
Patterns, Frameworks, and Middleware:
Their Synergistic Relationships

Douglas C. Schmidt Frank Buschmann
douglas.c.schmidt@vanderbilt.edu Frank.Buschmann@mchp.siemens.de

Electrical Engineering & Computer Science Corporate Research

Vanderbilt University Siemens, AG
Nashville Tennessee, USA� Munich, Germany

Abstract

The knowledge required to develop complex software has his-
torically existed in programming folklore, the heads of experi-
enced developers, or buried deep in the code. These locations
are not ideal since the effort required to capture and evolve
this knowledge is expensive, time-consuming, and error-prone.
Many popular software modeling methods and tools address
certain aspects of these problems by documentinghow a sys-
tem is designed. However, they only support limited portions
of software development and do not articulatewhy a system
is designed in a particular way, which complicates subsequent
software reuse and evolution.

Patterns, frameworks, and middleware are increasingly
popular techniques for addressing key aspects of the chal-
lenges outlined above. Patterns codify reusable design ex-
pertise that provides time-proven solutions to commonly oc-
curring software problems that arise in particular contexts
and domains. Frameworks provide both a reusable product-
line architecture [1] – guided by patterns – for a family of
related applications and an integrated set of collaborating
components that implement concrete realizations of the ar-
chitecture. Middleware is reusable software that leverages
patterns and frameworks to bridge the gap between the func-
tional requirements of applications and the underlying oper-
ating systems, network protocol stacks, and databases. This
paper presents an overview of patterns, frameworks, and mid-
dleware, describes how these technologies complement each
other to enhance reuse and productivity, and then illustrates
how they have been applied successfully in practice to improve
the reusability and quality of complex software systems.

1 Introduction

Emerging trends and challenges. Despite significant ad-
vances in computers, networks, programming languages, and
software methodologies, developing quality applications on

�This work was supported in part by DARPA, NSF, and Siemens.

time and within budget remains hard. Some problems stem
from the growing demands placed on software, such as re-
quirements to provide predictable, reliable, scalable, and se-
cure quality of service (QoS) simultaneously. Other problems
stem from the propensity to rediscover and reinvent core soft-
ware artifacts, such as programming languages, operating sys-
tems, networking protocols, and software component libraries.
Moreover, the heterogeneity of hardware architectures, diver-
sity of operating system (OS) and network platforms, and stiff
global competition makes it increasingly infeasible to build
high-quality software from scratch.

In today’s time-to-market-driven environments, building
quality software in cost-effective manner requires thesystem-
atic reuseof successful software models, designs, and imple-
mentations that have already been developed and tested. Un-
like opportunistic reuse (in which developers simply cut and
paste code from existing programs to create new ones), sys-
tematic reuse is an intentional and concerted effort to create
and apply multiuse software artifacts throughout an organi-
zation. In a well-honed systematic reuse process, each new
project leverages time-proven designs and implementations,
mostly just adding new code that is specific to a particular ap-
plication, and only refactoring existing software architectures
and designs when they become inadequate to cover the evolv-
ing business cases and variability in the supported domains.
Systematic reuse is essential to increase software productiv-
ity and quality by breaking the costly cycle of rediscover-
ing, reinventing, and revalidating common software artifacts.
Throughout the rest of the paper when we use the term “reuse”
we therefore always mean “systematic reuse.”

The skills required to develop, deploy, and support reusable
software have traditionally been a “black art” practiced only
by expert developers and architects. Moreover, these techni-
cal impediments to reuse are often exacerbated by a myriad of
nontechnical impediments, such as organizational, economic,
administrative, political, sociological, and psychological fac-
tors. It’s therefore not surprising that significant levels of soft-
ware reuse have been slow to materialize in many projects and

organizations.

Solution approach! Middleware, framework, and pat-
terns. Middleware[2] is software that can significantly in-
crease reuse by providing readily usable, standard solutions
to common programming tasks, such as persistent storage,
(de)marshaling, message buffering and queueing, request de-
multiplexing, and concurrency control. Developers who use
middleware can therefore focus primarily on application-
oriented topics, such as business logic, rather than wrestling
with tedious and error-prone details associated with program-
ming infrastructure software using lower-level OS APIs and
mechanisms.

Over the past decade a number of middleware standards
have emerged and matured. Some of these standards, such as
the Common Object Request Broker Architecture (CORBA),
are open systems sanctioned by international organizations,
such as the Object Management Group (OMG). Other middle-
ware standards, such as Java virtual machines, Jave 2 Enter-
prise Edition (J2EE), and .NET, have emerged from industry
consortia and market leaders.

Crucial to the success of standard middleware are thepat-
terns[3, 4, 5] andframeworks[6, 7] that reify the knowledge
of how to develop and apply the middleware and applications
that run atop it. Patterns support the reuse of design expertise
by articulating the static and dynamic aspects of successful
solutions to problems that arise when building software in a
particular context. Frameworks are concrete realizations of
groups of patterns that enable reuse of code by (1) captur-
ing the common abstractions of an application domain – both
their structure and mechanisms – while (2) yielding control of
application-specific structure and behavior to application de-
velopers.

During the past decade a number of influential R&D ef-
forts [4, 8, 5, 9, 10, 11, 12, 13] have focused on documenting
patterns and developing frameworks that enable the effective
development and reuse of middleware. As a result, middle-
ware is now commonly developed using frameworks based on
strategized composition and optimization patterns. These pat-
terns and frameworks guide the integration and configuration
of middleware that can meet the functional and QoS require-
ments of particular application domains more effectively than
can realistically be developed manually from scratch in time-
to-market driven environments.

The relationship between middleware, frameworks, and pat-
terns is highly synergistic. For example, patterns help guide
framework design and use, thereby reducing software devel-
opment effort and training costs. In turn, frameworks can be
used to develop middleware for product-line architectures [1],
whose interfaces then provide application software with a sim-
pler facade to access the powerful (and complex) internal com-
ponent structure of the frameworks. Likewise, frameworks

and patterns support the development of product-line archi-
tectures for specific application domains, such as warehouse
management or hot rolling mill process automation [14], that
apply particular types of middleware. A contribution of this
paper is to illustrate by examples how these three technologies
relate and complement each other.
Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 presents an taxonomy of the layers
of middleware; Sections 3 and 4 describe the key properties
of frameworks and patterns, respectively; Section 5 then illus-
trates the synergies between all three technologies via a case
study of how frameworks and patterns have been applied in
practice to develop middleware for distributed real-time and
embedded systems; Section 6 summarizes promising areas of
future R&D; and Section 7 presents concluding remarks.

2 An Overview of Middleware

Some of the most successful techniques and tools devised to
enhance the reuse of software center on middleware that helps
manage the complexity and heterogeneity of distributed appli-
cations. Thisdistributed computing middleware(henceforth
referred to simply asmiddleware) provides reusable software
that functionally bridges the gap between (1) end-to-end ap-
plication functional requirements and (2) the lower-level op-
erating systems, networking protocol stacks, databases, and
hardware devices. Middleware provides reusable capabilities
whose qualities are critical to help simplify and coordinate
how application software is connected and how it interoper-
ates.

Just as networking protocol stacks can be decomposed into
multiple layers, such as the physical, data-link, network, trans-
port, session, presentation, and application layers, so to can
middleware be decomposed into the multiple layers [2] shown
in Figure 1 and described in the remainder of this section.
Host infrastructure middleware encapsulates and enhances
native OS mechanisms to create reusable event demultiplex-
ing, interprocess communication, concurrency, and synchro-
nization objects, such as reactors; acceptors, connectors, and
service handlers; monitor objects; active objects; and service
configurators [9, 10]. By encapsulating the peculiarities of
particular operating systems, these reusable objects help elim-
inate many tedious, error-prone, and non-portable aspects of
developing and maintaining application software via low-level
OS programming APIs, such as Sockets or POSIX pthreads.

Common host infrastructure middleware includes the Sun
Java Virtual Machine (JVM) and Microsoft’s Common Lan-
guage Runtime (CLR), which provide platform-independent
ways of executing code by abstracting the differences be-
tween operating systems and CPU architectures. The ADAP-
TIVE Communication Environment (ACE) [9, 10] is portable

WTS
HUD

Nav

AVIONICS
REPLICATION

SERVICE

EVENT
CHANNEL

Cons
Cons

Cons

HOST
INFRASTRUCTURE

MIDDLEWARE

DISTRIBUTION
MIDDLEWARE

COMMON
MIDDLEWARE

SERVICES

APPLICATIONS

HARDWARE
DEVICES

DOMAIN-SPECIFIC
MIDDLEWARE

SERVICES

OPERATING
SYSTEMS

Figure 1: Middleware Layers in Context

C++ host infrastructure middleware that encapsulates na-
tive operating system capabilities, such as connection estab-
lishment, event demultiplexing, interprocess communication,
(de)marshaling, dynamic configuration of application compo-
nents, concurrency, and synchronization.

Distribution middleware defines higher-level distributed pro-
gramming models whose reusable APIs and objects automate
and extend the native OS mechanisms encapsulated by host
infrastructure middleware. Distribution middleware enables
clients to program applications by invoking operations on tar-
get objects without hard-coding dependencies on their loca-
tion, programming language, OS platform, communication
protocols and interconnects, and hardware.

At the heart of distribution middleware are request bro-
kers, such as The OMG’s Common Object Request Broker
Architecture (CORBA) and Sun’s Java Remote Method Invo-
cation (RMI). The request brokers allow objects to interoper-
ate across networks regardless of the platform on which they
are deployed. SOAP is an emerging distribution middleware
technology based on an XML-based protocol that allows ap-
plications to exchange structured and typed information on the
Web using various Internet protocols, such as HTTP, SMTP,
and MIME.

Common middleware servicesaugment distribution middle-
ware by defining higher-level domain-independent reusable
services that allow application developers to concentrate on
programming business logic, without the need to write the
“plumbing” code required to develop distributed applications
via lower-level middleware directly. For example, common

middleware service providers bundle transactional behavior,
security, and database connection pooling and threading into
reusable components, so that application developers no longer
need to write code that handles these tasks.

Whereas distribution middleware focuses largely on manag-
ing end-system resources in support of an object-oriented dis-
tributed programming model, common middleware services
focus on allocating, scheduling, and coordinating various re-
sources throughout a distributed system using a component
programming and scripting model. Developers can reuse these
component services to manage global resources and perform
common distribution tasks that would otherwise be imple-
mented in anad hocmanner within each application. The form
and content of these services will continue to evolve as the re-
quirements on the applications being constructed expand.

Examples of common middleware services include the
OMG’s CORBA Common Object Services, such as event no-
tification, logging, multimedia streaming, persistence, secu-
rity, global time, real-time scheduling, fault tolerance, con-
currency control, and transactions. Likewise, Sun’s Enterprise
Java Beans (EJB) technology and Microsoft’s .NET allows de-
velopers to create n-tier distributed systems by linking a num-
ber of pre-built software service components without having
to write much code manually.
Domain-specific middleware servicesare tailored to the
requirements of particular domains, such as telecom, e-
commerce, health care, process automation, or aerospace. Un-
like the other three middleware layers discussed above that
provide broadly reusable “horizontal” mechanisms and ser-
vices, domain-specific middleware services are targeted at
“vertical” markets and product-line architectures. Since they
embody knowledge of a domain, moreover, reusable domain-
specific middleware services have the most potential to in-
crease the quality and decrease the cycle-time and effort re-
quired to develop particular types of application software.

An example of domain-specific middleware services in-
cludes the Siemens Medical Solutions Group has developed
syngo (www.syngo.com), which is a product-line archi-
tecture that is both an integrated collection of domain-specific
middleware services, as well as an open and dynamically ex-
tensible application server platform for medical imaging tasks
and applications, including ultrasound, mammography, an-
giography, computer tomography, magnetic resonance, and
nuclear medicine. The Boeing Bold Stroke [15, 16] product-
line architecture is another example of domain-specific mid-
dleware. Bold Stroke uses COTS hardware and middleware
to produce a non-proprietary, standards-based component ar-
chitecture for military avionics mission computing capabili-
ties, such as navigation, display management, sensor manage-
ment and situational awareness, data link management, and
weapons control.

As the products associated with the reusable middleware

layers summarized above have matured and become perva-
sive throughout the industry, the total amount of software that
application developers must write has shrunk substantially.
However, reduction in application developer effort also im-
plies more work for middleware developers since they be-
come responsible for an increasing number of software lay-
ers. While some believe that the techniques used to de-
velop reusable middleware are simply implementation details,
in practice these choices have a significant impact on other
key middleware qualities, such as its affordability, extensibil-
ity, flexibility, portability, predictability, efficiency, reliability,
scalability, and trustworthiness.

As a result, middleware developers must themselves apply
more powerful reuse technologies to simplify the evolution of
their software layers. Not surprisingly, frameworks and pat-
terns are increasingly applied to improve the reusability and
quality of both middleware and application software. The re-
mainder of this paper presents overviews of frameworks and
patterns and then shows how these technologies can be com-
bined with middleware to enhance software reuse. It is impor-
tant to note, however, that the reuse potential of frameworks
and patterns isnot limited to middleware!

3 Overview of Frameworks

As outlined in the previous section, in today’s competitive,
fast-paced computing industry, successful middleware and ap-
plication software must possess (1)affordability , to ensure
that the total ownership costs of software acquisition and evo-
lution are not prohibitively high, (2)extensibility, to support
successions of quick updates and additions to address new re-
quirements and take advantage of emerging markets, (3)flex-
ibility , to support a growing range of multimedia data types,
traffic flows, and end-to-end QoS requirements, (4)portabil-
ity , to reduce the effort required to support applications on
heterogeneous OS platforms and compilers, (5)predictability
andefficiency, to provide low latency to delay-sensitive real-
time applications, high performance to bandwidth-intensive
applications, and usability over low-bandwidth networks, such
as wireless links, (6)reliability , to ensure that applications are
robust and tolerant of faults, (7)scalability, to enable applica-
tions to handle large numbers of clients simultaneously, and
(8) trustworthiness, to ensure integrity, confidentiality, and
availability in distributed systems.

When software is developed monolithically,i.e., as tightly
coupled clumps of functionality that are not organized mod-
ularly or hierarchically, it is hard to achieve these qualities.
Frameworks[6, 7] have emerged as a powerful technology for
developing and reusing middleware and application software
that possess the qualities listed above. Figure 2 illustrates the
three characteristics of frameworks [17] described below that

NETWORKING

DATABASE

GUI

EVENT

LOOP

EVENT

LOOP

EVENT

LOOP

APPLICATION-
SPECIFIC

FUNCTIONALITY

CALL

BACKS

DOMAIN-SPECIFIC

FRAMEWORK

CAPABILITIES

CALLBACKS

CALLBACKS

Figure 2: Relationships Between Framework Components

help them to achieve these qualities.1

� A framework exhibits “inversion of control” at run
time via callbacks to component hook methods af-
ter the occurrence of an event, such as a mouse click
or data arriving on a network connection. When an
event occurs, the framework calls back to a virtual hook
method in a pre-registered component, which then per-
forms application-defined processing in response to the
event. The virtual hook methods in the components de-
couple the application software from the reusable frame-
work software, which makes it easier to extend and cus-
tomize the applications as long as the interaction proto-
cols and QoS properties are not violated.

� A framework provides an integrated set of domain-
specific structures and functionality.Reuse of software
depends largely on how well frameworks model the com-
monalities and variabilities [19] in application domains,
such as business data processing, telecom call process-
ing, graphical user interfaces, or real-time middleware.
By leveraging the domain knowledge and prior efforts
of experienced developers, frameworks embody common
solutions to recurring application requirements and soft-
ware design challenges that need not be recreated and
revalidated for each new application.

� A framework is a “semi-complete” application that
programmers can customize to form complete applica-
tions by extending reusable components in the frame-
work. In particular, frameworks help abstract the canoni-
cal control flow of applications in a domain into product-
line architectures and families of related components. At
runtime, these components can collaborate to integrate
customizable application-independent reusable code with
customized application-defined code.

Since frameworks exhibit inversion of control, they can sim-

1While there are subtle technical distinctions between frameworks and
components [18, 10], we subsume components into the discussion of frame-
works below.

plify application design because the framework—rather than
the application—runs the event loop to detect events, demul-
tiplex events to event handlers, and dispatch hook methods
on the handlers that process the events. Since frameworks
reify the key roles and relationships of components in appli-
cation domains, the amount of reusable code increases and the
amount of code rewritten for each application decreases dra-
matically. Since a framework is a semi-complete application,
it enables larger-scale reuse of software than can be achieved
by reusing individual components or stand-alone functions.

Developers in certain domains have applied frameworks
successfully for several decades. Early frameworks, such as
MacApp, X-windows, and Interviews, originated in the do-
main of graphical user interfaces (GUIs). Java Swing and
Microsoft Foundation Classes (MFC) are contemporary GUI
frameworks that are widely used to create graphical applica-
tions on PC platforms. The broad adoption of reusable GUI
frameworks has yielded many productivity and quality bene-
fits for business and desktop applications.

Building upon their success in the GUI domain, frameworks
are now being applied to many new and more complex do-
mains [6, 7, 20]. For example, ACE and TAO described in
Section 5.1 are frameworks for host infrastructure and dis-
tribution middleware, JBoss and BEA’s WebLogic Server are
component frameworks for application servers, and many re-
cent R&D efforts, such as the Open Grid Service Infrastructure
(OGSI), focus on frameworks for web services. There are also
frameworks for specific application domains, such as SAP, and
application frameworks for medical imaging systems, such
as the Syngo platform. These frameworks are increasingly
aligning with the layers of middleware standards and domain-
specific product-line architectures discussed in Section 2.

4 Overview of Patterns

Developers of middleware and application software must ad-
dress many challenges related to complex design and program-
ming topics, such as persistence, data organization, connection
management, service initialization, distribution, concurrency
control, flow control, error handling, event loop integration,
and dependability. Many of these challenges occur repeatedly
in many applications and domains. Until the mid-1990’s, the
knowledge needed to resolve these challenges existed largely
in programming folklore, the heads of expert researchers and
developers, or buried deep in complex source code. These lo-
cations are not ideal because

� Discovering patterns from source code is expensive and
time-consuming since it is hard to separate the essence of
a design from its implementation details.

� If the insights and rationale of experienced designers are

not documented, they will be lost over time and thus can-
not be used to guide subsequent software evolution.

� Without guidance from earlier work, software developers
must engineering complex systems from the ground up,
rather than by reusing proven solutions.

Over the past decade, experienced software developers and
architects have helped to address these problems by creating
a body of literature that documents the following types of
reusable knowledge:

� Design patterns[3], which provide a scheme for refining
the elements of a software system and the relationships
between them, and describe a common structure of com-
municating elements that solves a general design problem
within a particular context.

� Architectural patterns [4], which express the funda-
mental, overall structural organization of software sys-
tems and provide a set of predefined subsystems, specify
their responsibilities, and include guidelines for organiz-
ing the relationships between them.

� Pattern languages[21], which weave together a web of
related patterns to define a vocabulary for talking about
software development problems and provide a process for
the orderly resolution of these problems.

Patterns help enhance reuse by capturing and reusing the
static and dynamic structure and collaboration of key par-
ticipants in software designs. They are particularly useful
for documenting recurring micro-architectures, which are ab-
stractions of software components that experienced developers
apply to resolve common design and implementation prob-
lems. By studying and applying patterns and pattern lan-
guages, developers can often escape traps and pitfalls that have
been avoided traditionally only via long and costly apprentice-
ships [22]. Patterns also raise the level of discourse in project
design and programming activities, which helps improve team
productivity and software quality.

Figure 3 illustrates the relationships amongst a pattern lan-
guage [5] that addresses service access and configuration,
event handling, interprocess communication, concurrency, and
synchronization dimensions in various networked applica-
tion domains, such as online financial services, remote pro-
cess control, avionics mission computing, and telecommuni-
cations.2 The relationships in this diagram reveal the follow-
ing ways in which the patterns complement and complete each
other in multiple ways to form a pattern language:

� Although each pattern is useful in isolation, the pattern
language is even more powerful, because it integrates so-
lutions to particular problems in important technical ar-
eas, such as event handling, connection management and

2Since it is beyond the scope of this paper to describe each pattern in detail,
please see the references [5] for comprehensive coverage of these patterns.

Event
Patterns

Concurrency
Patterns

External
Polymorphism

Wrapper
Facade

Connector

Thread
Pool

Thread-per
Session

Thread-per
Request

Asynchronous
Completion

Token

Thread
Specific
Storage

Active
Object

Half-Sync/
Half-Async

Leader/
Followers

Component
Configurator

Object
 Lifetime
Manager

Reactor

Proactor

Double
Checked
Locking

Thread-
Safe

Interface

Scoped
Locking

Strategized
Locking

Initialization
Patterns

Synchronization
Patterns

Acceptor

Figure 3: A Pattern Language for Network Programming

service access, concurrency models, and synchronization
strategies. Each problem in these areas must be resolved
coherently and consistently when developing concurrent
and networked applications.

� The pattern language also exposes the interdependencies
of these technical areas. For example, when selecting a
particular event-handling pattern for a networked appli-
cation, not all potentially-available concurrency patterns
can be applied usefully.

� A pattern language describes an entire solution space for
developing a particular type of system, system part, or
system aspect – by offering alternative solutions to cer-
tain problems. A pattern language can therefore be ap-
plied many, many times without ever producing exactly
the same architecture, design, or implementation. Yet
each individual architecture, design, and implementation
follows the same timeless, thus reusable, design knowl-
edge embedded in each pattern language [23].

These three points become clear only when connecting pat-
terns into a pattern language since each pattern in isolation
only focuses on itself. In contrast, a pattern language-based
design integrates the patterns consistently and synergistically
by giving concrete and precise guidance in developing a spe-
cific (type of) system or system aspect. In particular, a pattern
language conveys what are the key problems to be resolved, in
what order should they be tackled, what alternatives exist for

resolving a given problem, how are mutual dependencies be-
tween the problems handled, and how is each individual prob-
lem resolved effectively in the presence of its associated prob-
lems.

Many pattern languages exist today. Some support the cre-
ation of a specific types of software, such as the pattern lan-
guages for networked and concurrent computing [5] and enter-
prise application architectures [13]. Others pattern languages
help to realize a certain part, subsystem, or large component
of a software system. For instance, there is a pattern language
for server components [12] that describes how to build well-
structured server-side components. Yet other languages focus
on a particular problem area of relevance in software, such as
handling erroneous user input [24] and designing user-friendly
interfaces to computer and information systems [25]. There
are also pattern languages for good programming style and
practice, such as Smalltalk best practice patterns [26], C++
reference accounting [27], and Java exception handling [28].
Section 6 describes other key areas where we expect future
pattern languages will be published.

5 Illustrating the Synergies of Middle-
ware, Frameworks, and Patterns

Sections 2–4 present overviews of middleware, frameworks,
and patterns, emphasizing their particular contributions to
software reuse. This section examines these technologies in
terms of their relationships and synergies. To make the dis-
cussion tangible, we focus on The ACE ORB (TAO) [29] as a
case study to illustrate how patterns and frameworks can help
middleware developers build and evolve software by reducing
the coupling between its components.

5.1 Overview of CORBA and TAO

CORBA Object Request Brokers (ORBs) [30] allow clients to
invoke operations on distributed objects without concern for
object location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware. Figure 4
illustrates the components in the CORBA reference model,
which collaborate to provide the portability, interoperability,
and transparency mentioned above. The client stubs marshal
client operations into General Inter-ORB Protocol (GIOP) re-
quests that are transmitted to objects via the standard Internet
Inter-ORB Protocol (IIOP)3 implemented in the ORB Core.
The server ORB Core demultiplexes and receives these re-
quests using one or more threads and passes them to the Ob-
ject Adapter. The Object Adapter demultiplexes the requests
to skeletons, which demarshal the requests and dispatch the

3IIOP is implemented atop TCP/IP.

DII ORB
INTERFACE

ORB CORE GIOP/IIOP/ESIOPS

IDL
STUBS

operation()
in args

out args + return
value

CLIENT
OBJECT
(SERVANT)

OBJ
REF

STANDARD INTERFACE STANDARD LANGUAGE MAPPING

ORB-SPECIFIC INTERFACE STANDARD PROTOCOL

IDL
SKELETON

DSI
OBJECT

ADAPTER

Figure 4: Components in the CORBA Reference Model

appropriate application-level servant method that implements
the object’s operation.

The ACE ORB (TAO) [29] is a high-performance, real-time
implementation of the CORBA 3.0 specification [31] that sup-
ports the distribution middleware capabilities shown in Fig-
ure 4 and described in Section 2. TAO is targeted for appli-
cations with deterministic and statistical QoS requirements,
as well as best effort requirements. As its name suggests,
TAO is developed using the frameworks and components in
the ACE host infrastructure middleware. ACE and TAO are
open-source software that has evolved organically over the
past decade. They are used in hundreds of production software
systems in research labs and commercial projects, includ-
ing avionics mission computing systems at Boeing, satellite
communication systems at Lockheed and Raytheon, telecom-
munication systems at BBN, Cisco, Lucent, Motorola, Nor-
tel, and Siemens, medical systems at GE, and online trad-
ing systems at Automated Trading Desk. Complete source
code and documentation for ACE and TAO is available at
www.cs.wustl.edu/˜schmidt/TAO/ .

5.2 Applying Patterns and Frameworks to TAO
Middleware

The interfaces, protocols, and components shown in Figure 4
illustrate the primary capabilities provided by the CORBA ref-
erence architecture. As is often the case with architectural di-
agrams, however, it is not clear from this figurehowthe archi-
tecture behaves orwhy the architecture is designed the way it
is. Naturally, a thorough understanding of these issues is es-
sential to develop, configure, optimize, and evolve the reusable
middleware effectively. To address these issues, we outline the
key patterns and frameworks used by TAO’s ORB Core to il-
lustrate the synergies between these two reuse technologies in
terms of improving the extensibility, maintainability, and per-
formance of distribution middleware.

OBJECT/SERVANTCLIENT

OS KERNELOS KERNEL

LEADER/
FOLLOWERS

COMPONENT

CONFIGURATOR

STRATEGY

ACCEPTOR

<<CREATES>> <<LINKS>>

REACTOR <<DISPATCHES>>

ABSTRACT

FACTORY

WRAPPER FACADES

<<ENCAPSULATES>>

<<CONTAINS>>

<<CONTAINS>>

PROXY

ADAPTER

MANAGER

STUB SKEL

ORB CORE

CONNECTOR

<<CREATES HANDLERS>> <<CREATES HANDLERS>>

Figure 5: The Patterns Used in TAO

The key patterns used in the TAO ORB are shown in Fig-
ure 5 and described below:
� TheWrapper Facadepattern [5] simplifies the OS sys-

tem programming interface by combining multiple re-
lated OS mechanisms, such as the socket API or POSIX
threads, into cohesive OO abstractions. TAO uses this
pattern to enhance its reuse by encapsulating the te-
dious, non-portable, and non-typesafe low-level OS sys-
tem functions within C++ classes.

� TheReactorpattern [5] allows event-driven applications
to react to events originating from a number of disparate
sources, such as I/O handles, timers, and signals. TAO
uses this pattern to dispatch ORB connection and I/O
handlers in response to events that occur in the OS kernel.

� TheAcceptor-Connectorpattern [5] decouples the con-
nection and initialization of cooperating peer services in
a networked application from the processing they per-
form after being connected and initialized. TAO uses this
pattern in its ORB Core to actively/passively establish
connections and create I/O handlers that exchange GIOP
messages independently of the underlying transports.

� The Leader Followers pattern [5] provides an effi-
cient concurrency model where multiple threads take
turns calling a synchronous event demultiplexer (such as
select()) on sets of I/O handles to detect, demulti-
plex, dispatch, and process service requests that occur.
TAO uses this pattern to improve its performance and pre-
dictability by reducing context switching, synchroniza-
tion, and data allocation/movement overhead.

� TheStrategy pattern [3] provides a means to select one
of several candidate policies or algorithms and packaging

it with an object. This pattern is the foundation of TAO’s
extensible software architecture and makes it possible to
configure custom ORB strategies for connection manage-
ment, concurrency, and demultiplexing.

� TheAbstract Factory pattern [3] provides a single com-
ponent that builds related objects. TAO uses this pattern
to create and consolidate its many strategy objects into a
manageable number of abstract factories that can be re-
configureden masseinto its ORB Core conveniently and
consistently. TAO components use these factories to ac-
cess related strategies without explicitly specifying their
subclass name.

� The Component Configurator pattern [5] permits dy-
namic run-time configuration of abstract factories and
strategies in an ORB [5]. TAO uses this pattern to dy-
namically link the abstract factories that produce custom
ORB personalities, such as a high-throughput ORB, a
predictable real-time ORB, or a small footprint ORB.

� TheProxy pattern [4, 3] defines a object (the proxy) that
acts as surrogate for a (potentially remote) target object.
TAO uses this pattern to perform the (de)marshaling op-
erations defined by CORBA stubs.

� TheAdapter pattern [3] allows objects to work together
that have different interfaces. TAO uses this pattern in its
object adapters and skeletons to integrate object imple-
mentations (servants) with the reusable ORB code. An
object adapter also implements theManager pattern [4]
to control the lifecycle of the objects and servants it con-
tains.

Knowing the patterns used in TAO is useful since it enables
reuse of abstract design and architecture knowledge. However,
reuse of patterns alone is insufficient since it does not directly
yield flexible and efficient software. We therefore found it nec-
essary to augment our study of patterns with the creation and
use of the frameworks provided by ACE. These frameworks
help developers of TAO middleware avoid costly reinvention
of common software artifacts by refactoring recurring imple-
mentation roles. They also provide direct knowledge transfer
by embodying patterns in a powerful toolkit that contains mid-
dleware domain experienceandworking code.

The primary ACE frameworks used in TAO’s ORB Core
are shown in Figure 6. Below, we describe each framework,
outline which pattern(s) it implements, and discuss how it en-
hances reuse.

� The Reactor framework implements the Reactor and
Leader/Followers patterns to facilitate a concurrency
model where events indicating the ability to begin I/O
operations. This framework enhances reuse in TAO by
automating the detection, demultiplexing, and dispatch-
ing of handlers in response to I/O, timer, and signal
events. The ACE Reactor drives the main event loop

CLIENT OBJECT/SERVANT

GIOP
Handler

 Strategy
Connector

Connection
Handler

ORB CORE

8: REQUEST/
RESPONSE

5: connect()

0..N

9: DISPATCH()

7: CREATE & ACTIVATE

4: operation()

Connection
Handler

Connection
HandlerConnection

Handler

 Strategy
Acceptor

dynamic ORB Service_Object *
 tao.dll:make_rtorb() "-ORBport 2001"

svc.conf
FILE

Service
Configurator

1: process svc.conf file
2: configure ORBs accordingly

3: run()

 Cached
Connect
Strategy

GIOP
Handler

Reactor

GIOP
Handler GIOP

Handler

6: accept()

Figure 6: The ACE Frameworks Used in TAO

in TAO, which accepts connections and receives/sends
client GIOP requests/responses via a pool of threads.

� The Acceptor-Connector framework leverages the
Reactor framework and implements the Acceptor-
Connector and Strategy patterns to decouple the active
and passive initialization roles from application-defined
service processing performed by communicating peer
services after initialization is complete. This ACE frame-
work enhances reuse by defining (1)strategy connec-
tor objects that automatically establish connections with
servers and initialize handlers that transmit GIOP re-
quests and (2)strategy acceptorobjects that automati-
cally accept connections from clients and initialize han-
dlers that process GIOP requests from clients.

� The Service Configurator framework implements the
Component Configurator pattern to support the flexible
configuration of ORBs whose strategies can be deter-
mined and deployed at the appropriate time in the de-
sign cycle,e.g., via thesvc.conf configuration script
at installation time and/or run time. This framework en-
hances reuse by enabling ORB abstract factories (and the
strategies they embody) to be treated as interchangeable
building blocks. Software with high availability require-
ments, such as online transaction processing or real-time
industrial process automation, often require these flexible
configuration capabilities.

The design of the ACE frameworks presented above is
guided by many of the patterns shown in Figures 3 and 5.
TAO uses these patterns and the ACE frameworks that reify
them to develop an extensible ORB architecture. However,
the patterns and frameworks described here are not limited to
middleware. In fact, they have been applied in many other
application domains, including telecom call processing [32]
and switching [8], airplane flight control systems [15], multi-
media videoconferencing [33], distributed interactive simula-
tions [34], and enterprise business applications [20].

The patterns described above help to solve many common
problems that arise when developing and using frameworks
for middleware and applications. In the context of TAO, for
example, a deep understanding of these patterns helps to

� Preserve important design information for developers
who enhance and maintain the TAO middleware. Since
scores of developers have worked on TAO over the past
decade, this information would be lost if it was not doc-
umented, which would increase software entropy and de-
crease software maintainability and quality. The metrics
reported in [35] quantify the extent to which knowledge
of patterns helped to reduce the development and mainte-
nance effort for TAO.

� Guide design choicesfor developers who are building
new middleware and applications using TAO. The books
in which the patterns outlined above appear document
the common traps and pitfalls of developing middleware.
This information helps TAO developers select suitable ar-
chitectures, protocols, algorithms, and platform features
without wasting time and effort (re)implementing solu-
tions that have been shown to be inefficient or error prone.

5.3 Evaluating the Synergies Between Middle-
ware, Frameworks, and Patterns

The short case study above illustrates how patterns and frame-
works are both important techniques to achieve large-scale
reuse by capturing successful software development strategies
within a particular context, which in this case was distribution
and host infrastructure middleware. All three of these tech-
nologies help to simplify the development, configuration, and
optimization of software by codifying the accumulated exper-
tise of developers who have successfully confronted similar
problems before as follows:

� Frameworks codify this expertise in the form of reusable
algorithms and component implementations.

� Patterns codify this expertise at a complementary level
of reuse – recurring architectural design themes – which
may be reused even when the algorithms or component
implementations are not directly reusable.

� Middleware codifies this expertise in the form of inter-
faces and standard components that provide applications
with a simpler facade to access the powerful (and com-
plex) internal component structure of frameworks.

For example, as shown in our case study above, TAO middle-
ware developers are more effective since the frameworks in
ACE implement the core patterns associated with service ac-
cess and configuration, event handling, interprocess commu-
nication, concurrency, and synchronization.

It is important to recognize that middleware, frameworks,
and patterns are highly synergistic concepts, with none subor-
dinate to the other [18]. Patterns can be characterized as more
abstract descriptions of frameworks, which are often indepen-
dent of a particular programming language, operating system,
network, or database environment. Patterns have been used to
document frameworks and middleware. Sophisticated middle-
ware frameworks are concrete realizations of groups of dozens
to hundreds of patterns. A framework also integrates various
approaches to problems where there are noa priori context-
independent and optimal solutions.

6 Future R&D Focus Areas

Over the past decade, R&D on patterns, frameworks, and mid-
dleware has focused largely on developing and refining the
core concepts and infrastructure that can create the founda-
tions for subsequent efforts [6, 7]. As a result of these ad-
vances, we expect the next generation of middleware will be
developed using frameworks that consciously embody time-
proven patterns. Patterns will also increasingly be used to doc-
ument the form, content, and best practices of middleware and
frameworks. Other key topics and domains that will benefit
from the foundational work conducted thus far will include:

� Distributed real-time and embedded systems. An in-
creasing number of patterns associated with middleware
frameworks for concurrent and networked objects have
been documented during the past five years [36, 5, 35]. A
key next step is to document the patterns for distributed
real-time and embedded (DRE) systems, which extends
earlier work to focus on effective strategies and tactics for
managing key QoS properties in DRE systems, includ-
ing network bandwidth and latency, CPU speed, memory
access time, and power levels. Since developing high-
quality DRE systems is hard and remains somewhat of
a “black art,” relatively few reusable patterns [37, 38],
frameworks [39], and middleware [29] exist for this do-
main today. We expect an increased focus on DRE sys-
tems in the future, however, due to the maturation of
reusable object technology, together with the develop-
ment tools, techniques, and processes that enable it to be
applied successfully in the DRE domain.

� Mobile systems. Wireless networks are becoming perva-
sive and embedded devices are become smaller, lighter,
and more capable. Thus, mobile systems will soon
support many consumer communication and computing
needs. Application areas for mobile systems include
ubiquitous computing, mobile agents, personal assistants,
position-dependent information provision, remote medi-
cal diagnostics and teleradiology, and home and office
automation. In addition, Internet services, ranging from
Web browsing to on-line banking, will be accessed from
mobile systems. Mobile systems present many chal-
lenges, such as managing low and variable bandwidth and
power, adapting to frequent disruptions in connectivity
and service quality, diverging protocols, and maintaining
cache consistency across disconnected network nodes.
We expect that experienced developers of mobile systems
will capture their expertise in the form of reusable pat-
tern, frameworks, and middleware to help meet the grow-
ing demand for quality software in this area.

� Adaptive QoS for COTS systems. Distributed applica-
tions, such as streaming video, Internet telephony, and
large-scale interactive simulation systems, have increas-
ingly stringent QoS. To reduce development cycle-time
and cost, these applications are increasingly being devel-
oped using multiple layers of COTS hardware, operating
systems, and middleware components, such as those pre-
sented in Section 2. Historically, however, it has been
hard to configure COTS-based systems that can simul-
taneously satisfy multiple QoS properties, such as secu-
rity, timeliness, and fault tolerance [40]. As developers
and integrators continue to master the complexities of
providing end-to-end QoS guarantees, it is essential that
they document the successful patterns and reify them in
the form of reusable adaptive and reflective middleware
frameworks [41] to help others configure, monitor, and
control COTS-based distributed systems that possess a
range of interdependent QoS properties.

7 Concluding Remarks

Application software has historically been developed largely
from scratch. This development process has been applied
many times in many companies, by many projects in paral-
lel. Even worse, it has been applied by the same teams in
a series of projects. Regrettably, this continuous rediscovery
and reinvention of core concepts and code has kept costs un-
necessarily high throughout the software development life cy-
cle. This problem is exacerbated by the inherent diversity of
today’s hardware, operating systems, compilers, and commu-
nication platforms, which keep shifting the foundations of ap-
plication software development.

In today’s competitive, time-to-market-driven environ-
ments, it is increasingly infeasible to develop custom solu-
tions manually from scratch. Such solutions are hard to cus-
tomize and tune, because so much effort is spent just try-
ing to make the software operational. Moreover, as require-
ments change over time, evolving custom software solutions
becomes prohibitively expensive. End-users expect–or at least
desire–software to be affordable, robust, efficient, and agile,
which is hard to achieve without the solid architectural under-
pinnings achievable via systematic reuse.

The past decade has yielded significant progress in reuse of
software in the form of the maturation of standard middleware,
the documentation of patterns, and the development and adop-
tion of frameworks. These software technologies provide the
following general types of improvement for developing and
evolving application software:

1. Open standards, which provide a portable and interoper-
able set of software artifacts, such as interoperable secu-
rity, layered distributed resource management, and fault
tolerance services. An increasingly important role is be-
ing played by open and/or standard COTS middleware
frameworks that can be purchased or acquired via open-
source means. COTS middleware frameworks are partic-
ularly important for organizations facing time-to-market
pressures and limited software development resources.

2. Strategic focus, which elevates application developer fo-
cus beyond a preoccupation with low-level OS APIs.
For example, the standard middleware artifacts outlined
above help to direct the focus of developers toward
higher-level software application architecture and design
concerns. Without needing to worry as much about low-
level details, developers can focus on more strategic,
application-oriented concerns.

3. Design reuse, patterns are essential to guiding developers
through the steps necessary to ensure successful creation
and deployment of complex software systems. In particu-
lar, patterns enable developers to reuse higher-level soft-
ware application designs, such as publisher/subscriber ar-
chitectures, micro-kernels, and brokers [4]. These de-
sign artifacts represent some of the key strategic aspects
of complex software. If they are understood and applied
properly, the impact of many vexing complexities can be
alleviated greatly.

4. Implementation reuse, which amortizes software life-
cycle effort by leveraging previous development exper-
tise and reifying implementations of key patterns [5, 3]
into reusable middleware frameworks. In the future, most
applications will be assembled by integrating and script-
ing domain-specific and common “pluggable” middle-
ware service components, rather than being programmed
entirely from scratch.

Despite their natural synergies, however, middleware,
frameworks, and patterns are not silver bullets. They cannot,
for example, absolve developers from responsibility for solv-
ing all complex concurrent and networked software analysis,
design, implementation, validation, and optimization prob-
lems. Ultimately there is no substitute for human creativity,
experience, discipline, diligence, and judgement. When used
together properly, however, the technologies described in this
paper help alleviate many inherent and accidental software
complexities.

References
[1] P. Clements and L. Northrop,Software Product Lines: Practices and

Patterns. Boston: Addison-Wesley, 2002.

[2] R. E. Schantz and D. C. Schmidt, “Middleware for Distributed
Systems: Evolving the Common Structure for Network-centric
Applications,” inEncyclopedia of Software Engineering(J. Marciniak
and G. Telecki, eds.), New York: Wiley & Sons, 2002.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture—A System of Patterns. New
York: Wiley & Sons, 1996.

[5] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[6] M. Fayad, R. Johnson, and D. C. Schmidt, eds.,Implementing
Application Frameworks: Object-Oriented Frameworks at Work. New
York: Wiley & Sons, 1999.

[7] M. Fayad, R. Johnson, and D. C. Schmidt, eds.,Building Application
Frameworks: Object-Oriented Foundations of Framework Design.
New York: Wiley & Sons, 1999.

[8] H. Hueni, R. Johnson, and R. Engel, “A Framework for Network
Protocol Software,” inProceedings of OOPSLA ’95, (Austin, TX),
ACM, Oct. 1995.

[9] D. C. Schmidt and S. D. Huston,C++ Network Programming, Volume
1: Mastering Complexity with ACE and Patterns. Boston:
Addison-Wesley, 2002.

[10] D. C. Schmidt and S. D. Huston,C++ Network Programming, Volume
2: Systematic Reuse with ACE and Frameworks. Reading,
Massachusetts: Addison-Wesley, 2002.

[11] D. Alur, J. Crupi, and D. Malks,Core J2EE Patterns: Best Practices
and Design Strategies. Prentice Hall, 2001.

[12] M. Volter, A. Schmid, and E.Wolff,Server Component Patterns –
Component Infrastructures illustrated with EJB. New York: Wiley &
Sons, 2002.

[13] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,
Patterns of Enterprise Application Architecture. Reading,
Massachusetts: Addison-Wesley, 2002.

[14] F. Buschmann, A. Geisler, T. Heimke, and C. Schuderer,
“Framework-Based Software Architectures for Process Automation
Systems,” inProceedings of the 9th IFAC Symposium on Automation in
Mining, Mineral, and Metal Processing, (Cologne, Germany), 1998.

[15] D. C. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development,” inProceedings of the 10th Annual
Software Technology Conference, Apr. 1998.

[16] B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from
Execution Dependencies,” inProceedings of the 11th Annual Software
Technology Conference, Apr. 1999.

[17] R. Johnson and B. Foote, “Designing Reusable Classes,”Journal of
Object-Oriented Programming, vol. 1, pp. 22–35, June/July 1988.

[18] R. Johnson, “Frameworks = Patterns + Components,”Communications
of the ACM, vol. 40, Oct. 1997.

[19] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and Variability
in Software Engineering,”IEEE Software, vol. 15,
November/December 1998.

[20] M. Fayad and R. Johnson, eds.,Domain-Specific Application
Frameworks: Frameworks Experience by Industry. New York: Wiley
& Sons, 1999.

[21] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel,A Pattern Language. New York, NY:
Oxford University Press, 1977.

[22] J. O. Coplien and D. C. Schmidt, eds.,Pattern Languages of Program
Design. Reading, Massachusetts: Addison-Wesley, 1995.

[23] C. Alexander,The Timeless Way of Building. New York, NY: Oxford
University Press, 1979.

[24] W. Cunningham, “The CHECKS Pattern Language of Information
Integrity,” in Pattern Languages of Program Design(J. O. Coplien and
D. C. Schmidt, eds.), Reading, Massachusetts: Addison-Wesley, 1995.

[25] J. Borchers,“A Pattern Approach To Interaction Design”. New York:
Wiley & Sons, 2001.

[26] K. Beck,Smalltalk Best Practice Patterns. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

[27] K. Henney, “C++ Patterns - Reference Accounting,” inProceedings of
the EuroPLoP 2002 conference, (Irsee, Germany), July 2002.

[28] A. Haase, “Java Idioms: Exception Handling,” inProceedings of the
EuroPLoP 2003 conference, (Irsee, Germany), July 2003.

[29] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[30] M. Henning and S. Vinoski,Advanced CORBA Programming with
C++ . Reading, MA: Addison-Wesley, 1999.

[31] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 3.0 ed., June 2002.

[32] G. Meszaros, “A Pattern Language for Improving the Capacity of
Reactive Systems,” inPattern Languages of Program Design(J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, Massachusetts:
Addison-Wesley, 1996.

[33] D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and F. Kuhns,
“Applying QoS-enabled Distributed Object Computing Middleware to
Next-generation Distributed Applications,”IEEE Communications
Magazine, vol. 38, pp. 112–123, Oct. 2000.

[34] R. Noseworthy, “IKE 2 – Implementing the Stateful Distributed Object
Paradigm ,” in5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2002), (Washington, DC),
IEEE, Apr. 2002.

[35] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,”IEEE Communications Magazine,
vol. 37, Apr. 1999.

[36] D. Lea,Concurrent Programming in Java: Design Principles and
Patterns, Second Edition. Boston: Addison-Wesley, 2000.

[37] D. Lea and J. Marlowe, “PSL: Protocols and Pragmatics for Open
Systems,” inProceedings of the9th European Conference on
Object-Oriented Programming, (Aarhus, Denmark), ACM, Aug. 1995.

[38] J. Noble and C. Weir,Small Memory Software: Patterns for Systems
with Limited Memory. Boston: Addison-Wesley, 2001.

[39] D. C. Schmidt, “R&D Advances in Middleware for Distributed,
Real-time, and Embedded Systems,”Communications of the ACM
special issue on Middleware, vol. 45, pp. 43–48, June 2002.

[40] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, pp. 1–20, 1997.

[41] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for
Reflective Middleware,”Communications ACM, vol. 45, pp. 33–38,
June 2002.

