
The Design and Performance of Meta-Programming
Mechanisms for Object Request Broker Middleware

Nanbor Wang Kirthika Parameswaran Douglas Schmidt Ossama Othman

fnanbor, kirthikag@cs.wustl.edu fschmidt, ossamag@uci.edu

Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine

Abstract

Distributed object computing (DOC) middleware shields de-
velopers from many tedious and error-prone aspects of pro-
gramming distributed applications. Without proper support
from the middleware, however, it can be hard to evolve dis-
tributed applications after they are deployed. Therefore, DOC
middleware should support meta-programming mechanisms,
such as smart proxies and interceptors, that improve the adapt-
ability of distributed applications by allowing their behavior
to be modified without changing existing software drastically.

This paper presents three contributions to the study of meta-
programming mechanisms for DOC middleware. First, it il-
lustrates, compares, and contrasts several meta-programming
mechanisms from an application developer’s perspective. Sec-
ond, it outlines the key design and implementation challenges
associated with developing smart proxies and portable inter-
ceptors features for CORBA. Third, it presents empirical re-
sults that pinpoint the performance impact of smart proxies
and interceptors. Our goal is to help researchers and develop-
ers determine which meta-programming mechanisms best suit
their application requirements.

1 Introduction

Motivation: Developers of distributed applications face
many challenges stemming from inherent and accidental com-
plexities, such as latency, partial failure, and non-portable
low-level OS APIs. The magnitude of these complexities–
combined with increasing time-to-market pressures–make it
increasingly impractical to develop distributed applications
manually from scratch. Commercial-off-the-shelf (COTS) dis-
tributed object computing (DOC) middleware helps address
these challenges by:

1. Defining standard higher-level programming abstrac-
tions, such as distributed object interfaces, that provide loca-
tion transparency to clients and server components;

2. Shielding application developers from low-level con-
current network programming details, such as connection

management, data transfer, parameter (de)marshaling, end-
point and request demultiplexing, error handling, multi-
threading, and synchronization; and

3. Amortizing software lifecycle costs by leveraging pre-
vious development expertise and capturing implementations of
key patterns in reusable middleware frameworks and common
services.

In the case of standards-based DOC middleware, such as
CORBA [1], these capabilities are realized via an open specifi-
cation process. The resulting products can interoperate across
many OS/network platforms and programming languages [2].

To date, CORBA middleware has been used successfully to
enable developers to create applications rapidly that can meet a
particular set of requirements with a reasonable amount of ef-
fort. CORBA has been less successful, however, at shielding
developers from the effects of requirement or environmental
changes that occur late in an application’s life-cycle,i.e., dur-
ing deployment and/or at run-time. To address this problem,
this paper describes and evaluatesmeta-programming mecha-
nisms, which improve the adaptability of distributed applica-
tions by allowing their behavior to be modified with little or
not change to existing application software.

The two meta-programming mechanisms we focus on in
this paper are:

� Smart proxies,which are application-provided stub im-
plementations that transparently override the default stubs cre-
ated by an ORB to customize client behavior on a per-interface
basis.

� Interceptors, which are objects that an ORB invokes in
the path of an operation invocation to monitor or modify the
behavior of the invocation transparently.

These two meta-programming mechanisms can be used to
configure new or enhanced functionality into CORBA appli-
cations with minimal impact on existing software. The mate-
rial presented in this paper is based on our experience imple-
menting and using smart proxies and interceptors in TAO [3],
which is a open-source, CORBA-complaint ORB designed to
support applications with demanding quality-of-service (QoS)
requirements.

Paper organization: The remainder of this paper is struc-
tured as follows: Section 2 presents an overview of thesmart
proxy and interceptormeta-programming mechanisms; Sec-
tion 3 illustrates how to use smart proxies and interceptors;
Section 4 describe the patterns that guided the development of
TAO’s smart proxy and interceptor mechanisms and resolved
key design challenges; Section 5 illustrates the performance
characteristics of TAO’s smart proxy and interceptor mecha-
nisms; Section 6 compares our work with related research; and
Section 7 presents concluding remarks.

2 Overview of Smart Proxies and In-
terceptors

DOC middleware providesstubandskeletonmechanisms that
serve as a “glue” between the client and servants, respec-
tively, and the ORB. For example, CORBA stubs implement
the Proxy pattern [4] and marshal operation information and
data type parameters into a standardized request format. Like-
wise, CORBA skeletons implement theAdapterpattern [4]
and demarshal the operation information and typed parame-
ters stored in the standardized request format.

CORBA stubs and skeletons can be generated automati-
cally from schemas defined using the OMG Interface Defi-
nition Language (IDL). A CORBA IDL compiler transforms
application-supplied OMG IDL definitions into stubs and
skeletons written using a particular programming language,
such as C++ or Java. In addition to providing program-
ming language and platform transparency, an IDL compiler
eliminates common sources of network programming errors
and provides opportunities for automated compiler optimiza-
tions [5].

Traditionally, the stubs and skeletons generated by an IDL
compiler arefixed, i.e., the code emitted by the IDL compiler
is determined at translation time. This design shields applica-
tion developers from the tedious and error-prone network pro-
gramming details needed to transmit client operation invoca-
tions to server object implementations. Fixed stubs and skele-
tons make it hard, however, for applications to adapt readily
to certain types of changes in requirement or environmental
conditions, such as:

� The need to monitor system resource utilization may not
be recognized until after an application has been de-
ployed.

� Certain remote operations may require additional param-
eters in order to execute securely in a particular environ-
ment.

� The priority at which clients invoke or servers handle a
request may vary according to environmental conditions,

such as the amount of CPU or network bandwidth avail-
able at run-time.

In applications based on CORBA middleware with conven-
tional fixed stubs/skeletons, these types of changes often re-
quire re-engineering and re-structuring of existing application
software. One way to minimize the impact of these changes
is to devisemeta-programming mechanismsthat allow appli-
cations to adapt to various types of changes with little or no
modifications to existing software. For example, stubs, skele-
tons, and certain points in the end-to-end operation invocation
path can be treated asmeta-objects[6], which are objects that
refine the capability of base-level objects, which are the ob-
jects comprising the bulk of application programs.

As shown in Figure 1, CORBA ORBs are responsible
for transmitting client operation invocations to target objects.
When a client invokes an operation, a stub implemented as

ORB
Interfaces

Client
Object

(Servant)

Client-side
meta-object

(Stub)

Server-side
meta-object
(Skeleton)

ORB Core

in args

out args + return value

Operation ()

POAObject store
meta-object

Transport protocol
meta-object

Transport protocol
meta-object

Figure 1: Interactions Between Requests and Meta-objects
End-to-End

a meta-object can act in conjunction with transport-protocol
meta-objects to access and/or transform a client operation in-
vocation into a message and transmit it to a server. Corre-
sponding meta-objects on the server’s request processing path
can access and/or perform inverse transformations on the op-
eration invocation message and dispatch the message to its ser-
vant. An invocation result is delivered in a similar fashion in
the reverse direction.

As all operation invocations pass through meta-objects, cer-
tain aspects of application and middleware behavior can be
adapted transparently when system requirements and envi-
ronmental conditions change by simply modifying the meta-
objects. To modify meta-objects, the DOC middleware can
either (1) provide mechanisms for developers to installed cus-
tomized meta-objects for the client or (2) embedhooksimple-
menting ameta-object protocol(MOP)[6] in the meta-objects
and provide mechanisms to install objects implementing the
MOP to strategize these meta-object behaviors. In the context
of CORBA, smart proxiesare customized meta-objects and

interceptorsare objects that implement the MOP.

2.1 Overview of Smart Proxies

Most CORBA application developers use the fixed stubs gen-
erated by an IDL compiler without concern for how the stubs
are implemented. There are situations, however, where the de-
fault stub behavior is inadequate. For example, an application
developer may wish to change stub code transparently in order
to:

� Perform application-specific functionality, such as log-
ging;

� Add parameters to a request;

� Cache requests or replies to enable batch transfer or min-
imize calls to a remote target object, respectively;

� Support advanced quality-of-service (QoS) features, such
as load balancing and fault-tolerance; or

� Enforce security mechanisms, such as authentication of
credentials.

To support these capabilitieswithoutmodifying existing client
code, applications must be able to override the default stub
implementations selectively. These application-defined stubs
are calledsmart proxies, which are customizable meta-objects
that can mediate access to target objects more flexibly than the
default stubs generated by an IDL compiler. Smart proxies
allow developers to modify the behavior of interfaces without
re-implementing client applications or target objects.

The two main entities in smart proxy designs are (1) the
smart proxy factory and (2) the smart proxy meta-object,
which are shown in Figure 2. When using a smart proxy

ORB
INTERFACE

operation()

DEFAULT

PROXY

IDL
SKELETON

in args

out args + return value

OBJECT
(SERVANT)

REAL-TIME

OBJECT

ADAPTER

CLIENT

ORB CORE

SMART

PROXY

 SMART

PROXY

FACTORY

DEFAULT

PROXY

FACTORY

creates

creates

Figure 2: TAO’s Smart Proxy Model

to modify the behavior of an interface, the developer imple-
ments the smart proxy class and registers it with the ORB.
After installing the smart proxy factory, the ORB automati-
cally uses the application-supplied factory to create object ref-
erences when a client invokes thenarrow operation of an

interface. Thus, if smart proxies are installed before a client
accesses these interfaces, the client application can transpar-
ently use the new behavior of the proxy returned by the fac-
tory.

Smart proxies are not yet standardized in CORBA, though
many ORBs support this feature as a proprietary extension.

2.2 Overview of Interceptors

The smart proxies feature outlined above is a meta-
programming mechanism that increases the flexibility ofclient
applications. Interceptors are another meta-programming
mechanism used in DOC middleware to increase the flexibility
of both clientand server applications. In CORBA, intercep-
tors are standard meta-objects that stubs, skeletons, and certain
points in the end-to-end operation invocation path can invoke
at predefined “interception points.”

Prior to CORBA 2.3.1 interceptors were under-specified
and therefore non-portable. In contrast, the interceptors dis-
cussed in this paper are based on the so-called “Portable Inter-
ceptors” specification [7], which is being ratified by the OMG.
Two types of interceptors are defined in the CORBA Portable
Interceptor specification:

� Request interceptors, which deal with operation invoca-
tions;

� IOR interceptors, which insert information into interop-
erable object references (IORs).

Both types of interceptor are described below.

2.2.1 Request Interceptors

Request interceptors can be decomposed intoclient requestin-
terceptors andserver requestinterceptors, which are designed
to intercept the flow of a request/reply sequence through the
ORB at specific points on clients and servers, respectively. De-
velopers can install instances of these interceptors into an ORB
via an IDL interface defined by the Portable Interceptor speci-
fication. Regardless of what interface or operation is invoked,
after request interceptors are installed they will be called on
everyoperation invocation at the pre-determined ORB inter-
ception points shown in Figure 3.

As shown in this figure, request interception points occur
in multiple parts of the end-to-end invocation path when a
client sends a request, when a server receives a request, when
a server sends a reply, and when a client receives a reply. Dif-
ferent hook methods will be called at different points in this
interceptor chain. For example, thesend request hook is
called on the client before the request is marshaled and the
receive request hook is called on the server after the re-
quest is demarshaled.

OBJECT
(SERVANT)

PORTABLE OBJECT ADAPTER

 ORB CORE

IDL
SKELETONIDL

STUBS

operation ()

in args

out args + return value

1

CLIENT REQUEST
INFO

SERVANT
MANAGER

SERVER REQUEST
INFO

1

2

4

5

PORTABLE INTERCEPTOR API :
1) send_request()/send_poll()
2) receive_request_service_contexts ()
3) receive_request()/receive_poll()
4) send_reply()/send_exception()/send_other()
5) receive_reply()/receive_exception()/
 receive_other()

3

CLIENT

Figure 3: Request Interception Points in the CORBA Portable
Interceptor Specification

Compared to a client invocation path, a server invo-
cation path has an additional interception point called
receive request service contexts , which is in-
voked before the POA dispatches a servant manager. This
interception point prevents unnecessary upcalls to a servant.
For example, in the CORBA Security Service [8] framework
this interception point can be used to inspect security-related
credentials piggybacked in a service context list entry. If the
credentials are valid the upcall can proceed to other intercep-
tors (if they exist) or to the servant; if not, an exception will be
returned to the client.

The behavior of an interceptor can be defined by an ap-
plication developer. An interceptor can examine the state of
the request that it is associated with and perform various ac-
tions based on the state. For example, interceptors can invoke
other CORBA operations, access information in a request, in-
sert/extract piggybacked messages in a request’s service con-
text list, redirect requests to other target objects, and/or throw
exceptions based on the object the original request is invoked
upon and the type of the operation. Each of these capabilities
is described below:

Nested invocations: A request interceptor can invoke oper-
ations on other CORBA objects before the current invocation
it is intercepting completes. For example, monitoring and de-
bugging utilities can use this feature to log information associ-
ated with each operation invocation. To avoid causing infinite
recursion, developers must be careful to act only on targeting
interfaces and operations they intend to affect when perform-

ing nested invocations in an interceptor.

Accessing request information: Request interceptors can
access various information associated with an invoca-
tion, such as the operation name, parameters, exception
lists, return values, and the request id via the MOP in-
terface as defined in the Portable Interceptor specifica-
tion. Interceptors cannot, however, modify parameters
or return values. This request/reply information is en-
capsulated in an instance ofClientRequestInfo or
ServerRequestInfo classes, which derive from the
RequestInfo class and contain the information listed above
for each invocation.

For example, client request interceptors are passed
ClientRequestInfo and server request interceptors are
passedServerRequestInfo . TheseRequestInfo -
derived objects can use features provided by the CORBA
Dynamic module. This module is a combination of pseudo-
IDL types, such asRequestContext and Parameter ,
declared in earlier CORBA specifications. These types fa-
cilitate on-demand access of request information from the
RequestInfo to avoid unnecessary overhead if an inter-
ceptor does not need all the information available with the
RequestInfo .

Service context manipulation: As mentioned earlier, re-
quest interceptors cannot change parameters or the return
value of an operation. They can, however, manipulateser-
vice contextsthat are piggybacked in operation requests and
replies exchanged between the clients and servers. A service
context is a sequence field in a GIOP message that can transmit
“out-of-band” information, such as authentication credentials,
transaction contexts, operation priorities, or policies associ-
ated with requests.

For example, the CORBA Security Service uses request in-
terceptors to insert user identity via service contexts. Like-
wise, the CORBA Transaction Service uses request inter-
ceptors to insert transaction-related information into service
contexts so it can perform extra operations, such as com-
mit/rollback, based on the operation results in a transaction.
Each service context entry has a unique service context iden-
tifier that applications and CORBA components can use to ex-
tract the appropriate service context.

Location forwarding: Request interceptors can be used to
forward a request to a different location, which may or may
not be known to the ORBa priori. This can be done via
the PortableInterceptor::ForwardRequest ex-
ception, which allows an interceptor to inform the ORB that
a retry should occur upon the new object indicated in the ex-
ception. The exception can also indicate whether the new ob-
ject should be used for all future invocations or just for the
forwarded request.

Since theForwardRequest exception can be raised at
most interception points, it can be used to provide fault tol-
erance and load balancing [9]. For example, the IOR of a
replicated object can be used as the forward object in this ex-
ception. When the object dies for some reason–and this situa-
tion is conveyed to the interceptor–this exception can be raised
even before the POA tries to make an upcall.

Multiple interceptors: Multiple request interceptors can be
registered with an ORB, which will then iterate through them
and invoke the appropriate interception operation at every in-
terception point according to the following rules:

� For each request interceptor, only onestarting inter-
ception point can be called for a given invocation. A
starting interception point is the first point invoked in
a request/reply sequence. For instance, the starting
points for a client ORB includesend request and
send poll . Likewise, the starting point for a server
ORB isreceive request service contexts .

� For each request interceptor, only oneendinginterception
point can be called for a given invocation. The ending in-
terception point is the last juncture where an interception
may occur in the request/reply sequence. The ending in-
terception points on a client ORB arereceive reply ,
receive exception , andreceive other and the
ending interception points for a server ORB consist of
send reply , send exception , andsend other .

� There can be multiple intermediate interception points.

� Intermediate interception points cannot be invoked in the
case of an exception.

� The ending interception point for a given interceptor will
be called only if the starting interception point runs to
completion.

Multiple interceptors are invoked using a flow-stack model.
When initiating an operation invocation, an interceptor is
pushed onto the stack after its starting interception point com-
pletes successfully. When an invocation completes, the inter-
ceptors are popped off the stack and invoked in reverse order.
The flow-stack model ensures that only interceptors executed
successfully for an operation can process the reply/exceptions.

Exception handling: Request interceptors can affect the
outcome of a request by raising exceptions in the in-
bound or outbound invocation path. In such cases, the
send exception operation of a server request intercep-
tor is invoked on the reply path and is received at the
client in thereceive exception interceptor hook. When
a send exception or receive exception operation
raises aForwardRequest exception, the other interceptors
have theirsend other andreceive other interception
points invoked, respectively.

2.2.2 IOR Interceptors

IIOP version 1.1 introduced an attribute calledcomponents ,
which contains a list oftagged components to be embedded
within an IOR. When an IOR is created, tagged components
provide a placeholder for an ORB to store extra information
pertinent to the object. This information can contain various
types of QoS information related to security, server thread
priorities, network connections, CORBA policies, or other
domain-specific information.

The original IIOP 1.0 specification provided no standard
way for applications or services to add new tagged compo-
nents into an IOR. Services that require this field were there-
fore forced to use proprietary ORB interfaces, which impeded
their portability. The Portable Interceptors specification re-
solves this problem by definingIOR interceptors.

IOR interceptors are objects invoked by the ORB when it
creates IORs. They allow an IOR to be customized,e.g., by ap-
pending tagged components. Whereas request interceptors ac-
cess operation-related information viaRequestInfo s, IOR
interceptors access IOR-related information viaIORInfo s.
Figure 4 illustrates the behavior of IOR interceptors. A server

Server ORBIOR
Interceptor
Repository

contains

IORInterceptor

co
nt

ai
ns

2.
es

tab
lis

h_
co

m
po

ne
nt

s

IORInfo

1. Create object
reference

Component
Builder

3. add_ior_
component Effective Policies

4.
ad

d
co

m
po

ne
nt

Figure 4: IOR Interceptors

ORB responsible for creating an IOR contains anIOR in-
terceptor repository. In turn, this repository contains a se-
ries of IOR interceptors that have been registered with the
ORB. When the server process requests the ORB to cre-
ate an IOR, the ORB iterates through the IOR intercep-
tors in the repository using theestablish components
operation. The IOR interceptors then add tagged com-
ponents to the IOR being generated by refering to the
IORInfo passed in by callingadd ior component or
add ior component to profile .

2.3 Evaluating Alternative Meta-Programming
Mechanisms for ORB Middleware

We presented an overview of smart proxies and interceptors
above. We now evaluate these two mechanisms, and then

compare and contrast them with two other meta-programming
mechanisms–pluggable protocols and servant managers–that
are provided by most CORBA implementations.

2.3.1 Smart Proxies vs. Interceptors

Smart proxies and interceptors are similar in that they extend
ORB-mediated invocations and functions. They differ, how-
ever, in their architecture and have their own pros and cons, as
described below.

Intent: A smart proxy can be used for a variety of purposes,
such as improving performance via caching, whereas inter-
ceptors are used primarily to (1) audit and verify information
along the invocation path and (2) redirect the operation if nec-
essary. For instance, a server request interceptor can determine
whether the server should handle certain operation invocations
by inspecting the incoming requests and forwarding some re-
quests to other servers that can handle them.

Scope of control: A different smart proxy can be config-
ured for each interface, whereas the same set of interceptors
will be invoked atall the ORB mediated points of an invoca-
tion. Moreover, a smart proxy is solely a client mechanism,
whereas request interceptors are invoked on the request path
from client-to-server and on the reply path from server-to-
client.1

Invocation points: A smart proxy invocation point occurs
whenever an operation is invoked through a stub. In contrast,
interceptors are invoked at many points, including IOR cre-
ation time and/or before a call is sent by the POA to the ser-
vant.

Cardinality: A client can have only a single smart proxy for
each interface, whereas multiple interceptors can be registered
with the ORB.

Modifiability: Since smart proxies replace default ORB
generated stubs completely, smart proxies can modify the pa-
rameters or results of an operation. In contrast, the Portable
Interceptor specification does not allow request interceptors to
change operation parameters or return values.

Overhead: A smart proxy mechanism incurs minimal over-
head,i.e., a single extra method call per-operation invocation.
In contrast, request interceptors can incur additional overhead
to access request information because information related to
the request is bundled intoany s, which have higher overhead
for their insertion and extraction operations.

Standardization: Smart proxies have not yet been standard-
ized in the CORBA specification. CORBA interceptors will be
standardized after the Portable Interceptor specification is rat-
ified.

1IOR interceptors are just invoked during object reference creation.

In general, design problems that require pre-invocation or
per-interface extensions are well-suited for smart proxies.
Portable interceptors, in contrast, provide a suitable solution
for applications that require a semantically richer–albeit some-
what more expensive–meta-programming abstraction.

2.3.2 Servant Managers

The CORBA POA specification [1] allows server applications
to registerservant managerobjects that activate servants on-
demand, rather than creating all servants before listening for
requests. There are two types of servant managers in CORBA:

� Servant activators,which provide a hook method called
incarnate that creates a servant the first time an object is
accessed by a client.

� Servant locators,which provide a hook method called
preinvoke that are invoked by a POA to create a servant for
every request on an object. Figure 5 illustrates how servant
locators are used in a CORBA application to perform various
resource management activities before dispatching an opera-
tion to a servant.

Server ORB

POA
ServantLocator

Servants

(2) create servant

owns

(1) upcall

(3) invoke

Figure 5: Managing Resources with a Servant Locator

A servant locator is similar to an interceptor in several re-
spects. For example, both are implementations of the Inter-
ceptor pattern [10]. Moreover, both can (1) intercept requests
before they are dispatched to servants, (2) invoke extra opera-
tions, and (3) affect the outcome of request invocations,e.g.,
by throwing exceptions. Unlike interceptors, however, servant
locators only affect the POAs that install them and can only
provide access to a limited subset of the request-related infor-
mation. As a consequence, they are more tightly coupled with
POAs and servant implementations than are interceptors.

2.3.3 Pluggable Protocols Frameworks

Another type of meta-programming mechanisms provided
by some DOC middleware ispluggable protocols frame-
works[11, 12], which is in the process of being standardized
by the OMG in the Extensible Transport Framework [13] spec-
ification effort. These frameworks decouple the ORB’s trans-
port protocols from its component architecture. Developers

can therefore add new protocols without requiring changes to
existing application software.

Figure 6 illustrates TAO’s pluggable protocols framework,
which allows developers to install new protocols into the
ORB by implementing customized pluggable protocol objects.
Higher-level application components and CORBA services

CLIENT

STUBS SKELETONS

TCP

MULTICAST

IOP

VMEUDP

ORB MESSAGING COMPONENT

ORB TRANSPORT ADAPTER COMPONENT

ESIOP

IIO
P

REAL -TIME

IOP
EMBEDDED

IOP

RELIABLE,
BYTE-STREAM

ATM
TCP

MEMORY

MANAGEMENT

OTHER

ORB CORE

SERVICES

P
LU

G
G

A
B

LE
 P

R
O

T
O

C
O

LS
 F

R
A

M
E

W
O

R
K

COMMUNICATION INFRASTRUCTURE
HIGH SPEED NETWORK INTERFACE

REAL -TIME I /O SUBSYSTEM

ORB MESSAGE

FACTORY

ORB TRANSPORT

ADAPTER FACTORY

OBJECT ADAPTER

GIOP GIOPLITE

ADAPTIVE Communication Environment (ACE)

OBJECT (SERVANT)operation (args)
IN ARGS

OUT ARGS & RETURN VALUE

CONCURRENCY

MODEL

POLICY

CONTROL

CONNECTION

MANAGEMENT

PROFILE

MANAGEMENT

Figure 6: TAO’s Pluggable Protocols Framework Architecture

use the Component Configurator pattern [10] to dynamically
configure custom protocols into TAO’s pluggable protocols
frameworkwithoutrequiring obtrusive changes to themselves
or the ORB.

As with interceptors and smart proxies, pluggable proto-
cols frameworks are meta-programming mechanisms that add
functionality to ORBs. However, whereas other two mecha-
nisms alter the semantic of objects, pluggable protocols frame-
works alter the underlying ORB transport mechanism. Thus,
they do not permit fine-grained control over objects since they
affectall objects in an ORB and it is hard to vary the transport
mechanism at the level of object references. Moreover, since
pluggable protocols deal directly with the communication in-
frastructure, they are usually more complex to program than
interceptors or smart proxies.

Figure 7 compares the various meta-programming mech-
anisms along a number of dimensions described above.
Portable interceptors have the highest overhead since they are
the most flexible meta-programming mechanism. Although
other mechanisms have less overhead compared to portable
interceptors, they are targeted at more specific system mech-
anisms. When combined with patterns, such as Component
Configurator [10] and OS features, such as explicit dynamic
linking [14], these meta-programming mechanisms can all be
configured dynamically into CORBA clients and servers.

All interfaces
Read-only

Specific interface
Read-write

Scope:
Arg. manipulation:

High

Low

Smart Proxies

Portable
Interceptors

Overhead

Pluggable
Protocols,

ServantLocators

Figure 7: Comparing Alternative Meta-programming Mecha-
nisms

3 Programming with Smart Proxies
and Portable Interceptors

This section describes two examples that illustrate how the
smart proxy and interceptor meta-programming mechanisms
can be used to adapt existing systems as requirements change
without impacting client and server application software ap-
preciably. In particular, smart proxies and interceptors allow
applications to modify their behavior by changing the behav-
ior of their meta-objects, rather than by redesigning interfaces
and application implementations.

3.1 Using Smart Proxies for Secure Transac-
tions

Overview: Below, we illustrate the use of smart proxies to
simplify the addition of security to a stock quote system after
it has been deployed. A sample system configuration consist-
ing of a remote database server and two clients is shown in
Figure 8.

REQUEST

SECURE CLIENT

SMART PROXYPROXY

 CLIENT

SERVER

stockname

retval

REQUEST

stockname

retval

a
u

th
e
n

tic
a

te

AUTHENTICATION
 SERVICE

retval =

get_quote (

stockname);

retval =

get_quote (

stockname);

Figure 8: A Secure Transaction System Using Smart Proxies

Originally, clients accessed stock quotes via the following
IDL definition:

module Stock
{

// The interface for which with a smart proxy
// will be provided for authentication of the
// client to the Quoter for validation purposes.
interface Quoter {

// Exception raised when stock_name does
// not exist.
exception Invalid_Stock {

string reason;
};

// Two-way operation to retrieve current stock
// value. This method will be customized by
// the smart proxy to include authentication.
long get_quote (in string stock_name)

raises (Invalid_Stock);

// One-way operation for auditing purposes.
oneway log_quote (long quote);

};

// ...
};

Our goal is to avoid changing this existing IDL, while adding
the ability to authenticate clients. By using smart proxies, we
can extend the original application transparently to invoke a
security mechanism that performs authentication. Moreover,
if the security mechanism must be revised in the future, a new
smart proxy can be used and the old one removed without af-
fecting application code.

Generating smart proxies in TAO: TAO’s IDL compiler
parses IDL files containing CORBA interfaces and data types
and generates stubs/proxies and skeletons, which are then in-
tegrated into client and server application code, respectively.
The front-end of TAO’s IDL compiler parses OMG IDL in-
put files and generates an abstract syntax tree (AST). The
back-end of TAO’s IDL compilervisits the AST to generate
CORBA-compliant C++ source code [15].

To add smart proxy support we added a new visitor to the
back-end that can traverse every interface in the AST and gen-
erate the smart proxy framework classes shown in Figure 9.
TAO’s IDL compiler can be instructed to generate these smart
proxy framework classes for every interface in an IDL file.
Below, we described each of the classes shown in Figure 9:

� Smart proxy factory, which is provided by an application
developer to create a custom smart proxy.

� Proxy factory adapter, which provides a singleton [4]
container that manages the lifetime of the smart proxy factory
registered with it. When a smart proxy factory is created by
an application it registers itself automatically with this single-
ton. The proxy factory adapter takes ownership of this factory
object and deletes it before the program terminates to ensure
there are no memory leaks. Applications can also request an
adapter to unregister its factory.

PROXY FACTORY
ADAPTER

{ SINGLETON}
pf: Default_Proxy_Factory
l:lock

+register_factory (df: Default_Proxy_Factory)
+unregister_factory ()
+create_proxy()

DEFAULT
PROXY

FACTORY

+create_proxy()

SMART
PROXY

FACTORY

+create_proxy()

SMART PROXY
BASE

SMART PROXY

+method_1 ()

+method_2 ()

+method_1 ()

+method_2 ()

PROXY FOR

COLLOCATED

OBJECT

PROXY FOR

REMOTE

OBJECT

+smart_proxy_base
(p: proxy)

uses

uses

instantiates instantiates

G G

G

G - GENERATED BY THE IDL

Figure 9: The Classes in TAO’s Smart Proxy Framework

� Default proxy factory, which is the default factory ob-
ject that returns the default proxy,i.e., the stub that communi-
cates with target objects. This factory registers itself with the
adapter singleton during program initialization. It is deleted
either (1) when it is replaced by another proxy factory or (2)
when the program terminates and the singleton proxy factory
adapter is destroyed; and

� Interface-specific smart proxy base,which is a class ap-
plications inherit from to define their custom smart proxies.

Below, we illustrate how to programming using TAO’s
smart proxies framework.

Smart proxy factory: This factory class is defined by
application developers. It creates a smart proxy when
a client application calls the standard CORBAnarrow
operation. The smart proxy factory class must inherit
from the default proxy factory class generated by TAO’s
IDL compiler. This design ensures the factory is reg-
istered automatically with the singleton [4] proxy factory
adapter via a base class constructor. For example, a
TAOStock Quoter Default Proxy Factory class is
generated from theQuoter interface and can be inherited
from as shown below:

class Smart_Quoter_Factory : public virtual
TAO_Stock_Quoter_Default_Proxy_Factory

{
public:

// This factory method will create the
// smart proxy.
virtual Stock::Quoter_ptr create_proxy

(Stock::Quoter_ptr proxy);,

// ...
};

Depending on policies set by applications, the scope of a smart

proxy factory in TAO can be defined on aper-interfaceor per-
objectbasis, as follows:

� Per-interface: With this policy the same smart proxy is
used for all target objects associated with a particular IDL in-
terface. When an object reference to a target object is obtained
via narrow , a smart proxy is created to act as the stub for all
operation invocations on this object. This policy is the most
transparent because after a smart proxy factory is instantiated
for an interfaceFoo, all calls toFoo:: narrow will use this
factory to create their smart proxies.

� Per-object: With this policy each target object can have
a different smart proxy factory, which is less transparent but
more flexible. After the first invocation on a target object
the smart proxy factory is unregistered from the proxy factory
adapter. Thus, unless a new smart proxy factory is installed
explicitly for a new object, new object references to target ob-
jects of the same interface will use the default proxy. A new
smart proxy factory could either be another instance of the one
that was created earlier or a different smart proxy factory that
will create another type of smart proxy for the target object.

The proxy factory adapter delegates the task of creating
a smart proxy to the factory registered with it. By default,
this factory creates the default proxy. The following factory
method [4] shows how a smart proxy is created and how the
default proxy is passed as the formal parameter to the factory
methodcreate proxy :

Stock::Quoter_ptr
Smart_Quoter_Factory::create_proxy

(Stock::Quoter_ptr proxy)
{

// Verify the default proxy and use it
// to create the new smart proxy.
if (!CORBA::is_nil (proxy))

proxy = new Stock_Quoter_Smart_Proxy (proxy);
return proxy;

}

In the narrow operation used to obtain the target object, a
default proxy will be created. As shown in the method above,
this default proxy is passed along to thecreate proxy
invocation on theSmart Quoter Factor . This factory
method stores the default proxy in the smart proxy, which it
can use to communicate with the target object.

Smart proxy class: TAO’s IDL compiler generates a proto-
type of the smart proxy that inherits from the default proxy and
the smart proxy base class. For example, the smart proxy base
class generated for theQuoter interface is shown below:

// This class helps develop the smart proxy.
// Application-specific smart proxy classes
// inherit from this class.
class Stock_Quoter_Smart_Proxy_Base

: public virtual Stock::Quoter,
public virtual Smart_Proxy_Base

{

public:

// Store the default proxy to perform the
// actual work of passing the request
// to the server.
Stock_Quoter_Smart_Proxy_Base

(Stock::Quoter_ptr proxy)
: proxy_ (proxy) {}

virtual CORBA::Long
get_quote (CORBA::String stock_name)

throw Invalid_Stock;

virtual void
log_quote (CORBA::Long quote);

protected:
// Cache the original proxy reference.
Stock::Quoter_var proxy_;

};

Applications can inherit from this class and implement meth-
ods that they want to override. For example, authentication
can be added to validate the client before it receives the stock
quote from theQuoter object, as follows:

class Stock_Quoter_Smart_Proxy :
public Stock_Quoter_Smart_Proxy_Base

{
// Smart proxy method.
CORBA::Long
Stock_Quoter_Smart_Proxy::get_quote

(CORBA::String stock_quote)
throw Invalid_Stock

{
CORBA::Long result = 0;

try {
// Authenticate the client using the
// CORBA security service.
result =

security_service_->authenticate (key_);

// Verify result, else throw exception.
// ...

// Call down to the default proxy to
// send request to the target object.
result =

Quoter_Smart_Proxy_Base::get_quote
(stock_name);

} catch (Quoter::Invalid_Stock &) {
// Deal with the exception caught ...
return -1;

}
return result;

}
// ...

};

Client implementation: Below, we show a function
that illustrates the per-interface smart proxy factory pol-
icy, where the client application explicitly creates one
Smart Quoter Factory instance. This factory then cre-
ates aStock Quoter Smart Proxy object on each call to
narrow on theStock::Quoter interface:

int main (int argc, char *argv[])
{

// ... Initialize the ORB ...

// Install the smart proxy factory for the
// <Stock::Quoter> interface. By default, the
// factory created is per-interface. If more
// flexibility is needed, the factory can be
// per-object, which is enabled by passing a 0
// to its constructor.

Smart_Quoter_Factory *quoter_factory
= new Smart_Quoter_Factory (1);

// ... Call the <current_quote> method for
// various IORs ...

}

CORBA::Long current_quote (CORBA::ORB_ptr orb,
const char *ior)

{
CORBA::Object_var obj =

orb->string_to_object (ior);

Stock::Quoter_var server
= Stock::Quoter::_narrow (obj.in ());

return server->get_quote ("ACME ORB");
}

As shown above, the only change required to exist-
ing client application code is to create an instance of
Smart Quoter Factory before any calls tonarrow are
made. Note thatSmart Quoter Factor must be heap al-
located since TAO’s smart proxy framework classes is respon-
sible for destroying this object. This design simplifies the tasks
of (1) application developers, who need not manage smart
proxy factory lifetimes at all and (2) smart proxy developers,
who can manage the lifetime of their smart proxies more pre-
cisely.

Smart proxies can also be installed dynamically into an ap-
plication via the Component Configurator pattern [10]. For
example, the smart proxy factory can be stored in a dynami-
cally linkable library (DLL). To accomplish this in TAO, we
simply add an entry into thesvc.conf configuration script
to load this DLL on-demand:

dynamic Smart_Quoter_Factory Service_Object *
./Smart_Quoter_Factory :

_make_Smart_Quoter_Factory() ""

As shown above, the smart proxy factory class re-
sides in a DLL with the factory function entry point
make Smart Quoter Factory , which is called automat-

ically when the TAO ORB is initialized. This design allows
smart proxies to be configured transparently without requiring
anychanges to existing client application implementations!

3.2 Using Portable Interceptors for Secure
Transactions

Overview: As shown above, smart proxies can authenticate
clients transparently via a trusted third-party. However, more
powerful authentication mechanisms allow user information,
such as credentials, to be sent for each request. To leverage
these mechanisms in CORBA transparently, interceptors can
be used to pass user information via the service context list
that is tunneled with each GIOP request.

Below, we revise our stock quoter system so it uses intercep-
tors to provide authentication information on a per-request ba-
sis via service context lists. In addition, we show how CORBA
Dynamic module types can be used within interceptors to ob-
tain additional request information, such as parameters, return
values, and request ids.

Client interceptor: On the client, we use the following
send request interceptor hook to bundle authentication in-
formation into the service context.

class Secure_Client_Request_Interceptor : public
PortableInterceptor::ClientRequestInterceptor

{
public:

// ...
void send_request

(PortableInterceptor::ClientRequestInfo_ptr ri)
{

// The <password> is the authentication
// information we send to the server.

// Create the context to send the context
// to the target.
IOP::ServiceContext sc;
sc.context_data.replace (strlen (password_),

strlen (password_),
password_,
1);

// Add this context to service context list.
ri->add_request_service_context (sc, 0);

}
private:

// Password we send to the server per-request.
const char *password_;

}

A client request interceptor uses thesend request hook
method above to create a new service context entry that
adds a password into the existing request’s service con-
text list. The ClientRequestInfo object encapsu-
lates the request’s service context list so that it can
be accessed by an interceptor. Next, we register the
Secure Client Request Interceptor instance with
the client ORB, as follows:

// This is code that would reside in a
// concrete implementation of an
// ORBInitializer::post_init() method, for
// example.

// Create and Install the client interceptor.

PortableInterceptor::
ClientRequestInterceptor_var

interceptor = new
Secure_Client_Request_Interceptor;

// "info" is the ORBInitInfo argument
// passed to this
// ORBInitializer::post_init() method.
info->add_client_request_interceptor

(interceptor.in ());

This interceptor hook is one of the first interception points in-
voked on the client, as shown in Figure 3.

Server interceptor: On the server, we use an interceptor to
verify the password sent via the service context list, as shown
in thereceive request interceptor method below:

class Secure_Server_Request_Interceptor : public
PortableInterceptor::ServerRequestInterceptor

{
public:

void receive_request_service_contexts
(PortableInterceptor::ServerRequestInfo_ptr ri)

{
IOP::ServiceContext *sc

= ri->get_request_service_context (1);

const char *buf = reinterpret_cast
<const char *,

sc->context_data.get_buffer ()>;

// Verify the password.
if (strcmp (sc->context_data.get_buffer (),

"root") != 0)
// throw exception ...

}

void receive_request
(PortableInterceptor::ServerRequestInfo_ptr ri)

{
// Now check the parameters passed.
if (strcmp (ri->operation (),

"get_quote") == 0) {
// Obtain parameter list.
Dynamic::ParameterList paramlist

= *ri->arguments ();
CORBA::Long stock_quote;
// Extract from the any.
paramlist[0].argument >>= stock_quote;

// if invalid stock quote throw exception
...

}
}

The receive request service contexts hook
method obtains the service context from the service context
list stored in theServerRequestInfo object and verifies
the password. Thereceive request hook method
then uses types defined in the ORB’sDynamic module to
check the request parameters to ensure the quote is valid.
The Dynamic module helps to build the parameter list
on-demand and insertany variables that can be extracted by
the interceptor as needed.

Finally, theSecure Server Request Interceptor
is registered with the server ORB, as shown below:

// This is code that would reside in a
// concrete implementation of an
// ORBInitializer::post_init() method, for
// example.

// Create and install the server interceptor.
PortableInterceptor::
ServerRequestInterceptor_var

interceptor = new
Secure_Server_Request_Interceptor;

// "info" is the ORBInitInfo argument
// passed to this
// ORBInitializer::post_init() method.
info->add_server_request_interceptor

(interceptor.in ());

After this interceptor has been installed, it will be invoked
at all interception points along the server’s invocation path.
The particular point that will call thereceive request
method is after parameter demarshaling, but just before the
POA makes the upcall to the servant. For example, we could
first authenticate and then use the information passed to set
policies for the access rights granted to the client for a partic-
ular target object.

4 Key Design Challenges and Pattern-
based Resolutions

In this section, we explore how smart proxies and intercep-
tors are implemented in TAO. To clarify and generalize our
approach, the discussion below focuses on the patterns [4] we
applied to resolve the key design challenges faced during our
development process.

4.1 Smart Proxy Design Challenges and Reso-
lutions

As mentioned in Section 2.1, the goal of using smart proxies
is to change/add behaviors to existing programs with minimal
modifications to client applications. Below, we discuss the key
design challenges we faced while refactoring TAO’s existing
stub architecture to support smart proxies.

4.1.1 Challenge: Providing Flexible Support for Smart
Proxies

Context: The proxy framework generated by TAO’s IDL
compiler should allow applications to use customized prox-
ies transparently. For example, changes to client applications
that use customized proxies must be localized. In particular,
developers should be able to install customized proxies with
little or no change to client application code.

Problem: TAO’s original IDL compiler generated only fixed
default proxies. In particular, thenarrow operation it gen-
erated for each interface returned a default proxy. If develop-
ers require more flexibility, however, thenarrow operation
must be able to return either an IDL-generated default proxy
or a custom smart proxy.

Since the narrow operation is generated by TAO’s IDL
compiler as part of the client’s stub it is not possible to mod-
ify this method externally from a client application. More-
over, since fixed default stubs were generated any changes re-
quired manually modifying the IDL-generated code. Clearly,
this solution was inflexible and had to be solved at the stub-
generation level.

Solution! Apply the Factory Method, Adapter, and Sin-
gleton patterns: We applied these design patterns [4] in
TAO’s smart proxy framework to provide the necessary flex-
ibility to create different types of proxies transparently in
TAO’s IDL-generated code, as follows:

� The Factory Method pattern defers instantiation of vari-
ous types of meta-objects to subclasses.

� The Adapter pattern provides a higher level of abstrac-
tion for TAO’s proxy factories and to delegate creation
requests to the appropriate factory.

� The Singleton pattern makes the proxy factory adapter a
global access point for factory registration from program
initialization to termination.

Figure 10 illustrates how we applied these three patterns in
TAO to provide flexible support for smart proxies. By using

Default Proxy Facotry

+create_proxy ()

Smart Proxy Factory

+create_proxy ()

Proxy Factory Adapter
{Singleton}

pf: Default_Proxy_Factory
l: lock

+register_factory (Default_Proxy_Factory df);
+unregister_factory ();
+create_proxy ();

TAO IDL compiler generated classes Users defined classes

Figure 10: Applying Patterns to Provide Flexible Support for
Smart Proxies

these patterns, applications can obtain either the default IDL-
generated proxy or a smart proxy without changing existing
code manually. For example, after an application registers a
per-interface smart proxy factory, thenarrow operation call
will create the appropriate proxy automatically.

4.1.2 Challenge: Treating Remote and Collocated Smart
Proxies Uniformly

Context: A target object can be either remote or it can be
collocated in the client’s address space [16]. TAO provides

customized meta-objects calledcollocated proxiesto optimize
performance for collocated objects. Smart proxies should pro-
vide similar functionality to collocated and remote proxies
since the ability to differentiate remote and collocated smart
proxies provides developers with greater flexibility.

Problem: Depending on where a target object resides, a de-
veloper may or may not wish to invoke the smart proxy in-
stalled for the object. For example, a developer may not
want to cache operation results in a collocated smart proxy be-
cause these calls are already resolved locally. Originally, TAO
treated the generation of collocated stubs as a special case and
if smart proxies were installed they would supercede the de-
fault stubs, even if the stubs were collocated.

Ignoring collocation optimizations, however, may cause un-
necessary waste by trying to optimize a bottleneck that does
not exist. Therefore, it is necessary to distinguish the remote
and collocated case to take full advantage of this construct and
avoid unnecessary waste of system resources, such as memory
and CPU cycles. In addition, smart proxies must (1) provide
applications with the same interface as default proxies and (2)
be able to call down to the default proxy to communicate with
remote target objects.

Solution! Apply the Composite pattern: The Composite
pattern [4] supports part/whole relationships and allows all ob-
jects in such composite structures to be processed uniformly.
We applied the Composite pattern to TAO to provide a uniform
view among different proxies available to clients. As shown in
Figure 11, in this design (1) smart proxy classes inherit from

srv->authenticate ();
base_proxy->get_quote (stockname);

Remote Proxy

+long get_quote (in string
stockname);

Local Proxy

+long get_quote (in string
stockname);

Smart Proxy
svc: Authentication Service
+long get_quote (in string
stockname);

Default Proxy

+long get_quote (in string stockname);
base_proxy

Figure 11: Applying the Composite Pattern to TAO’s Smart
Proxy Design

the default proxy and (2) also store a pointer to the default
proxy to make invocations to target object. Collocated and
remote proxies are children of the default proxy. Thus, smart
proxies can make calls to the remote or collocated proxy trans-
parently, while providing the same application interface as the
default proxies.

4.2 Interceptor Design Challenges and Resolu-
tions

As discussed in Section 2.2, interceptors can extend the behav-
ior of CORBA operations with minimal changes to client and

server applications. In this section, we discuss the key design
challenges faced while enhancing TAO’s existing invocation
architecture to support interceptors.

4.2.1 Challenge: Making Information Retrieval Possible
Per-Operation

Context: Request interceptor hook methods are invoked at
different interception points along the invocation path. These
interceptors must be able to (1) verify and audit information
being passed to the target object as the invocation continues
and (2) potentially terminate the invocation before it reaches
the target object.

Problem: An ORB must provide information in response
to interceptor queries. This information may be operation-
specific and even temporal. For example, the result of an op-
eration may be available only after the POA makes an upcall
to a servant and the operation executes.

An ORB must therefore have a generic way to access
operation-level information and disclose this information to
interceptors that are invoked at ORB-mediated interception
points. Originally, TAO did not maintain this information to
avoid degrading the normal execution of the invocation in situ-
ations where this information was not required by applications.
However, TAO’s original design made it hard for applications
to influence invocation behavior.

Solution ! Generation of nested RequestInfo classes for
each interface operation: To provide invocation informa-
tion dynamically and efficiently, we modified TAO’s IDL com-
piler to generateRequestInfo classes for each operation.
RequestInfo classes are instantiated for each operation in-
vocation and passed to the interceptors during the invocation.
Thus, interceptors can access operation-related information,
as shown in Figure 12. Every operation in an IDL interface

 QUOTER
INTERFACE

 GET QUOTE
REQUEST INFO

 LOG QUOTE
REQUEST INFO

REQUEST INFO

<< uses >>

RequestContext

request_id:long

operation:string

result:any

+reply_status ()

+arguments ()

+exceptions ()

 . . .

ParameterList

ContextList

ExceptionList

MODULE DYNAMIC

&stockname :string

&result:long

invalid_stock:user

exception

update_result ();

update_exception ();

. . .

long get_quote(

 in string

 stockname);

log_quote(long

 quote);

void shutdown ();

"e:long

 . . .

Figure 12: TAO’s Portable Interceptor Design

may have different formal parameters, result types, and user

exceptions. To minimize the overhead of copying multiple ar-
guments and the return value of the upcall, we only store a
reference, rather than a copy of the parameters, results, and
exceptions.

We added TAO-specific methods to eachRequestInfo
class and used these methods internally to update the re-
sult and the exception thrown, rather than instantiating a
new RequestInfo class before every interception point
is called. For instance, the result of an operation is ob-
tained only after the POA makes the upcall and the client
receives a reply. At this point, the client can verify the re-
sult in thereceive reply interceptor hook by querying the
RequestInfo object, making it necessary to update the re-
sult before this interception point is invoked. Thus, temporal
information can also be propagated to interceptors.

4.2.2 Challenge: Avoiding Gratuitous Waste Construct-
ing RequestInfos

Context: Interceptors can access any request-related infor-
mation. Their interface must therefore be sufficiently general
to incorporate any type of data. In CORBA,any is a generic
type that can hold information of any other types, which are
stored using type/value tuples.

Problem: In general, not all interceptors installed in an ORB
are interested in handling all information, or even all opera-
tions. For example, security-related interceptors may not be
interested in what operation is being invoked, but only want
to know the contents of the service context list. Likewise, an
auditing interceptor may only be interested in the parameters
of certain operations of certain objects, while ignoring others
altogether.

Although CORBA’sany type is flexible, it is less efficient
and more resource consumptive than other common CORBA
data types, such aslong or struct . We need to avoid the
overhead ofany insertion operators if installed interceptors
are not interested in certain operation information. There is no
way, however, to predict what interceptors will be interested
in a priori.

Solution!On-demand creation of operation information:
To avoid unnecessary waste of resources, we applied the Lazy
Initialization pattern [17] to make sure the operation informa-
tion is only inserted intoany objects thefirst timea related
interface is accessed by an interceptor via itsRequestInfo -
derived interface. This design ensures that pertinent informa-
tion in RequestInfo -derived objects will only be created
if an interceptor is interested in the information. In TAO,
we retrieve this information via types defined in the CORBA
Dynamic module.

The Dynamic module defines the collocation of request
parameters, results, and exceptions inany in a sequence of

structures that an application interceptor can extract and use.
In TAO, methods returning Dynamic objects are implemented
to minimize the gratuitous waste of storing all informationde
facto into lists ofany s as shown in Figure 13. In particu-

if argument contains nothing
create new arguments contents

return a copy of arguments

PortableInterceptor::RequestInfo

Dynamic::ParameterList get_arguments ();
Dynamic::ExceptionList get_exceptions ();

Dynamic::ParameterList holder arguments;
Dynamic::ExceptionList holder exceptions;

Operation_specific_RequestInfo

Dynamic::ParameterList get_arguments ();
Dynamic::ExceptionList get_exceptions ();

Figure 13: TAO applies Lazy Initialization building Dynamic
objects in RequestInfo

lar, this information is inserted intoany s only when queried,
which occurs just once. Subsequent queries simply return the
any variables created previously. Thus, unless an interceptor
needs to query a particular piece of request information, it in-
curs no additional overhead. This optimization is targeted for
the common case where interceptors are used to pass service
contexts.

4.2.3 Challenge: Implementing Time and Space Efficient
Flow Stacks

Context: The Portable Interceptor specification definesgen-
eral flow rulesto which a portable interceptor implementation
should adhere. These rules ensure that only interceptors in-
voked successfully from a starting interception point will ever
be invoked at an ending interception point. Conceptually, in-
terceptors are pushed on to a stack if invoked successfully in a
starting interception point and popped off that stack when they
invoked at ending interception points.

Problem: To implement the semantics dictated by CORBA’s
general flow rules, some type of stack implementation is
needed. However, implementing aflow stack with a general-
purpose stack container class, such as the one in the standard
C++ library [18], has the following problems:

� Time overhead: The stack implementation may incur
non-trivial performance overhead if it allocates space off of
the heap dynamically for each interceptor or interceptor refer-
ence pushed onto the stack. Dynamic memory is particularly
problematic for real-time applications.

� Space overhead: The stack implementation itself adds
to the ORB footprint since a template must be instantiated for
each type of request interceptor,i.e., client or server request
interceptors. Moreover, other auxiliary templates may need
to be instantiated for internal stack support code. Not only

does this increase the static footprint of the ORB, but it also
increases run-time ORB memory requirements, which may be
unacceptable for embedded applications.

In addition to inherent problems with real stack implemen-
tations detailed above, another common problem can occur.
Since interceptors are invoked during a request, they are in the
critical path. This means that interceptor support code, such as
a flow stack, can have an adverse affect on performance if that
support is not implemented efficiently. In particular, adding
locking mechanisms in the flow of a request can degrade per-
formance since threads waiting for a lock can block. The act of
acquiring and releasing the lock also imposes further delays.

Solution! Apply optimization principle patterns: Opti-
mization principle patterns [19] define a set of principles that
can be applied to improve performance in various ways. To
implement time and space efficient flow stacks, heap alloca-
tions must be minimized to avoid degrading performance and
increasing footprint. Both can be avoided by taking advantage
of pre-computedresources and the properties associated with
them.

As dictated by the Portable Interceptor specification, inter-
ceptors are registered with the ORB when the ORB is boot-
strapped,i.e., during the initial CORBA::ORBinit call.
This means that storage for the interceptors will already have
been allocated by the time the interceptors are invoked so there
should ideally be no need for additional allocations at a later
point in time.

By keeping the order with which the interceptors are stored
unchanged for the lifetime of the ORB, it is possible to im-
plement highly efficient stackpushandpopoperations. Inter-
ceptors will always be pushed on to the stack with the same
relative ordering they are stored in the ORB. This property en-
sures that the number of elements on the stack will be equal
to the ORB storage location of the last interceptor pushed on
to the stack. Hence, the general flow rule semantics can be
implemented using alogical flow stack.

Applying the solution to TAO: TAO stores pointers to reg-
istered interceptors in a pre-allocated array, which avoids in-
creased footprint and run-time memory requirements. Rather
than having to instantiate a stack for each type of intercep-
tor (i.e., client and server request interceptors), a single array
for each type of request interceptor is created. The order in
which interceptors are stored in the array remains unchanged
for the lifetime of the ORB. Thus,pushandpopoperations can
be implemented by simply incrementing and decrementing a
variable, respectively, as illustrated in Figure 14.

The following example presents a scenario that illustrates
how TAO’s logical flow stacks are implemented:

1. Three request interceptors are registered when the ORB
is initialized. Specifically, theCORBA::ORBinit method
invokes all ORB initializers registered by the application.

: Request : Client Request Interceptor Logical Flow Stack

2. incr_stack_size()

1. send_request()

: Server

3. operation()

4. decr_stack_size()

5. receive_reply()

Figure 14: An Efficient Flow Stack Implementation

Those ORB initializers then register the interceptors by us-
ing the appropriate methods in theORBInitInfo argument
passed to the ORB initializer by theCORBA::ORBinit
method. An example of this interceptor registration code fol-
lows:

// Code that would reside in a
// concrete implementation of an
// ORBInitializer::post_init() method, for
// example.

// Create and install a client interceptor.
PortableInterceptor::
ClientRequestInterceptor_var

interceptor = new
Secure_Client_Request_Interceptor;

// "info" is the ORBInitInfo argument.
info->add_client_request_interceptor

(interceptor.in ());

2. Two interceptors are successfully invoked at astarting
interception point during a request. This corresponds to step 1
in Figure 14.

3. Each successful request interceptor invocation incre-
ments the stack size by one, which results in a stack size of
two. Stack elementone corresponds to request interceptor
one as stored in the ORB’s interceptor array. Similarly, stack
elementtwo corresponds to interceptortwo in the ORB’s in-
terceptor array. Again, alogical stack is in use here. This
corresponds to step 2 in Figure 14.

4. An endinginterception point is invoked.

5. Within the ending interception point, each of the inter-
ceptors in the logical stack is invoked. Prior to invoking each
interceptor, the stack size is decreased by one (step 4 in Fig-
ure 14), effectively popping an interceptor off of the logical
flow stack. Since only the first two interceptors were pushed
on to the stack, only the first two of the three interceptors will
be invoked (step 5 in Figure 14) in the ending interception
point and the third interceptor will never be invoked.

TAO’s logical flow stack implementation allows the
CORBA general flow rule semantics to be implemented ef-
ficiently and with minimal impact on ORB footprint. These
benefits arise from the fact that flow stack storage is pre-
allocated prior to the first use of the flow stack. In addition,
the TAO implementation ensures the order of the interceptors
stored in the ORB’s interceptor array remains unchanged for
the lifetime of the ORB.

One other aspect of this implementation is the fact that it is
not necessary to acquire a lock to prevent other threads from
modifying the logical stack. Only one thread ever services a
request at a given time. Thus, there is no need to implement a
locking mechanism for the logical stack, in which case addi-
tional overhead is not incurred.

5 Empirical Benchmarking Results

Developers of distributed applications must often make trade-
offs between time/space overhead and flexibility. Selecting
which meta-programming mechanism to use,e.g., smart prox-
ies or interceptors, is an example of this tradeoff. This section
presents benchmarking results that quantify the time/space
overhead and tradeoffs of using smart proxies and portable in-
terceptors.

5.1 Overview of the Testbed Environment and
Benchmarks

The experiments were conducted using a Bay Networks Lat-
tisCell 10114 ATM switch connected to two dual-processor
UltraSPARC-2s running SunOS 5.7. Each UltraSPARC-2
contains 2 168 MHz CPUs with a 1 Megabyte cache per-CPU,
256 Mbytes of RAM, and an ENI-155s-MF ATM adapter card
that supports 155 Megabits per-sec (Mbps) SONET multi-
mode fiber. The experimental testbed is shown in Figure 15.
The benchmarking programs were compiled using the Sun CC
5.0 compiler with all optimizations enabled. We conducted
two different benchmarks: one measured the performance of
smart proxies and the other the performance of interceptors.

5.1.1 Smart Proxy Results

The overhead of calling an operation via a smart proxy is
equivalent to calling the default proxy,i.e., it is the cost of
a local virtual method call. Therefore, we designed our smart
proxy benchmark to show how performance can be improved
if smart proxies are used as a cache to minimize the number of
remote operations. Here is the IDL interface we used for this
test:

interface Broadway_Show
{

C 1C 0

Requests

C n

������������ ��������������������

Client Server
ORB Core

Services

...

...

2

Object Adapter

ATM Switch
Ultra 2 Ultra 2

Figure 15: Testbed for Meta-programming Mechanism
Benchmarks

// Get the prices for the box
// seats of the Broadway show.
short box_prices ();

// Order tickets.
long order_tickets (in short number);

};

The servant in the test is a virtual box office that allows
clients to purchase tickets to Broadway shows. A client can
query the prices of box seats and if they are within a price
range, it buys them. Thus, the client normally makes two in-
vocations: (1)box prices and (2)order tickets if the
prices are reasonable. By default, every time a client enquires
about ticket prices, a remote invocation occurs.

We can minimize overhead significantly by using a smart
proxy that makes just one remote invocation and then caches
the result and reuses it when subsequent enquiries occur. This
caching improves the performance significantly, as shown in
Figure 16. This figure illustrates that omitting unnecessary

599.83

298.32

0

100

200

300

400

500

600

700

Smart proxy Default proxy

T
hr

ou
gh

pu
t(

ev
en

ts
/s

ec
)

Figure 16: Performance Improvement Using a Smart Proxy to
Cache Information

remote operation calls improve the performance by�130%,
even over a high-speed ATM network.

5.1.2 Portable Interceptor Results

Our portable interceptor benchmarks quantify the cost of sup-
porting and using interceptors in TAO. Moreover, these tests
quantified the costs of individual interceptor features, such as
accessing a parameter list and accessing a service context list.
In the benchmark program, the following three IDL operations
were defined in theSecure Vault interface:

interface Secure_Vault
{

exception Invalid {};

struct Record { long check_num; long amount; };

// No args/exceptions operation.
short ready ();

// Throws a user exception.
void authenticate (in string user)

raises (Invalid);

// updates a struct and returns a count.
long update_records (in long id,

in Record val);
};

Each operation takes a different number and different
length of parameters and return values. Moreover, the
authenticate operation throws a user exception, whereas
the other two do not. This diversity allowed us to measure
the cost of preparing different types of generic information re-
quired by interceptors.

The interceptor benchmarks were run using the five differ-
ent configurations summarized below:

1. No interceptor support: In this configuration, inter-
ceptor support was disabled completely in the ORB, which
measured TAO’s baseline performance.

2. No interceptor installed: This time the ORB was com-
piled with interceptor support, although the test was performed
without installing an interceptor into the ORB. This configura-
tion measures the performance penalty applications must pay
for the potential of flexibility.

3. No-op interceptor installed: This configuration uses a
no-op interceptor to measure the cost of invoking interceptors.

4. Accessing the service context list: The interceptor in-
stalled in this configuration manipulates the GIOP request’s
ServiceContextList . On the client, a request inter-
ceptor creates a newServiceContext containing an en-
capsulated password string of 7 bytes and inserts the ser-
vice context object into theServiceContextList of
the invocation using theRequestInfo interface. On the
server, a different request interceptor performs the reverse
operation by (1) extracting the password string from the
ServiceContextList using theRequestInfo inter-
face and (2) examining the password via a string comparison.

5. Accessing Dynamic information: TAO implements
theDynamic module types in request/reply operations, such
as parameters, results and exception list of an invocation, by
creating these information on-demand. The interceptor in-
stalled in this configuration accesses the dynamic information
of the operations by checking their parameters and return val-
ues.

Figure 17 shows the cost of supporting and using these vari-
ous features and configurations in interceptors. In the first con-

No
interceptor

support

No
interceptor

installed

No-op
interceptor Accessing

Context Accessing
Dynamic

ready

authenticate

update_records
0

100

200

300

400

500

600

T
hr

ou
gh

pu
t(

ev
en

ts
/s

ec
)

Interceptor Types

Operations

ready

authenticate

update_records

Figure 17: Cost of Using Various Interceptor Features

figuration (no interceptor support), all three measured opera-
tions perform similarly because there is no significant differ-
ence between the information these operations exchange. The
results are similar for the second configuration, which added
interceptor support to the ORB but without installing any in-
terceptors. There is only a�9% performance penalty for using
the ORB with interceptor support.

The no-op interceptor provide the baseline cost of invoking
an interceptor. There is�26% of performance penalty com-
pared to not installing the interceptor due to invocations of
interception points on every operation invocation. As shown
in Figure 17, however, all three operations reveal similar per-
formance characteristics, regardless of the number and size of
their parameters and return values.

Similar performance degradation is also observed for inter-
ceptors that access theServiceContextList . This con-
figuration measures the cost of adding and extracting a short
string from theServiceContext . Again, all three opera-
tions experience�8% degradation in performance compared
to using the no-op interceptor.

The interceptor that access theDynamic module types,
however, demonstrates more diversity in performance degra-
dation among the three operations we tested. There are
�7%, �19%, �and 40% performance hits to theready ,

authenticate , andupdate record operations, respec-
tively, compared with no-op interceptor configuration. The
performance penalty comes not only from the accessing pa-
rameters using theDynamic module types, but also from the
on-demand creation of the dynamic information. The results
show that the preparation ofDynamic module types are ex-
pensive, which justifies our decision not to create them if they
are not accessed by interceptors.

5.2 Memory Footprint Results

TAO is an open-source ORB that is used for real-time and em-
bedded systems with memory constraints. Therefore, smart
proxies and interceptors can be conditionally compiled in or
out at ORB compile-time. To measure the memory increment
necessary to support smart proxies and interceptors, we com-
piled theSecure Vault IDL interface shown above with
three different operations using the following configurations:

1. Interceptors and smart proxies disabled.

2. Interceptors and the smart proxies both enabled;

3. Interceptors enabled but smart proxies disabled, which is
the default configuration in TAO; and

4. Interceptors disabled and smart proxies enabled.

Table 1 shows the resulting sizes for different configura-
tions. Not counting the application-specific proxy and factory

Supporting Stub % Inc. Skeleton % Inc.
Config. size (KB) size (KB)

Neither 1,288 0 1,277 0
Smart proxies 1,321 2.5 1,277 0
Interceptors 1,479 14.8 1,485 16.3
Both 1,517 17.8 1,489 16.6

Table 1: Footprint Comparison for Smart Proxies and Inter-
ceptors

method, smart proxies increase TAO’s client memory footprint
by�2.5%. In contrast, interceptors require�15% extra foot-
print to handle on-demand creation of parameters lists, excep-
tions list, etc.

We also performed the same test using the OMGMinimum
CORBAconfiguration [20], which defines a subset of the com-
plete ORB CORBA specification to reduce embedded system
memory footprints. By default, TAO’s Minimum CORBA
footprint is less than 1 MB. To determine the footprint growth
when smart proxies and/or interceptors are used, we measured
the size of the ORB again using the same IDL interface, as
shown in Table 2: The footprint increase for TAO’s smart

Supporting Stub % Inc. Skeleton % Inc.
Config. size (KB) size (KB)

Neither 923 0 896 0
Smart proxies 974 5.5 896 0
Interceptors 1,115 20.7 1,104 23.1
Both 1,148 24.3 1,105 23.2

Table 2: Footprint Comparison for Smart Proxies and Inter-
ceptors in TAO’s Minimum CORBA Configuration

proxies in this configuration is 5.55% and the support for inter-
ceptors causes a significant 20-23% increment. These results
are not surprising since both these meta-programming features
are new and have not yet been optimized for TAO’s Minimum
CORBA configuration.

In general, the results in this section show that CORBA
meta-programming mechanisms can provide developers with
significant improvements in functionality, performance, and
convenience without drastic changes to existing application
software. Depending on which features are used, however,
developers need to consider the affect of time and space over-
head.

6 Related Work

CORBA is increasingly being adopted as the middleware of
choice for a wide-range of distributed applications and sys-
tems. As systems evolve, new features/services will be added
to the system. Smart proxies and interceptors are good ways
to adapt existing applications to take advantage of these new
features. The following work on middleware technologies is
related to our research.

QuO: The Quality Objects(QuO) distributed object mid-
dleware is developed at BBN Technologies [21] by apply-
ing Aspect-Oriented Programming (AOP) [22] techniques to
adaptive network applications. QuO is based on CORBA and
supports:

1. Run-time performance tuning and configuration
through the specification of operating regions, behavior
alternatives, and reconfiguration strategies that allows the
QuO run-time to adaptively trigger reconfiguration as sys-
tem conditions change, represented by transitions between
operating regions; and

2. Feedbackacross software and distribution boundaries
based on a control loop in which client applications and server
objects request levels of service and are notified of changes in
service.

QuO achieves this functionality via customized smart prox-
ies, calleddelegates, and embedded MOP interfaces within

the proxies. However, their framework does not allow users to
install user-defined proxies and the MOP interfaces are specif-
ically designed for QoS purpose.

Orbix filters: Orbix defines the concept of filters, which are
an interceptor mechanism based on the concept of “flexible
bindings” [23]. By deriving from a predefined base class, de-
velopers can intercept events. Common events include client-
initiated transmission and arrival of remote operations, as well
as the object implementation-initiated transmission and arrival
of replies. Developers can choose whether to intercept the
request or result before or after marshaling. Orbix program-
mers can leverage the same filtering mechanism to build multi-
threaded servers [24, 25, 26].

dynamicTAO: The dynamicTAO reflective ORB [27] sup-
ports interceptors for monitoring and security. Particular in-
terceptor implementations are loaded into dynamicTAO using
the Component Configurator pattern [10]. Using component
configurators to install interceptors in dynamicTAO allows ap-
plications to exchange monitoring and security strategies at
run-time. Moreover, there are extensive use of reflective pro-
gramming technique in dynamicTAO to determine the module
the ORB requires.

Fault-tolerant ORB frameworks: Interceptors have been
applied in a number of fault-tolerant ORB frameworks such as
the Eternal system [28]. Eternal intercepts system calls made
by clients through the lower-level I/O subsystem and maps
these system calls to a reliable multicast subsystem. Eternal
does not modify the ORB or the CORBA language mapping,
thereby ensuring the transparency of fault tolerance from ap-
plications.

COM interceptors: Hunt and Scott [29] describe how to
implement interceptors in COM. The concept they use to im-
plement interceptors is similar to TAO’s collocated stub [16].
This technique uses alternative wrappers around the object im-
plementation to masquerade as operation targets, which are
similar to TAO’s smart proxies.

7 Concluding Remarks

Distributed object computing (DOC) middleware has been ap-
plied widely to domains ranging from telecommunications to
aerospace, process automation, and e-commerce. DOC mid-
dleware shields developers from many distribution challenges
and allows applications to invoke operations on target objects
efficiently without concern for their location, programming
language, OS platform, communication protocols and inter-
connects, and hardware [30]. Historically, however, many
DOC middleware solutions have tightly coupled interfaces and
implementations, which makes it hard to adapt to requirement

or environment changes that occur late in an application’s life-
cycle,i.e., during deployment and/or at run-time.

Meta-programmingmechanisms are techniques that help in-
crease the flexibility and adaptability of applications, with-
out degrading performance significantly. This paper de-
scribes two meta-programming mechanisms–smart proxies
and interceptors– that we added recently to TAO, is an im-
plementation of CORBA that is targeted for applications with
high-performance and real-time QoS requirements. These two
mechanisms allow CORBA applications to adapt to changing
requirements or environmental conditions that occur late in an
application’s life-cycle without requiring obtrusive changes in
existing software.

Based on our experience using smart proxies and intercep-
tors to develop TAO applications, we have observed the fol-
lowing tradeoffs and limitations with smart proxies and inter-
ceptors:

Performance: Interceptors incur more overhead than smart
proxies because they influence the processing of operations at
multiple points along the invocation path. The portable inter-
ceptor results in Section 5.1.2 illustrate the overhead of sup-
porting interceptors and the run-time costs of specific inter-
ceptor features.

In general, smart proxies perform better and consume less
memory than interceptors. The smart proxy results in Sec-
tion 5.1.1 show the circumstances where using smart proxies
can improve performance. Even thought there is an extra layer
of indirection, the overall performance can be improved by
removing the gratuitous overhead of unnecessary remote in-
vocations.

Generality: Interceptors can be applied to either servers or
clients and can access operation-specific information. There-
fore, they provide an effective meta-programming mechanism
to handle advanced features, such as authentication and autho-
rization, transparently end-to-end. In contrast, smart proxies
only apply to specific interfaces accessed by clients. In par-
ticular, smart proxies can only influence the behavior at the
beginning of an invocation.

Portability: Smart proxies are not currently part of the
CORBA standard. Although many ORBs provide smart prox-
ies as extensions, this feature is not portable. There is, how-
ever, a Portable Interceptors specification [7] that is being rat-
ified by the OMG.

All the source code, documentation, and tests for
TAO are open-source and can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .

Acknowledgements

Thanks to Brian Wallis<brian.wallis@ot.com.au> for help-
ing with the design of TAO’s smart proxy interface.

References
[1] Object Management Group,The Common Object Request Broker: Ar-

chitecture and Specification, 2.3 ed., June 1999.

[2] M. Henning and S. Vinoski,Advanced CORBA Programming With
C++ . Addison-Wesley Longman, 1999.

[3] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[5] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A
Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
’97 Conference on Programming Language Design and Implementation
(PLDI), (Las Vegas, NV), ACM, June 1997.

[6] C. Zimmermann, “Metalevels, MOPs and What the Fuzz is All About,”
in Advances in Object-Oriented Metalevel Architectures and Reflection
(C. Zimmermann, ed.), Boca Raton, FL: CRC Press, 1996.

[7] Adiron, LLC, et al., Portable Interceptor Working Draft – Joint Revised
Submission. Object Management Group, OMG Document orbos/99-10-
01 ed., October 1999.

[8] Object Management Group,Security Service 1.8 Specification, OMG
Document security/00-11-03 ed., November 2000.

[9] O. Othman, C. O’Ryan, and D. C. Schmidt, “The Design and Perfor-
mance of an Adaptive CORBA Load Balancing Service,”IEEE Dis-
tributed Systems Online, vol. 1, December 2000.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-
Oriented Software Architecture: Patterns for Concurrency and Dis-
tributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[11] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for Real-
time Distributed Object Computing Middleware,” inProceedings of the
Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[12] T. Nakajima, “Dynamic Transport Protocol Selection in a CORBA
System,” inProceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISORC), (Newport Beach,
CA), IEEE/IFIP, Mar. 2000.

[13] Object Management Group,Extensible Transport Framework for Real-
Time CORBA, Request for Proposal. Object Management Group, OMG
Document orbos/2000-09-12 ed., Feb. 2000.

[14] W. W. Ho and R. Olsson, “An Approach to Genuine Dynamic Linking,”
Software: Practice and Experience, vol. 21, pp. 375–390, Apr. 1991.

[15] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, and M. Kircher, “Apply-
ing C++, Patterns, and Components to Develop an IDL Compiler for
CORBA AMI Callbacks,”C++ Report, vol. 12, Mar. 2000.

[16] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimizations
for CORBA,” C++ Report, vol. 11, November/December 1999.

[17] K. Beck, Smalltalk Best Practice Patterns. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

[18] M. H. Austern, Generic Programming and the STL. Reading, MA:
Addison-Wesley, 1999.

[19] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
Concurrency Magazine, vol. 8, no. 1, 2000.

[20] Object Management Group,Minimum CORBA - Joint Revised Submis-
sion, OMG Document orbos/98-08-04 ed., August 1998.

[21] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[22] G. Kiczales, “Aspect-Oriented Programming,” inProceedings of the
11th European Conference on Object-Oriented Programming, June
1997.

[23] M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed Objects,”
Tech. Rep. Rapport de recherche INRIA 2007, INRIA, Aug. 1993.

[24] D. Schmidt and S. Vinoski, “Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread-per-Object,”C++
Report, vol. 8, July 1996.

[25] D. Schmidt and S. Vinoski, “Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread Pool,”C++ Report,
vol. 8, April 1996.

[26] D. Schmidt and S. Vinoski, “Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread-per-Request,”C++
Report, vol. 8, February 1996.

[27] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and
R. Campbell, “Monitoring, Security, and Dynamic Configuration with
the dynamicTAO Reflective ORB,” inProceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

[28] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “Using Intercep-
tors to Enhance CORBA,”IEEE Computer, vol. 32, pp. 64–68, July
1999.

[29] G. C. Hunt and M. L. Scott, “Intercepting and Instrumenting COM Ap-
plication,” in Proceedings of the5th Conference on Object-Oriented
Technologies and Systems, (San Diego, CA), USENIX, May 1999.

[30] S. Vinoski, “New Features for CORBA 3.0,”Communications of the
ACM, vol. 41, pp. 44–52, October 1998.

