
FLARe: a Fault-tolerant Lightweight Adaptive Real-time Middleware for
Distributed Real-time and Embedded Systems

Jaiganesh Balasubramanian, Sumant Tambe, Chenyang Lu and Christopher Gill
Aniruddha Gokhale and Douglas C. Schmidt

Vanderbilt University, Nashville, TN Washington University, St. Louis, MO
{jai,sutambe,gokhale,schmidt}@dre.vanderbilt.edu {lu,cdgill}@cse.wustl.edu

Abstract

An important class of distributed real-time and embed-
ded (DRE) applications consists predominantly of periodic
soft real-time tasks. Timeliness and reliability are both es-
sential requirements for the correct operation of these ap-
plications. Conventional solutions to these challenges tend
to use non-adaptive and load-agnostic fault tolerance solu-
tions within a real-time system, which often end up making
ad hoc failover decisions that can further overload already
strained resources. Potential adverse consequences of these
ad hoc actions include excessive delays for real-time tasks
and cascades of resource failures.

This paper presents FLARe, a middleware that provides
a lightweight fault tolerance solution for DRE systems.
FLARe uses adaptive and load-aware mechanisms to pre-
vent system overload after failures. We describe the design
of FLARe and evaluate its performance on a representative
Linux testbed. Our empirical results indicate the effective-
ness of our proactive load-aware failover strategy, which
significantly reduces client response times and system uti-
lization after failures compared to conventional strategies.

1. Introduction

Many distributed real-time and embedded (DRE) sys-
tems, such as shipboard computing systems [24] and and
intelligence, surveillance, and reconnaissance systems [25],
consist predominantly of soft real-time tasks that must con-
tinue to provide real-time quality of service (QoS) even
when hardware and software faults occur. For example,
the behavior of the object tracking subsystem of a ship-
board computing environment is influenced by external sen-
sor readings. The object tracking system should continue to
be available and responsive even if processes or processors
fail. Likewise, it should continue to provide timely response
even when system workload varies significantly at runtime,
e.g., due to faults, dynamic task arrival, or intrusion detec-
tion.

The Object Management Group (OMG) has worked
to address the needs of DRE applications by developing
middleware specifications that address one QoS dimension
at a time, e.g., Real-Time CORBA (RT-CORBA) [20],
which provides capabilities to ensure predictable end-to-
end behavior for remote object method invocations, and
Fault-Tolerant CORBA (FT-CORBA) [19], which defines
services and strategies to enhance the dependability of
CORBA applications. It is not possible, however, for
CORBA applications to obtain both real-time and fault-
tolerance capabilities simply by adopting both standards.
Existing mechanisms [6, 21] provide load-agnostic and
non-adaptive recovery solutions, which can cause unaccept-
able delays for real-time tasks and produce further resource
failures due to overloads.

What DRE systems need, therefore, are middleware ca-
pabilities that integrate real-time and fault tolerance byde-
sign, are lightweight, and are adaptive and load-aware so
that these solutions can maintain soft real-time performance
in the face of failures. This paper describes FLARe, which
is middleware that provides an adaptive, lightweight fault
tolerance solution for RT-CORBA [20]. The novelty of our
approach stems from its proactive ability to provide timely
failover and maintain soft real-time performance after pro-
cessor failures. Specifically, this paper makes three contri-
butions to state-of-the-art middleware for DRE systems:

• Proactive, timely client redirection– client-side mid-
dleware is updated proactively with suitable failover
targets so it can make local request redirection deci-
sions for clients when a server fails.

• Adaptive, load-aware server failover– failover targets
are chosen based on up-to-date utilization estimates,
which maintains timely response to client’s requests
and avoids system overload after a failover.

• Lightweight middleware architecture– standard
CORBA interceptors [29] provide client-side enhance-
ments, such as redirection for fault tolerance, extend-
ing the basic behavior of RT-CORBA object request
brokers (ORBs) transparently.

FLARe has been implemented within the TAO [23]
RT-CORBA middleware. We evaluate FLARe on a dis-
tributed testbed running Fedora Core 4 Linux in the real-
time scheduling class. Our results demonstrate the effec-
tiveness of FLARe’s proactive and load-aware failover strat-
egy to minimize client response times and to rebalance sys-
tem resource utilization after processor failures.

This paper is organized as follows: Section 2 describes
our fault model and the lightweight architecture of FLARe;
Section 3 evaluates the performance of FLARe in the pres-
ence of failures and contrasts its performance with alter-
natives; Section 4 compares FLARe with related work;
and Section 5 presents concluding remarks and summarizes
lessons learned.

2. Design of FLARe

This section describes the design of the FLARe middle-
ware. We describe its replication style, real-time system
model, and fault model, as well as its software design.

2.1 Replication Style

Conventional fault tolerance solutions replicate servers
that may fail independently, giving clients a robust service
that appears as though it was provided by a single server.
Two common approaches for maintaining replicas areAC-
TIVE and PASSIVE replication. InACTIVE replication, a
collection of servers maintains identical state, and all client
requests are executed atomically in all of the replicas using
a group communication service [1]. If a server fails other
servers continue to execute the protocol, and clients are not
affected by the failures of individual replicas.

Although ACTIVE replication has been used for some
hard real-time systems [17] it is expensive for systems that
do not require strong state consistency or hard real-time
guarantees due to its high resource usage. For such systems,
PASSIVEreplication may be preferred, where one replica—
called the primary—handles all client requests, and backup
replicas receive state updates from the primary. If the pri-
mary dies, a backup is elected to become the new primary.

Electing the new primary takes time, however, which
could affect client failover latency. After failover, client-
perceived response times depend on the load on the proces-
sor hosting the new primary. Timely failover and choos-
ing the right failover target to maintain timely responses to
clients are thus crucial to usePASSIVE replication schemes
effectively for DRE systems. Our FLARe middleware is
designed to provide these capabilities.

2.2. FLARe’s Real-time System Model

FLARe supports DRE systems consisting predominantly
of soft periodic real-time tasks, such as those found in
shipboard computing and intelligence, surveillance, and re-

connaissance systems.1 For the purposes of this paper,
we assume the soft periodic tasks are deployed on a RT-
CORBA [20] infrastructure, such as that provided by the
TAO middleware [23]. These tasks are scheduled on dif-
ferent nodes of the DRE system, with tasks on each node
scheduled using Rate Monotonic Scheduling (RMS) [18].

The client-side request rate defines the priority at which
the task will be executed at the server. We therefore use RT-
CORBA’sCLIENT_PROPAGATED priority model. Since a
single server process may handle multiple clients with dif-
ferent priorities, we also use the RT-CORBAthread pool
with lanesfeature. While our current implementation em-
ploys RMS, our middleware architecture can easily incorpo-
rate other scheduling policies, such as Maximum Urgency
First [26] (MUF).

2.3. Fault Model

This paper focuses on a fail-stop model of failures, where
processes or processors can fail and the remainder of the
system can continue executing. We assume that processor
faults arehard faults, i.e., when a processor has a fault it
stops permanently. These types of faults may occur due to
aging or acute damage, though in domains like shipboard
computing acute damage is the main concern since hard-
ware components are periodically replaced through routine
maintenance. Considering unpredictable behavior of pro-
cesses or processors is beyond the scope of our research.

We assume that networks provide bounded communi-
cation latencies and do not fail. This assumption is rea-
sonable for certain DRE systems, such as shipboard com-
puting, where nodes are connected by highly redundant
high-speed networks. Relaxing this assumption through
integration of our middleware with network level fault
tolerance techniques is an area of future work. Similar
to the COLD_PASSIVE replication style used in the FT-
CORBA [19] specification, our current middleware im-
plementation assumes that objects are stateless, although
the techniques presented here may be integrated with
SEMI_ACTIVE replication [11] to support stateful objects.

2.4. Fault-Tolerant Real-time CORBA Middleware

The goal of FLARe is to provide middleware mecha-
nisms that enable timely failover after a process or pro-
cessor failure, for real-time applications that usePASSIVE

replication. We begin by discussing the limitations of the
existing FT-CORBA [19] standard for DRE systems.

2.4.1 Limitations of FT-CORBA

To supportPASSIVEreplication, the FT-CORBA [19] spec-
ification collects CORBA objects intoreplication groups.
Replica addresses are grouped by a standard mechanism

1In such systems we assume that each node has a single processor and
hard real-time tasks are provisioned separately, with dedicated hardware
and software, and as such are outside the scope of this discussion.

2

called an interoperable object group reference(IOGR),
which has a linked list of CORBAinteroperable object ref-
erences(IORs), with each member of the list pointing to a
server replica IOR. FT-CORBA clients invoke operations
using IOGRs, as if they were making invocations using
IORs.

If a server object fails in the IOGR model the client-side
ORB catches the exception, and cycles through the IORs in
the IOGR to handle the request at a different replica. This
algorithm ensures faster client failover, and provides clients
with a transparent abstraction as though the service was pro-
vided by a single server. If none of the IORs in the IOGR
list is valid (e.g., if no replicas are live), an exception is
propagated to the client application so it can start a recov-
ery process to find a new set of server object addresses.

Although the IOGR provides a standardized, transparent
mechanism for client-side failover if a server replica fails, it
has the following shortcomings:

• No seamless integration with RT-CORBA– Not all RT-
CORBA ORBs support the FT-CORBA IOGR feature.
Even if it is supported, there are no guidelines for how
those features should work with RT-CORBA features
like banded connections.

• Fixed and load-unaware replica selection– FT-
CORBA’s mechanism of selecting the next IOR from
a linked list provides faster failover. The default FT-
CORBA replica selection policy, however, does not
consider each server’s resource utilization, which may
affect client response times after failover. A replica
that may be a suitable failover at deployment time may
not be so at runtime due to dynamic task arrivals and
changing system utilization levels.

These shortcomings of FT-CORBA for DRE systems moti-
vate the lightweight FLARe solution discussed next in Sec-
tion 2.4.2, which uses recent processor utilizations to select
each failover target. Since FLARe maintains updated pro-
cessor utilization information at runtime, it can also provide
an adaptive mechanism to refresh failover targets proac-
tively in the client-side ORB.

2.4.2 Overcoming FT-CORBA’s Limitations with
FLARe

We now describe how FLARe is designed to overcome the
limitations of FT-CORBA described in Section 2.4.1.

FLARe’s middleware architecture. Figure 1 depicts the
architecture of the FLARe middleware. The major compo-
nents of FLARe are described below:

Middleware replication manager. FLARe’s middle-
ware replication manager provides interfaces for register-
ing and managing information about the server objects and
their backup replicas. It also determines the most appropri-
ate server object to which to fail over, when an invocation
fails. For each server object, FLARe’s middleware repli-

Figure 1: FLARe Middleware Architecture

cation manager keeps track of the processors hosting their
replicas. From each processor, the middleware replication
manager collects CPU utilization information, and orders
the failover targets according to the utilizations of the pro-
cessors hosting the replicas.

Client request interceptors.A client-side process con-
tains an application that invokes requests on servers using
an RT-CORBA ORB. Clients use the simpler IOR mecha-
nism instead of the IOGR mechanism, so that client appli-
cations can make use of RT-CORBA features in a seamless
manner. Collocated with the client process is a client re-
quest interceptor [29], which is integrated with the ORB at
system initialization time.

Client request interceptors transparently modify the be-
havior of the CORBA object method calls invoked by an
application. A client-sideCOMM_FAILURE exception is
raised after a connection timeout because of a server failure.
The client request interceptor then modifies the exception
handling behavior that is triggered: instead of propagating
that exception to the client application, the client request
interceptor transparently redirects the client invocation to
a different appropriate server object as part of the client
failover process. For any server object managed by FLARe,
the middleware replication management maintains informa-
tion about which server object to use during failover.

Forwarding agent. Client request interceptors are not
themselves CORBA objects, and thus cannot be invoked
through remote interfaces. To allow FLARe’s middleware
replication manager to send object failover information to
the client request interceptor, a forwarding agent runs in a
separate thread within the client process, and the middle-
ware replication manager updates the forwarding agent with
the failover information. Upon catching an exception, the
client request interceptor contacts the forwarding agent to
obtain the failover object address, and redirects the client to
that server object.

3

Resource monitor. FLARe runs a resource monitor on
each processor to track the CPU utilization and liveliness
of the processes hosted by the processor. On a Linux plat-
form, the resource monitor uses the/proc/stat file to
estimate the CPU utilization in each sampling period. The
/proc/stat file records the number of jiffies (a default
duration of 10ms in Linux) when the CPU is in user, nice,
system and idle modes. At the end of each sampling period,
the resource monitor reads the counters and estimates the
CPU utilization as 1 minus the percentage of jiffies spent in
idle mode in the last sampling period.

To detect the failure of a process quickly, each applica-
tion process on a processor opens up a passive POSIX local
socket (also known as a UNIX domain socket), and registers
the port number with the resource monitor. The resource
monitor connects to and performs a blocking read on the
socket. If an application process crashes, the socket and the
opened port will be invalidated. The resource monitor then
receives an invalid read error on the socket, which indicates
the failure of the process.

The resource monitor periodically updates FLARe’s
middleware replication manager with the processor utiliza-
tion information. To improve the FLARe middleware’s re-
sponsiveness to sudden workload changes and failures, it
also generates event-driven updates to the middleware repli-
cation manager, when utilization levels increase beyond a
certain threshold or when a processes fails. This design al-
lows the middleware replication manager to recompute the
failover information for the affected server objects, in re-
sponse to dynamic changes in system workload and failures.
FLARe’s middleware replication manager also proactively
notifies the forwarding agents of any such change, so that
client requests will continue to be redirected to appropriate
failover objects whenever failures occur.

FLARe’s Replica selection algorithm. FLARe’s mid-
dleware replication manager uses Algorithm 1 to select a
per-object failover target based on the utilization levelsof
the processors in a DRE system. This algorithm can be run
repeatedly over the remaining potential failover targets to
provide a total ordering of the failover target list.

FLARe’s replica selection algorithm chooses the proces-
sor with the lowest utilization from among all processors
hosting an object’s replicas as its failover target. The ex-
pected utilization variable is used to account for the failover
decision of other objects located on the same processor. By
selecting the processor with the lowest expected utilization,
our replication selection algorithm distributes the failover
targets of objects on a single processor to multiple proces-
sors.

FLARe’s FT capabilities. FLARe handles different
types of failures as follows:

Algorithm 1 Determine per-object failover targets
1: N = number of processors
2: for i = 1 to N do
3: reset expected utilization of all the processors to the

current utilization
4: P = number of processes in this processor i
5: for j = 1 toP do
6: O = number of objects running in this process j
7: for k = 1 toO do
8: find all the processors of the object k’s replicas
9: find the processor MIN with the minimum ex-

pected utilization
10: failover target for object k is the object running

in MIN
11: expected utilization of processor MIN += object

k’s load
12: end for
13: end for
14: end for

• Failure of a server object. At system initialization
time, the forwarding agent in each client process reg-
isters with FLARe’s middleware replication manager.
This manager acknowledges the registration by send-
ing the failover information about the server objects
managed by FLARe. Through periodic utilization
monitoring at each of the processors, FLARe’s middle-
ware replication manager updates the forwarding agent
whenever the failover information for a server object
changes, which allows clients to failover to the appro-
priate replica server objects.

• Failure of a replica server object.When a process
crashes, any replica server objects in that process
would fail as a result. Since those failed replica objects
could be potential failover targets, upon the detection
of a failed server replica, the resource monitor on that
same processor notifies the replication manager imme-
diately. The middleware replication manager recom-
putes the failover information for that server object and
updates the forwarding agents of all client processes.

• Failure of a resource monitor or of the middleware
replication manager.FLARe uses semi-active replica-
tion [11, 4] to provide fault-tolerance capabilities to its
middleware replication manager as well as to the per-
processor resource monitor. Since FLARe’s middle-
ware replication manager and its replicas are located
on a set of dedicated processors they will not experi-
ence overloads after failures.

3. Empirical Evaluation of FLARe

This section describes experiments we conducted to
evaluate FLARe’s performance and compare its proac-

4

tive load-aware failover approach with alternative failover
strategies.

3.1 Experiment Configurations

The experiments were conducted at ISISlab (www.dre.
vanderbilt.edu/ISISlab) on a testbed of 15 blades.
Each blade has two 2.8 GHz CPUs, 1GB memory, a 40
GB disk, and runs the Fedora Core 4 Linux distribution.
Our experiments used one CPU per blade to ensure that
the RMS scheduling policy worked properly with our ex-
periment configurations. The blades were connected via a
CISCO 3750G switch over a 1 Gbps LAN. As shown in Fig-
ure 2, twelve of those blades ran RT-CORBA client/server
applications developed using FLARe, which is based on
TAO 1.5.8. FLARe’s middleware replication manager and
its backup replicas ran in the other three blades. The en-
tire FLARe middleware (excluding the code in TAO) was
implemented in∼3,400 lines of C++.

Figure 2: Experiment Setup

The clients in these experiments used threads running in
the Linux real-time scheduling class to invoke operations
on server objects at periodic intervals. For the experiments
conducted for this paper, client applications invoked opera-
tions on server objects using one of the following rates: 10
HZ, 5 HZ, 2 HZ, or 1 HZ. As shown in Figure 2, four clients
(CL-1, CL-2, CL-3, andCL-4) invoke operations on four
different types of server objects (A-1, B-1, C-1, andD-1).
To evaluate FLARe in the presence of resource contention
created by external disturbances, such as dynamic task ar-
rivals, we introduced dynamic requests using two additional
clients,CL-5, andCL-6, to invoke operations on two server
objects,DY-1 andDY-2, respectively.

The server objects also have backups deployed on other
processors. For example,A-2, andA-3 are replicas of the
server objectA-1 deployed on processorsALPHA andLAM -
BADA , respectively. Since the clients invoke operations at
four different rates, the higher each server object’s invoca-
tion rate, the higher the priority at which it was run, per
RMS.

We compared FLARe’s proactive load-aware client
failover strategy (Section 2.4.2) with the following two
client failover strategies:

• Staticclient failover strategy, where the client is ini-
tialized with astatic list of IORs, which are not up-
dated based on the replicas’ readiness or effectiveness
to handle client invocations after a failover.

• Reactive load-awareclient failover strategy, where the
client-side middleware invokes a remote operation on
the middleware replication managerafter each failure
to obtain the suitable failover target address. The repli-
cation manager uses the replica selection algorithm
described in Section 2.4.2. The reactive load-aware
strategy is thus anon-demandalternative to FLARe’s
proactivetarget update feature, which we evaluate for
purposes of comparison.

As is described in Section 2.4.2, the strategy adopted by
FLARe is both proactiveandload-aware, where the middle-
ware replication manager proactively pushes failover target
updates to clients.

3.2 Load-aware Failover Decisions

Rationale. When process or processor failures occur in
a system, FLARe fails over the clients’ server object refer-
ences to backup replicas hosted in other available processes
and/or processors. This experiment evaluates how end-to-
end response times and processor utilizations are affected
due to failover decisions made by the different failover
strategies.

Methodology. The reactive load-aware failover strategy
is similar to our proactive load-aware failover strategy, ex-
cept that in the case of the reactive load-aware strategy there
is an additional delay for a remote call to the middleware
replication manager to locate the failover server object’sad-
dress. The failover object that is chosen is the same as the
one chosen by FLARe since the supplier of that informa-
tion (the middleware replication manager) is the same in
both the strategies. This experiment therefore compares the
proactive load-aware strategy and the static strategy to eval-
uate the effects of load-awareness.

Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

CL-1 A-1 10 40%
CL-2 B-1 5 30%
CL-3 C-1 2 20%
CL-4 D-1 1 10%
CL-5 DY-1 5 50%
CL-6 DY-2 10 50%

Table 1: Experiment setup

Experiment setup.As shown in Figure 2, in this exper-
iment four different clients,CL-1, CL-2, CL-3, andCL-4,
invoke operations on server objects with configurations de-

5

scribed in Table 1. This table also describes the configura-
tions for the dynamic clientsCL-5 andCL-6. The exper-
iment ran for 300 seconds, and as described above all the
clients made their respective invocations on different server
objects unless a failure happened to cause clients to con-
tinue their invocations on common backup server objects.

Failure scenario. To evaluate the performance of the
different failover strategies, we emulated a failure 150 sec-
onds after the experiment started. We used a simple fault
injection mechanism, where when clientsCL-1 or CL-2
make invocations on server objectsA-1 or B-1 respectively,
the server object calls theexit (1) command, crashing the
process hosting server objectsA-1 and B-1 on processor
TANGO. The clients receiveCOMM_FAILURE exceptions,
and then make continued invocations on replicas chosen by
the failover strategy.

Failover strategy configurations. With the static
failover strategy, failover decisions are made at deployment
time, as follows: ifA-1 fails, contactA-3 followed byA-
2; and if B-1 fails, contactB-3 followed byB-2. With our
proactive load-aware failover strategy, those failover deci-
sions are updated dynamically when and if failures occur, as
the processors’ utilization levels and sets of live processes
change.

Metrics. We measured the per-invocation roundtrip
response time a client experienced both in the pres-
ence and absence of failures. The client-perceived end-
to-end response time depends on the following factors:
(1) CLIENT_REQUEST_DELAY , which is the time taken
for the request to traverse the client ORB, the net-
work, and the server ORB, (2)SERVER_DELAY , which
is the response time of the server object, and (3)
SERVER_REPLY_DELAY , which is the time taken for the re-
ply to traverse the server ORB, the network, and the client
ORB. FAULT_DETECTION_DELAY is the time taken for
the client to receive aCOMM_FAILURE exception after the
server object failure.FAILOVER_DELAY is the time taken
for the client to find the next replica address to contact after
the COMM_FAILURE exception is received in the case of a
failure. We also measured processor utilizations throughout
the experiment.

Analysis of results. Figure 3a shows the end-to-end
response times perceived by clientsCL-1 andCL-2 when
they are configured to use the static strategy. ClientsCL-1
andCL-2 make invocations on serversA-1 andB-1, respec-
tively. The request rates ofCL-1 andCL-2 are 10HZ and 5
HZ, respectively.A-1 thus serves requests at higher priority
than B-1. At 50 seconds, clientsCL-5 andCL-6 start in-
voking operations on serversDY-1 andDY-2, respectively,
which provide dynamic workload changes to the system.

At 150 seconds, whenCL-1 makes an invocation on
serverA-1, our fault injection mechanism crashes the pro-
cess hostingA-1. CL-1 receives aCOMM_FAILURE excep-

tion after the connection timeout, and makes a failover to
the targetA-3, which is already pre-determined in the static
strategy. For the invocation at 150 seconds, the end-to-end
response time perceived byCL-1 increases by 10.2 millisec-
onds, as shown in Figure 3a. This increase occurs because
the request experiences aFAULT_DETECTION_DELAY . The
FAILOVER_DELAY is negligible because the failover target
address is readily available at FLARe’s client request inter-
ceptor. Similarly, Figure 3a shows that for the invocation
at 150 seconds, the end-to-end response time perceived by
CL-2 increases by 10.3 milliseconds as part of the failover.

The end-to-end response time perceived byCL-2 in-
creases by∼40% after the failover toB-3 on hostCHAR-
LIE, which also hostsDY-2 at a higher priority thanB-
3. The sharp increase in the response time perceived by
CL-2 is caused by the high processor utilization ofCHAR-
LIE, which increases from 50% to 80% as a result of the
failover. This result demonstrates the negative impact of
load-unaware failover on the real-time performance of ap-
plications.

Moreover, the end-to-end response times perceived by
CL-5 increases by about 90% after the failover ofCL-1
to A-3 in LAMBADA , even thoughCL-5 did not perform
a failover itself. As shown in Figure 3c, this increase oc-
curs because the utilization ofLAMBADA grew from 50%
to 90% due to the activation ofA-3 after the failover, re-
sulting in a sharp increase in the response time ofDY-1
hosted onLAMBADA . This result shows that load-unaware
failovers can severely affect the real-time performance of
already-active servers as well as the response times of their
respective clients.2

Figure 3b shows the end-to-end response times perceived
by clientsCL-1, CL-2, CL-5, andCL-6 when they are con-
figured to use the proactive load aware strategy.CL-1, CL-
2, CL-5, andCL-6 invoke operations with the same con-
figurations they had for the static strategy experiment. At
0 seconds,CL-3 andCL-4 make invocations on serversC-
1 (hosted onALPHA) and D-1 (hosted onBETA) respec-
tively. The request rates ofCL-3 andCL-4 are 2HZ and 1
HZ, respectively. Figure 3d shows the utilizations of all the
processors. At 50 seconds, the utilizations ofLAMBADA

and CHARLIE increased by 50% because of the activation
of the serversDY-1 andDY-2, respectively. Since the uti-
lizations of these processors are higher than the utilizations
of ALPHA and BETA, the middleware replication manager
chooses the failover targets forA-1 andB-1 asA-2 (hosted
on ALPHA) andB-2 (hosted onBETA), respectively.

At 150 seconds, as described earlier, the fault injection
mechanism crashes the process hostingA-1 andB-13. The

2As shown in Figure 3a, the end-to-end response times perceived by
clients CL-1 andCL-6 did not change after the failover because they are
served by highest priority server objects.

3The FAILOVER_DELAY for CL-1 and CL-2 is the same as in static

6

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300

R
es

po
ns

e
tim

e
(m

ic
ro

se
co

nd
s)

Time (sec)

Client Response Times Before/After Failure

Client CL-1
Client CL-2
Client CL-3
Client CL-4
Client CL-5
Client CL-6

(a) End-to-end response times with static strategy

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300

R
es

po
ns

e
tim

e
(m

ic
ro

se
co

nd
s)

Time (sec)

Client Response Times Before/After Failure

Client CL-1
Client CL-2
Client CL-3
Client CL-4
Client CL-5
Client CL-6

(b) End-to-end response times with proactive load-aware strategy

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
ag

e)

Time (sec)

CPU Utilization at Replica Hosts

ALPHA
LAMBADA

BETA
CHARLIE

TANGO

(c) Utilization with static strategy

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
ag

e)

Time (sec)

CPU Utilization at Replica Hosts

ALPHA
LAMBADA

BETA
CHARLIE

TANGO

(d) Utilization with proactive load-aware strategy

Figure 3: End-to-end response times and utilizations with different failover strategies

end-to-end response time perceived byCL-2 decreases by
about 40% after the failover toB-2 on hostBETA, which
also hostsD-1 at a lower priority thanB-2.

The sharp decrease in the end-to-end response time per-
ceived byCL-2 is caused by the low processor utilization of
BETA, which does not increase by more than 40% through-
out the experiment. Moreover,B-2 serves requests at the
highest priority onBETA. Using the proactive load-aware
strategy, the end-to-end response times perceived byCL-2
after the failover are 3 times less than those perceived by
CL-2 using the static strategy. This result demonstrates the
significant positive impact of proactive load-aware failover
on the real-time performance of DRE systems.

Moreover, the end-to-end response times perceived by
CL-5 andCL-6 did not change after the failover of clients
CL-1 andCL-2. The behavior is unchanged because the
replica selection algorithm did not chooseLAMBADA and
CHARLIE as the failover target processors, onceDY-1 and
DY-2 were activated in those processors. This result demon-
strates that FLARe proactively updates failover targets
when system workload changes dynamically.

Figure 3d shows the utilizations of processorsALPHA

strategy. The end-to-end response time perceived byCL-1 does not change
after failover because of being served by highest priority server object.

andBETA, where the failover targets were hosted. This fig-
ure shows that after failover, the utilizations of these proces-
sors are similar to the utilizations of processorsLAMBADA

andCHARLIE, where the other replicas of the failed objects
A-1 andB-1 are hosted. This result is in contrast to the
processor utilizations with the static strategy as shown in
Figure 3c, where the utilizations of the processors hosting
the failover targets were 4 times and 8 times higher than the
utilizations of the processors hosting the other replicas of
A-1 andB-1.

By keeping the utilizations balanced, our proactive load-
aware strategy not only provided timely responses to the
failing over clients, but also did not affect the already-active
servers. As shown in Figure 3b, the end-to-end response
times ofCL-3 andCL-4 increased by 35% and 50% after the
failover. This result is much better than the 90% increase in
end-to-end response times forCL-5 in the static strategy.

3.3 Proactive Failover Decisions

When compared with the proactive load-aware and static
failover strategies, the reactive load-aware strategy incurs
more time to failover to the next server object. This increase
stems from the remote invocation of FLARe’s middleware
replication manager after receiving theCOMM_FAILURE

exception from a server object failure. To evaluate the delay

7

Proactive Loadaware
Static
Reactive Loadaware

 30

 35

 40

 45

 50

 55

 60

 65

 70

AfterFailoverBefore

R
es

po
ns

e
tim

e
(m

ili
se

co
nd

s)

(a) Failover delay

Without FLARe
With FLARe

 0

 5

 10

 15

 20

 25

 30

 35

 40

ServerClient

C
od

e
si

ze
 (

M
b)

(b) Code size overhead

Without interceptors
With interceptors

 39.2
 39.21
 39.22
 39.23
 39.24
 39.25
 39.26
 39.27
 39.28
 39.29
 39.3

Client

R
es

po
ns

e
tim

e
(m

ili
se

co
nd

s)

(c) Runtime overhead

Figure 4: Failover delay and overhead measurements

empirically, we ran an experiment with clientCL-1 invoking
operations on server objectA-1. No other processes operate
in the processor hostingA-1, so that the response time will
equal the execution time of the server.

We ran the experiment for 10,000 iterations. A fault is
injected to kill the server while executing the 5001st request.
The clients then failover to backup server objectsA-2 and
A-3, which execute the remaining 5,000 requests (including
the one experiencing the failure).

Figure 4a shows the different response times perceived
by client C-1 in the presence of server object failures. The
failover delays for the static and proactive load-aware strate-
gies are similar because both strategies know the failover
decisiona priori and just use the next available address.
In the reactive load-aware strategy, however, the decision
is not knowna priori, so FLARe’s middleware replication
manager is contacted to get the next address to try. This re-
mote invocation increases the response time of the failover
request further. When combined with the results shown in
Section 3.2, the results in Figure 4a clearly show that the
proactive load-aware strategy is better than either the reac-
tive load-aware or static failover strategy, and thus is more
suitable for use in DRE systems.

3.4 Overhead Measurements

FLARe provides fault tolerance capabilities to DRE sys-
tems using a lightweight middleware architecture, as de-
scribed in Section 2.4.2. A DRE system spends the bulk of
the time performing its application logic, and comparatively
less time detecting and recovering from failures. It is there-
fore worthwhile to determine what time/space overhead is
added by the FLARe middleware to the normal functioning
of applications in DRE systems.

Memory footprint and run-time invocation overhead
are important time/space metrics for DRE systems since
they affect the ability of applications to run in resource-
constrained environments. The following capabilities of
FLARe affect the memory footprint and runtime perfor-
mance of applications in DRE systems: forwarding agents
are added to handle proactive updates from the middleware
replication manager; client request interceptors are added to
catchCOMM_FAILURE exceptions and transparently redi-
rect requests to suitable failover targets; and resource mon-
itors are added to track host utilizations and the liveness of

processes.

Measuring FLARe’s memory footprint overhead. To
evaluate the effect of FLARe on the memory footprint of a
DRE system, we designed a baseline single-threaded server
and client application process using TAO’s RT-CORBA im-
plementation. The server process activates a single object,
and the client process invokes an operation on that object.
We measured the memory footprint in one of the blades and
then compared the baseline version to a version linked with
the FLARe middleware.

Figure 4b shows the memory footprint of the client and
server applications with and without FLARe. The figure
shows that in the chosen platform, FLARe increases the
memory footprint of the client and the server application
by 10.2 MB, which stems largely from the memory foot-
print added by the threads that run the forwarding agents
and resource monitors.

On the Linux platform we used for our experiments, the
default minimum stack size of a thread is 10,240 Kbytes,
which is governed by the constantPTHREAD_STACK_MIN .
Every new thread created by an application will thus incur a
corresponding increase in its memory footprint. The default
value of the stacksize is clearly excessive for the forwarding
agent’s functionality. For applications with more stringent
footprint requirements, it may require recompiling the OS
kernel with a much smaller value of the default thread stack
size. This result indicates that the footprint overhead is due
primarily to the thread stack size, rather than FLARe’s in-
frastructure elements, such as the forwarding agent and re-
source monitor.

Measuring FLARe’s runtime overhead during fault-free
conditions. FLARe uses a client request interceptor to
catchCOMM_FAILURE exceptions and transparently redi-
rect clients to suitable failover targets. CORBA interceptors
check every invocation made by the client, when a request
is sent to a server, as well as when the reply/exception is
received from the server. To evaluate the runtime overhead
of these per-request interceptions, we ran a simple experi-
ment with clientCL-1 making invocations on server object
A-1 with and without client request interceptors. No other
processes operated in the processor hostingA-1, so that the
response time was equal to the execution time of the server.

We ran this experiment for 50,000 iterations, and mea-

8

sured the average end-to-end response time perceived by
CL-1. Figure 4c shows that the average end-to-end response
time perceived byCL-1 increased by only 8 microseconds
when using the client request interceptor. This result shows
that the interceptor adds negligible overhead to the normal
operations of a real-time application. Moreover, it provides
capabilities to add client redirection transparentlywithout
modifying TAO’s RT-CORBA implementation.

4. Related Work

Fundamental ideas and challenges in combining real-
time and fault tolerance are described in [28], where the
notion of imprecise computations have been used to provide
degraded QoS to applications operating in the presence of
failures. [12] proposes adaptive fault tolerance mechanisms
to choose a suitable redundancy strategy for dynamically
arriving aperiodic tasks based on system resource availabil-
ity. [9] proposes a feasibility test to determine if a given
task set is schedulable for fault-tolerant purposes using ear-
liest deadline first (EDF) scheduling. [14] proposes a fixed
priority-driven preemptive scheduling scheme to preallo-
cate time intervals to both the primary and backup replicas
of a task, and adaptively executes either the primary or a
backup depending on failures and available time. [15] gen-
erates a FT schedule for tasks with precedence constraints
and plans for sufficient slack time to handle recovery actions
in case of failures. FLARe differs from these approaches in
providing fault tolerance capabilities to soft real-time appli-
cations. Rather than ensuring hard deadlines are met in the
presence of failures, therefore, FLARe focuses on minimiz-
ing the impact of failure recovery on client response times
and system resource utilization, and also provides timely
client failover to appropriate failover targets.

Other research has focused on deployment-time alloca-
tion of resources to tasks operating in a multi-processor en-
vironment while considering fault tolerance. [10] focuses
on choosing appropriate task implementations and degrees
of replication for fault tolerance depending on system re-
source availability. [13] proposes a fully polynomial-time
approximation algorithm to map tasks and their replicas to
heterogeneous multiprocessors. [3] proposes a bi-criteria
heuristic for scheduling operations in heterogeneous archi-
tectures while minimizing schedule length and maximiz-
ing reliability. [7] proposes a polynomial-time approxima-
tion scheme for replication of periodic hard real-time tasks
in identical multiprocessor environments while minimizing
system utilization. The FLARe middleware can be extended
readily to support deployment-time allocation planning us-
ing such algorithms. Furthermore, as failures occur and
tasks arrive dynamically at run-time, FLARe can also adapt
by changing failover targets on the fly so that client response
times are not overly affected by failures.

Delta-4/XPA [22] was an early effort to provide real-

time fault-tolerant solutions to distributed systems by using
the semi-active replication model, where all the replicas are
active, but only one replica sends output responses. AR-
MADA [2] defines a set of communication and middleware
services that support fault tolerance and end-to-end guar-
antees for real-time distributed applications. MEAD [21]
and its proactive recovery strategy for distributed CORBA
applications can minimize the recovery time for DRE
systems. The Time-triggered Message-triggered Objects
(TMO) project [16] considers replication schemes such as
the primary-shadow TMO replication (PSTR) scheme, for
which recovery time bounds can be quantitatively estab-
lished, and real-time fault tolerance guarantees can be pro-
vided to applications. FLARe’s research contributions are
similar to these projects in providing modular middleware
services to add fault tolerance capabilities to object-based
systems. FLARe also enhances traditional fault tolerance
techniques with utilization monitoring techniques, however,
so as to minimize the effect of recovery on client response
times, and to manage system resources efficiently.

5. Concluding Remarks

This paper describes the design and performance of
FLARe, which is a lightweight middleware that enhances
RT-CORBA to provide adaptive and load-aware fault tol-
erance solutions for DRE systems. The lessons learned in
developing FLARe include:

• Common CORBA features, such as portable intercep-
tors, and POSIX features, such as local sockets, can
be leveraged to provide fault tolerance capabilities to
DRE systems without modifying the implementation
of standard-compliant RT-CORBA ORBs.

• FLARe’s proactive load-aware failover strategy can
support transparent and timely failure handling for
DRE applications by selecting failover targets on pro-
cessors with the least load, thereby minimizing the
impact of failures, such as unpredictable system uti-
lization and increased client-perceived end-to-end re-
sponse times.

• FLARe is currently designed for environments where
the networks provide bounded communication laten-
cies and have no single point of failure. Certain DRE
systems, however, may run in environments where net-
works fail, causing severe resource contention in the
remaining links. Our future work therefore focuses
on integrating FLARe with network QoS mechanisms
like DiffServ [5] and Bandwidth Brokers [8], so that
critical communications can use network QoS mecha-
nisms to meet critical QoS requirements. We are also
investigating advanced error detection capabilities by
integrating SCTP [27] with FLARe.

• Supporting stateful applications in DRE systems not
only requires timely failover, but client consistency re-

9

quirements, such as weak or strong consistency mod-
els. FLARe is currently designed for stateless applica-
tions, so our future work will enhance the replica se-
lection algorithm to consider consistency levels of the
replicas while choosing failover targets. We are also
enhancing FLARe to support replication requirements
for different consistency levels.

FLARe is available in open-source format fromwww.
dre.vanderbilt.edu/~jai/FLARe/.

References
[1] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. Rtcast:

lightweight multicast for real-time process groups.IEEE
RTAS, 00:250, 1996.

[2] T. F. Abdelzaher, S. Dawson, W. chang Feng, F. Jahanian,
S. Johnson, A. Mehra, T. Mitton, A. Shaikh, K. G. Shin,
Z. Wang, H. Zou, M. Bjorkland, and P. Marron. ARMADA
middleware and communication services.Real-Time Sys-
tems, 16(2-3):127–153, 1999.

[3] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling
heuristic for distributed embedded systems under reliability
and real-time constraints. InDSN ’04.

[4] P. Barrett, A. Hilborne, P. Bond, D. Seaton, P. Verissimo,
L. Rodrigues, and N. Speirs. The Delta-4 Extra Performance
Architecture (XPA). InProceedings of the 20th Int. Symp. on
Fault-Tolerant Computing Systems (FTCS-20), pages 481–
488, June 1990.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services.In-
ternet Society, Network Working Group RFC 2475, pages
1–36, Dec. 1998.

[6] M. Castro and B. Liskov. Practical byzantine fault toler-
ance and proactive recovery.ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[7] J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng. Real-
time task replication for fault tolerance in identical multipro-
cessor systems.IEEE RTAS, 0:249–258, 2007.

[8] B. Dasarathy, S. Gadgil, R. Vaidhyanathan,
K. Parmeswaran, B. Coan, M. Conarty, and V. Bhanot. Net-
work QoS Assurance in a Multi-Layer Adaptive Resource
Management Scheme for Mission-Critical Applications
using the CORBA Middleware Framework. InIEEE RTAS,
2005.

[9] S. Ghosh, R. Melhem, and D. Mosse. Enhancing real-time
schedules to tolerate transient faults. InRTSS ’95.

[10] S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky. Scal-
able resource allocation for multi-processor qos optimiza-
tion. In ICDCS ’03.

[11] A. S. Gokhale, B. Natarajan, J. K. Cross, D. C. Schmidt,
C. Andrews, S. J. Fernandez, and C. D. Gill. Towards Real-
time Support in Fault-tolerant CORBA. InProceedings of
the Workshop on Dependable Middleware-Based Systems,
Washington, DC, June 2002.

[12] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramam-
ritham. Adaptive fault tolerance and graceful degradation
under dynamic hard real-time scheduling. InRTSS ’97.

[13] S. Gopalakrishnan and M. Caccamo. Task Partitioning with
Replication upon Heterogeneous Multiprocessor Systems.
In RTAS 2006.

[14] C.-C. Han, K. G. Shin, and J. Wu. A fault-tolerant schedul-
ing algorithm for real-time periodic tasks with possible soft-
ware faults. IEEE Transactions on Computers, 52(3):362–
372, 2003.

[15] N. Kandasamy, J. P. Hayes, and B. T. Murray. Trans-
parent recovery from intermittent faults in time-triggered
distributed systems. IEEE Transactions on Computers,
52(2):113–125, 2003.

[16] K. H. K. Kim and C. Subbaraman. The pstr/sns scheme
for real-time fault tolerance via active object replication and
network surveillance.IEEE Transactions on Knowledge and
Data Engineering, 12(2):145–159, 2000.

[17] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-
time systems: The mars approach.IEEE Micro, 09(1):25–
40, 1989.

[18] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. InProceedings of the 10th IEEE Real-time
Systems Symposium (RTSS 1989), pages 166–171. IEEE
Computer Society Press, 1989.

[19] Object Management Group.Fault Tolerant CORBA, Chap-
ter 23, CORBA v3.0.3, OMG Document formal/04-03-10
edition, Mar. 2004.

[20] Object Management Group.Real-time CORBA Specifica-
tion v1.2 (static), OMG Document formal/05-01-04 edition,
Nov. 2005.

[21] S. Pertet and P. Narasimhan. Proactive Recovery in Dis-
tributed CORBA Applications. InDSN 2004.

[22] D. Powell. Distributed fault tolerance: Lessons from delta-4.
IEEE Micro, 14(1):36–47, 1994.

[23] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and
C. Gill. TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems.IEEE Dis-
tributed Systems Online, 3(2), Feb. 2002.

[24] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp,
and L. DiPalma. Towards Adaptive and Reflective Middle-
ware for Network-Centric Combat Systems.CrossTalk - The
Journal of Defense Software Engineering, Nov. 2001.

[25] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro,
and G. Duzan. Component-Based Dynamic QoS Adapta-
tions in Distributed Real-time and Embedded Systems. In
Proc. of the Intl. Symp. on Dist. Objects and Applications
(DOA’04), Agia Napa, Cyprus, Oct. 2004.

[26] D. B. Stewart and P. K. Khosla. Real-time Scheduling of
Sensor-Based Control Systems. In W. Halang and K. Ra-
mamritham, editors,Real-time Programming. Pergamon
Press, Tarrytown, NY, 1992.

[27] R. Stewart and Q. Xie.Stream Control Transmission Pro-
tocol (SCTP) A Reference Guide. Addison-Wesley, Boston,
2001.

[28] F. Wang, K. Ramamritham, and J. A. Stankovic. Determin-
ing redundancy levels for fault tolerant real-time systems.
IEEE Transactions on Computers, 44(2):292–301, 1995.

[29] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran.
Evaluating Meta-Programming Mechanisms for ORB Mid-
dleware. IEEE Communication Magazine, special issue on
Evolving Communications Software: Techniques and Tech-
nologies, 39(10):102–113, Oct. 2001.

10

