Patterns, Frameworks, and Middleware:
Their Synergistic Relationships

Douglas C. Schmidt Frank Buschmann
douglas.c.schmidt@vanderbilt.edu Frank.Buschmann@mchp.siemens.de
Electrical Engineering & Computer Science Corporate Research
Vanderbilt University Siemens, AG
Nashville Tennessee, USA Munich, Germany
Abstract time and within budget remains hard. Some problems stem

. from the growing demands placed on software, such as re-
Thgz knowlgdge requwed to dgvelop complex software has rEfﬁl'rements to provide predictable, reliable, scalable, and se-
torically existed in programming fol_klore, the heads of EXPEH e quality of service (QoS) simultaneously. Other problems
enced dgvelop_ers, or buried deep n the code. These Iocatl%% from the propensity to rediscover and reinvent core soft-
are not ideal since the e_ffort .requwed to gapture and eVOlV\?are artifacts, such as programming languages, operating sys-
this knowledge is expensive, time-consuming, and ermor-propg, < ‘,envorking protocols, and software componentlibraries.

Many popular software modeling methods and tools addr‘?\ﬁﬁreover, the heterogeneity of hardware architectures, diver-

certe}in daspects dof|_t|hese prol:r)llems t|>y dOC“mel'.“".‘@"a‘ SYS® sty of operating system (OS) and network platforms, and stiff
tem is designed. However, they only support limite portlog bal competition makes it increasingly infeasible to build
of software development and do not articulathy a system higEh-quaIity software from scratch

n

is designed in a particular way, which complicates subseque
software reuse and evolution. In today’s time-to-market-driven environments, building

Patterns, frameworks, and middleware are increasingigality software in cost-effective manner requires slgstem-
popular techniques for addressing key aspects of the chafic reuseof successful software models, designs, and imple-
lenges outlined above. Patterns codify reusable design Byentations that have already been developed and tested. Un-
pertise that provides time-proven solutions to commonly di&e opportunistic reuse (in which developers simply cut and
curring software problems that arise in particular contextgaste code from existing programs to create new ones), sys-
and domains. Frameworks provide both a reusable produtg@matic reuse is an intentional and concerted effort to create
line architecture [1] — guided by patterns — for a family o&nd apply multiuse software artifacts throughout an organi-
related applications and an integrated set of collaboratirggtion. In a well-honed systematic reuse process, each new
components that implement concrete realizations of the RFoject leverages time-proven designs and implementations,
chitecture. Middleware is reusable software that leveraggostly just adding new code that is specific to a particular ap-
patterns and frameworks to bridge the gap between the fuRtication, and only refactoring existing software architectures
tional requirements of applications and the underlying opeand designs when they become inadequate to cover the evolv-
ating systems, network protocol stacks, and databases. Th@business cases and variability in the supported domains.
paper presents an overview of patterns, frameworks, and niystematic reuse is essential to increase software productiv-
dleware, describes how these technologies complement ébcland quality by breaking the costly cycle of rediscover-
other to enhance reuse and productivity, and then illustraté¥g, reinventing, and revalidating common software artifacts.
how they have been applied successfully in practice to imprdgoughout the rest of the paper when we use the term “reuse”
the reusability and quality of complex software systems. ~ We therefore always mean “systematic reuse.”

The skills required to develop, deploy, and support reusable
software have traditionally been a “black art” practiced only
by expert developers and architects. Moreover, these techni-

Emerging trends and challenges. Despite significant ad- cal |mped.|me.nts to reuse are oiten exacerpatgd bya mynad.of
nantechnical impediments, such as organizational, economic,

vances in computers, networks, programming languages, al g

. : . i ministrative, political, sociological, and psychological fac-
software methodologies, developing quality applications ! P R
g ping 9 y app ors. It's therefore not surprising that significant levels of soft-

*This work was supported in part by DARPA, NSF, and Siemens. ware reuse have been slow to materialize in many projects and

1 Introduction

organizations. and patterns support the development of product-line archi-
tectures for specific application domains, such as warehouse

Solution approach — Middleware, framework, and pat- management or hot rolling mill process automation [14], that

terns. Middleware[2] is software that can significantly in'apply particular types of middleware. A contribution of this

crease reuse by providing readily usable, standard solutiggger is to illustrate by examples how these three technologies
to common programming tasks, such as persistent storggfte and complement each other.

(de)marshaling, message buffering and queueing, requestglese rganization. The remainder of this paper is orga-
multiplexing, and concurrency control. Developers who Ugg e a5 follows: Section 2 presents an taxonomy of the layers
middleware can therefore focus primarily on applicationt miggieware; Sections 3 and 4 describe the key properties
oriented topics, such as business logic, rather than wrestifig.ameworks and patterns, respectively; Section 5 then illus-
with tedious and error-prone details associated with progrgiies the synergies between all three technologies via a case
mlnghlnf'rastructure software using lower-level OS APIs aré‘i’udy of how frameworks and patterns have been applied in
mechanisms.) practice to develop middleware for distributed real-time and
Over the past decade a number of middleware standafedded systems; Section 6 summarizes promising areas of

have emerged and matured. Some of these standards, sughas R&D:; and Section 7 presents concluding remarks.
the Common Object Request Broker Architecture (CORBA),

are open systems sanctioned by international organizations,
such as the Object Management Group (OMG). Other midd2- An Overview of Middleware
ware standards, such as Java virtual machines, Jave 2 Enter-
prise Edition (J2EE), and .NET, have emerged from indus®pme of the most successful techniques and tools devised to
consortia and market leaders. enhance the reuse of software center on middleware that helps
Crucial to the success of standard middleware argp#tie manage the complexity and heterogeneity of distributed appli-
terns[3, 4, 5] andframeworkd6, 7] that reify the knowledge cations. Thisdistributed computing middlewargenceforth
of how to develop and apply the middleware and applicatioreferred to simply asniddlewarg provides reusable software
that run atop it. Patterns support the reuse of design expettiieg functionally bridges the gap between (1) end-to-end ap-
by articulating the static and dynamic aspects of succesgli¢ation functional requirements and (2) the lower-level op-
solutions to problems that arise when building software inesating systems, networking protocol stacks, databases, and
particular context. Frameworks are concrete realizationshafrdware devices. Middleware provides reusable capabilities
groups of patterns that enable reuse of code by (1) captuhose qualities are critical to help simplify and coordinate
ing the common abstractions of an application domain — bdtow application software is connected and how it interoper-
their structure and mechanisms — while (2) yielding control afes.
application-specific structure and behavior to application de-Just as networking protocol stacks can be decomposed into
velopers. multiple layers, such as the physical, data-link, network, trans-
During the past decade a number of influential R&D eport, session, presentation, and application layers, so to can
forts [4, 8, 5, 9, 10, 11, 12, 13] have focused on documentimiddleware be decomposed into the multiple layers [2] shown
patterns and developing frameworks that enable the effeciivé&igure 1 and described in the remainder of this section.
development and reuse of middleware. As a result, middiest infrastructure middleware encapsulates and enhances
ware is now commonly developed using frameworks basedmitive OS mechanisms to create reusable event demultiplex-
strategized composition and optimization patterns. These f)ady, interprocess communication, concurrency, and synchro-
terns and frameworks guide the integration and configuratisination objects, such as reactors; acceptors, connectors, and
of middleware that can meet the functional and QoS requiservice handlers; monitor objects; active objects; and service
ments of particular application domains more effectively th@onfigurators [9, 10]. By encapsulating the peculiarities of
can realistically be developed manually from scratch in timparticular operating systems, these reusable objects help elim-
to-market driven environments. inate many tedious, error-prone, and non-portable aspects of
The relationship between middleware, frameworks, and pdéveloping and maintaining application software via low-level
terns is highly synergistic. For example, patterns help gui@& programming APIs, such as Sockets or POSIX pthreads.
framework design and use, thereby reducing software develCommon host infrastructure middleware includes the Sun
opment effort and training costs. In turn, frameworks can Bava Virtual Machine (JVM) and Microsoft's Common Lan-
used to develop middleware for product-line architectures [fjJage Runtime (CLR), which provide platform-independent
whose interfaces then provide application software with a simays of executing code by abstracting the differences be-
pler facade to access the powerful (and complex) internal cameen operating systems and CPU architectures. The ADAP-
ponent structure of the frameworks. Likewise, frameworddVE Communication Environment (ACE) [9, 10] is portable

(a h middleware service providers bundle transactional behavior,
APPLICATIONS 1 | security, and database connection pooling and threading into
N >/ reusable components, so that application developers no longer
DOMAIN-SPECIFIC (((HUD)<——— Avionics) need to write code that handles these tasks.
MIDDLEWARE @4* REPLICATION L . .
SERVICES @ SERVICE Whereas distribution middleware focuses largely on manag-
4 A . . K . N
N x/ ing end-system resources in support of an object-oriented dis-

e N . . . :
MISSE"E’\C\?A\‘RE e tributed programming model, common middleware services
focus on allocating, scheduling, and coordinating various re-
SERVICES ; E (Cons) 9, 9, g9

sources throughout a distributed system using a component

DISTRIBUTION programming and scripting model. Developers can reuse these
MIDDLEWARE component services to manage global resources and perform
common distribution tasks that would otherwise be imple-
INFRASRUCTURE mented in amd hocmanner within each application. The form
MIDDLEWARE and content of these services will continue to evolve as the re-
guirements on the applications being constructed expand.
OPERATING Examples of common middleware services include the
SYSTEMS OMG’s CORBA Common Object Services, such as event no-
HARDWARE tification, logging, multimedia streaming, persistence, secu-
DEVICES

rity, global time, real-time scheduling, fault tolerance, con-

currency control, and transactions. Likewise, Sun’s Enterprise
Java Beans (EJB) technology and Microsoft's .NET allows de-
velopers to create n-tier distributed systems by linking a num-

C++ host infrastructure middleware that encapsulates R&! Of pre-built software service components without having
tive operating system capabilities, such as connection estggdrite much.c.ode manually. . _
lishment, event demultiplexing, interprocess communicatid?@main-specific middleware servicesare tailored to the

(de)marshaling, dynamic configuration of application compgrquirements of particular domains, such as telecom, e-
nents, concurrency, and Synchronization. commerce, health care, process automation, or aerospace. Un-

o . . . _ like the other th iddl I di d ab that
Distribution middleware deflnesh|gher—leveldlstrlbutedpro-I © the ofher three micalewars 1ayers discussed above tha

. dels wh ble AP d obiect ; n?rOVide broadly reusable “horizontal” mechanisms and ser-
gramming models whose reusable S and opjects auto \ff‘égs domain-specific middleware services are targeted at

and extend the native OS mechanisms encapsulated by r‘\f)téﬁjtical" markets and product-line architectures. Since they

infrastructure middleware. Distribution middleware enabl%?nbody knowledge of a domain, moreover, reusable domain-
clients to program applications by invoking operations on tar ' !

. 4 . . ; pecific middleware services have the most potential to in-
get objects without hard-coding dependencies on their IOESéase the quality and decrease the cycle-time and effort re-
tion, programming language, OS platform, communicati

. %ired to develop particular types of application software.
protocols and interconnects, and hardware. An example of domain-specific middleware services in-

At the heart of distribution middleware are request bray,qeg the Siemens Medical Solutions Group has developed
kers, such as The OMG’s Common Object Request Bro go (www.syngo.com), which is a product-line archi-

Architecture (CORBA) and Sun's Java Remote Method InvRiey e that is both an integrated collection of domain-specific

cation (RMI). The request brokers allow objects t0 interopegiyqieware services, as well as an open and dynamically ex-
ate across networks regardless of the platform on which thgx e application server platform for medical imaging tasks
are deployed. SOAP is an emerging distribution m|ddlewa(.5ﬁd applications, including ultrasound, mammography, an-

tephn_ology based on an XML-based protocpl that a]lows bgraphy, computer tomography, magnetic resonance, and
plications to exchange structured and typed information on clear medicine. The Boeing Bold Stroke [15, 16] product-

Web using various Internet protocols, such as HTTP, SMfe 4 chitecture is another example of domain-specific mid-
and MIME. dleware. Bold Stroke uses COTS hardware and middleware
Common middleware servicesaugment distribution middle-to produce a non-proprietary, standards-based component ar-
ware by defining higher-level domain-independent reusablgtecture for military avionics mission computing capabili-
services that allow application developers to concentrate t@s, such as navigation, display management, sensor manage-
programming business logic, without the need to write theent and situational awareness, data link management, and
“plumbing” code required to develop distributed applicationgeapons control.

via lower-level middleware directly. For example, common As the products associated with the reusable middleware

Figure 1: Middleware Layers in Context

layers summarized above have matured and become per e]

sive throughout the industry, the total amount of software thg NEITWORKING =4,

application developers must write has shrunk substantially. %BACKS

However, reduction in application developer effort also im GUI L

plies more work for middleware developers since they bq AFPHCATION= ==, DOMAIN-SPECIFIC
come responsible for an increasing number of software la] SPECIFIC BACKS p—— FRAMEWORK
ers. While some believe that the techniques used to deroNCTIONALITY o CAPABILITIES
velop reusable middleware are simply implementation details, CALLBtm

in practice these choices have a significant impact on oth e

key middleware qualities, such as its affordability, extensibi| PATABASE @

ity, flexibility, portability, predictability, efficiency, reliability,
scalability, and trustworthiness.

As a result, middleware developers must themselves app
more powerful reuse technologies to simplify the evolution of
their software layers. Not surprisingly, frameworks and patelp them to achieve these qualitfes.
terns are increasingly applied to improve the reusability and, A framework exhibits “inversion of control” at run

quality of both middleware and application software. The re- {ime via callbacks to component hook methods af-
mainder of this paper presents overviews of frameworks and ter the occurrence of an event, such as a mouse click

patterns and then shows how these technologies can be com-qr gata arriving on a network connection. When an
bined with middleware to enhance software reuse. Itis impor- eyent occurs, the framework calls back to a virtual hook
tant to note, however, that the reuse potential of frameworks method in a pre-registered component, which then per-

and patterns isotlimited to middleware! forms application-defined processing in response to the

event. The virtual hook methods in the components de-

. couple the application software from the reusable frame-

3 Overview of Frameworks work software, which makes it easier to extend and cus-

tomize the applications as long as the interaction proto-
cols and QoS properties are not violated.

Il):/igure 2: Relationships Between Framework Components

As outlined in the previous section, in today’s competitive,

fa;t-p_aced computing industry, successful _middleware and ap; A framework provides an integrated set of domain-
plication software must possess (ffordability , to ensure specific structures and functionality. Reuse of software
that the total ownership costs of software acquisition and evo- depends largely on how well frameworks model the com-
lution are not prohibitively high, (2xtensibility, to support monalities and variabilities [19] in application domains,
successions of quick updates and additions to address new re- ¢ ,.h as business data processing, telecom call process-
quirements and take advantage of emerging market§le3) ing, graphical user interfaces, or real-time middleware.
|b|||ty , to support a growing range of multlmedla data_types, By leveraging the domain knowledge and prior efforts
traffic flows, and end-to-end QoS requirements,g@jtabil- of experienced developers, frameworks embody common
ity, to reduce the effort required to support applications on - gqtions to recurring application requirements and soft-
heterogeneous OS platforms and compilersp(glictability ware design challenges that need not be recreated and
andefficiency, to provide low latency to delay-sensitive real- o\ alidated for each new application.

time applications, high performance to bandwidth-intensive, A framework is a “semi-complete” application that
applications, and usability over low-bandwidth networks, such programmers can customize to form complete applica-
as wireless links, (&eliability , to ensure that application.s are tions by extending reusable components in the frame-
robust and tolerant of faults, (8palability, to enable applica- 41 n particular, frameworks help abstract the canoni-
tions to hand!e large numbers'of cllgnts S|m.ultan'eo.usly, and cal control flow of applications in a domain into product-
(8) trustworthiness, to ensure integrity, confidentiality, and |jne architectures and families of related components. At

availability in distributed systems. runtime, these components can collaborate to integrate

When software is developed monolithicali., as tightly customizable application-independent reusable code with
coupled clumps of functionality that are not organized mod- . ;stomized application-defined code.

ularly or hierarchically, it is hard to achieve these qualities.
Frameworkd6, 7] have emerged as a powerful technology for Since frameworks exhibit inversion of control, they can sim-

deVGIOpmg and reusing middleware and appllcatlon SOfth"elWhile there are subtle technical distinctions between frameworks and

that possess th? qua"ties listed above. Figure. 2 illustrates dhoonents [18, 10], we subsume components into the discussion of frame-
three characteristics of frameworks [17] described below thatks below.

plify application design because the framework—rather than not documented, they will be lost over time and thus can-
the application—runs the event loop to detect events, demul- not be used to guide subsequent software evolution.
tiplex events to event handlers, and dispatch hook methods Without guidance from earlier work, software developers
on the handlers that process the events. Since frameworks must engineering complex systems from the ground up,
reify the key roles and relationships of components in appli- rather than by reusing proven solutions.

cation domains, the amount of reusable code increases aanVh@r the past decade, experienced software developers and
amount of code rewritten for each application decreases difshjtects have helped to address these problems by creating

matically. Since a framework is a semi-complete applicatiafl,qqy of literature that documents the following types of
it enables larger-scale reuse of software than can be achigedpie knowledge:

by reusing individual components or stand-alone functions.

Developers in certain domains have applied frameworks
successfully for several decades. Early frameworks, such as
MacApp, X-windows, and Interviews, originated in the do-
main of graphical user interfaces (GUIs). Java Swing and
Microsoft Foundation Classes (MFC) are contemporary GUI
frameworks that are widely used to create graphical applica®
tions on PC platforms. The broad adoption of reusable GUI
frameworks has yielded many productivity and quality bene-
fits for business and desktop applications.

Building upon their success in the GUI domain, frameworks
are now being applied to many new and more complex do-*
mains [6, 7, 20]. For example, ACE and TAO described in
Section 5.1 are frameworks for host infrastructure and dis-
tribution middleware, JBoss and BEA's WebLogic Server are

component frameworks for application servers, and many repatterns help enhance reuse by capturing and reusing the
centR&D efforts, such as the Open Grid Service Infrastructigitic and dynamic structure and collaboration of key par-
(OGSI), focus on frameworks for web services. There are a{ggpants in software designs. They are particularly useful
frameworks for specific application domains, such as SAP, ag¢l yocumenting recurring micro-architectures, which are ab-
application frameworks for medical imaging systems, sugfactions of software components that experienced developers
as the Syngo platform. These frameworks are increasingb/pw to resolve common design and implementation prob-
aligning with the layers of middleware standards and domajgm,s. By studying and applying patterns and pattern lan-
specific product-line architectures discussed in Section 2. guages, developers can often escape traps and pitfalls that have
been avoided traditionally only via long and costly apprentice-

. ships [22]. Patterns also raise the level of discourse in project

4 Overview of Patterns design and programming activities, which helps improve team
productivity and software quality.

Developers of middleware and application software must adFigure 3 illustrates the relationships amongst a pattern lan-
dress many challenges related to complex design and progrgoage [5] that addresses service access and configuration,
ming topics, such as persistence, data organization, conneasent handling, interprocess communication, concurrency, and
management, service initialization, distribution, concurrensynchronization dimensions in various networked applica-
control, flow control, error handling, event loop integratioion domains, such as online financial services, remote pro-
and dependability. Many of these challenges occur repeatetigs control, avionics mission computing, and telecommuni-
in many applications and domains. Until the mid-1990's, tlwations? The relationships in this diagram reveal the follow-
knowledge needed to resolve these challenges existed larggjwvays in which the patterns complement and complete each
in programming folklore, the heads of expert researchers ander in multiple ways to form a pattern language:
developers, or buried deep in complex source code. These I ajthough each pattern is useful in isolation, the pattern
cations are not ideal because language is even more powerful, because it integrates so-

o Discovering patterns from source code is expensive and lutions to particular problems in important technical ar-
time-consuming since it is hard to separate the essence of €as, such as event handling, connection management and

a deS{gn.from Its |mpl.ementat|on det_alls') 2Since itis beyond the scope of this paper to describe each pattern in detail,
¢ If the insights and rationale of experienced designers akese see the references [5] for comprehensive coverage of these patterns.

Design patterng 3], which provide a scheme for refining
the elements of a software system and the relationships
between them, and describe a common structure of com-
municating elements that solves a general design problem
within a particular context.

Architectural patterns [4], which express the funda-
mental, overall structural organization of software sys-
tems and provide a set of predefined subsystems, specify
their responsibilities, and include guidelines for organiz-
ing the relationships between them.

Pattern languagegq?21], which weave together a web of
related patterns to define a vocabulary for talking about
software development problems and provide a process for
the orderly resolution of these problems.

resolving a given problem, how are mutual dependencies be-
tween the problems handled, and how is each individual prob-
lem resolved effectively in the presence of its associated prob-
lems.

Many pattern languages exist today. Some support the cre-
ation of a specific types of software, such as the pattern lan-
guages for networked and concurrent computing [5] and enter-
prise application architectures [13]. Others pattern languages

Thread Leader/ Object help to realize a certain part, subsystem, or large component

gtp:rglg: Follgwers Lifetime of a software system. For instance, there is a pattern language
Manager for server components [12] that describes how to build well-

Asynchronous] Reactor structureq server-side components. Yet ot_her languages focus
Completion Double Thread- on a particular problem area of relevance in software, such as
Token Proactor Checked Safe handling erroneous user input [24] and designing user-friendly
Locking | | Interface | inierfaces to computer and information systems [25]. There

are also pattern languages for good programming style and

External Wrapper Scoped | |Strategized practice, such as Smalltalk best practice patterns [26], C++
Polymorphism|| Facade Locking | | Locking | (cference accounting [27], and Java exception handling [28].

Section 6 describes other key areas where we expect future
Concurrency Initialization | |Synchronization pattern languages will be published.
Patterns

Patterns Patterns Pattems

5 lllustrating the Synergies of Middle-

Figure 3: A Pattern Language for Network Programming
ware, Frameworks, and Patterns

service access, concurrency models, and synchronizafi@gtions 2—4 present overviews of middleware, frameworks,
strategies. Each problem in these areas must be resoked patterns, emphasizing their particular contributions to
coherently and consistently when developing concurré®ftware reuse. This section examines these technologies in
and networked applications. terms of their relationships and synergies. To make the dis-

« The pattern language also exposes the interdependerfej§§ion tangible, we focus on The ACE ORB (TAQ) [29] as a
of these technical areas. For example, when selecting@e Study to illustrate how patterns and frameworks can help
cation, not all potentially-available concurrency patteri3e coupling between its components.
can be applied usefully.

¢ A pattern language describes an entire solution spaced01 Qverview of CORBA and TAO
developing a particular type of system, system part, or))
system aspect — by offering alternative solutions to c&¥ORBA Object Request Brokers (ORBs) [30] allow clients to
plied many, many times without ever producing exactﬂbjem location, programming language, OS platform, commu-
the same architecture, design, or implementation. yigation protocols and interconnects, and hardware. Figure 4
each individual architecture, design, and implementatiBiystrates the components in the CORBA reference model,

edge embedded in each pattern language [23]. and transparency mentioned above. The client stubs marshal

client operations into General Inter-ORB Protocol (GIOP) re-

Thesg three points become clegr only when conn'ecyng ests that are transmitted to objects via the standard Internet
terns into a pattern language since each pattern in isolat] r-ORB Protocol (0P implemented in the ORB Core

onl){ foguses on itself. In contrast, a pattern Ianguagg—bg server ORB Core demultiplexes and receives these re-
design integrates the patterns consistently and synergistic Ysts using one or more threads and passes them to the Ob-

by giving concrete and precise guidance in developing a s &t Adapter. The Object Adapter demultiplexes the requests

cific (type of) system or system aspect. In particular, a patt (Snskeletons, which demarshal the requests and dispatch the
language conveys what are the key problems to be resolved, in

what order should they be tackled, what alternatives exist foRIIOP is implemented atop TCP/IP.

in args

operation()

OBJECT I
out args + (SERVANT)

CLIENT
return
¢ value o
KELETON
ORB OBJECT
INTERFACE E PTER

CLIENT OBJECT/SERVANT
STUB ADAPTER || SKEL F
PROXY (| MANAGER | |
<<CREATES HANDLERS>> ORB CORE <<CREATES HANDLERS>>
LEADER/

[X

QSTANDARD INTERFACE

[GIOP/IIOP/ESIOPS]]

(__) STANDARD LANGUAGE MAPPING

OORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL

Figure 4: Components in the CORBA Reference Model

appropriate application-level servant method that implement
the object’s operation.

The ACE ORB (TAO) [29] is a high-performance, real-time
implementation of the CORBA 3.0 specification [31] that sup-
ports the distribution middleware capabilities shown in Fig-
ure 4 and described in Section 2. TAO is targeted for appli-

STRATEGY

OS KERNEL

A

/

REACTOR | <<DISPATCHES>>

<<CONTAINS>>

<<CONTAINS>>

\

/

COMPONENT
CONFIGURATOR

WRAPPER FACADES |7
<<ENCAPSULATES>> OS KERNEL

Figure 5: The Patterns Used in TAO

ABSTRACT
FACTORY

<
<<LINKS>>

<<CREATES>>

cations with deterministic and statistical QoS requirements,The key patterns used in the TAO ORB are shown in Fig-

as well as best effort requirements. As its name sugge¥f§,
TAO is developed using the frameworks and components in®
the ACE host infrastructure middleware. ACE and TAO are

open-source software that has evolved organically over the

5 and described below:

The Wrapper Facade pattern [5] simplifies the OS sys-
tem programming interface by combining multiple re-
lated OS mechanisms, such as the socket API or POSIX

past decade. They are used in hundreds of production software threads, into cohesive OO abstractions. TAO uses this

systems in research labs and commercial projects, includ-
ing avionics mission computing systems at Boeing, satellite

communication systems at Lockheed and Raytheon, telecom-
munication systems at BBN, Cisco, Lucent, Motorola, Nor- ®
tel, and Siemens, medical systems at GE, and online trad-
ing systems at Automated Trading Desk. Complete source
code and documentation for ACE and TAO is available at

www.cs.wustl.edu/~schmidt/TAO/

5.2 Applying Patterns and Frameworks to TAO
Middleware

The interfaces, protocols, and components shown in Figure 4
illustrate the primary capabilities provided by the CORBA ref-
erence architecture. As is often the case with architectural die
agrams, however, it is not clear from this figin@vthe archi-
tecture behaves avhythe architecture is designed the way it
is. Naturally, a thorough understanding of these issues is es-
sential to develop, configure, optimize, and evolve the reusable
middleware effectively. To address these issues, we outline the
key patterns and frameworks used by TAO’s ORB Core to il-

pattern to enhance its reuse by encapsulating the te-
dious, non-portable, and non-typesafe low-level OS sys-
tem functions within C++ classes.

TheReactor pattern [5] allows event-driven applications
to react to events originating from a number of disparate
sources, such as I/0O handles, timers, and signals. TAO
uses this pattern to dispatch ORB connection and 1/O
handlers in response to events that occur in the OS kernel.
The Acceptor-Connectorpattern [5] decouples the con-
nection and initialization of cooperating peer services in
a networked application from the processing they per-
form after being connected and initialized. TAO uses this
pattern in its ORB Core to actively/passively establish
connections and create 1/0 handlers that exchange GIOP
messages independently of the underlying transports.
The Leader Followers pattern [5] provides an effi-
cient concurrency model where multiple threads take
turns calling a synchronous event demultiplexer (such as
select()) on sets of I/O handles to detect, demulti-
plex, dispatch, and process service requests that occur.
TAO uses this pattern to improve its performance and pre-
dictability by reducing context switching, synchroniza-

lustrate the synergies between these two reuse technologies intion, and data allocation/movement overhead.

terms of improving the extensibility, maintainability, and per- e
formance of distribution middleware.

The Strategy pattern [3] provides a means to select one
of several candidate policies or algorithms and packaging

CLIENT OBJECT/SERVANT

CD 3: run()

—

it with an object. This pattern is the foundation of TAO's
extensible software architecture and makes it possible to
configure custom ORB strategies for connection manage-Cj
ment, concurrency, and demultiplexing.

e TheAbstract Factory pattern [3] provides a single com- 4: operation) ORB CORE 9: DISPATCH()
ponent that builds related objects. TAO uses this pattern P
to create and consolidate its many strategy objects into g Handlg Hfr'l°d:’e GIoP
manageable number of abstract factories that can be re Connection| . Handier
configureden massénto its ORB Core conveniently and Giop | | Handler | g: pequest/ |[Comnelg,n,———

N . Handler Han Connection
consistently. TAO components use these factories to ac TO--N RESPONSE Hani ™ andler
cess related strategies without explicitly specifying their Cached 7: CREATE & ACTIVATE
subclass name. Sonnect 5: connect() 6: accept()

e The Component Configurator pattern [5] permits dy- S _'i Strategy
namic run-time configuration of abstract factories and Strategy . _>2 Acceptor
strategies in an ORB [5]. TAO uses this pattern to dy- | |Connector
namically link the abstract factories that produce custom \m‘

ORB personalities, such as a high-throughput ORB, a Service | 1: process svc.conf file
predictable real-time ORB, or a small footprint ORB. Configurator | 2: configure ORBs accordingly

e TheProxy pattern [4, 3] definesf a object (the proxy) tr_]at svc.conf [dynamic ORB Service_Object * ﬁ

acts as surrogate for a (potentially remote) target object. FILE tao.dll:make_rtorb() "-ORBport 2001"

TAO uses this pattern to perform the (de)marshaling op-
erations defined by CORBA stubs.

e TheAdapter pattern [3] allows objects to work together
that have different interfaces. TAO uses this pattern in its
object adapters and skeletons to integrate object imple- in TAO, which accepts connections and receives/sends

mentations (servants) with the reusable ORB code. An client GIOP requests/responses via a pool of threads.
object adapter also implements thikanager pattern [4]

to control the lifecycle of the objects and servants it con-e The Acceptor-Connector framework leverages the
tains. Reactor framework and implements the Acceptor-

ina th . . ful si , | Connector and Strategy patterns to decouple the active
KnOV\?ngt e patterns used in ;]I—AO IS us:z u silnce itenables 54 hassive initialization roles from application-defined
reuse of abstract design and architecture knowledge. However, service processing performed by communicating peer

reuse of patterns alone is insufficient since it does not directly services after initialization is complete. This ACE frame-
yield flexible and efficient software. We therefore found it nec- work enhances reuse by defining (dfjategy connec-

essary to augment our study of patterns with the creation and 5 pyiects that automatically establish connections with
use of the frameworks provided by ACE. These frameworks - goryers and initialize handlers that transmit GIOP re-
help developers of TAO middleware avoid costly reinvention quests and (2trategy acceptobbjects that automati-

of common software artifacts by refactoring recurring imple- .1 accept connections from clients and initialize han-
mentation roles. They also provide direct knowledge transfer dlers that process GIOP requests from clients

by embodying patterns in a powerful toolkit that contains mid-
dleware dpmam experieneadworking che. e The Service Configurator framework implements the
The primary ACE frameworks used in TAO's ORB Core component Configurator pattern to support the flexible
are shown in Figure 6. Below, we describe each framework, configuration of ORBs whose strategies can be deter-
outline which pattern(s) it implements, and discuss how it en- mined and deployed at the appropriate time in the de-
hances reuse. sign cycle,e.qg, via thesvec.conf configuration script
e The Reactor framework implements the Reactor and at installation time and/or run time. This framework en-

Figure 6: The ACE Frameworks Used in TAO

Leader/Followers patterns to facilitate a concurrency
model where events indicating the ability to begin 1/0O
operations. This framework enhances reuse in TAO by
automating the detection, demultiplexing, and dispatch-
ing of handlersin response to I/O, timer, and signal

events. The ACE Reactor drives the main event loop

hances reuse by enabling ORB abstract factories (and the
strategies they embody) to be treated as interchangeable
building blocks. Software with high availability require-
ments, such as online transaction processing or real-time
industrial process automation, often require these flexible
configuration capabilities.

The design of the ACE frameworks presented above ise Middleware codifies this expertise in the form of inter-
guided by many of the patterns shown in Figures 3 and 5. faces and standard components that provide applications
TAO uses these patterns and the ACE frameworks that reify with a simpler facade to access the powerful (and com-
them to develop an extensible ORB architecture. However, plex) internal component structure of frameworks.
the patterns and frameworks described here are not ||m|teqtm examp|e, as shown in our case Study abOVE, TAO middle-
middleware. In fact, they have been applied in many othgare developers are more effective since the frameworks in
application domains, including telecom call processing [3REE implement the core patterns associated with service ac-
and switching [8], airplane flight control systems [15], multcess and configuration, event handling, interprocess commu-
media videoconferencing [33], distributed interactive simulgication, concurrency, and synchronization.
tions [34], and enterprise business applications [20]. It is important to recognize that middleware, frameworks,

The patterns described above help to solve many comnapmi patterns are highly synergistic concepts, with none subor-
problems that arise when developing and using framewotfgate to the other [18]. Patterns can be characterized as more
for middleware and applications. In the context of TAO, faibstract descriptions of frameworks, which are often indepen-
example, a deep understanding of these patterns helps to dent of a particular programming language, operating system,

« Preserve important design informationfor developers network, or database environment. Patterns have been used to

who enhance and maintain the TAO middleware. Sinf@cument frameworks and middleware. Sophisticated middle-

scores of developers have worked on TAO over the pgféqre frameworks are concrete realizations of groups of dozens
decade. this information would be lost if it was not dod® hundreds of patterns. A framework also integrates various

umented, which would increase software entropy and @Proaches to problems where there aremwiori context-

crease software maintainability and quality. The metrif&iependentand optimal solutions.
reported in [35] quantify the extent to which knowledge

of patterns helped to reduce the developmentand mairBe— Future R&D Focus Areas
nance effort for TAO.

e Guide design choicedor developers who are buildingOver the past decade, R&D on patterns, frameworks, and mid-
new middleware and applications using TAO. The boolfeware has focused largely on developing and refining the
in which the patterns outlined above appear documeie concepts and infrastructure that can create the founda-
the common traps and pitfalls of developing middlewargons for subsequent efforts [6, 7]. As a result of these ad-
This information helps TAO developers select suitable afances, we expect the next generation of middleware will be
chitectures, protocols, algorithms, and platform featurgsveloped using frameworks that consciously embody time-
without wasting time and effort (re)implementing soluproven patterns. Patterns will also increasingly be used to doc-
tions that have been shown to be inefficient or error prognent the form, content, and best practices of middleware and

frameworks. Other key topics and domains that will benefit
from the foundational work conducted thus far will include:

e Distributed real-time and embedded systemsAn in-
creasing number of patterns associated with middleware
frameworks for concurrent and networked objects have
been documented during the past five years [36, 5, 35]. A
key next step is to document the patterns for distributed
real-time and embedded (DRE) systems, which extends
earlier work to focus on effective strategies and tactics for
managing key QoS properties in DRE systems, includ-
ing network bandwidth and latency, CPU speed, memory
access time, and power levels. Since developing high-
quality DRE systems is hard and remains somewhat of
a “black art,” relatively few reusable patterns [37, 38],
» Frameworks codify this expertise in the form of reusable frameworks [39], and middleware [29] exist for this do-
algorithms and componentimplementations. main today. We expect an increased focus on DRE sys-
e Patterns codify this expertise at a complementary level tems in the future, however, due to the maturation of
of reuse — recurring architectural design themes — which reusable object technology, together with the develop-
may be reused even when the algorithms or component ment tools, techniques, and processes that enable it to be
implementations are not directly reusable. applied successfully in the DRE domain.

5.3 Evaluating the Synergies Between Middle-
ware, Frameworks, and Patterns

The short case study above illustrates how patterns and frame-
works are both important techniques to achieve large-scale
reuse by capturing successful software development strategies
within a particular context, which in this case was distribution
and host infrastructure middleware. All three of these tech-
nologies help to simplify the development, configuration, and
optimization of software by codifying the accumulated exper-
tise of developers who have successfully confronted similar
problems before as follows:

¢ Mobile systems Wireless networks are becoming perva- In today’s competitive, time-to-market-driven environ-
sive and embedded devices are become smaller, lighteents, it is increasingly infeasible to develop custom solu-
and more capable. Thus, mobile systems will sodions manually from scratch. Such solutions are hard to cus-
support many consumer communication and computitggnize and tune, because so much effort is spent just try-
needs. Application areas for mobile systems includey to make the software operational. Moreover, as require-
ubiquitous computing, mobile agents, personal assistam&nts change over time, evolving custom software solutions
position-dependent information provision, remote mediecomes prohibitively expensive. End-users expect—or at least
cal diagnostics and teleradiology, and home and offidesire—software to be affordable, robust, efficient, and agile,
automation. In addition, Internet services, ranging frowhich is hard to achieve without the solid architectural under-
Web browsing to on-line banking, will be accessed fropinnings achievable via systematic reuse.
mobile systems. Mobile systems present many chal-The past decade has yielded significant progress in reuse of
lenges, such as managing low and variable bandwidth asdtware in the form of the maturation of standard middleware,
power, adapting to frequent disruptions in connectivithe documentation of patterns, and the development and adop-
and service quality, diverging protocols, and maintainin@n of frameworks. These software technologies provide the
cache consistency across disconnected network nodelowing general types of improvement for developing and
We expect that experienced developers of mobile systegwslving application software:
will capture their expertise in the form of reusable pat-
tern, frameworks, and middleware to help meet the grow
ing demand for quality software in this area.

e Adaptive QoS for COTS systems Distributed applica-
tions, such as streaming video, Internet telephony, and
large-scale interactive simulation systems, have increas-
ingly stringent QoS. To reduce development cycle-time
and cost, these applications are increasingly being devel- i . L
oped using multiple layers of COTS hardware, operating ularly |mportant_ fqr organizations facing time-to-market
systems, and middleware components, such as those pre- pressur.es and I|m|.ted software devglopment resources.
sented in Section 2. Historically, however, it has beerg- Strategic focus which eIevgtes appllcauon developer fo-
hard to configure COTS-based systems that can simul- CUS beyond a preoccupation with low-level OS APIs.

taneously satisfy multiple QoS properties, such as secu- For example, the standard middleware artifacts outlined
rity, timeliness, and fault tolerance [40]. As developers @bPove help to direct the focus of developers toward

and integrators continue to master the complexities of higher-level spftware application architecture and design
providing end-to-end QoS guarantees, it is essential that concerns. Without needing to worry as much about low-
they document the successful patterns and reify them in 1€V€! details, developers can focus on more strategic,
the form of reusable adaptive and reflective middleware 2@PPplication-oriented concerns.

frameworks [41] to help others configure, monitor, and3- Design reusepatterns are essential to guiding developers
control COTS-based distributed systems that possess a through the steps necessary to ensure successful creation

range of interdependent QoS properties. and deployment of complex software systems. In particu-
lar, patterns enable developers to reuse higher-level soft-

ware application designs, such as publisher/subscriber ar-
7 Conc|uding Remarks chitectures, micro-kernels, and brokers [4]. These de-

sign artifacts represent some of the key strategic aspects
Application software has historically been developed largely of complex software. If they are understood and applied
from scratch. This development process has been applied properly, the impact of many vexing complexities can be
many times in many companies, by many projects in paral- alleviated greatly.
lel. Even worse, it has been applied by the same teams ih. Implementation reuse which amortizes software life-
a series of projects. Regrettably, this continuous rediscovery cycle effort by leveraging previous development exper-
and reinvention of core concepts and code has kept costs un- tise and reifying implementations of key patterns [5, 3]
necessarily high throughout the software development life cy- into reusable middleware frameworks. In the future, most
cle. This problem is exacerbated by the inherent diversity of applications will be assembled by integrating and script-
today’s hardware, operating systems, compilers, and commu- ing domain-specific and common “pluggable” middle-
nication platforms, which keep shifting the foundations of ap- ware service components, rather than being programmed
plication software development. entirely from scratch.

1. Open standards which provide a portable and interoper-
able set of software artifacts, such as interoperable secu-
rity, layered distributed resource management, and fault
tolerance services. An increasingly important role is be-
ing played by open and/or standard COTS middleware
frameworks that can be purchased or acquired via open-
source means. COTS middleware frameworks are partic-

Despite their natural synergies, however, middlewares]
frameworks, and patterns are not silver bullets. They cannot,
for example, absolve developers from responsibility for sok®!
ing all complex concurrent and networked software analysis,
design, implementation, validation, and optimization prolpo;
lems. Ultimately there is no substitute for human creativity,
experience, discipline, diligence, and judgement. When u j
together properly, however, the technologies described in ir%
paper help alleviate many inherent and accidental software
complexities. [22]

23]
References

(1]
(2]

[24]
P. Clements and L. Northrogoftware Product Lines: Practices and
Patterns Boston: Addison-Wesley, 2002.

R. E. Schantz and D. C. Schmidt, “Middleware for Distributed
Systems: Evolving the Common Structure for Network-centric
Applications,” inEncyclopedia of Software Engineeri(d Marciniak
and G. Telecki, eds.), New York: Wiley & Sons, 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign Patterns:
Elements of Reusable Object-Oriented Softw&eading, MA:
Addison-Wesley, 1995.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, (28]
Pattern-Oriented Software Architecture—A System of Pattéves/
York: Wiley & Sons, 1996.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume Rew York: Wiley & Sons, 2000.

M. Fayad, R. Johnson, and D. C. Schmidt, ettaplementing
Application Frameworks: Object-Oriented Frameworks at Wavlew
York: Wiley & Sons, 1999.

M. Fayad, R. Johnson, and D. C. Schmidt, eBslijding Application
Frameworks: Object-Oriented Foundations of Framework Design
New York: Wiley & Sons, 1999.

H. Hueni, R. Johnson, and R. Engel, “A Framework for Network
Protocol Software,” irProceedings of OOPSLA '9%Austin, TX),
ACM, Oct. 1995.

D. C. Schmidt and S. D. Husto&++ Network Programming, Volume
1: Mastering Complexity with ACE and PatterriBoston:
Addison-Wesley, 2002.

D. C. Schmidt and S. D. Husto,++ Network Programming, Volume
2: Systematic Reuse with ACE and Framewpfsading,
Massachusetts: Addison-Wesley, 2002.

D. Alur, J. Crupi, and D. MalksCore J2EE Patterns: Best Practices
and Design Strategiedrentice Hall, 2001.

M. Volter, A. Schmid, and E.WolffServer Component Patterns —
Component Infrastructures illustrated with EJRew York: Wiley &
Sons, 2002.

M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, [37]
Patterns of Enterprise Application ArchitecturReading,
Massachusetts: Addison-Wesley, 2002.

F. Buschmann, A. Geisler, T. Heimke, and C. Schuderer, [38]
“Framework-Based Software Architectures for Process Automation
Systems,” ifProceedings of the 9th IFAC Symposium on Automation t%
Mining, Mineral, and Metal ProcessingCologne, Germany), 1998. 9]
D. C. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development,” froceedings of the 10th Annual
Software Technology Conferendgor. 1998.]
B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from

Execution Dependencies,” Proceedings of the 11th Annual Software
Technology Conferencépr. 1999.

R. Johnson and B. Foote, “Designing Reusable Clas3esthal of
Object-Oriented Programmingol. 1, pp. 22—-35, June/July 1988.

[25]
[26]

(3] 27]

(4]

[29]
(5]
(30]
(6]
[31]

[7] [32]

(8]
(33]

El

[34]
(20]

[11] [35]

(12]
(36]
[13]

[14]

[15]

[16]

[17]

R. Johnson, “Frameworks = Patterns + Componef@erhmunications
of the ACM vol. 40, Oct. 1997.

J. Coplien, D. Hoffman, and D. Weiss, “Commonality and Variability
in Software Engineering JEEE Softwarevol. 15,
November/December 1998.

M. Fayad and R. Johnson, ed3gmain-Specific Application
Frameworks: Frameworks Experience by Industdew York: Wiley
& Sons, 1999.

C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. AngelA Pattern LanguageNew York, NY:
Oxford University Press, 1977.

J. O. Coplien and D. C. Schmidt, edBattern Languages of Program
Design Reading, Massachusetts: Addison-Wesley, 1995.

C. Alexander,The Timeless Way of Buildinglew York, NY: Oxford
University Press, 1979.

W. Cunningham, “The CHECKS Pattern Language of Information
Integrity,” in Pattern Languages of Program Desigh O. Coplien and
D. C. Schmidt, eds.), Reading, Massachusetts: Addison-Wesley, 1995.

J. Borchers|A Pattern Approach To Interaction Design™New York:
Wiley & Sons, 2001.

K. Beck,Smalltalk Best Practice Pattern&nglewood Cliffs, NJ:
Prentice-Hall, 1997.

K. Henney, “C++ Patterns - Reference Accounting,Pimceedings of
the EuroPLoP 2002 conferenc@rsee, Germany), July 2002.

A. Haase, “Java Idioms: Exception Handling,"Rmoceedings of the
EuroPLoP 2003 conferenc@rsee, Germany), July 2003.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeEaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

M. Henning and S. Vinoskihdvanced CORBA Programming with
C++. Reading, MA: Addison-Wesley, 1999.

Object Management Grouphe Common Object Request Broker:
Architecture and Specificatio.0 ed., June 2002.

G. Meszaros, “A Pattern Language for Improving the Capacity of
Reactive Systems,” iRattern Languages of Program Desi¢h O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, Massachusetts:
Addison-Wesley, 1996.

D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and F. Kuhns,
“Applying QoS-enabled Distributed Object Computing Middleware to
Next-generation Distributed ApplicationdEEE Communications
Magazine vol. 38, pp. 112-123, Oct. 2000.

R. Noseworthy, “IKE 2 — Implementing the Stateful Distributed Object
Paradigm ,” in5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 200®@yashington, DC),
IEEE, Apr. 2002.

D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware JEEE Communications Magazine
vol. 37, Apr. 1999.

D. Lea,Concurrent Programming in Java: Design Principles and
Patterns, Second EditiorBoston: Addison-Wesley, 2000.

D. Lea and J. Marlowe, “PSL: Protocols and Pragmatics for Open
Systems,” inProceedings of thet" European Conference on
Object-Oriented ProgrammindAarhus, Denmark), ACM, Aug. 1995.

J. Noble and C. WeilSmall Memory Software: Patterns for Systems
with Limited Memory Boston: Addison-Wesley, 2001.

D. C. Schmidt, “R&D Advances in Middleware for Distributed,
Real-time, and Embedded SystemSgmmunications of the ACM
special issue on Middlewayeol. 45, pp. 43-48, June 2002.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, pp. 1-20, 1997.

41] F.Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for

Reflective Middleware,Communications ACMol. 45, pp. 33-38,
June 2002.

