
Real-time CORBA

Irfan Pyarali

April 21, 2000

Real-time CORBA Irfan Pyarali

Motivation for Real-time CORBA

REPLICATION

SERVICE

OBJECT REQUEST BROKER

1: SENSORS

GENERATE

DATA

FLIRGPS IFF

3:PUSH (EVENTS)

2: SENSOR PROXIES DEMARSHAL DATA

& PASS TO EVENT CHANNEL

3:PUSH (EVENTS)

EVENT

CHANNEL

HUD Nav
Air

Frame
WTS

4: PULL(DATA) � Growing class of systems require
QoS support:

– bandwidth
– jitter
– latency

� COTS middleware infrastructure
� Standard-based open systems

Washington University, St. Louis 1

Real-time CORBA Irfan Pyarali

Real-time CORBA

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB CORE

OBJECT ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

operation()

out args + return value

in args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Vertical and horizontal integration and
management of resources:

� Communication infrastructure
– Network reservation
– Cell pacing

� OS scheduling
– Thread priorities

� ORB behavior
– Message buffering and prioritization
– Queue ordering
– Request routing

� Scheduling and predictability
– Global scheduling service
– Predictable execution
– Admission control

Washington University, St. Louis 2

Real-time CORBA Irfan Pyarali

Managing Processor Resources
� Provides strict control over scheduling and processor execution

– Essential for fixed-priority real-time systems

� Users specify priority at which CORBA requests will execute

� Servers can have thread pools

� Consistent thread synchronizers to avoid priority inversion

Washington University, St. Louis 3

Real-time CORBA Irfan Pyarali

Priority Type System

ORB ENDSYSTEM A

32767

0

R
T

C
O

R
B

A
::P

rio
rity

0

255

ORB ENDSYSTEM B

0

31

� CORBA priorities ! 0 to 32767

� Native priorities ! platform
dependent

� ORB provides mapping between
CORBA and native priorities

– Users can provide custom
mapping

Washington University, St. Louis 4

Real-time CORBA Irfan Pyarali

Priority Models

GLOBAL CORBA PRIORITY = 100

LYNXOS

PRIORITY

= 100

WINNT

PRIORITY

= 5

SOLARIS

PRIORITY

= 135

Current::priority(100)

to_native(100) => 100

Current::priority(100)

to_native(100) => 5

Current::priority(100)

to_native(100) => 135

SERVICE

CONTEXT

= 100ORB
ENDSYSTEM

A

ORB
ENDSYSTEM

B

ORB
ENDSYSTEM

C

(B) CLIENT

 PROPAGATED

 MODEL

SERVICE

CONTEXT

= 100

(A) SERVER

 DECLARED

 MODEL

ORB
ENDSYSTEM

A
(3) CLIENT'S PRIORITY

 IS NOT PROPAGATED

 BY INVOCATION

(1) SERVER

 PRIORITY

 IS PRE-SET

ORB
ENDSYSTEM

B

(2) PRIORITY IS

 EXPORTED IN IOR

� Server declared

– Server dictates priority at
which invocation will execute

– Priority assigned when object
was registered at server

� Client propagated

– Server executes invocation at
priority requested by client

– Priority encoded as part of
client request

Washington University, St. Louis 5

Real-time CORBA Irfan Pyarali

Priority Transforms

� User can provide priority transforms for invocations:

– Inbound transforms for servers
– Outbound transforms for clients

� Custom priority transforms are typically based on:

– Server load
– Operation criticality
– Global scheduling

Washington University, St. Louis 6

Real-time CORBA Irfan Pyarali

Multi-threading
� Goals

– Exploiting multiple CPUs
– Overlap computation and I/O
– Provide different levels of service

� High-priority vs low-priority tasks
– Use thread preemption to avoid unbounded priority inversion

� Background

– CORBA originally did not support standard API for MT
programming

� Application used OS or ORB specific APIs
– Reactive programming does not scale

� Also unsuitable for long duration tasks

� New thread pool APIs address these issues

Washington University, St. Louis 7

Real-time CORBA Irfan Pyarali

Thread Pools in Real-time CORBA

SERVER ORB COREI/O
THREADS

Root POA

Thread Pool A

PRIORITY

10
PRIORITY

35
PRIORITY

50
PRIORITY

20

Thread Pool B

DEFAULT

PRIORITY

Default
Thread Pool

S3
DEFAULT

S1
DEFAULT

S2
DEFAULT

POA A

S4
10

S5
50

S6
50

S7
35 POA B

S8 S9 S10

POA C

S11
20

S12
25

S13
15

� Servers have multiple thread pools that
execute incoming requests

� Each thread pool has:
– Initial number of preallocated static

threads
– Maximum number of on-demand

dynamic threads
– Default priority of threads

� Priority changes dynamically
according to priority model or priority
transform

� Pool with lanes: threads are split into
different priority ranges

Washington University, St. Louis 8

Real-time CORBA Irfan Pyarali

Buffering Requests

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B � Requests are buffered when all threads are
busy

� Buffering can be specified in terms of:
– Number of bytes
– Number of requests

� When buffers are full:
– A transient exception is thrown to client
– Request is dropped by server
– Request can be reissued later by client

Washington University, St. Louis 9

Real-time CORBA Irfan Pyarali

Standard Synchronizers

CLIENT

Mutex
lock()

unlock()

try_lock()

ORB CORE

OBJECT

ADAPTER

OBJECT
(SERVANT)

mutex3

mutex2

mutex4

mutex1

� Consistent synchronization semantics between application and ORB

– Enforce priority inheritance
– Priority ceiling protocol

Washington University, St. Louis 10

Real-time CORBA Irfan Pyarali

Global Scheduling Service

RT_INFO

REPOSITORY

OFF-LINE

SCHEDULER

DEPENDS UPON =
EXECUTES AFTER

4: ASSESS

 SCHEDULABILITY

5: ASSIGN OS THREAD

 PRIORITIES AND

 DISPATCH QUEUE

 ORDERING

 SUBPRIORITIES

6: SUPPLY

 PRIORITIES

 TO ORB

3: POPULATE

 RT_INFO

 REPOSITORY

RUN-TIME

SCHEDULER

Priority/
Subpriority
Table Per

Mode

MODE 0

MODE 1

MODE 2

MODE 3

CURRENT

MODE

SELECTOR

struct RT_Info {
 Time worstcase_exec_time_;
 Period period_;
 Criticality criticality_;
 Importance importance_;
};

1: CONSTRUCT CALL

 CHAINS OF RT_OPERATIONS

2: IDENTIFY THREADS

RT

Operation

RT

Operation

RT

Operation

I/O SUBSYSTEM

ORB CORE

OBJECT ADAPTER

� Integrate RT dispatcher into
ORB

� Application specify processing
requirements

– Worse-case execution time
– Periodicity
– Execution dependencies
– Relative importance

� Support multiple request
scheduling strategies

– e.g., MUF, MLF, and EDF

Washington University, St. Louis 11

Real-time CORBA Irfan Pyarali

Protocol Selection and Configuration

NETWORKOS KERNEL

ATMVME RTP

OS KERNEL

ORB
CORE

CLIENT
OBJECT
(SERVANT)

2: PASS

 OBJECT

 REFERENCE

OBJECT ADAPTER

ATMVME TCP

4: INVOKE OPERATION 1: CREATE OBJECT

 REFERENCE3: SELECT

 PROTOCOL

� Protocol policies control protocol selection and configuration

– Order of protocols indicates protocol preference

� Both server-side and client-side policies supported

– Some policies control protocol selection, others control protocol
configuration

– Some policies are exported to client in object reference

Washington University, St. Louis 12

Real-time CORBA Irfan Pyarali

Explicit Binding in Real-time CORBA

_validate_connection (out CORBA::PolicyList
inconsistent_policies);

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

 PRIORITY-BANDED
PRIVATE CONNECTIONS

P1-5 P10-20 P21-100

� Implicit binding creates connection on demand
– Connection created on first request
– Allows multiplexing
– Leads to unpredictable jitter

� Explicit binding pre-establishes connections
– Connections can be made private (non-multiplexed)
– Priority banded connections allow end-to-end priority preservation

Washington University, St. Louis 13

Real-time CORBA Irfan Pyarali

Concluding Remarks

� CORBA now supports propagation of client priority to server

� Mechanisms for avoiding or bounding priority inversion

� Mechanisms for limiting method invocation blocking

� Assumes support from underlying OS and network

� Fixed-priority scheduling addressed
– Dynamic-priority scheduling to be addressed soon

� Backward compatible
– Best-effort support for non-RT applications

� More information, source code, and documentation
– www.cs.wustl.edu/ �schmidt/TAO.html

Washington University, St. Louis 14

