2000.

Portability: ~ Smart proxies are not currently part of th&6] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimizations
. for CORBA,” C++ Report vol. 11, November/December 1999.
CORBA standard. Although many ORBs provide smart prox- K. Beck Smaltalk Best Practice Patterns Endl 4 Clifts. NJ:
ies as extensions, this feature is not portable. There is, h6Wd K oros ol agy, Dot Fractice Pattems Englewood Cifis, N
ever, a Portable Interceptors specification [7] that is being rag] M. H. Austern, Generic Programming and the STLReading, MA:
ified by the OMG. Addison-Wesley, 1999.
[19] 1. Pyarali, C. O’'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and

. A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
All the source code, documentation, and tests for cyncirency Magazinerol. 8, no. 1, 2000.

TAO are open-source and, can be downloaded fr%‘B] Object Management Groupinimum CORBA - Joint Revised Submis-
www.cs.wustl.edu/ ~schmidt/TAO.html . sion, OMG Document orbos/98-08-04 ed., August 1998.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, 1997.

G. Kiczales, “Aspect-Oriented Programming,” Rroceedings of the
11th European Conference on Object-Oriented Programmibhgne
1997.

M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed Objects,”
Tech. Rep. Rapport de recherche INRIA 2007, INRIA, Aug. 1993.

D. Schmidtand S. Vinoski, “Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread-per-ObjeCt*
Report vol. 8, July 1996.

D. Schmidtand S. Vinoski, “Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread PoSk* Report
vol. 8, April 1996.

D. Schmidt and S. Vinoski, “Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread-per-Requ€sty
Report vol. 8, February 1996.

F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and
R. Campbell, “Monitoring, Security, and Dynamic Configuration with
the dynamicTAO Reflective ORB,” ifProceedings of the Middleware
2000 ConferenceACM/IFIP, Apr. 2000.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “Using Intercep-
tors to Enhance CORBAJEEE Computer vol. 32, pp. 64-68, July
1999.

G. C. Hunt and M. L. Scott, “Intercepting and Instrumenting COM Ap-
plication,” in Proceedings of thé&!" Conference on Object-Oriented
Technologies and SysteniSan Diego, CA), USENIX, May 1999.

S. Vinoski, “New Features for CORBA 3.0Communications of the
ACM, vol. 41, pp. 44-52, October 1998.

