High-performance Distributed
Object Computing with Real-time
CORBA

Douglas C. Schmidt
Washington University, St. Louis

http://www.cs.wustl.edu/~schmidt/

schmidt@cs.wustl.edu

Motivation

e Typical state of affairs today is the “Distri-
bution Crisis”

— Computers and networks get faster and cheaper

— Communication software gets slower, buggier, more
expensive

e Accidental complexity is one source of prob-
lems, e.g.,

— Incompatible software infrastructures

— Continuous rediscovery and reinvention of core con-
cepts and components

e Inherent complexity is another source of prob-
lems

— e.g., latency, partial failures, partitioning, causal
ordering, etc.

Candidate Solution: CORBA

in args

opQ

out args + return value

CLIENT

IMPLEMENTATIO
A

IDL v
SKELETON
ORB OBJECT
INTERFACE ADAPTER

OBJECT
REQUEST BROKER

e Goals

1. Simplify development of distributed applications

2. Provide flexible foundation for higher-level services

OMA Reference Model Interface
Categories

Vs

[APPLICATION] [DOMAIN] [COMMON]
INTERFACES INTERFACES FACILITIES
A A A A A A A A A

OBJECT REQUEST BROKER

OBJECT
SERVICES

Example 1: Distributed Medical

Imaging

DIAGNOSTIC
STATIONS

CLUSTER
BLOB
STORE

X

MODALITIES
(€T, MR, CR) CENTRAL
BLOB STORE

Distributed Objects in Medical

Imaging

SNETWORK
TME
{BLOB
PROCESSOR

e “Blob" == Binary Large OBject

Example 2: Real-time Avionics

4:PUSH (INS, GPS, ADC)

Observations

e CORBA is well-suited for certain commu-
nication requirements and certain network
environments

— e.g., request/response or oneway messaging over
low-speed Ethernet or Token Ring

e However, current CORBA implementations
exhibit high overhead for other types of re-
quirements and environments

— e.g., bandwidth-intensive and delay-sensitive ap-
plications over high-speed networks

e Performance limitations will ultimately im-
pede adoption of CORBA

Key Research Questions

e “Can CORBA be used for performance-sensitive
applications on high-speed networks?”

— Goal is to determine this empirically

e “What are the strategic optimizations for
Gigabit CORBA"?

— Goal is to maintain strict CORBA compliance

e “What changes are required to provide Real-
time CORBA?”

— Goal is to provide end-to-end QoS guarantees

Pinpointing CORBA Overhead

e Presentation layer overhead

— e.g., typed and untyped data

e Data manipulation and data copying over-
head

— e.g., message management

e Demultiplexing and operation dispatching over-
head

— e.g., layered and de-layered demultiplexing

e OS/network/protocol integration

— e.g., ATM/host adapters, resource reservation and
scheduling

General Path of CORBA

Requests

CLIENT SERVER

STUBS (SI1) OR INTERFACE METHOD
DIl REQUEST IMPLEMENTATION

DEMARSHALLING AND
DEMULTIPLEXING

MARSHALLING

FRAMING, ERROR FRAMING, ERROR
CHECKING AND CHECKING AND
INTEROPERABILITY INTEROPERABILITY

-

OS LEVEL OS LEVEL

|

NETWORK

Experimental Setup

e Enhanced version of TTCP

— TTCP measures end-to-end data/request transfer

— Enhanced version compares C, ACE C++4 wrap-
pers, Orbix 2.0.1 and VisiBroker 2.0, and Blob
Streaming

e Parameters varied
100 Mbytes of typed data

> Types included scalars, floats, structs, and se-
quences

Sender buffer sizes ranged from 1K to 128K

Socket queues were 8k (default) and 64k (maxi-
mum)

Network was 155 Mbps ATM and “loopback”

Network /Host Environment TTCP Configuration for C and
ACE C++ Wrappers

1: write(buf) 3: read(buf)

2: forward .
s Receiver

-
BAY NETWORKS 4: ack

LATTISCELL
ATM SWITCH
(16 rorT, OC3
155MBPS/PORT,
9,180 MmTU)

ULTRA
SPARC 2

(ENI ATM
ADAPTORS _ _

AND ETHERNET)

\

Blob Streaming System])
TTCP Configuration for CORBA

Implementation

Architecture

Blob
_(Streaming
=3 Server

/4

DATA CHANNEL (E.G., TCP OR LIGHTWEIGHT ATM)

TTCP Configuration for Blob
Streaming (Push Model)

TTCP Configuration for Blob
Streaming (Pull Model)

6: send(buf) / Blob

Store

2: connect
>

Blob_Xport
Skel

ATM
SWITCH

Store

ive(buf) 3: send(buf) Blob

2: connect
E—

Blob_Xport
Skel

ATM
SWITCH

Mbits/sec

Model Performance over
ATM and Ethernet

C, ACE, Orbix, and Blob Streaming over ATM and Ethernet
T T T

T

C/64k window
ACE/64k window

> Orbix Sequence/64k window
Orbix String/64k window
C/8k window

Orbix String/8k window
All Ethernet results

! ! !

Blob Streaming/64k window -&---

ACE/8k window -o--
Blob Streaming/8k window -+---
Orbix Sequence/8k window -& -

20 30 40
Blob chunk size in megabytes

Mbits/sec

Pull Model Performance over
ATM

Push and Pull Models of Blob Streaming over ATM

T

Push Model/64k window ——
Pull Model/64k window -+--
Push Model/8k window -8--

Pull Model/8k window -

15 20
Blob chunk size in megabytes

High-Cost Functions (cont’d)

High-Cost Functions
Orbix String and Sequence

e C and ACE C++ Tests
%Time #Calls
— Transferring 100 Mbytes with 1 Mbyte buffers
Orbix Sequence
of s (sender)

%Time #Calls
memcpy
C sockets

(sender) Orbix Sequence . read

(receiver) . memcpy

C sockets 93. write

(receiver) 4. Orbix String . write

(sender) . read
strlen
memcpy

ACE C++ wrapper 94.
(sender) 3.

ACE C++ wrapper 93.

(receiver) 5 Orbix String . read

(receiver) . strlen
memcpy
write

C/C++ Remote Data Transfer
Results

High-Cost Functions (cont’d)

e Blob Streaming

short

long -
double -&---

char
octet
struct

#Calls

BlobStreaming
(sender)
memcpy

Throughput in Mbps

BlobStreaming . read
(receiver) . memcpy
write

40 60 80 100
Sender Buffer size in KBytes

Remote Data Transfer VisiBroker Remote Data Transfer

Results Results

Throughput in Mbps
Throughput in Mbps

40 60 80 100 40 60 80 100
Sender Buffer size in KBytes Sender Buffer size in KBytes

Analysis of Orbix Overhead Analysis of VisiBroker Overhead

CLIENT SERVER CLIENT SERVER

NOLLVINTWTTaNI

20-25% 0.01% ttep_sequence:

[sendStructSequence

MARSHALLING

ONIXTTLLINNAC

ONITIVHSYVIAA
CLIENT SEND

ONIXTTAILINNIG
ONITIVHSAVIA

MARSHALLING

PMCBOACI;
ProcessM

FRAMING,
INTEROPERABILITY)
(ALFTIEVH40UILNI

ALITIEVITOUTINT
ONDIDAHD ¥OWAT

INTEROPERABILITY

THAT1SO

OS Kernel 08 Kemnel 0S Kernel 08 Kemel

! ! ! !

NETWORK NETWORK

Summary of Throughput Results

e For bytestreams

— VisiBroker performed > 80% cf C/C++ versions

— Orbix performed 70% cf C/C++4 versions

e For scalars and floats

— Remote: 75-80% cf C/C++ versions

— Loopback: Orbix performed 65-68% cf C/C++
versions, VisiBroker achieved similar throughput
for large sender buffer sizes

e For structures

— Remote: 31% cf C/C++ versions

— Loopback: 16% cf C/C+++ versions

Gigabit CORBA Optimizations

o in args
PRESENTATION
CLIENT E opQ OBJECT NE LAYER

out args + return value IMPLEMENTATIO! OPTIMIZATIONS

DATA COPYING

- 4
IDL OPTIMIZATIONS
SKELETON|
IDL ORB OBJECT REQUEST
STUBS INTERFACE ADAPTER DEMULTIPLEXING

~€———— OPTIMIZATIONS

OBJECT

COMMUNICATION
REQUEST BROKER

PROTOCOL
“e————— OPTIMIZATIONS
os 1/o /o
SUBSYSTEM S 'STEM /O SUBSYSTEM
€ OPTIMIZATIONS
NETWORK

NETWORK
ADAPTER ADAPTER ADAPTER

OPTIMIZATIONS

Real-time CORBA

APPLICATION
SPECIFIC |z
CODE

OBJECT1::METHOD1

OBJECT1::METHOD2

oBJECT1::METHODK
OBJECTN::METHOD1
OBJECTN::METHODK

Demultiplexing Optimizations

5:DEMUX TO LAYERED
METHOD DEMULTIPLEXING

4: DEMUX TO

SKELETON ~ ~ -
(SKEL 1) (SKEL 2) see QKEL M)
i

3: DEMUX TO T T
OBJECT

T
2: DEMUX TO (OBJECT 1) (OBJECT 2) eee | OBJECT N
1/O HANDLE | I '

1: DEMUX THRU

PROTOCOL STACK

(OBJ ECT ADAPTER)

ADAPTER

DEMULTIPLEXER

[OBJECT

J
DE-LAYERED REQUEST]

GIOP/IIOP END-TO-END TRANSPORT
ZERO

COPY

,,m GIGABIT /O SUBSYSTEM]

. J/

DE-LAYERED
DEMULTIPLEXING

3:DEMUX TO
METHOD

2: DEMUX TO
I/O HANDLE

1: DEMUX THRU

PROTOCOL STACK

- omsEcri::meTHODI |
H omsecrl::meTHOD2 |
H onsect1::vETHODK |
H onsecTN::meTHODI |
oBsECTN::METHODK |

DE-LAYERED REQUEST
DEMULTIPLEXER

(OBJECT ADAPTER)

Multi-Protocol Support

.

;-E OBJECT ADAPTER

BUFFERS
GIGABIT 'O SUBSYSTEM

~\

[APPLICATION-SPECIFIC CODE]

GIOP/IIOP END-TO-END TRANSPORT

I/O Subsystem Optimizations

J/

~

[APPLICATION-SPECIFIC CODE

[OBJECT ADAPTER]

GIOP/IIOP END-TO-END TRANSPORT
(N\

GIGABIT I/O SUBSYSTEM

vcq vCy vC3 vCy4 VCg

N ATM PORT
1 INTERFACE
8 CONTROLLER
- (APIC)

Real-time Scheduling

Optimizations

\.

N

[APPLICATION-SPECIFIC CODE]
\

N
PERIODIC SCHEDULING AND PROCESSING

P: PERIOD
Bp: NUMBER OF REQUESTS

R o,
Sk

QUEUES
L OBJECT ADAPTER)

g‘;g GIOP/IIOP END-TO-END TRANSPORT

BUFFERS
[GIGABIT /O SUBSYSTEM j

J

Concluding Remarks

e CORBA is a promising architecture for dis-
tributed computing

e Conventional CORBA implementations are
not tuned for high-performance or real-time
systems

— Note, low-speed networks often hide performance
overhead

e Ultimately, an integrated approach is the
best solution

e Optimizations must be applied at multiple
layers

— e.g., network/OS/protocol/ORB

