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Motivation

e Typical state of affairs today is the “Distri-
bution Crisis”

— Computers and networks get faster and cheaper

— Communication software gets slower, buggier, more
expensive

e Accidental complexity is one source of prob-
lems, e.g.,

— Incompatible software infrastructures

— Continuous rediscovery and reinvention of core con-
cepts and components

e Inherent complexity is another source of prob-
lems

— e.g., latency, partial failures, partitioning, causal
ordering, etc.

Candidate Solution: CORBA
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e Goals

1. Simplify development of distributed applications

2. Provide flexible foundation for higher-level services
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Example 1: Distributed Medical

Imaging
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e “Blob" == Binary Large OBject

Example 2: Real-time Avionics

4:PUSH (INS, GPS, ADC)

Observations

e CORBA is well-suited for certain commu-
nication requirements and certain network
environments

— e.g., request/response or oneway messaging over
low-speed Ethernet or Token Ring

e However, current CORBA implementations
exhibit high overhead for other types of re-
quirements and environments

— e.g., bandwidth-intensive and delay-sensitive ap-
plications over high-speed networks

e Performance limitations will ultimately im-
pede adoption of CORBA




Key Research Questions

e “Can CORBA be used for performance-sensitive
applications on high-speed networks?”

— Goal is to determine this empirically

e “What are the strategic optimizations for
Gigabit CORBA"?

— Goal is to maintain strict CORBA compliance

e “What changes are required to provide Real-
time CORBA?”

— Goal is to provide end-to-end QoS guarantees

Pinpointing CORBA Overhead

e Presentation layer overhead

— e.g., typed and untyped data

e Data manipulation and data copying over-
head

— e.g., message management

e Demultiplexing and operation dispatching over-
head

— e.g., layered and de-layered demultiplexing

e OS/network/protocol integration

— e.g., ATM/host adapters, resource reservation and
scheduling
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Experimental Setup

e Enhanced version of TTCP

— TTCP measures end-to-end data/request transfer

— Enhanced version compares C, ACE C++4 wrap-
pers, Orbix 2.0.1 and VisiBroker 2.0, and Blob
Streaming

e Parameters varied
100 Mbytes of typed data

> Types included scalars, floats, structs, and se-
quences

Sender buffer sizes ranged from 1K to 128K

Socket queues were 8k (default) and 64k (maxi-
mum)

Network was 155 Mbps ATM and “loopback”




Network /Host Environment TTCP Configuration for C and
ACE C++ Wrappers
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TTCP Configuration for Blob
Streaming (Push Model)

TTCP Configuration for Blob
Streaming (Pull Model)
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High-Cost Functions (cont’d)

High-Cost Functions
Orbix String and Sequence

e C and ACE C++ Tests
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Remote Data Transfer VisiBroker Remote Data Transfer
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Analysis of Orbix Overhead Analysis of VisiBroker Overhead
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Summary of Throughput Results

e For bytestreams

— VisiBroker performed > 80% cf C/C++ versions

— Orbix performed 70% cf C/C++4 versions

e For scalars and floats

— Remote: 75-80% cf C/C++ versions

— Loopback: Orbix performed 65-68% cf C/C++
versions, VisiBroker achieved similar throughput
for large sender buffer sizes

e For structures

— Remote: 31% cf C/C++ versions

— Loopback: 16% cf C/C+++ versions

Gigabit CORBA Optimizations
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Multi-Protocol Support
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Concluding Remarks

e CORBA is a promising architecture for dis-
tributed computing

e Conventional CORBA implementations are
not tuned for high-performance or real-time
systems

— Note, low-speed networks often hide performance
overhead

e Ultimately, an integrated approach is the
best solution

e Optimizations must be applied at multiple
layers

— e.g., network/OS/protocol/ORB




