
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Skoll: A Process and Infrastructure for

Distributed Continuous Quality Assurance

Adam Porter, Atif Memon, Cemal Yilmaz, Douglas C. Schmidt,

and Bala Natarajan

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Abstract

Quality assurance (QA) tasks, such as testing, profiling, and performance evaluation, have histori-

cally been done in-house on developer-generated workloads and regression suites. Since this approach

is often inadequate, tools and processes are being developed to improve software quality by greatly

increasing the QA process’ use of in-the-field observation. A key limitation of these approaches is

that they focus on isolated mechanisms, not on the coordination and control policies nor on the tools

needed to make the global QA process efficient, effective, and scalable. To address these issues, we

have started a research project aimed at developing and validating novel software QA processes and

tools that leverage the extensive computing resources of worldwide user and developer communities in

a distributed, continuous manner to significantly and rapidly improve software quality.

This paper provides several contributions to the study of distributed, continuous QA. First, it

illustrates the structure and functionality of Skoll, which is an environment that defines a generic around-

the-world, around-the-clock QA process and several sophisticated tools that support this process. Second,

it describes several novel QA processes built using the Skoll process and tools. Third, it presents two

studies using Skoll; one involving user testing of the Mozilla browser and another involving continuous

build, integration and testing of the ACE+TAO communication software package.

The results of our studies suggest that the Skoll process and tools are effective and that they manage

and control distributed, continuous QA processes that are more effective than conventional QA processes.

For example, our DCQA processes rapidly identified problems that had taken the ACE+TAO developers

much longer to find and several of which they had not found. Moreover, the automatic analysis of QA

task results provided developers information that enabled them to find the root cause of quality problems

quickly.

Index Terms

Categories: D.2.9 [Management]: software quality assurance; D.2.5 [Testing and Debugging]: testing

tools

General Terms: Reliability, Performance, Measurement, Experimentation

Keywords: Distributed continuous quality assurance, performance-oriented regression testing, design

of experiment theory

I. INTRODUCTION

Software quality assurance (QA) tasks are typically performed in-house by developers, on

developer platforms, using developer-generated input workloads. One benefit of in-house QA is

that programs can be analyzed at a fine level of detail since QA teams have extensive knowledge

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

of, and unrestricted access to, the software. The shortcomings of in-house QA efforts, however,

are well-known and severe, including (1) increased QA cost and schedule and (2) misleading

results when the test cases, input workload, software version and platform at the developer’s site

differ from those in the field. These problems are magnified in many modern software systems,

which are increasingly subject to the following trends:
� Distributed and evolution-oriented development processes. Today’s development processes

are distributed across geographical locations, time zones, and business organizations. This distri-

bution helps reduce cycle time by having developers and teams work simultaneously and virtually

around the clock, with minimal direct inter-developer coordination. Distributed development can

also increase software churn rates, however, which in turn increases the need to detect, diagnose,

and fix faulty changes quickly. The same is true for evolution-oriented processes, where many

small increments are routinely added to the base system.
� Cost and time-to-market pressures. Global competition and market deregulation is encour-

aging the use of off-the-shelf software packages. Since one-size-fits-all software solutions are

often unacceptable, these packages must often be configured and optimized for particular run-

time contexts and application requirements to meet portability and performance requirements.

Due to shrinking budgets for the development and QA of software in-house, however, customers

are often unwilling or unable to pay much for customized software. As a result, a limited amount

of resources are available for the development and QA of highly customizable and performant

software.

These trends present several new challenges to developers. One particularly vexing new

challenge is the explosion of the QA task space. To support customizations demanded by users,

software often has to run on multiple hardware and OS platforms and typically has many options

to configure the system at compile- and/or run-time. For example, web servers (e.g., Apache),

object request brokers (e.g., TAO), and databases (e.g., Oracle) have dozen or hundreds of options.

While this flexibility promotes customization, it creates many potential system configurations,

each of which deserves extensive QA.

In addition, QA processes themselves require ever more sophisticated and flexible control

mechanisms to meet the wide-ranging and often dynamic QA goals of today’s complex and

rapidly changing systems. QA processes might, for instance, want to control input workload

characteristics, vary test case selection and prioritization policies, or enable/disable specific

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

measurement probes at different times. For example, in earlier work [1] one of the current

authors helped develop a DCQA process to isolate the causes of failures in fielded systems.

In this process, different instances of a system enable different sets of measurement probes,

thus sharing data collection overhead across the participating instances. In addition, the choice

of which measurement probes to enable in a new program instance depends on each probe’s

historical ability (across all previous instances) to predict system failure [2].

When increasingly larger QA task spaces are coupled with shrinking software development

resources, it becomes infeasible to handle all QA in-house. For instance, developers may not

have access to all the hardware, OS, and compiler platforms on which their software will run.

In this environment, developers are forced to release software with configurations that have not

been subjected to extensive QA. Moreover, the combination of an enormous QA task space and

tight development constraints mean that developers must make design and optimization decisions

without precise knowledge of the consequences in fielded systems.

Solution approach: Distributed Continuous QA. To address the challenges described above,

we have developed a collaborative research environment called Skoll whose ultimate goal is to

support continuous, feedback-driven processes and automated tools to perform QA around-the-

world, around-the-clock. Skoll QA processes are logically divided into multiple tasks that are

distributed intelligently to client machines around the world and executed by them. The results

from these distributed tasks are then returned to central collection sites where they are merged

and analyzed to complete the overall QA process.

When developing and operating Skoll we encountered the following research challenges and

created the following novel solutions described in this paper:
� Understanding the QA task space. To understand the QA space it is necessary to formally

model aspects of both the QA process and the system. For example, in our later feasibility

studies we found it helpful to model execution platform, static system configuration, which

build tools to use, runtime optimization levels, and which subset of tests to run. To do this, we

developed a general representation with options, which take their values from a discrete set of

option settings, and inter-option constraints, which indicate valid and invalid combinations of

options and settings. We also developed the notion of temporary inter-option constraints to help

us restrict the configuration and control space in certain situations.
� Intelligently exploring the QA task space. Since the task space of a QA process can be

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

large, brute-force approaches may be infeasible or simply undesirable, even with a large pool

of supplied resources. We therefore developed techniques to explore/search the QA task space.

We developed a general search strategy based on uniform random sampling of the space and

supplemented it with customized adaptation strategies to allow goal-driven process adaptation.

One adaptation strategy called nearest neighbor refocuses search around a failing configuration

(e.g., a point in the QA task space). This strategy helps find additional failing configurations

quickly and delineates the boundaries between failing and passing QA task subspaces.
� Managing distributed computing resources adaptively. Since QA tasks are assigned to

remote machines—which may be volunteered by end users—it may be hard to know a priori

when resources will be available. For instance, some volunteers may wish to control how their

resources will be used, e.g., limiting which version of a system can undergo QA on their

resources. In such cases, it is impossible to pre-compute QA task schedules. We therefore

developed scheduling techniques that adapt based on a variety of factors including resource

availability.
� Coordinating distributed continuous QA process execution. Operating a distributed con-

tinuous QA process requires the integration of many artifacts, tools, and resources, such as

models of QA process’ task spaces, search/navigation strategies for intelligently and adaptively

allocating QA tasks to clients, and advanced mechanisms for feedback generation, including

statistical analysis and visualization of QA task results. We therefore developed a new process,

called the Skoll process, that provides a flexible framework to coordinate the QA techniques and

tools described above. As Skoll executes, QA tasks are scheduled and executed in parallel at

multiple remote sites. The results of these subtasks are collected and analyzed continually at one

or more central locations. The Skoll process can use adaptation strategies to vary its behavior

based on this feedback. We have also developed techniques for automatically characterizing and

presenting feedback to human developers as well.
� Large-scale empirical evaluation. It is hard to evaluate this kind of research since ap-

proaches are experimental and thus risky. At the same time, the work requires a distributed

setting with multiple hardware platforms, operating systems, software libraries, etc. To deal

with this we have developed a large-scale distributed evaluation testbed based on an equip-

ment grant from the Office of Naval Research (ONR) Defense University Research Infras-

tructure Program (DURIP). This testbed consists of a pair of dedicated clusters at University

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

of Maryland www.cs.umd.edu/projects/skoll and Vanderbilt University www.dre.

vanderbilt.edu/ISISlab containing over 225 top-end x86 CPUs running many versions

of Linux, Windows, Solaris, Mac OSX, and BSD UNIX. They also have several terabytes of disk

space for long-term data storage. We are enhancing these clusters with EMUlab control software

developed in an NFS-sponsored testbed at the University of Utah to facilitate experimental

evaluation of networked systems.

Paper organization. This paper significantly extends our previous work [3] by providing new

information about the Skoll system and algorithms and substantially extending our empirical

evaluation of software using Skoll. The remainder of this paper is organized as follows: Section II

explains the Skoll process and infrastructure, QA processes built using Skoll, Sections III and

Section IV describe the design and results from feasibility studies that applied Skoll to enhance

the QA processes of two substantial software projects; Section V compares our work on Skoll

with related work; and Section VI presents concluding remarks and discusses directions for

future work.

II. THE SKOLL PROJECT

To address the shortcomings of current QA approaches, the Skoll project is developing and

empirically evaluating processes, methods, and support tools for distributed, continuous QA.

For our research, a distributed continuous QA process is one in which software quality and

performance are improved – iteratively, opportunistically, and efficiently – around-the-clock in

multiple, geographically distributed locations. Ultimately, we envision distributed continuous

QA processes involving geographically decentralized computing pools made up of thousands of

machines provided by end users, developers, and companies around the world. The expected

benefits of this approach include: massive parallelization of QA processes, greatly expanded

access to resources and environment not easily obtainable in-house, and, depending on the

specific QA process being executed, visibility into actual fielded usage patterns. This paper

describes our initial steps towards realizing our vision.

A. Distributed Continuous QA processes

At a high level, distributed continuous QA processes resemble certain traditional distributed

computations as shown in Figure 1. As implemented in Skoll, tasks are QA activities, such as

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Computing Nodes
Cluster #1

Computing Nodes
Cluster #2

Skoll Coordinator
Site

Computing Nodes
Cluster #3

Subtask 1.1 Subtask 1.2

Subtask 1.3

Task 1

QA Task 1 is split into three subtasks
(1.1, 1.2, 1.3) and allocated to
computing node clusters 1, 2, and 3
respectively.

Fig. 1. Skoll Tasks/subtasks allocated to computing nodes over a network.

testing, capturing usage patterns, and measuring system performance. They are broken down

into subtasks, which perform part of the overall task. Example subtasks might execute test cases

on a particular platform, test a subset of system functions, monitor a subgroup of users, or

measure performance under one particular workload characterization. In one feasibility study in

Section IV, for example, the global QA task is to do functional testing that “covers” the space

of system configurations. Here each individual subtask executes a set of tests in one specific

system configuration.

Skoll allocates subtasks to computing nodes, where they are executed. In Skoll computing

nodes are remote machines that elect to participate in specific distributed continuous QA pro-

cesses. These nodes pull work from a Skoll coordinator site when they decide they are available

to perform QA activities.

As subtasks run, individual results are returned to Skoll collection sites, merged with previous

results, and analyzed incrementally. Based on this analysis, control logic may dynamically steer

the global computation for reasons of performance and correctness. In addition to incremental

analysis, results may be analyzed manually and/or automatically after process completion to

calculate the result of the entire QA task.

We envision Skoll QA processes involving geographically decentralized computing pools

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

composed of numerous client machines provided by end users, developers, and companies around

the world. This environment will allow large amounts of QA to be performed at fielded sites,

giving developers unprecedented access to user resources, environments, and usage patterns.

Skoll’s default behavior is to cover the configuration and control space by allocating subtasks

upon request, on a random basis without replacement. The results of these subtasks are returned

to collection sites and stored. They are not analyzed, however, so no effort can be made to

optimize or adapt the global process based on subtask results. When more dynamic behavior

is desired, process designers must write programs called “adaptation strategies” that monitor

the global process state, analyze it, and modify how Skoll makes future subtask assignments.

The goal is to steer the global process in a way that improves process performance, where

improvement criteria can be specified by users.

To support the above processes, we have implemented a general set of components and

services that we call the Skoll infrastructure. We have used this infrastructure to prototype

several distributed, continuous QA processes aimed at highly configurable software systems. We

have also evaluated this approach on two software projects, as described in Sections III and IV.

The remainder of this section describes the components, services, and interactions within

the Skoll infrastructure and provides an example scenario showing how they can be used to

implement Skoll processes.

B. The Skoll infrastructure

Skoll processes are based on a client/server model, in which clients request job configurations

(QA subtask scripts) from a server that determines which subtask to allocate, bundles up all

necessary scripts and artifacts, and sends them to the client. To realize such a process however

involves numerous decisions, such as how will tasks be decomposed into subtasks, on what basis

and in what order subtasks will be allocated, how will they be implemented so that they run

on a very wide set of client platforms, how results will be merged together and interpreted, if

and how should the process adapt to incoming results, and how will the results of the overall

process be summarized and communicated to software developers. To support these issues we

have developed several components and services for use by Skoll process designers.

1) Configuration and Control Space Model: A cornerstone of our approach is a formal model

of a QA process’ configuration and control space. The model essentially parameterizes all valid

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

QA subtasks. This information is used in planning the global QA process, for adapting the

process dynamically, and to aid in interpreting results.

In our model, subtasks are generic processes parameterized by configuration and control

options. These options capture information (1) that will be varied under process control or (2) that

is needed by the software to build and execute properly. Such options are application specific, but

could include workload parameters, operating system, library implementations, compiler flags,

run-time optimization controls, etc. Each option must take its value from a discrete number of

settings. For example, one configuration option (called OS) in our feasibility study in Section IV

takes values from the set
�
Win32, Linux � . Skoll uses this option for a variety to tasks, e.g., to

select appropriate binaries and build code for the subtasks.

Defining a subtask then involves mapping each option to one of its allowable settings. We

call this mapping a configuration and represent it as a set
�������
	��
���

,
������	������

, ����� , ������	������ � ,
where each

���
is an option and

���
is its value, drawn from the allowable settings of

���
.

In practice not all configurations make sense (e.g., feature X is not supported on operating

system Y). We therefore allow inter-option constraints that limit the setting of one option based

on the setting of another. We represent constraints as (� � � �"!), meaning “if predicate � �
evaluates to #
$&%(' , then predicate �)! must evaluate to #
$&%(' .” A predicate �+* can be of the

form , , -., , ,(/10 , ,32 0 , or simply (
�4�&56���

), where , , 0 are predicates,
���

is an option

and
���

is one of its allowable values. A valid configuration is a configuration that violates no

inter-option constraints.

Table I presents some sample options and constraints taken from the feasibility study in

Section IV (similar options appeared in the study described in Section III). The sample options

refer to things like the end-user’s compiler (COMPILER), whether or not to compile in certain

features such as support for asynchronous messaging invocation (AMI), whether certain test cases

are runnable in a given configuration (run(T)), and at what level to set a run-time optimization

(ORBCollocation). One sample constraint shows that AMI support cannot be enabled on a

minimum CORBA specification. The other shows that a particular test can only run on a platform

that uses the Microsoft Visual C++ compiler version 6.0.

2) Intelligent Steering Agent: A distinguishing feature of Skoll is its use of an intelligent

steering agent (ISA) to control the global QA process. The ISA controls the global process by

deciding which valid configuration to allocate to each incoming Skoll client request. Once the

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE I

SOME OPTIONS AND CONSTRAINTS

Option Settings Interpretation
COMPILER 7 gcc2.96, VC++6.0 8 compiler

AMI 7 1 = Yes, 0 = No 8 Enable Feature

MINIMUM CORBA 7 1 = Yes, 0 = No 8 Enable Feature

run(T) 7 1 = True, 0 = False 8 Test T runnable

ORBCollocation 7 global, per-orb, NO 8 runtime control

Constraints
AMI = 1 9 MINIMUM CORBA = 0

run(Multiple/run test.pl) = 1 9 (Compiler = VC++6.0)

valid configuration is chosen, the ISA uses the option settings to package the corresponding

QA subtask implementation, consisting of the application code, configuration parameters, build

instructions, and QA-specific code (e.g., regression/performance tests) associated with a software

project. This package is called a job configuration.

The overall Skoll process requires automated constraint solving, scheduling, and learning.

Consequently, we implemented the ISA using planning technology. Skoll’s formal configuration

and control model lets us implement the configuration selection and implementation as a planning

problem.

Given an initial state, a goal state, a set of operators (specified in terms of parameterized

preconditions and effects on variables), and a set of objects, the ISA planner (currently Blackbox

[4]) returns a set of actions (or commands) with ordering constraints that achieve the goal. In

Skoll, the initial state is the base subtask configuration. The base subtask configuration includes

any option settings that the ISA cannot modify (e.g., those that have been fixed by the client).

The goal state describes the desired configuration, consistent with the option settings specified by

the end-user. The operators encode all the constraints, including those resulting from previously

run subtasks.

Because the constraints are represented using a formal notation (described above), the Skoll

system is able to automatically translate the models into the ISA’s planning language called the

Planning Domain Definition Language (PDDL). To illustrate this process, we will use the three

options (described later in Section IV) MINIMUM POA, MINIMUM CORBA, CORBA MESSAGING and the

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

following two constraints as a running example here to describe relevant parts of the planner:

A. (MINIMUM POA = 1) :�; (MINIMUM CORBA = 1)

B. (CORBA MESSAGING = 1) :�; (MINIMUM CORBA = 0)

These constraints are automatically translated into the following four “planning actions” or

planning operators:

1. (:action set defined11 :precondition (Value MINIMUM POA v1) :effect (not (varDefined defined1)))

2. (:action set defined12 :precondition (not (Value MINIMUM CORBA v1)) :effect (not (varDefined defined1)))

3. (:action set defined31 :precondition (Value CORBA MESSAGING v1) :effect (not (varDefined defined3)))

4. (:action set defined32 :precondition (not (Value MINIMUM CORBA v0)) :effect (not (varDefined defined3)))

The translation of constraints into actions can best be understood by the logical equivalence

of the implication < � =
and the disjunction <?>@- = , where < and

=
are binary expressions. We

view each constraint as an implication and convert it to its logically equivalent disjunctive form.

The first two actions (set defined11, set defined12) encode the disjunction for Constraint A; the

third and fourth actions encode Constraint B. The variables defined1 and defined3 are temporary

variables that are used to connect the pairs of actions ((1,2), (3,4)). These variables ensure that

whenever the left-hand-side of the constraint is TRUE, the planner is forced to make the right-

hand-side TRUE. Note that the constants ACB and A�D represent B and D from our constraints

respectively.

The above operators are packaged together with an (initial state, goal state) pair and given as

input to the planner. An example of an (initial state, goal state) pair is:

(:objects MINIMUM POA - variable MINIMUM CORBA - variable

CORBA MESSAGING - variable v0 v1 - number defined1 - variable defined3 - variable)

(:init (varDefined defined1) (varDefined defined3))

(:goal (and (varDefined MINIMUM POA) (varDefined MINIMUM CORBA) (varDefined CORBA MESSAGING) (not (varDe-

fined defined1)) (not (varDefined defined3)))))

The above planning problem directs the planner to define the variables MINIMUM POA,

MINIMUM CORBA, and CORBA MESSAGING (with directive varDefined) and undefine

the remaining (defined1, defined3), thereby generating a valid configuration that satisfies con-

straints A and B.

For many planning problems, a single plan is sufficient. For Skoll, however, we need to

generate many or even all acceptable plans (i.e., subtask implementations). We therefore modified

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

the Blackbox planner so that it can iteratively generate all acceptable plans. We also added a

parameter to the ISA by which each acceptable plan is generated exactly once (random selection

without replacement) or zero or more times (random selection with replacement).

For example, if the process designer wants to ensure that all software configurations shown

in Table I compile cleanly, he/she would use a configuration and control model without the test

case- or runtime-specific options and would instruct the ISA to generate plans using the random

selection without replacement strategy (each valid configuration is generated exactly once). On

the other hand, if the task were to capture performance measures on a wide variety of user

machines, then the process designer might use all available options and have the ISA use the

random selection with replacement strategy (which could generate specific valid configurations

more than once).

We chose the Blackbox planner to generate solutions “with replacement” (i.e., the solutions

may be repeated) and “without replacement” (i.e., all solutions are unique). Blackbox converts

problems specified in the PDDL notation into boolean satisfiability (SAT) problems, and then

solves the problems using a randomized/restart SAT solver with dependency-directed backtrack-

ing. The randomized nature of this solver allowed us to generate a large number of unique

solutions by simply specifying the desired number on the command-line. This technique gave us

solutions “without replacement.” In other work, we implemented “with replacement” by invoking

the planner multiple times, asking for exactly one solution for each planner invocation; these

invocations were independent, hence solutions may be repeated.

3) Adaptation Strategies: As QA subtasks are performed, their results are returned to the

ISA. By default, the ISA ignores these results. Often, however, we want to learn from incoming

results. For example, when some configurations prove to be faulty, why not refocus resources

on other unexplored parts of the configuration and control space. When such dynamic behavior

is desired, process designers develop customized adaptation strategies, that monitor the global

process state, analyze it, and use the information to modify future subtask assignments in ways

that improve process performance.

Since they must process subtask results, adaptation strategies must be tailored for each QA

process. Consequently, in Skoll, adaptation strategies are independent programs executed by the

Skoll server when subtask results arrive. This decoupling of Skoll and the adaptation strategies

allows us to develop, add, and remove adaptation strategies at will. Next we describe three general

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

adaptation strategies used in our feasibility studies in Sections III and IV (other strategies are

discussed in Section VI).
� Nearest neighbor: Suppose a test case run in a specific configuration reports a failure.

Developers might want to focus on other similar configurations to see whether they pass or

fail. The nearest neighbor strategy is designed to generate such configurations when the ISA is

configured to choose configurations using random selection without replacement. For example,

suppose that a test on a configuration and control space with three binary options fails in

configuration
� B 	 B 	 BE� . The nearest neighbor search strategy marks that configuration as failed

and records its failure information. It then schedules for immediate testing all valid configurations

that differ from the failed one in the value of exactly one option setting:
� D 	 B 	 BE� , � B 	 D 	 BE� and� B 	 B 	 DF� , i.e., all distance-one neighbors. This process continues recursively.

Figure 2 depicts the nearest neighbor strategy on a configuration and control space taken from

our feasibility study in Section IV. Nodes represent valid configurations; edges connect distance

Fig. 2. Nearest Neighbor Strategy

one neighbors. The dotted ellipse encircles configurations that failed for the same reason. The

arrow indicates an initial failing node. Once it fails, its neighbors are tested; they fail, so their

neighbors are tested and so on. The process stops when nodes outside the ellipse are tested

(since they will either pass or fail for a different reason). As we show in the feasibility study,

this approach quickly identifies whether similar configurations pass or fail. This information is

then used by the automatic characterization service described later in this section.
� Temporary constraints: Suppose that a software incorrectly fails to build whenever binary

option AMI = 0 and binary option CORBA MSG = 1. Suppose further that this fact can

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

be discerned well before testing all such configurations (which comprise 25% of the entire

configuration and control space). In this situation, developers would obviously want prevent

continued testing of these configurations and would prefer to use their resources to test other parts

of the configuration and control space. To make this possible we created and adaptation strategy

that inserts temporary constraints, such as CORBA MSG = 1
�

AMI = 1 into the configuration

model. This excludes configurations with the offending option settings from further exploration.

Once the problem that prompted the temporary constraints has been fixed, the constraints are

removed, thus allowing normal ISA execution. These constraints, once negated, can also be used

to spawn new Skoll subtasks that test patches on only the previously failing configurations. We

employ this strategy in our feasibility study in Section IV-B.
� Terminate/modify subtasks: Suppose a test program is run at many user sites, failing

continuously. At some point, continuing to run that test program provides little new information.

Time and resources might be better spent running some previously unexecuted test program.

This adaptation strategy monitors for such situations and, depending on how it is implemented,

can modify subtask characteristics or even terminate the global process.

The strategies described above are just few examples of the ones that we use in our work. As

we encounter new situations, we implement new strategies. For example, we have observed that

passing/failing configuration spaces are not necessarily contiguous, i.e., failing subspaces may

be disjoint. Such situations cannot be found using the nearest neighbor strategy described above.

We are thus exploring the design of a variant of the nearest neighbor strategy that “sometimes

jumps” across neighbors, with the goal of finding other failing subspaces that are disjoint from

the subspace currently being explored.

4) Automatic characterization of subtask results: Since QA processes can unfold over long

periods of time, we often want to interpret subtask results incrementally. This is useful both

for adapting the process and for providing developers with feedback. Given the amount and

complexity of the data, this process must be automated.

To this end we have included implementations of Classification Tree Analysis (CTA) [5], [6]

in the Skoll infrastructure. CTA approaches are based on algorithms that take a set of objects,G �
, each of which is described by a set of features, H � ! , and a class assignment,

���
. Typically,

class assignments are binary and categorical (e.g., pass or fail, yes or no), but approaches exist

for multi-valued categorical, integer, and real valued class assignments. CTA’s output is a tree-

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

based model that predicts object class assignment based on the values of a subset of object

features. Other approaches (beyond the scope of this paper) such as regression modeling, pattern

recognition, neural networks, each with their own strengths and weaknesses, could be used

instead of CTA.

We used CTA in our feasibility studies, for example, to determine which options and their

specific settings best explained observed test case failures. Figure 3 shows a classification tree

model that characterizes 3 different compilation failures and 1 success condition for the results

of 89 different configurations. In this figure nodes contain predicates; when the predicate is true

the right branch is followed; otherwise the left. The figure also shows, among other things, that

compilation fails with error message “ERR-1,” whenever CORBA MSG is disabled and AMI is

enabled. It is also possible and often preferable to model different failure classes individually.

OK
 ERR-2

ERR-3

CORBA_MSG = 0

POLLER = 0

CALLBACK = 0

OK

ERR-1

AMI = 0

Fig. 3. Sample Classification Tree Model

5) Visualization: Since Skoll processes are expected to generate large amounts of data,

developers will likely need techniques for organizing and visualizing process results. We employ

web-based scoreboards that use XML to display job configuration results. The server scoreboard

manager provides a web-based query form allowing developers to browse Skoll databases for the

results of particular job configurations. Visualizations are programmable with results presented

in ways that are easy to use, readily deployed, and helpful to wide range of developers with

varying needs. We also incorporated a multi-dimensional data visualizer called Treemaps www.

cs.umd.edu/hcil/treemap to display the automatic characterization results described in

the previous section (Figure 4).

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Fig. 4. Treemaps Visualization of Failing/Passing Configurations Organized by Failure Characterization

C. Skoll Implementation

We implemented Skoll as a client/server system. To ensure cross-platform compatibility, the

Skoll system is written entirely in Perl and all communication between the Skoll server and clients

is done in XML via the HTTP protocol (e.g., via GET and POST methods). The remainder of

this section shows high-level implementation details of Skoll by tracing through a sequence of

events that execute during a typical distributed, continuous QA process.

1) Configuring Skoll: Because Skoll is designed to support a wide range of software systems

and QA processes, it requires customization/configuration before it can be used with a new

software system and a QA process. Given a QA task, the first step in configuring Skoll is

to create a configuration and control model that specifies how the QA task is divided into

several subtasks. The interpretation and execution details of QA subtasks are application specific

and provided to the Skoll system via implementing two application-specific interfaces called

ServerSideApplicationComponent (Figure 5) and ClientSideApplicationCom-

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

interface ServerSideApplicationComponent {
boolean init()
Instructions QA_job(Configuration c)
boolean finalize()

}

Fig. 5. Server side application component interface.

interface ClientSideApplicationComponent {
boolean init(QAJob job)
InstructionResult dispatch_instruction(Instruction i)
boolean finalize()

}

Fig. 6. Client side application component interface.

ponent (Figure 6)1 respectively. The details of these interfaces are given later in this section.

Here, we briefly summarize their usage.
� ServerSideApplicationComponent is used at the Skoll server to assist the ISA to

interpret QA subtasks and to create actual QA jobs. The Skoll server invokes the init() and

finalize() methods just before starting a new DCQA process and immediately after finishing

one, respectively.
� ClientSideApplicationComponent is used by the Skoll client to execute the QA jobs

sent by the ISA. The init() and finalize() methods of this component are invoked just before

and immediately after executing a QA job, respectively.

2) Registering Skoll Clients: End-users register with the Skoll server registration manager via

a web-based registration form, characterizing their client platforms. This information is used by

the ISA when it selects and generates job configurations to tailor generic subtask implementation

code. For example, some tailoring is for client-specific issues such as operating system type or

compiler; some for task-specific issues such as identifying the location of the project’s CVS

server.

After a registration form has been submitted, the server registration manager returns a unique

ID and configuration template to the end-user. The configuration template contains any user-

1Note that, for clarity purposes, we simplified the interfaces given in this paper; in an actual implementation, these interfaces

may be more complex.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

specific information that may not be modified by the ISA when generating job configurations.

The template can be modified by end-users who wish to restrict which job configurations they

will accept from the Skoll server. The end-user also receives a Skoll client kit, consisting of

cross-platform client software.

3) Requesting QA Jobs: Once installed, the Skoll client periodically or on-demand requests

QA jobs from the Skoll server. At each request, the Skoll client automatically detects information

that describes its platform configuration, including its operating system (i.e., OS version, kernel

version, vendor, etc.), compiler (i.e., version, patches, etc.), and hardware specifications (i.e.,

CPU details, number of CPUs, memory sizes, etc.). This information is used later by the ISA to

guide the QA process, e.g., to ensure that certain types of functional or performance regression

tests run on the appropriate platform configuration. The Skoll client packages the platform

configuration information together with the configuration template into a QA job request message

(QAJobReqMsg) and sends it to the ISA.

4) Generating QA Job Configurations: The ISA responds to each incoming request with a QA

job configuration (i.e., QA subtask), which is customized in accordance with the characteristics

of the client platform using the techniques described in Section II-B.2. Once a QA subtask is

computed for a requesting client, the ISA consults the ServerSideApplicationComponent via the

QA job method by passing the selected configuration as an argument. This method returns a set

of instructions which will assist the client to carry out the assigned QA subtask. The ISA then

packages these instructions and the selected configuration into a QA job (QAJob). A unique ID

(QAJobID) is assigned to each QA job and stored in the Skoll database along with the QA job

information.

Figure 7 depicts an example QA job configuration generated by the ISA. It consists of two

main sections: a configuration section and an instruction section. Upon receiving this QA job

configuration, the Skoll client would download ACE+TAO v5.2.3 from a CVS repository located

at cvs.doc.wustl.edu, configure it using the AMI and CORBA MSG options, build the ACE+TAO

system as well as a test case, run the test, parse the results and then upload the results to the

Skoll server.

The Skoll client kit provides implementations for a set of generic instructions, e.g., setting

environment variables, downloading a software from a remote CVS repository, starting/stopping

a log, running system commands, uploading a log file, etc. Each instruction is implemented as

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

<QAJob>
<configuration>

<option name=AMI val=0 />
<option name=CORBA_MSG val=1 />

</configuration>

<instructions>

<start_log target=all-activity.log />

<download>
<cvs>cvs.doc.wustl.edu</cvs>
<module>ACE+TAO</module>
<version>v5.2.3</version>

</download>

<configure />

<build target=ACE />
<build target=TAO />
<build target=tests/HelloWorld />

<run-test target=tests/HelloWorld />

<stop_log />

<parse target=all_activity.log />

<upload_results />

</instructions>
</QAJob>

Fig. 7. An Example QA Job

a separate component, which is in compliance with a common interface, which ensures that

Skoll’s default instruction set can be expanded easily. Moreover, instruction components are

loaded dynamically at runtime as needed, which allows the Skoll client to be upgraded with a

new set of instruction components even after deployment.

5) Executing QA Jobs: The Skoll client executes the set of instructions in the order they are

received. Instructions that are not in the default set of instructions supported by the Skoll client are

considered application-specific and passed to the ClientSideApplicationComponent component

via the dispatch instruction method (Figure 6). The client-side application-specific component

is responsible for executing the instruction. Each application-specific instruction is implemented

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

interface AdaptationStrategy {
boolean init()
Configurations adapt_to(QAJobID id)
boolean finalize()

}

Fig. 8. Interface between the ISA and adaptation strategies.

as a Perl package, conforming to a well-defined interface. The instruction interface includes

method signatures for setting the environment variables to execute the instruction, executing the

instruction, and logging and parsing the output of the instruction.

All client activities are stored into a log file (e.g., “all-activity.log” in Figure 7). The log file

consists of multiple sections where each section corresponds to an instruction executed by the

client (e.g., “download” and “build”). After the QA subtask is completed, the client is often

asked to parse the log file into an XML document, summarizing the QA subtask results.

6) Collecting QA Job Results: QA job results are collected and stored in a database at

the Skoll server. The Skoll database is implemented using mySQL and it contains tables to

store information about clients (e.g., OS, compiler, and hardware information, etc.), QA job

configurations allocated (e.g., QA job IDs, and the current status of the jobs, etc.) and the

QA job results (e.g., build results, functional test results, performance test results, etc.). Once

the database is populated, the ISA is notified about the incoming results. The ISA may use

this information to modify future subtask allocation via adaptation strategies as explained in

Section II-B.2.

Figure 8 shows the interface between the ISA and adaptation strategies. The init and finalize

methods are called once DCQA processes start and finish, respectively. The ISA notifies the

registered adaptation strategies via the adapt to method by passing the QA job ID as an argu-

ment. The adaptation strategies can then analyze the current state of the process and schedule

configurations for future allocation.

7) Analyzing and Visualizing QA Job Results: The analysis and visualization of QA job

results are application-specific. Depending on the characteristics of the QA task at hand and the

preferences of developers, some analysis/visualization tools can be preferable over others. Skoll

therefore provides a web-based portal to various analysis and visualization tools.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

We have put together all the components discussed above to develop a Skoll process, which

is described next.

D. Skoll in Action

Fig. 9. Process View of Skoll

The Skoll process shown in Figure 9 performs the following steps using the components and

services described in Section II-B:

Step 1. Developers create the configuration and control model and adaptation strategies. The

ISA automatically translates the model into planning operators. Developers create the generic

QA subtask code that will be specialized when creating actual job configurations.

Step 2. A user requests the Skoll client kit via the registration process described earlier. The

user receives the Skoll client and a configuration template. If users wish to temporarily change

option settings or constrain specific options they do so by modifying the configuration template.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

Step 3. The client periodically (or on-demand) requests a job configuration from a server.

Step 4. The server queries its databases and the user-provided configuration template to determine

which option settings are fixed for that user and which must be set by the ISA. It then packages

this information as a planning goal and queries the ISA. The ISA generates a plan, creates the

job configuration and returns it to the client.

Step 5. The client invokes the job configuration and returns the results to the server.

Step 6. The server examines these results and invokes all adaptation strategies, which update the

ISA operators to adapt the global process. Skoll adaptation strategies can currently use built-in

statistical analyses to help developers quickly identify large subspaces in which QA subtasks

have failed (or performed poorly).

Step 7. Periodically and when prompted by developers the server prepares a virtual scoreboard,

which summarizes subtask results and the current state of the overall process.

The following two sections present feasibility studies that demonstrate the usefulness of the

Skoll process described above.

III. INITIAL FEASIBILITY STUDY OF THE SKOLL INFRASTRUCTURE AND PROCESS

To gain experience with Skoll, we developed and executed a distributed, continuous QA

process as an initial feasibility study. Our goal was to to gather experience, so we simulated

several parts of the process and ignored many details, such as privacy and security issues, that

would be important in an actual deployment with real end users. The application scenario is

inspired by a software failure documented in version 1.7 of the Mozilla [7] web browser [8]–

[11]. When a user attempts to print an HTML document containing the select tag (the select

tag creates a drop-down list and allows users to choose one or more of its items), the browser

crashes. (See bug report 69634 in bugzilla.mozilla.org for more information).

This scenario is a good test of our approach because the failure’s appearance depends on

specific combinations of (1) input features (i.e., an HTML document containing a select tag),

(2) user actions (i.e., printing an HTML document), and (3) execution platform (i.e., version 1.7

of Mozilla, running in its default configuration. Its cause is extremely hard to identify due to

the sheer volume of possible causes, so anything that automatically reduces the set of possible

failure causes could be very useful to Mozilla’s developers.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

We developed the following Skoll-based distributed continuous QA process to test this system.

We would expect this process to executed by end user machines that are logically divided into

three major thread groups that execute the following process in parallel:

I Thread-1 captures web pages for later testing. To do this we create browser proxy compo-

nents and deploy them to volunteer users. These browser proxies intercept client web page

requests, retrieve the pages, and analyze them to determine whether they contains particular

HTML tags (previously uncaptured) and do not contain other HTML tags (already captured

and known to cause failures). Each proxy looks for a different set of HTML tags and the

list of uncaptured tag sets is updated over time. If the currently requested page contains a

desired tag set, users are asked to authorize sending the page to the Skoll server for further

analysis. After a tag set has been found it is removed from the list of previously unseen

tag sets.
I Thread-2 tests the web pages captured in Thread-1. When a Thread-2 client becomes

available, the ISA selects one previously captured web page, selects specific user actions

to be applied to that page, and chooses the configuration under which Mozilla is to be

run. The job is then sent to the client, which configures Mozilla, opens the page in it, and

invokes an automated robot to carry out the selected user actions. The results (i.e., failure

or non-failure) are returned to the Skoll server.
I Thread-3 applies a parallel version of Zeller’s Delta Debugging [9], [11] algorithm to

minimize the input of test cases that failed in Thread-2 by discarding subsets of the input

that do affect the failure’s manifestation. After the input is minimized all remaining HTML

tags are added to the set of HTML tags known to cause a failure. This action prevents

Thread-1 from searching for further pages containing these tags.

The overall goal of the process is to test a wide variety of real web pages, containing diverse

combinations of HTML tags and to execute a wide set of user actions on the pages across

Mozilla’s numerous run-time configurations. Moreover, when a failure occurs, we want to identify

the set of HTML tags that caused Mozilla to crash.

We implemented the process described above using Skoll, simulating several steps, such as

the user interaction in Thread-1 that issues web page requests and the crashing of the Mozilla

browser. Using Skoll, we first developed a configuration and control model for this process, a

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

Option Type Settings Interpretation
select HTML tag J 1 = Yes, X = Don’t Care K Is select tag required to be in current page?
table HTML tag J 1 = Yes, X = Don’t Care K Is table tag required to be in current page?LMLML More HTML tags
print User action J 1 = Yes, 0 = No K Print current web page to a file
bookmark User action J 1 = Yes, 0 = No K Store current URLLMLML Put in 3rd action
safe-mode Run-time option J 1 = Yes, 0 = No K Enable feature
sync Run-time option J 1 = Yes, 0 = No K Enable featureLMLML More Mozilla runtime options
Thread-ID Client characteristic J 1, 2 or 3 K Thread in which client participates

TABLE II

EXAMPLE CONFIGURATION MODEL

subset of which is shown in Table II. This model captures four types of options: (1) the HTML

tags that may be present in a web page, (2) user actions that may be executed on the page,

(3) Mozilla run-time configuration options, and (4) client characteristics. There were a total of

26 HTML tag options, 6 run-time configuration options, 3 user action options, and 1 client

characteristic option, which induce an enormous configuration and control space over which

we want to test. The Skoll system translated this model automatically into the ISA’s planning

language.

Next, we wrote the necessary QA subtask code that implement QA tasks such as (1) preparing

and deploying browser configuration scripts and browser proxy components that intercept web

page requests and then analyze the requested web page to see whether it contains certain sets

of HTML tags, (2) deploying and executing a test case, where executing a test case requires

viewing one web page within a specific configuration of the Mozilla browser and then invoking

a specific set of user actions on it, and (3) executing steps of the Delta Debugging algorithm to

minimize the input to previously failed test case.

To execute the QA process, we instructed the ISA to navigate the configuration and control

space using random sampling without replacement, i.e., each valid configuration was scheduled

exactly once by having the ISA randomly select (1) HTML tags to be searched for in a webpage,

(2) runtime configuration options for Mozilla, and (3) a set of user actions and the order in which

they are to be executed. This configuration is then placed on both the Thread-1 and Thread-2

job list (only the HTML tags are important for Thread-1).

For each job request from a Thread-1 client, the ISA randomly selects a job from the Thread-1

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

job list. Next, a browser proxy component is configured to carry out the search for the HTML

tags indicated by the configuration. The browser proxy is then deployed on the client machine.

To facilitate the demonstration, we configured the proxy to generate and return canned web

pages containing the required tags.

Upon receiving a job request from a Thread-2 client, the ISA randomly selects a job from

the Thread-2 job list for which the corresponding web page has already been captured by a

Thread-1 client. The ISA then builds a job package directing the client to (1) download the

Mozilla software from a remote repository, (2) configure it, (3) open the HTML document in

the browser, (4) execute the sequence of user actions using a GUI test automation tool called

GUITAR [12], and then (5) send the results (i.e., Mozilla crashed or did not crash as determined

by our simulated oracle) to the Skoll server. Each step was realized as an individual instruction in

the QA jobs sent by the Skoll server. We implemented only the application specific instructions

for step (3) and (4). For the rest, we used Skoll’s default set of instructions. When a test case

fails in Thread-2, it is subdivided into two pieces as dictated by the Delta Debugging algorithm

and both pieces are added to the Thread-3 subtask queue.

For each Thread-3 job request, a job (if available) is pulled from the Thread-3 job queue

and tested using the same infrastructure as in Thread-2. Depending on the results of the test (as

determined by our simulated oracle), the Delta Debugging algorithm may recursively subdivide

the input again for further testing. The algorithm stops when all possible subdivisions of the

input cause the failure to disappear. After the algorithm terminates, we manually analyze the

results to identify the failure inducing tag sets. We then used adaptation strategies to create

temporary constraints that prevent the creation of new QA subtasks involving these tags.

We spent N 30 hours directly implementing this scenario using the Skoll infrastructure. Two-

thirds of this time (N 20 hours) went to fixing bugs in Skoll that were uncovered during our

exploration. To run the process, we installed ten Skoll clients and one Skoll server across

workstations distributed throughout computer science labs at the University of Maryland. All

Skoll clients ran on Linux 2.4.9-3 platform. We used Mozilla v1.7 as our subject software. We

then executed various QA processes for over 100 hours as described above.

By conducting this initial feasibility study we gained the following experience with our Skoll

process and infrastructure:

I We demonstrated that the Skoll-based configuration and control model was sufficient to

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

define a test space consisting of subspaces for input cases (i.e., HTML tag options), user

actions (i.e., user action options), traditional software configuration options (i.e., Mozilla’s

run-time configuration options), and client characteristics (assignment of clients to thread

pools). One deficiency of the model was that it did not naturally support ordering among

different options. Specifically, we wanted to generate an ordering to the user actions (e.g.,

first bookmark, then print). Although this can be done using constraints, doing so is quite

cumbersome. Instead, we chose to model only the presence or absence of each action in

the current test case and then randomized the order of their application.
I We demonstrated the generality of the Skoll system and distributed continuous QA ideas by

developing and executing a simple yet interesting process at a reasonable level of effort. We

were able to integrate an existing test automation tool (i.e., a GUI test automation tool [12]),

an analysis technique (i.e., Delta Debugging algorithm), and an adaptation strategy (i.e.,

temporary constraints) within the Skoll infrastructure.
I We had serious difficulties implementing this process because our initial Skoll implemen-

tation hardwired many aspects of the DCQA process workflow. This experience led us to

create the APIs described in Section II-C, which greatly simplify adding application-specific

QA instructions to a DCQA process.
I We also uncovered some practical limitations. For example, we found we needed a debug-

ging mode for Skoll since there was no easy way to see what actions would happen during

a process without actually executing them, using resources, and updating Skoll’s internal

databases. We therefore added a feature to Skoll that simply echoes the instructions that

should be executed, but does not actually do so. UNIX users will recognize this behavior as

similar to what happens when the make program is run with the “-n” flag. We also found

the need for a systematic method to kill outstanding jobs or classes of jobs. While running

Delta Debugging, for instance, we often found solutions on one branch of the recursively

defined algorithm. At this point there was no reason to continue running jobs from other

branches, but we had no way to safely shut them down.

IV. A MULTI-PLATFORM FEASIBILITY STUDY OF SKOLL

Based on the success of our initial feasibility study described in Section III, we decided to

explore the use of Skoll on a larger project. We conjectured that the Skoll prototype would be

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

superior to the standard ad hoc QA processes used by the project because it (1) automatically

manages and coordinates the QA process, (2) detects problems more quickly on the average,

and (3) automatically characterizes subtask results, directing developers to potential causes of a

given problem. This section describes a second feasibility study that addressed these conjectures.

Subject Applications: Our subject applications were ACE+TAO, which are large middleware

platforms for performance-intensive distributed software applications. ACE [13] implements core

concurrency and distribution services; TAO [14] is a CORBA object request broker (ORB) built

using ACE.

We chose ACE+TAO for several reasons. The first reason is that they embody many of the chal-

lenging characteristics of modern software systems. For example, they have a 2MLOC+ source

code base and substantial test code. ACE+TAO run on dozens of OS and compiler platforms and

are highly configurable, with hundreds of options supporting a wide variety of program families.

ACE+TAO are maintained by a geographically distributed core team of N 40 developers. Their

code base is dynamically changing and growing with 400+ CVS repository commits per week

on the average. Currently, the ACE+TAO developers run the regression tests continuously on

100+ largely uncoordinated workstations and servers at a dozen sites around the world. Some

of the results of their testing can be seen at www.dre.vanderbilt.edu/scoreboard.

The interval between build/test runs ranges from 3 hours on quad-CPU machines to 12-18 hours

on less powerful machines. The platforms vary from different versions of UNIX (e.g., Solaris,

AIX, HP, and Linux) to Windows (Windows XP, Windows 2000, Windows CE) to Mac OS, as

well as to real-time operating systems, such as VxWorks and LynxOS.

The second reason for choosing ACE+TAO is that their developers cannot test all possible plat-

form and OS combinations because there simply are not enough people, OS/compiler, platforms,

CPU cycles, or disk space to run the hundreds of ACE+TAO regression tests in a timely manner.

Moreover, since ACE+TAO are designed for ease of subsetting, several hundred orthogonal

features/options can be enabled/disabled for application-specific use-cases. Thus, number of

possible configurations is far beyond the resources of the core ACE+TAO development team.

These characteristics of ACE+TAO are similar to much other complex software-intensive systems.

Study Goals: We focus on several scenarios, testing ACE+TAO for different purposes across

its numerous configurations. We used three QA task scenarios applied to a specific version of

ACE+TAO: (1) checking for clean compilation, (2) testing with default runtime options, and (3)

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

testing with configurable runtime options. In addition, we enabled automatic characterization to

give ACE+TAO developers concise descriptions of failing subspaces. As we identified problems

with the ACE+TAO, we time-stamped them and recorded pertinent information. This allowed us

to qualitatively compare Skoll’s performance to that of ACE+TAO’s ad hoc process. Since the

tasks involved in these scenarios are typically done by developers and involve fairly heavyweight

activities such as downloading a large code base from CVS, compiling the system and running

resource intensive test cases, we expect this process to be conducted mostly on resources

volunteered by project developers and by companies that use the software in their products.

We installed Linux and Windows Skoll clients and one Skoll server across 25 (11 Linux and

14 Windows) workstations distributed throughout computer science labs at the University of

Maryland. All Linux Skoll clients ran on Linux 2.4.9-3 stations and used gcc v2.96 as their

compiler; the Windows clients ran on Windows XP stations with Microsoft’s Visual C++ v6.0

compiler. On both platforms, we used TAO v1.2.3 with ACE v5.2.3 as the subject software.

A. Configuring the Skoll Infrastructure

We implemented all the components of the Skoll infrastructure described in Section II-B. We

then developed different QA task models for each scenario. We configured the ISA as a stand-

alone process running the Blackbox planner and instructed it to navigate the QA task space

using random sampling without replacement.

We used several adaptation strategies built into Skoll. Specifically, we integrated the nearest

adaptation strategies neighbor, temporary constraints, and terminate/modify subtasks into these

DCQA processes. We used temporary constraints and terminate/modify subtasks adaptation in

each scenario, but used nearest neighbor only when the QA task space was considered large. In

practice, process designers determine the criteria for deciding when a QA task space is large or

small.

We developed scripts that prepare task results and feed them into the CTA algorithms for

automatic fault characterization. We also wrote scripts that used the classification tree models

as input to visualizations.

The QA tasks for these studies must be run on both the Windows and Linux operating systems.

We therefore implemented client side QA tasks as portable Perl scripts. These scripts request new

QA job configurations, receive, parse, and execute the jobs, and return results to the server. We

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

also developed web registration forms and Skoll client kit. Skoll clients are initialized with the

registration information, but this information is rechecked on the client machine before sending

a job request. We developed MySQL database schemas to manage user data and test results.

B. Study 1: Clean Compilation

ACE+TAO allow many features to be compiled in or out of the system. Features are often left

out, for example, to reduce memory footprint in embedded systems. The QA task for this study

was to determine whether each ACE+TAO feature combination compiled without error. This

is important for systems distributed in source code form, since any valid feature combination

should compile. Unexpected build failures not only frustrate users, but also waste a lot of time.

For example, compiling the 2MLOC+ took us roughly 4 hours on a 933 MHz Pentium III with

400 Mbytes of RAM, running Linux.

1) QA task model: The feature interaction model for ACE+TAO is undocumented, so we built

our initial QA task model bottom-up. First, we analyzed the source and interviewed several senior

ACE+TAO developers. We selected 18 options; one of these options was the OS; the remaining

17 were binary-valued compile-time options that control build time inclusion of various CORBA

features. We also identified 35 inter-option constraints. For example, one constraint is (AMI =

1
�

MINIMUM CORBA = 0). This means that asynchronous method invocation (AMI) is not

supported by the minimal CORBA implementation. This QA task space has over 164,000 valid

configurations. Since none of the constraints were related to the OS option, the space was divided

equally by OS, i.e., 82,000 valid configurations per OS.

2) Study execution.: Because the QA task space was large, we used the nearest neighbor

adaptation strategy. We also configured the ISA to use random sampling replacement without

replacement since we felt that one observation per valid configuration was sufficient.

After testing N 500 configurations, the terminate/modify adaptation strategy signaled that every

configuration had failed to compile. We terminated the process and discussed the results with

ACE+TAO developers. Automatic characterization showed that the problem lay in 7 options

providing fine-grained control over CORBA messaging policies. It turned out that the code had

been modified and moved to another library and developers (and users) failed to establish if

these options still worked.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 30

Based on this feedback ACE+TAO developers chose to control these policies at link-time,

not at compile time. We therefore refined our QA task model by removing the options and

corresponding constraints. Since these options appeared in many constraints – and because the

remaining constraints are tightly coupled (e.g., were of the form (A=1
�

B=1) and (B=1
�

C=1)) – removing them simplified the QA model considerably. As a result, the QA task model

contained 11 options (one being OS) and 7 constraints, yielding only 178 valid configurations.

Of course, we are investigating just a small subset of ACE+TAO’s total QA task space; the

actual space is much larger.

We then continued the study using the new QA task model and removing the nearest neighbor

adaptation strategy (since now we could easily build all valid configurations). Of the 178 valid

configurations only 58 compiled without errors. For the 178-58=120 configurations that did not

build, automatic characterization helped to clarify the conditions in which they failed.

3) Results and observations.: Beyond identifying failures, in several cases, automatic char-

acterization provided concise, statistically significant descriptions of the subspaces in which

120 configurations failed. Below we describe the failure, present the automatically generated

characterization, and discuss the action taken by ACE+TAO developers.
� The ACE+TAO build failed at line 630 in userorbconf.h (64 configurations - 32 per OS)

whenever AMI = 1 and CORBA MSG = 0. ACE+TAO developers determined that the constraint

AMI = 1
�

CORBA MSG = 1 was missing from the model. We therefore refined the model

(for later studies) by adding this constraint.
� The ACE+TAO build also failed line 38 (line 37 for Windows2) in Asynch_Reply_Dispatcher.

h (16 configurations) whenever CALLBACK = 0 and POLLER = 1. Since this configuration

should be legal, this was determined to be a previously undiscovered bug. Until the bug could

be fixed, we temporarily added a new constraint POLLER = 1
�

CALLBACK = 1 (which we

carried forward to later studies).
� The ACE+TAO build failed at line 137 in RT_ORBInitializer.cpp (the error was

reported on line 665 in file RT_Policy_i.cppwhen the system was compiled under Windows.

Again, we attribute this difference to the compiler and not an ACE+TAO platform-specific prob-

2We noted that the compilers (gcc and MSVC++) reported different line numbers for the same error, requiring manual

examination and matching of error messages.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 31

lem.) (40 configurations) whenever CORBA MSG = 0. The problem was due to a #include

statement, missing because it was conditionally included (via a #define block) only when

CORBA MSG = 1.

4) Lessons learned.: We found that even ACE+TAO developers do not completely understand

the QA task model for their very complex system. In fact, they provided us with both erroneous

and missing model constraints. We quickly discovered that model building is an iterative process.

Using Skoll we quickly identified coding errors (some previously undiscovered) that prevented

the software from compiling in certain configurations. We learned that the temporary constraints

and terminate/modify subtasks adaptation strategies performed well, directing the global process

towards useful activities, rather than wasting effort on configurations that would surely fail

without providing any new information.

ACE+TAO developers also told us that automatic characterization was useful to them because

it greatly narrowed down the issues they had to examine in tracking down the root cause of the

failure. We also learned that as fixes to problems were proposed, we could easily test them by

spawning a new Skoll process based on the previously inserted temporary constraints. That is,

the new Skoll process tested the patched software only for those configuration that had failed

previously.

In this study, we did not find any actual platform-specific compilation problems – as mentioned

above, the faults characterized as platform-specific were actually due to differences in how

compilers generated error messages and reported error locations. Before moving on to the next

study we fixed those errors we could. We worked around those we could not fix by leaving the

appropriate temporary constraints in the second study’s QA task model.

C. Study 2: Testing with Default Runtime Options

The QA task for the second study was to determine whether each configuration would run the

ACE+TAO regression tests without error with the system’s default runtime options. This activity

is important for systems that distribute tests to run at installation time because it is intended

to give the user confidence that he or she has correctly installed the system. To perform this

task, users compile ACE+TAO, compile the tests, and execute the tests. On our Linux machines

this took around 8 hours: about 4 hours to compile ACE+TAO, about 3.5 hours to compile all

tests, and 30 minutes to execute them. On the Windows machines, this took around 1.5 hours:

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 32

about 19 minutes to compile ACE+TAO, about 22 minutes to compile all tests, and 37 minutes

to execute them. These speed differences occurred because the Windows experiments, which

occurred long after the original Linux experiments, were run on much faster and more memory

rich machines.

1) QA task model.: In this study we used 96 ACE+TAO tests, each containing its own test

oracle and reporting success or failure on exit. These tests are often intended to run in limited

situations, so we extended the QA task space, adding test-specific options. We also added some

options capturing low-level system information, indicating the use of static or dynamic libraries,

whether multithreading support is enabled, etc. This last step was necessary since clients were

running on Windows and Linux machines; each OS has its own low-level policies.

The new test-specific options contain one option per test. They indicate whether that test

is runnable in the configuration represented by the compile time options. For convenience, we

named these options OQP�R � # �S� . We also defined constraints over these options. For example, some

tests should run only on configurations with more than the Minimum CORBA features. So for

all such tests, # � , we added a constraint OTP�R � # �U� = 1
�

MINIMUM CORBA = 0. This prevents

us from running tests that are bound to fail. By default, we assume that all test are runnable

unless constrained to be otherwise.

2) Study execution.: After making these changes, the space had 15 compile time options

with 13 constraints and 96 test-specific options with an additional 120 constraints. We again

configured the ISA for random sampling without replacement. We did not use the Nearest

Neighbor adaptation strategy since we only tested the 58 configurations that built in Study

1. In this study, automatic characterization is done separately for each test and error message

combination, but is based only on the settings of the compile time-options.

3) Results and observations.: Overall, we compiled 4,154 individual tests. Of these 196

did not compile, 3,958 did. Of these, 304 failed, while 3,654 passed. This process took N 52

hours of computer time. As in the first study we now describe some of the interesting failures

we uncovered, the automatically-generated failure characterizations, and the action taken by

ACE+TAO developers.

I 3 tests failed in all configurations regardless of the OS. Even though the underlying problem

that led to the failures was not configuration-specific, the overall Skoll automation process

helped to uncover it. The failures were caused by memory corruption due to command-

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 33

line processing. Whenever the test script used a particular command-line option, namely

ORBSkipServiceConfigOpen, the tests failed. The usage of the above mentioned

option is not mandatory for the scripts but Skoll used it during the model-building and

stepwise refinement of command line options, identifying this previously undiscovered

problem.
I 3 tests failed only when (OS = Windows). These tests failed because the ACE server failed to

start on Windows platforms; this failure is caused by incorrect coding (Linux vs. Windows)

of server-invocation scripts in the tests. Improving test diversity (i.e., increasing the number

of platforms on which tests run) helped to find this problem.
I 2 tests failed in 17 configurations when (OS=Windows and AMI POLLER = 0). These

tests failed because clients did not get correct (or any) response from the server. These

tests should actually have failed on Linux too. However, Linux (and some flavors of Unix)

tolerate some amount of invalid memory scribbling without killing the process, thereby

allowing the test to pass, even though it should have failed. The failure is revealed only

on Windows because it is more rigorous in its memory management. Again, increasing test

diversity (by increasing the number of platforms), we were able to detect this previously

unrevealed problem.
I 2 tests failed in 3 configurations when (OS = Linux and AMI = 1 and AMI POLLER and

DIOP = 0 and INTERCEPTORS = 1). The same 2 tests failed in 6 configurations when

(OS = Linux and AMI = 1 and AMI POLLER = 0 and DIOP = 1). The same 2 tests

failed 29 configurations when (OS = Windows). According to the ACE+TAO developers,

this problem occurs on and off due to a quirk in the way TP Reactor (the default reactor in

TAO) handles active handles in a FD SET.3 The reactor was not picking up the sockets. This

error still occurs but not all the time. This example suggests that testing each configuration

exactly once may not be adequate to deal with rarely occurring, nondeterministic faults.
I In several cases, multiple tests failed for the same reason on the same configurations. For

example, test compilation failed at line 596 of ami_testC.h for 7 tests, each when

(CORBA MSG = 1 and POLLER = 0 and CALLBACK = 0). This was a previously undis-

covered bug. It turned out that certain files within TAO implementing CORBA Messaging

3Please refer to http://deuce.doc.wustl.edu/bugzilla/show bug.cgi?id=982 for more details.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 34

incorrectly assumed that at least one of the POLLER or CALLBACK options would always

be set to 1. ACE+TAO developers also noticed that the failure manifested itself no matter

what the setting of the AMI was. This was also a previously undiscovered problem because

these tests should not have been runnable when AMI = 0. Consequently, there was a missing

testing constraint, which we then included in the test constraint set.
I The test MT_Timeout/run_test.pl failed in 28 of 58 configurations with an error

message indicating response timeout. No statistically significant model could be found.

This suggests that the error report might be covering multiple underlying failures, that

the failure(s) manifests themselves intermittently, or that some other factor, not related to

configuration options, is causing the problem. It appears that this particular problem appears

intermittently and is related to inconsistent timer behavior on certain OS/hardware platform

combinations.

4) Lessons learned.: We easily extended and refined the initial QA task model to create more

complex QA processes. We again were able to carry out a sophisticated QA process across remote

user sites on a continuous basis. In this case, we exhaustively explored the QA task space in

less than a day and quickly flagged numerous real problems with ACE+TAO. Some of these

problems had not been found with ACE+TAO’s ad hoc QA processes. In fact, the model-building

and automation process led to the discovery of the improper handling of command-line options.

We also learned several things about automatic problem characterization. In particular, the

generated models can be unreliable. We use notions of statistical significance to help indicate

weak models, but more investigation is necessary. Also, the tree models we use may not be

reliable when failures are non-deterministic and the ISA has been configured to generate only

a single observation per valid configuration. In the presence of potentially non-deterministic

failures, therefore, it may desirable to configure the ISA for random selection with replacement.

We learned that the test diversity Skoll enforces helped to uncover several previously unde-

tected errors by examining corner cases not well tested with the current QA process, e.g., when

certain configurations do not report errors properly.

D. Study 3: Testing with Configurable Options

The QA task for the third study was to determine whether each configuration would run

the ACE+TAO regression tests without error over all settings of the system’s runtime options.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 35

This is important for building confidence in the system’s correctness. To do this users compile

ACE+TAO, compile the tests, set the appropriate runtime options, and execute the tests. For us,

each task would have taken about 8 hours.

1) QA task model.: To examine ACE+TAO’s behavior under differing runtime conditions,

we modified the QA task model to reflect 6 multi-valued (non-binary) runtime configuration

options. These options set up to 648 different combinations of CORBA runtime policies: when

to flush cached connections, what concurrency strategies the ORB should support, etc. Since

these runtime options are independent, we did not add any new constraints.

After making these changes, the compile-time option space had 15 options and 13 constraints,

there were 96 test-specific options with an additional 120 constraints, and there were 6 runtime

options with no new constraints.

2) Study execution.: The QA task space for this study had 37,584 valid configurations. At

roughly 30 minutes per test suite, the entire process involved around 18,800 hours of computer

time. Given the large number of configurations, we used the nearest neighbor adaptation strategy.

3) Results and observations.: The total number of test executions was 3,608,064. Of these,

689,603 test failed, with 458 unique error messages. We now provide details of these executions

and failures.

I One observation is that several tests failed in this study even though they had not failed

in Study 2 (when running tests with default runtime options). Some even failed on every

single configuration (including the default configuration tested earlier), despite not failing

in Study 2! In the latter case, the problems were often caused by bugs in option setting

and processing code. In the former case, the problems were often in feature-specific code.

ACE+TAO developers were intrigued by these findings because they rely heavily on testing

of the default configuration by users at installation time, not just to verify proper installation,

but to provide feedback on system correctness.
I 8 tests failed when (ORBCollocation = NO) in 12,441 configurations. These failures were

due to a bug in TAO. Object references were being created properly, but not being activated

properly leading to errors. The developers have fixed this very serious problem.
I One test TAO tests RTCORBA Policy Combinations run test failed when (OS

= Windows) in 18,585 configurations. This bug was due to a race condition in the SHMIOP

code in TAO. This bug has now been fixed.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 36

I A group of three tests had particularly interesting failure patterns. These tests failed between

2,500 and 4,400 times. In each case automatic characterization showed that the failures

occurred when ORBCollocation = NO. No other option influenced failure manifestation.

In fact, it turned out that this setting was in effect over 99% of the time when Tests

Big_Twoways/run_test.pl, Param_Test/run_test.pl, or MT_BiDir/run_

test.pl failed.

TAO’s ORBCollocation option controls the conditions under which the ORB should

treat objects as being co-located and thus should allow messages to be sent directly, instead

of over the network. The NO setting means that objects are never co-located. When objects

are not co-located they must talk to each other via the network. When they are co-located,

they may communicate directly. The fact that these tests worked when objects communicated

directly, but failed when they talked over the network clearly suggested a problem related

to message passing. In fact, the source of the problem was a bug in their routines for

marshalling/unmarshalling object references.
I 3 tests failed in 6 configurations when (OS=Linux and AMI POLLER = 0 and INTERCEPTORS

= 0 and NAMED RT MUTEXES = 1). The same 3 tests failed in 10 configurations when

(OS=Linux and AMI POLLER = 0 and INTERCEPTORS = 1). It turned out that this failure

was a side-effect of the order in which the test cases happened to execute. It had nothing

to do with the specific test cases themselves or the options (except OS=Linux), i.e., this

problem was specific only to the Linux platform. The tests failed when Linux ran out of the

SHM (shared memory segments) available to the OS. We discovered that TAO leaks SHM

segments on Unix-based platforms. If enough tests were run on a particular Linux machine,

the machine ran out of the SHM segments, causing all subsequent tests to fail. If these

particular tests had been run earlier, they would not have failed. In effect, we inadvertently

conducted a load test on some machines.

4) Lessons learned.: We learned several things from Study 3. First, we confirmed that our

general approach could scale well to larger QA task spaces. We also reconfirmed one of our

key conjectures: that data from the distributed QA process can be analyzed and automatically

characterized to provide useful information to developers. We also saw how the Skoll process

gives better coverage of the QA task space than does the process used by ACE+TAO (and, by

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 37

inference, many other projects).

We also note that our Nearest Neighbor adaptation strategy explores configurations until it

finds no more failing configurations. In cases where a large subspace is failing a lot of work

will be done (e.g., as described above in roughly 5,000 out of a total 20,000 configurations,

ORBCollocation = NO and the test failed). Looking back at the data, it is clear that we

could have stopped the search much earlier and still correctly identified the problem. We intend

to explore this issue in the future.

E. Discussion

The three studies presented in this section confirmed or reinforced multiple lessons learned

about the characteristics of Skoll, distributed continuous QA, and the specific subject applica-

tions. First, our conjectures about Skoll were supported, i.e., the overall approach worked well.

ACE+TAO developers were quite happy with the results and will use it more aggressively in

the future. They report that our process is significantly broader than their current QA process. It

detected problems quickly, several of which they were not aware of. They also said they benefited

from automatic fault characterization. This feature helped them to quickly narrow down the set

of possible failure causes, avoiding multiple rounds of ultimately fruitless hypothesizing as to

the causes of specific failures.

Our use of the QA task model helped us to quickly extend the studies to a completely different

platform (i.e., Windows vs. Linux vs. Solaris) with very little work and code modification. The

fundamental change required for this extension was the addition of a new variable OS. We

also added some options to capture low-level system information, indicating the use of static

or dynamic libraries, whether multithreading support is enabled, etc. This step was necessary

since clients were running on Windows and Linux machines and each OS has its own low-level

policies. Constraints associated with these option variables helped to control platform-specific

test cases; these test cases were already available for ACE+TAO. Since many of these tests

are often intended to run in limited situations, we extended the QA task space by adding test-

specific options. Since much of the Skoll code is portable (control scripts are implemented in

Perl), everything else was reused across platforms. We are confident that future extensions can

also be done easily.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 38

We learned that full automation of all Skoll processes will require adaptation of several low-

level tools. For example, automatic characterization of errors requires that all platform-specific

tools (e.g., compliers) report the errors in a “similar” format. Study 2 showed us that tools such

as compilers report the same error very differently on different platforms. In the future, we will

need to “wrap” the error messages generated by these tools so that they “look” similar to our

automatic characterization algorithms. We envision that some manual work will be involved in

writing these wrappers each time a new error is encountered; subsequent encounters should be

handled automatically.

We discovered that there is significant “boot cost” associated with each application before

it can be put under Skoll control. These costs were not necessarily caused by Skoll, however.

For example, understanding the ACE+TAO QA task space required significant interaction with

ACE+TAO developers, who did not completely understand their own system. We also found

that several errors in ACE+TAO’s command-line option processing needed to be discovered and

eliminated before the Skoll scripts could be used. We expect that these errors will continue to

be discovered and fixed as new DCQA processes are developed.

We learned (from Study 3) that the order in which sub-tasks are executed may also have an

impact on their results. This result uncovered a deeper issue that we need to handle carefully in

the future – the context in which a test case executes has an impact on its outcome. We will need

to improve the Skoll task execution policies to better handle context. Each task should execute

in a pre-determined “clean” context; each task should also restore the system environment so

that subsequent tasks remain unaffected.

V. RELATED WORK

Our research is closely related to other efforts in the area of remote analysis and measurement

of software systems. The particular application to which we apply our research is related to

software engineering techniques used to create, manage and validate configurable systems.

A. Remote Analysis and Measurement of Software Systems

Several attempts have been made to feedback fielded behavioral information to designers.

These approaches gather various types of runtime and environmental information from programs

deployed in the field, i.e., on user platforms with user configurations.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 39

1. Distributed regression test suites. Many popular projects distribute regression test suites that

end-users run to evaluate installation success. Well-known examples include GNU GCC [15],

CPAN [16], and Mozilla [7]. Users can – but frequently do not – return the test results to project

staff. Even when results are returned, however, the testing process is often undocumented and

unsystematic. Therefore, developers have no record of what was tested, how it was tested, or

what the results were, resulting in the loss of crucial information.

2. Auto-build scoreboards. Auto-build scoreboards monitor multiple sites that build/test a

software system on various hardware, operating system, and compiler platforms. The Mozilla

Tinderbox [17] and ACE+TAO Virtual Scoreboard [18] are auto-build scoreboards that track

end-user build results across various volunteered platforms. Bugs are reported via the Bugzilla

issue tracking system [19], which provides inter-bug dependency recording and integration with

automated software configuration management systems, such as CVS [20]. While these systems

help to document multiple build processes, deciding what to put under system control and how

to do it is left to users. Unless developers can control at least some aspects of the build and

process, important gaps and inefficiencies will still occur.

3. Remote data collection systems. Online crash reporting systems such as the Netscape Quality

Feedback Agent [21] and Microsoft XP Error Reporting [22], gather system state at a central

location when fielded systems crash, simplifying user participation by automating some parts

of problem reporting. Orso et al. [23] developed the GAMMA system to collect partial runtime

information from multiple fielded instances of a software system. GAMMA allows users to

conduct a variety of different analyses, but is limited to tasks for which capturing low-level

profiling information is appropriate. One limitation of these approaches is their limited scope,

i.e., they capture only a small fraction of interesting behavioral information. Moreover, they

are reactive (i.e., the reports are only generated after systems crash), rather than proactive (i.e.,

attempting to detect, identify, and remedy problems before users encounter them).

4. Remote data analysis techniques. The emergence of remote data collection systems has

spurred research into better remote analysis techniques. Podgursky et al. [24]–[28] present

techniques for clustering program executions. Their goal is to support automated fault detection

and failure classification. Bowring et al. [29] classify program executions using a technique

based on Markov models. Brun and Ernst [30] use two machine learning approaches to identify

types of invariants that are likely to be good fault indicators. Liblit et al. [31], [32] remotely

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 40

capture data on both crashing and non-crashing executions, using statistical learning algorithms

to identify data that predicts each outcome. Elbaum and Diep [33] investigate ways to efficiently

collect field data and use them for improving the representativeness of test suites. Michail and

Xie [34] Stabilizer system correlates users’ partial event histories with failures they report. The

models are then linked back into running systems allowing them to predict reoccurences of the

failure. Users are also offered a chance to terminate the current operation when imminent failure

is predicted. These efforts share several limitations. Most of them consider only a few specific

features of program executions, such as program branches, method entry counts or variable

values. They do not support broader types of quality assurance techniques. Also, many such

techniques require heavyweight data collection, which creates considerable overhead in terms of

code bloat, data transmission and analysis costs and, in most cases, execution time.

5. Distributed continuous quality assurance (DCQA) environments. DCQA environments are

designed to support the design, implementation and execution of remote data analysis techniques

such as the ones described in the previous paragraph. For example, Dart [35] and CruiseC-

ontrol [?] are continuous integration servers that initiate build and test processes whenever

repository check-ins occur. Users install clients that automatically check out software from a

remote repository, builds it, executes the tests, and submits the results to the Dart server. A

major limitation of Dart and CruiseControl, however, is that the underlying QA process is hard-

wired, i.e., other QA processes or other implementations of the build and test process are not

easily supported and the process cannot be steered. As a result, these QA processes cannot exploit

incoming results nor avoid already discovered problems, which leads to wasted resources and

lost improvement opportunities.

Although these efforts described above can provide some insight into fielded behavior, they

have significant limitations. First, they are largely ad hoc and often have no scientific basis

for assuring that information is gathered systematically and comprehensively. Second, many

existing approaches are reactive and have limited scope (e.g., they can be used only when

software crashes or only focus only on a single, narrow task), whereas effective measurement

and analysis support needs to be much broader and more proactive (e.g., seeking to collect and

analyze important information continuously, before problems occur). Third, existing approaches

inadequately document the activities that have been performed, which makes it hard to de-

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 41

termine the full extent of (or gaps in) the measurement and analysis process. Fourth, existing

approaches limit developer control over the measurement and analysis process (e.g., although

developers may be able to decide what aspects of their software to examine, some usage contexts

are evaluated multiple times, whereas others are not evaluated at all). Finally, most existing

approaches do not intelligently adapt by learning from measurement results obtained earlier by

other users. These limitations collectively yield inefficient and opaque in-the-field measurement

and analysis processes that are insufficient to support today’s software designers.

Our work with Skoll is intended to improve this situation. One other example of this is

our use of Skoll to support distributed continuous performance assessment [36]. In this work

we developed a new adaptation strategy based on using Design of Experiments (DOE) theory

to identify a small set of observations (an experimental design selecting configurations to be

tested) that allows us to determine which combinations of options and settings significantly affect

performance. This information allowed us to then quickly estimate whether future changes to

the system degraded performance.

B. Software Engineering for Configurable Systems

We applied our distributed, continuous quality assurance approach to the functional testing

of a highly configurable software system. Our work is therefore related to other research that

creates, manages, and validates configurable software systems.

Software development approaches that emphasize portability, customizability, large-scale reuse

or incremental development (e.g., product line architectures, feature- and middleware-oriented

development, or agile development) often rely on identifying and leveraging the commonalities

and variabilities of their target application domain [37]. Several researchers have therefore created

techniques to model the configuration spaces and interdependencies of such systems. Most

processes for developing product line architectures, for example, incorporate visual models [38]–

[40] of the system’s variation points. More recent work has focused specifically on system

variability and supports various types of reasoning and analysis over the models [41], [42]. With

appropriate translators, most of these models could easily be translated into Skoll’s format.

Some work has also been done to develop techniques for testing highly configurable systems.

One example is the use of covering arrays to reduce the number of input combinations needed

to test a program [43]–[48]. Mandl [48] first used orthogonal arrays, a special type of covering

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 42

array in which all V -sets occur exactly once, to test enumerated types in ADA compiler software.

This idea was extended by Brownlie et al. [43] who developed the orthogonal array testing

system (OATS). They provided empirical results to suggest that the use of orthogonal arrays is

effective in fault detection and provides good code coverage. Dalal et al. [46] argue that the

testing of all pairwise interactions in a software system finds a large percentage of the existing

faults. In further work, Burr et al., Dunietz et al. and Kuhn et al. provide more empirical results

to show that this type of test coverage is effective [44], [47], [49].

These studies described above focus on finding unknown faults in already tested systems and

equate covering arrays with code coverage metrics [45], [47]. Yilmaz et al. [50], [51] apply

covering arrays to testing configurable systems. They show that covering arrays were effective

not only in detecting failures, but also in characterizing the specific failure inducing options.

VI. CONCLUDING REMARKS AND FUTURE WORK

This paper describes our initial attempts to design, execute, and evaluate distributed continuous

quality assurance (QA) processes. We first presented Skoll, which is an environment for imple-

menting feedback-driven distributed continuous QA processes that leverage distributed computing

resources to improve software quality. We then implemented several such processes using Skoll

and evaluated their effectiveness in two feasibility studies that applied Skoll, partially on Mozilla,

and more fully on ACE+TAO, which are several large-scale software systems containing millions

of lines of code.

Using Skoll, we iteratively modeled complex QA task spaces, developed novel large-scale

distributed continuous QA processes, and executed them on multiple clients. As a result, we

found real bugs, some of which had not been identified previously. Moreover, the ACE+TAO

developers reported that Skoll’s automatic failure characterization greatly simplified identifying

the root causes of certain failures.

Our work on the Skoll environment is part of an ongoing research project. In addition

to providing insight into Skoll’s current benefits and limitations, therefore, the results of our

feasibility studies is also helping guide our future work, as follows:
� Our initial feasibility studies were limited to a small number of machines at the University

of Maryland. We are extending and generalizing this work in two dimensions. First, we recently

received a equipment award from ONR’s DURIP program to build a large-scale, heterogeneous

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 43

computing cluster to support our research, as described in Section I. We have rerun the exper-

iments described in this article on this cluster (the results were the same) and will expand our

use of it in the future.

Second, we are working on replicating our feasibility studies, ultimately a dozen test sites

and hundreds of machines provided by ACE+TAO developers and user groups in two continents

(www.dre.vanderbilt.edu/scoreboard lists sites that are contributing machines). As

the scope of our work increases we will investigate security and privacy issues more thoroughly.

For now, however, these participants are accustomed to downloading, compiling and testing

ACE+TAO, so no special security and privacy precautions appear necessary. However, we are

developing security and privacy policies based on existing volunteer computing systems such as

Microsoft’s Watson system and the Berkeley Open Infrastructure for Network Computing (which

supports projects such as seti@home).
� We are applying Skoll to a broader range of application domains, including running pro-

totyping experiments for enterprise distributed systems and large-scale shipboard computing

environments, that have many configuration parameters and options, some of which need to be

evaluated dynamically as well as statically.
� We are enriching Skoll’s QA task models to support hierarchical models, not just the flat

option spaces supported currently. We are incorporating priorities in the model so that different

parts of the configuration space can be explored with different frequencies. We are also looking

at how to incorporate real-valued option settings into the models.
� We are enhancing the ISA to allow planning based on cost models and probabilistic

information, e.g., if historical data suggests that users with certain platforms send requests at

certain rates, it can take this information in account when allocating job configurations. We are

also exploring higher level planners to simultaneously plan for multiple QA processes (not just

one at a time as the ISA does now).
� We are also integrating model-based test-case generation techniques (e.g., our work with

GUITAR [52]) with Skoll. We envision that this model will supplement the QA task space.

While traversing the QA task space, Skoll’s navigation/adaptation strategies may use the test-

case generation techniques to obtain new test cases on demand.
� Currently individual QA tasks must be executed on a single computing node. This restriction

prevents us from answering certain kinds of questions, such as what is the average response

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 44

time for requests sent from users in one geographical region to servers in another region. We

are investigated how peer-to-peer and overlay network technologies can help to broaden the QA

tasks Skoll can handle.

REFERENCES

[1] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil, “Applying classification techniques to remotely-collected program

execution data,” in Proceedings of the International Symposium on the Foundations of Software Engineering, Lisbon,

Portugal, Sept. 2005.

[2] M. Haran, A. F. Karr, M. Last, A. Orso, A. Porter, A. Sanil, and S. Fouche, “Classifying software failures to support

remote measurement and analysis of software systems.”

[3] Atif Memon and Adam Porter and Cemal Yilmaz and Adithya Nagarajan and Douglas C. Schmidt and Bala Natarajan,

“Skoll: Distributed continuous quality assurance,” in Proceedings of the 26th International Conference on Software

Engineering, May 2004.

[4] H. Kautz and B. Selman, “Unifying SAT-based and graph-based planning,” in Workshop on Logic-Based Artificial

Intelligence, Washington, DC, June 14–16, 1999, J. Minker, Ed. College Park, Maryland: Computer Science Department,

University of Maryland, 1999.

[5] L. Breiman, J. Freidman, R. Olshen, and C. Stone, Classification and Regression Trees. Monterey, CA: Wadsworth, 1984.

[6] R. W. Selby and A. A. Porter, “Learning from examples: Generation and evaluation of decision trees for software resource

analysis,” IEEE Trans. Software Engr., vol. 14, no. 12, pp. 1743–1757, December 1988.

[7] The Mozilla Organization, “Mozilla,” www.mozilla.org/, 1998.

[8] A. Zeller, “Isolating cause-effect chains from computer programs,” in Proceedings of the tenth ACM SIGSOFT symposium

on Foundations of software engineering. ACM Press, 2002, pp. 1–10.

[9] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2,

pp. 183–200, 2002.

[10] R. Hildebrandt and A. Zeller, “Simplifying failure-inducing input,” in Proceedings of the 2000 ACM SIGSOFT international

symposium on Software testing and analysis. ACM Press, 2000, pp. 135–145.

[11] A. Zeller, “Yesterday, my program worked. today, it does not. why?” in Proceedings of the 7th European software

engineering conference held jointly with the 7th ACM SIGSOFT international symposium on Foundations of software

engineering. Springer-Verlag, 1999, pp. 253–267.

[12] X11-GUITest-0.20, search.cpan.org/ W ctrondlp/X11-GUITest-0.20.

[13] D. Schmidt and S. Huston, C++ Network Programming: Resolving Complexity with ACE and Patterns. Addison-Wesley,

2001.

[14] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of Real-Time Object Request Brokers,”

Computer Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[15] GNU. Gnu gcc. [Online]. Available: http://gcc.gnu.org

[16] CPAN. Comprehensive perl archive network (cpan). [Online]. Available: http://www.cpan.org

[17] Mozilla. Tinderbox. [Online]. Available: http://www.mozzila.org

[18] “Doc group virtual scoreboard,” www.dre.vanderbilt.edu/scoreboard/.

[19] The Mozilla Organization. (1998) bugs. [Online]. Available: http://www.mozilla.org/bugs/

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 45

[20] SourceGear Corporation. (1999) CVS. [Online]. Available: http://www.sourcegear.com/CVS

[21] Netscape. Netscape quality feedback system. [Online]. Available: http://www.netscape.com

[22] Microsoft. Microsoft xp error reporting. [Online]. Available: http://support.microsoft.com/?kbid=310414

[23] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma system: Continuous evolution of software after deployment,”

in Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2002), Rome,

Italy, july 2002, pp. 65–69.

[24] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing failure: the distribution of program failures in a profile space,” in

Proceedings of the 8th European Software Engineering Conference held jointly with 9th ACM SIGSOFT international

symposium on Foundations of Software Engineering, September 2001, pp. 246–255.

[25] W. Dickinson, D. Leon, and A. Podgursky, “Finding failures by cluster analysis of execution profiles,” in Proceedings of

the 23rd International Conference on Software Engineering (ICSE 2001), May 2001, pp. 339–348.

[26] P. Francis, D. Leon, M. Minch, and A. Podgurski, “Tree-based methods for classifying software failures,” in Proceedings

of the 15th International Symposium on Software Reliability Engineering (ISSRE’04), November 2004, pp. 451–462.

[27] D. Leon, A. Podgurski, and L. J. White, “Multivariate visualization in observation-based testing,” in Proceedings of the

22nd international conference on Software engineering (ICSE 2000), May 2000, pp. 116–125.

[28] A. Podgurski, D. Leon, P. Francis, W. Masri, M. M. Sun, and B. Wang, “Automated support for classifying software

failure reports,” in Proceedings of the 25th International Conference on Software Engineering (ICSE 2003), May 2003,

pp. 465–474.

[29] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning for automatic classification of software behavior,” in

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA 2004), July 2004, pp. 195–205.

[30] Y. Brun and M. D. Ernst, “Finding latent code errors via machine learning over program executions,” in Proceedings of

the 26th International Conference on Software Engineering (ICSE 2004), May 2004, pp. 480–490.

[31] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote program sampling,” in Proceedings of the

Conference on Programming Language Design and Implementation (PLDI 2003), June 2003, pp. 141–154.

[32] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical bug isolation,” in Proceedings of the

Conference on Programming Language Design and Implementation (PLDI 2005), June 2005.

[33] S. Elbaum and M. Diep, “Profiling Deployed Software: Assessing Strategies and Testing Opportunities,” IEEE Transactions

on Software Engineering, vol. 31, no. 4, pp. 312–327, 2005.

[34] A. Michail and T. Xie, “Helping users avoid bugs in gui applications,” in ICSE ’05: Proceedings of the 27th international

conference on Software engineering. New York, NY, USA: ACM Press, 2005, pp. 107–116.

[35] Kitware. public.kitware.com. [Online]. Available: http://public.kitware.com

[36] CruiseControl, “Continuous Integration Toolkit,” http://cruisecontrol.sourceforge.net.

[37] C. Yilmaz, A. Krishna, A. Memon, A. Porter, D. Schmidt, A. Gokhale, and B. Natarajan, “Main effects screening: A

distributed continuous quality assurance process for monitoring performance degradation in evolving software systems,”

in ICSE ’05: Proceedings of the 27th International Conference on Software Engineering. IEEE Computer Society, 2005.

[38] J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in software product lines,” in Proceedings 2nd

Working IEEE / IFIP Conference on Software Architecture (WICSA), 2001, pp. 45–54.

[39] D. M. Weiss and C. T. R. Lai, “Software product-line engineering: A family-based software development process,” 1999.

[40] H. Gomaa, “Modeling software product lines with uml,” in Proceedings of the Second International Workshop on Software

Product Lines: Economics, Architectures, and Implications, May 2001, pp. 27–31.

June 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 46

[41] M. Griss, J. Favaro, and M. d’Alessandro, “Integrating feature modeling with the rseb,” in Proceedings of International

Conference on Software Reuse, June 1998, pp. 36–45.

[42] S. Buhne, G. Halmans, and K. Pohl, “Modeling dependencies between variation points in use case diagrams,” in Proceedings

of 9th Intl. Workshop on Requirements Engineering - Foundations for Software Quality, June 2003, pp. 59–70.

[43] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-oriented domain analysis (foda) feasibility study,”

Software Engineering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-TR-21, November 1990.

[44] R. Brownlie, J. Prowse, and M. S. Phadke, “Robust testing of AT&T PMX/StarMAIL using OATS,” AT&T Technical

Journal, vol. 71, no. 3, pp. 41–7, 1992.

[45] K. Burr and W. Young, “Combinatorial test techniques: Table-based automation, test generation and code coverage,” in

Proc. of the Intl. Conf. on Software Testing Analysis & Review, 1998.

[46] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG system: an approach to testing based on

combinatorial design,” IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437–44, 1997.

[47] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M. Horowitz, “Model-based testing

in practice,” in Proc. of the Intl. Conf. on Software Engineering, (ICSE), 1999, pp. 285–294.

[48] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. M. ws, and A. Iannino, “Applying design of experiments to software

testing,” in Proceedings of the International Conference on Software Engineering, (ICSE), 1997, pp. 205–215.

[49] R. Mandl, “Orthogonal Latin squares: an application of experiment design to compiler testing,” Communications of the

ACM, vol. 28, no. 10, pp. 1054–1058, 1985.

[50] D. Kuhn and M. Reilly, “An investigation of the applicability of design of experiments to software testing,” in Proceedings

of the 27th Annual NASA Goddard/IEEE Software Engi neering Workshop, 2002, pp. 91–95.

[51] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient fault characterization in complex configuration

spaces.” in ISSTA, 2004, pp. 45–54.

[52] M. C. C. Yilmaz and A. Porter, “Covering arrays for efficient fault characterization in complex configuration spaces,” IEEE

Transactions on Software Engineering, vol. 31, no. 1, pp. 20–34, 2006.

[53] A. M. Memon and Q. Xie, “Studying the fault-detection effectiveness of GUI test cases for rapidly evolving software,”

IEEE Transactions on Software Engineering, vol. 31, no. 10, pp. 884–896, Oct. 2005.

June 26, 2006 DRAFT

