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Motivation for Real-time CORBA
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4: PULL(DATA) � Growing class of systems require
QoS support:

– bandwidth
– jitter
– latency

� COTS middleware infrastructure
� Standard-based open systems
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Real-time CORBA
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Vertical and horizontal integration and
management of resources:

� Communication infrastructure
– Network reservation
– Cell pacing

� OS scheduling
– Thread priorities

� ORB behavior
– Message buffering and prioritization
– Queue ordering
– Request routing

� Scheduling and predictability
– Global scheduling service
– Predictable execution
– Admission control
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Managing Processor Resources
� Provides strict control over scheduling and processor execution

– Essential for fixed-priority real-time systems

� Users specify priority at which CORBA requests will execute

� Servers can have thread pools

� Consistent thread synchronizers to avoid priority inversion
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Priority Type System
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� CORBA priorities ! 0 to 32767

� Native priorities ! platform
dependent

� ORB provides mapping between
CORBA and native priorities

– Users can provide custom
mapping
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Priority Models
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� Server declared

– Server dictates priority at
which invocation will execute

– Priority assigned when object
was registered at server

� Client propagated

– Server executes invocation at
priority requested by client

– Priority encoded as part of
client request
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Priority Transforms

� User can provide priority transforms for invocations:

– Inbound transforms for servers
– Outbound transforms for clients

� Custom priority transforms are typically based on:

– Server load
– Operation criticality
– Global scheduling
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Multi-threading
� Goals

– Exploiting multiple CPUs
– Overlap computation and I/O
– Provide different levels of service

� High-priority vs low-priority tasks
– Use thread preemption to avoid unbounded priority inversion

� Background

– CORBA originally did not support standard API for MT
programming

� Application used OS or ORB specific APIs
– Reactive programming does not scale

� Also unsuitable for long duration tasks

� New thread pool APIs address these issues
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Thread Pools in Real-time CORBA
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� Servers have multiple thread pools that
execute incoming requests

� Each thread pool has:
– Initial number of preallocated static

threads
– Maximum number of on-demand

dynamic threads
– Default priority of threads

� Priority changes dynamically
according to priority model or priority
transform

� Pool with lanes: threads are split into
different priority ranges

Washington University, St. Louis 8

Real-time CORBA Irfan Pyarali

Buffering Requests
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Thead Pool B � Requests are buffered when all threads are
busy

� Buffering can be specified in terms of:
– Number of bytes
– Number of requests

� When buffers are full:
– A transient exception is thrown to client
– Request is dropped by server
– Request can be reissued later by client
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Standard Synchronizers
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� Consistent synchronization semantics between application and ORB

– Enforce priority inheritance
– Priority ceiling protocol
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Global Scheduling Service
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struct  RT_Info {
  Time worstcase_exec_time_;
  Period period_;
  Criticality criticality_;
  Importance importance_;
};
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� Integrate RT dispatcher into
ORB

� Application specify processing
requirements

– Worse-case execution time
– Periodicity
– Execution dependencies
– Relative importance

� Support multiple request
scheduling strategies

– e.g., MUF, MLF, and EDF
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Protocol Selection and Configuration
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� Protocol policies control protocol selection and configuration

– Order of protocols indicates protocol preference

� Both server-side and client-side policies supported

– Some policies control protocol selection, others control protocol
configuration

– Some policies are exported to client in object reference
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Explicit Binding in Real-time CORBA

_validate_connection  (out CORBA::PolicyList
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� Implicit binding creates connection on demand
– Connection created on first request
– Allows multiplexing
– Leads to unpredictable jitter

� Explicit binding pre-establishes connections
– Connections can be made private (non-multiplexed)
– Priority banded connections allow end-to-end priority preservation
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Concluding Remarks

� CORBA now supports propagation of client priority to server

� Mechanisms for avoiding or bounding priority inversion

� Mechanisms for limiting method invocation blocking

� Assumes support from underlying OS and network

� Fixed-priority scheduling addressed
– Dynamic-priority scheduling to be addressed soon

� Backward compatible
– Best-effort support for non-RT applications

� More information, source code, and documentation
– www.cs.wustl.edu/ �schmidt/TAO.html
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