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Abstract Distributed, real-time, and embedded (DRE) systems are be-

) . i coming increasingly widespread and important. Examples of
The proportion of complex distributed real-time embedd%chE sgystems inggdauton%mous agentpteameg mulg-

(DRE) systems made up ,Of com.merc_ial—_qff-the—s.helf (COTMot environment mappingnanufacturing process automa-
hardware and software is increasing significantly in responsg, o g, high-performance assembly lines, atefense sys-

to the difficulty and expense of building DRE systems entir s e.g, avionics mission computing systems. Although

from scratch. I,n previous.wor'k, we showed how applying df lere are many types of DRE systems, they must all achieve
ferent scheduling strategies in middleware can allow COT. 'efjfollowing capabilities:

based solutions to provide both assurance and optimization o . ) o

real-time constraints for important classes of mission-critical ® Managing connections and data transfer between distinct

DRE systems. There are few empirical studies, however, that €ndsystems

help developers of COTS-based DRE systems to make crucial Offering predictable and efficient control over end-to-end

distinctions between strategies that appear similar in policy, System resources and

but whose run-time effects may differ in practice. e Operating within computing and memory resource limi-
This paper provides two contributions to the study of real- tationsimposed by stringent weight, cost, and power con-

time quality of service (QoS) assurance and performance in Straints.

COTS-based DRE systems. First, we examine in detail two h¥signing DRE systems that can offer strong assurances of
brid static/dynamic scheduling strategies that should beha¥g|-time predictability, and yet are parsimonious in their use
similarly according to policy alone, but that in fact producef limited computing resources is hard; building them on
different results under the same conditions, both in utilizatigihe and within budget is even harder. Therefore, study-
and in meeting real-time assurances. Second, we offer recgig-real-time policies and mechanisms within commercial-off-
mendations based on these results for developers of missifig=shelf (COTS) systems empirically is essential to ensure
critical DRE systems, such as the Boeing Bold Stroke platfoffission-critical DRE systems can be built and maintained in a
used in the Adaptive Software Flight Demonstration (ASFByst-effective manner.
program under which our experiments were conducted. Thesey,r previous work [1, 2] has quantified the benefits of ap-
contributions address and highlight the importance of the fQdtying multiple scheduling paradigms in COTS middleware
lowing issues to real-time scheduling in COTS environmenys:support the quality of service (QoS) demands of mission-
(1) careful mapping of scheduling policies into implementgritical DRE systems that possess a mix of hard and soft
tion mechanisms and (2) benchmarking and analysis of actygi|-time requirements, such as avionics mission computing
systems in representative operational environments. systems [3], mission-critical distributed audio/video process-
Keywords: Dynamic Scheduling Algorithms and Analy-ing [4, 5], and real-time robotic systems [6]. However, our
sis, Real-Time Assurance and Optimization, Distributed Regtevious work also showed that when more than one strat-
time and Embedded Systems, Mission Critical Systems, Qualy is plausible for a given system based on policy alone, the
ity of Service Issues, Middleware and APIs. best choice of which strategy to apply may not be obvibus.

*This work was supported in part by Boeing, DARPA ITO, DARPA con- 1We distinguish thgolicy of a scheduling strategie., the algorithm for
tract F33615-00-C-1697 (PCES) and AFRL contracts F3615-97-D-1155/@flering operations it schedules, from thechanismssed to implement that
(WSOA) and F33645-97-D-1155 (ASTD/ASFD). policy, e.g, prioritized threads, queues, and timers.



This paper therefore presents additional empirical results arte ACE ORB (TAO). To meet the stringent QoS require-
analysis of multi-paradigm COTS middleware to offer insightaents of DRE systems, researchers at Washington Univer-
into a canonical choice between two hybrid static/dynansity in St. Louis and the University of California, Irvine
scheduling strategies. We suggest guidelines for choosing have developed a second-generation ORB called TAO [10],
tween the strategies examined in this research, and posithéch is an open-source implementation of Real-time CORBA
model and hypotheses to test that model for further inveshiat supports efficient, predictable, and flexible DRE com-
gation of these issues as future work. puting. Prior work on TAO has explored many dimensions

The research presented in this paper was conducted inah&igh-performance and real-time ORB design and perfor-
context of a real-world mission-critical DRE application: #ance, including scalable event processing [11], request de-
research operational flight program (OFP) designed for techultiplexing [12], I/O subsystem [13] and protocol [14] inte-
nology transfer to production avionics mission computing sygration, connection architectures [15], asynchronous [16] and
tems. This paper can therefore be viewed as a case study o$jtmehronous [17] concurrent request processing, adaptive load
application of scheduling strategies in middleware for nedtalancing [18], meta-programming mechanisms [19], and IDL
generation DRE systems. The results it presents apply tetab/skeleton optimizations [20].

class of DRE systems that cross-cuts application domains th

t . . . .
manage both critical and non-critical real-time requirementé(.c{;lkyu Mult|-parad|gm Schedylmg Framework. . To in-
crease responsiveness to varying operational environments, we

have recently [2] extended our prior research on static [10] and
1.2 Context; Real-Time CORBA Middleware dynamic [3] scheduling for Real-time CORBA by incorporat-
o _ ing astrategized scheduling framewatklled Kokyt? within
DRE systems have historically been custom developed intg TAQ Real-Time Event Service. Kokyu addresses the chal-
ad hocand |aneX|b!e manner. Whlle many operational SY$enge that nosingle scheduling paradigm performs best in
tems have been built this way, this development process failgtsironments, by enabling the configuration and empirical

to address the following challenges adequately: (1) reduciqeuation of multiple scheduling paradigms, including:
total ownership costs, (2) providing portable QoS manage-

ment, and (3) tailoring resource provisioning to aswrit- ~ ® Static scheduling strategies,e.g, rate monotonic
cal system requirements are met in the worst case, while re- scheduling (RMS) [21],

covering resources appropriately to imprawan-criticalper- e Dynamic scheduling strategiese.g, earliest deadline
formance _in the average case. In recent years, the following first (EDF) [21] and minimum laxity first (MLF) [6], and
technologies have converged to address these challenges: Hybrid static/dynamic scheduling strategies,g, max-

Distributed object computing (DOC) middleware. DOC imum urgency first (MUF) [6] and RMS+MLF [22].
middleware is systems software that resides between the ap-

plications and the underlying operating systems, network pro-This paper focuses on the hybrid static/dynamic MUF [6]
tocol stacks, and hardware [7]. It offers clients portabésd RMS+MLF [22] strategies, which were demonstrated in
language-independent and location-transparent invocatioroof recent work [2] to be preferable in COTS-based middle-
methods on target object implementations [8]. DOC middlerare when the total system load is infeasible but the critical
ware simplifies application development by off-loading the teubset of that load is still feasible. Specifically, both MUF and
dious and error-prone aspects of distributed computing frédMS+MLF were able to (1partition critical and non-critical
application developers to middleware developers. resource utilization using static mechanisms (such as thread
Real-Time CORBA. Real-time CORBA [9] is a DOC mid- priorities in_ COTS-ba;ed systgms), and then (2) dynamically
dleware standard that adds capabilities that support end-to-3fgdule S|ngleperat|on§ within one [22] or more [6] of the
predictability for remote operations to the original CORBRations. The results in this paper illustrate how the Kokyu
specification. It improves system predictability and boundsfs@mework can provide adaptability across product families,
avoids priority inversions, by supporting end-to-end managi2erating systems, and most importantly environmental con-
ment of system resources. To implement Real-time corgHions, while preserving the rigorous scheduling guarantees
effectively, an Object Request Broker (ORB) must provic?é‘d testability (_)ffered by prior work on §tat|call_y scheduled
run-time support to automate many DRE features, such as dgf2RBA operations [10, 23, 24] and multi-paradigm schedul-
nection management, marshaling/demarshaling, demultipl& [2]-

ing, language and OS independence, resource scheduling agd : o S
load balancing, error handling and fault-tolerance, and se%i—n};‘)g‘é ::Soglrj?np;?oense word meaning literally “breath”, but also implying
rity. However, first-generation ORBs did not provide features SWe term the short—.lived computation performed each time an event is
or optimizations to support DRE systems with stringent Q®S8shed to a component aperation

requirements.




1.3 Performance Differences Between Similar1l.4 Paper Organization

Strategies
9 The remainder of this paper is organized as follows: Section 2

A crucial question for developers of mission-critical DRE sy4lescribes the application, middleware, OS, and hardware con-
tems is whether the differencispolicy alonebetween alter- figurations that comprise the open experimentation platform
native scheduling strategies are sufficient to distinguish whigged for our empirical studies; Section 3 summarizes the ex-
strategy (or sequence of alternative strategies) should be Jd@gmental design factors relevant to the performance differ-
in practiceunder a given set of system and environmental cdices between scheduling strategies in our previous work;
ditions. This paper presents empirical evidence that poliggction 4 presents new findings based on further analysis of
alone isnot sufficient. Careful prototyping, mode"ng, ana|ythe data; Section 5 summarizes our observations and makes
sis, and optimization of the actual behavior of the enforcemé&@gommendations based on our results, identifies a plausible

mechanisms themselves is therefore necessary to ensure g&ﬁﬁ' for variability in the scheduling strategies, and suggests
choices. ypotheses and experiments for future work; Section 6 com-

The work described in this paper is motivated by empir‘?—ares our research on Kokyu with related work; Finally, Sec-

cal results from our work on multi-paradigm scheduling [25'.On 7 offers concluding remarks.

Our results revealed differences in the performance of two

scheduling strategies, RMS+MLF and MUF, that might have ] ]

been expected to perform more similarly under the cond Open Experimentation Platform

tions of the experiment. Specifically, in terms of policy alone,

the RMS+MLF and MUF strategies might not be expected This paper focuses on experiments conducted under the Adap-

show meaningful differences in actual real-time performangge Software Flight Demonstration (ASFD) program [25] on

Our reasoning is presented below: a mission-critical system that is representative of an important
. . . . class of DRE systemghe operational flight program (OFP)

1. pnder the experimental conditions described in Sqﬁ n avionics mission computing systedn OFP manages
tion 3, the sequence of.resource requgsts for both C”“&é sors and operator displays, navigates the aircraft's course,
and non-critical operations was identical in our experk controls on-board equipment. The avionics system used
”?e”ts under the RMS+MLF and MUF scheduling Stratgs; those experiments consisted of OFP components hosted
gies. on theBold Strokedomain-specific middleware infrastructure,

2. The pseudo-random sequence of jitter added to critigadich in turn is built using the distribution middleware ca-
and non-critical operations was identical for RMS+MLIpabilities and common middleware services provided by the

and MUF. TAO Real-time CORBA ORB.
3. Since both RMS+MLF and MUF monotonically priori- -
tize critical requests ahead of non-critical ones, the avalifF Dektop o sation Bihernet

ability of the CPU to non-critical processing, as a func-
tion of time, should have been identical.

4. Since the RMS+MLF and MUF strategies both use laxi
to order non-critical requests in a lowest-priority queue,
the order in which non-critical requests were serviced

should have been identical for the two strategies as we!

V

Clearly, policy alone is insufficient to explain the results Wt:
saw in our recent work with Kokyu. These results indicat;
the need to consider how that policy model might be extend§
to account for variations in the performance due to properti :
of the mechanisms used to implement the policies. This p Map Display Processing : OFP Processing

VME :
Backplane !

per therefore presents new analysis of data obtained from our

earlier experiments, and identifies newly discovered correfdgure 1: Open Experimentation Platform Hardware and Soft-
tions within those data. For future work we offer a plausibWare

model for the observed behavior of the RMS+MLF and MUF

scheduling strategies and suggest additional hypotheses ardgure 1 [2] illustrates the following OS/hardware, middle-
experiments as to verify that model. ware, and application layers of the open experimentation plat-



form:* scheduling strategy with which it is configured to (1) assign

COTS OS/hardware. The COTS hardware and operatingr'iorities to operation.s qnd (2) to specify thg queueing disci-
system used in the experiments described in Section 3 cBil€ used at each priority level. By configuring TAO's Real-
sisted of a commercial VME-64 chassis with four commerci#ine Event Channel according to the specified set of priori-
processor cards, a desktop computer running Windows NT #6§ and queue disciplines, the middleware services described
used for data gathering and visualization, and a portable UNIROVe enforce the mission computing system’s real-time QoS
workstation used to load executable programs onto the bogtégurances and performance.
in the VME chassis and as a file server for a digital map dRold Stroke domain-specific middleware. The open ex-
play. perimentation platform for our work is based on the Bold
Two COTS processor cards, a Dy4-783 and a Dy4_l—,8;t,roke domain-specific midt;ileware [23, 24]. Bold Stroke
performed the map display function. The Dy4-783 card hH8es COTS hardware and middleware to produce a standards-
a memory-mapped display processor and the Dy4-177 chased (lzomponen_t.grchltecture for m.|I|talry avionics mission
hosted an application component that ran the map displayc@mputing capabilities, such as navigation, data link man-
gorithms. The OFP system was distributed across the rem&@ement, and weapons control. A driving objective of Bold
ing two processor cards. The first system card was a 200 ME¥0ke is to support reusable product-line applications, lead-
PowerPC 604, Motorola card, which ran the experimental sy&d t0 & highly configurable application component model and
tem on the VxWorks [26] 5.3.1 real-time operating Systeﬁﬁgpporting reusable middleware services, such replication and
The second system card was a 100 MHz, PowerPC 603, DRgLSIStence services. .
177 card. This card contained a MIL-STD-1553 MUX bus Bold Stroke has been developed and deployed using DOC

interface card and the Ethernet interface for the VME chdBiddleware components and services based on the TAO Real-
sis. All external communicatiore.g, over the 1553 bus totime ORB, the TAO Real-time Event Channel, and the Kokyu

connected sensors and actuators (caiedote terminalsin framework. Bold Stroke uses TAO's Real-time Event Chan-

the aircraft, or over the VME backplane to diagnostic and dé&! atop the TAO ORB to communicate between components
bug systems, went through this card. This card also controlfdg On the same endsystem and (2) distributed across differ-
timing for frame sequencing and display updates, upon whiht €ndsystems. The Kokyu scheduler maintains information
operation rates on the Motorola card depended. required for priority-preserving dispatching, which in the ex-

. L . . perimental framework described in Section 3 was performed
DOC middleware. The COTS distributed object computlnt_fn dispatching queues within the TAO Real-time Event Chan-

middleware used for the ASFD demonstration was based 0

the TAO 1.2 implementation of Real-time CORBA [10, 9 — L .

The TAO Real-time Event Channel [11] is a publish/subscri eFP appllcatloq. The OFP.appI|cat|c.>n used as the ba5|§ of
: . o ol multi-paradigm scheduling experiments provides avion-

service that mediates communication between components . . . . )

: : . . Ies mission computing capabilities for an AV-8B (Harrier) air-
acting as proxies for (1) remote terminals that interact Wl(t:raft tis a distributed OFP implemented in Ci+ using the
the physical environment and (2) the operations that prOCEE,Sé'h AV-8 Open Svstems Corg Avionics Re uiremen?s air-
the data. Sensor proxies flush relevant data to a Bold Str?ra%leg[ﬂ] andpthe B)(/)ein Bold Stroke domaiﬂ-s ocific mid-
replication servicethat propagates the data between endsyé,?— 9 P

tems. The sensor proxies thpaoshevents through the Real- eware. Al.l major OFP c_omponents were implemented as
. . . eriodically invoked operations, executed by event consumers.
time Event Channel to the processing operations. OperatE)n ) . )

. . . ch operation belongs to one of two equivalence classes:
deadlines in the experimental system correspond to the points ] - . N
in time when their respective output values must be delivere¢® Hard real-time (HRT) for critical operations —Critical
and flushed to the replication service. operations in the HRT class are those whose failure to

The Kokyu framework provides scheduling and dispatching Meet any given deadline has potentially significant con-
services to TAO's Real-time Event Channel. Kokyu is respon- Seduences for the correctness of the application.
sible for (1) isolating critical processing from non-critical pro- ® Soft real-time (SRT) for non-critical operations—
cessing and (2) making the remaining CPU time available to Deadline success for the non-critical SRT operations is

non-critical processing. Kokyu provides these services via a desirable but not strictly mandatory.

4This platform, and the studies conducted on it, were supported under the-zrhere were five pre'demed rates of execution in the §ys-
Adaptive Software Flight Demonstration (ASFD) program hosted by the Bdeém: 40 Hz, 20 Hz, 10 Hz, 5 Hz, and 1 Hz. Each operation
ing Phantom Works Open Systems Architecture organization. This work wag at one of these rates. For the ASFD open experimentation

administered by the Embedded Systems Branch of the Information Dirgg: :
torate, Air Force Research Labs (AFRL), Wright-Patterson Air Force Ba?gfa‘tform’ new 20 Hz SRT functions were added to the OFP,

Dayton, Ohio. Portions of the TAO ORB and the Bold Stroke open experUdi_ng routes and steering components, as well as a digital
mentation platform were developed under support from DARPA ITO. map display.



3 Relevant Experimental Characteris-

tics

This section outlines experimental factors relevant to analy-
sis and modeling of the observed performance differences be-
tween Maximum Urgency First (MUF) [6], and Rate Mono-
tonic Scheduling (RMS)+Minimum Laxity First (MLF) [22]

e MUF [6], which is a hybrid static/dynamic strategy
that assigns static priorities by operation criticality, and
schedules within each static priority by minimum laxity.

e RMS+MLF [22], is also a hybrid static/dynamic strategy,

which first schedules critical operations according to rate

and then non-critical operations at lower priority accord-
ing to laxity.

under representative environmental conditions with varyiige selected these strategies for further analysis since our ear-
load andload jitter on the open experimentation platform ddier work [2] showed them to be the most applicable to OFP
scribed in Section 2. The remainder of this section descrif@plication requirements to support both hard real-time (HRT)
the new hypotheses we investigated for this paper, the vaiid soft real-time (SRT) operations under a range of load and
ables that were controlled, and the variables that were miad jitter conditions.

sured in our studies.

3.1 Hypotheses

3.2 Controlled Variables

To manage the effects of varying load and load jitter in the

The hypotheses explored in these studies are shown in Tabl@are diverse operating environments in which they are being
This table also notes how we conducted our analysis to evagked to run, many next-generation DRE systems must satisfy

ate each hypothesis.

Hypothesis Analysis

The efficiency and effec
tiveness of each schedu
ing strategy are sensitive t
environmentalfactors, i.e.,
load and load jitter.

We examine both efficiency
-and effectiveness acrog
O widely varying load and

load jitter conditions.

S

Performance  difference

strategies may  corre
late more strongly with
mechanism-level  factorg
than policy-level factors.

5 We examine performanc

between similar scheduling of similar strategies in con
- ditions under which behavy

ior is expected to be simila
5 by policy alone.

Performance  difference
show meaningful correla
tion to a plausible model for
mechanism-level behavior.

5 We compare fine-grain

differences in performance

data to differences in mech
anisms and their plausibl
responses to variations i
environmental conditions

i.e, load and load jitter.

- W

Table 1: Hypotheses Studied and Analysis Approaches

To test these hypotheses through study of the empirical dif-
ferences between the similar RMS+MLF and MUF hybrid
static/dynamic scheduling strategies, we examined detaq
operation dispatching success and failure data collected ong
experimentation platform described in Section 2. The d
came from identical trials using each of the following cano

cal scheduling strategies:

e RMS [21], which is a purely static strategy that assig
priorities in rate order and manages requests at each
ority level in first-in-first-out (FIFO) order. We examine

resource demands that

1. Vary overall at longer time-scales across a series of stable
epochs of operation and

2. Produce different degrees of jitter in invocation-to-
invocation demands across shorter time-scales within
each epoch.

To model variation in both load and load jitter imposed by
these types of demands, the experiments on which the analy-
sis presented here is based added operations to a sequence of
twelve epochs of operation, each representing a distipet
erating region[4] numbered 0-11, as shown in Figure 2 [2].

In this section, we summarize the experimental characteris-

MEAN JTTER —

NON-CRITICAL LOAD —»

Figure 2: Operating Regions
Eg of these operating regions to characterize the observed dif-
%gnces between the RMS+MLF and MUF scheduling strate-
S.
" As we discussed in Section 1.3, the following experimen-
tal characteristics are relevant to examine the differences in

fategies:

?rformance between the RMS+MLF and MUF scheduling

RMS performance for comparison as it gives insight into ¢ The sequence of resource requests for both critical and

the bounds of sensitivity to increasing load and load jitter.

non-critical operations



e The pseudo-random sequence of jitter added to critit@hds and (2) similar levels of jitter across varying non-critical
and non-critical operations loads, we added an additional HRT event consumer to the sec-
ond Dy4-177 card at each of the following rates: 10 Hz, 5
° The.r.elative ordering of critical and non-critical requesi; and 1 Hz HRT. In these experiments, the additional opera-
partitions and tions acted as surrogates for the workload variation that would
normally be associated with a distributed production OFP in a
variable environment. The CPU utilization by these additional
We now consider each of these characteristics in turn: ~ HRT event consumers was randomized across a given range

Sequence of resource requests.Resource requests werd? €ach operating region, with the range of variation cycling
made at each of the following rates: 20 Hz, 10 Hz, 5 Hz, aR4e"y four regions through the following:

1 Hz. The phasing of application operations was organized t¢. 0 msec (lowest mean and lowest variance)

reduce contention for the CPU overall, and to provide regulap. 0—5 msec (medium-low mean, medium variance)
windows of low contention for the CPU, in which to extract 3 5_109 msec (highest mean, medium variance)

cellected data without interfering With the experiment itself.4_ 0-10 msec (medium-high mean, highest variance)
Figure 3 [2] shows the resulting framing of operations in the

e The ordering of non-critical operations.

executing OFP. Table 2 summarizes the HRT execution variability added
to each operating regiorTotal variability was thus lowest in
- ONE SECOND > regions 0, 4, and 8, higher in regions 1, 5, and 9, higher still
IDIIIDIBIDIBIDI@IDIB in regions 3, 7, and 11, and highest in regions 2, 6, and 10.
The range of variability was lowest in regions 0, 4, and 8,
KEY: I 10Hz D 5Hz was comparable in odd-numbered regions, and was highest in

regions 2, 6, and 10.

B1Hz  [oata _ . .
Regions Variable HRT Execution

Figure 3: Framing of Operation Requests and Metrics Data 04,8 | 0 msec
Extraction Points 1,59 | Oto5msec
2,6,10| 5to 10 msec
In addition to the fixed OFP operations, which were present 3,7,11 | Oto 10 msec

and active in each operating region, we introduced chains of
additional 20 Hz SRT navigation route fegpdates to each
operating region. Computing route legs was implemented withThe key observation for the analysis presented in this paper
each route segment successfully completed requesting the iseittat the execution time variability within each range was
segment, up to the length of the chain. We varied the lengthmplemented as a pseudo-random sequence initialized with the
the request chain to move from lowest to higHesidamental same seed for each strategy. The load and load jitter were
non-critical load. We did this incrementally from region 1 ttherefore identical for the RMS+MLF and MUF strategies.
region 11, while keeping the fundamental critical load constag|ative ordering of request partitions. By policy, both
across operating regions. We kept the non-critical load g RMS+MLF and MUF scheduling strategies (1) partition
same in region 0 and region 1 to ensure that we compaggfical operations from non-critical operations, and (2) sched-
the effects of two different levels of jitter with no change ifjje operations in the critical partition in preference to oper-
fundamentalload in at least one case. ations in the non-critical partition. Moreover, these policies
The key observation regarding the analysis presented in {hlisre implemented using thread priorities from a preemptive
paper is that both the RMS+MLF and MUF scheduling stratgq|ti-tasking real-time OS (VxWorks) as described in Sec-

gies used the same framing sequence (shown in Figure 3) §&d2. The relative ordering of request partitions was therefore
the same sequence of load. The same load in both critical 8@ the same for RMS+MLF and MUF.
non-critical operations was therefore offered for each strate@(

i : tering of non-critical operations. By policy, both
S0 we can meaningfully compare the performance d|ﬁeren$ﬁaS+MLF and MUF place all non-critical operations in a
between the strategies.

. , lowest-priority queue managed by operation laxity. The same
Pseudo-random jitter sequence. To examine the effects of, 5,65 for relevant operation characteristice.(period and

(1) varying levels of load jitter across similar fundamentgl e tion time) were used for each operation under each strat-
5A route leg is a segment of a navigation route computed in one operaf®@y- The non-critical operations were therefore 'handled the
invocation. same way under the RMS+MLF and MUF strategies.

Table 2: Load Jitter For Each Operating Region




3.3 Measured Variables systems.

Section 3.2 showed that at a policy level the RMS+MLF and . )

MUF strategies were indistinguishable under tretrolled 4.1 ~ Efficiency and Effectiveness of SRT Opera-

variables of the experiment. Below, we examinertieasured tion Dispatching

variables of the experiment, which distinguish the behavior

the RMS+MLF and MUF strategies. We also offer insigh

into the possible reasons for those differences in Section 5] .
oaéj and load jitter.

To measure the response of each strategy to the varying| verview of the analysis. To evaluate this hypothesis, we

and load jitter described in Section 3.2, we instrumented the ™~ . - .
" . T ) . . examine how the efficiency and effectiveness of each strat-
application and middleware using lightweight, high-resolutioh . . ; » .
cay. varied with changing load and load jitter. In addi-

time stamps to characterize system behavior. We focus her(taIOn to RMS+MLF and MUF (which are similar hybrid

the missed and made operation deadlines. : . . : ;
The missed and made operation deadlines offer two ki static/dynamic strategies), we also examine the behavior of the
. 1SS . perat Ine: T WO KINGhonical RMS static strategy for purposes of comparison.
of information. First, we can assess the real-teffectiveness . . . o
c a§f¥n0p5|s of results. Figure 4 shows the relative sensitivity
0

of a schedulmg strategy by measuring the number (and “OTRMS, RMS+MLF, and MUF to variations in load and load
gory) of deadlines made. Our definition of real-time effective-

ness differs from conventional notions of throughput: within
a sample, each SRT operations is counted only if it made its amr
deadline, and no HRT operation deadlines were missed in the = {=—
entire sample. The higher the total number of SRT deadlines 7
that were made without missing any HRT deadlines, the higher o
the level of performance of the strategy. Second, we can as- £
sess the real-timefficiencyof the scheduling strategies by also
examining thefraction of SRT operation deadlines that were
made. Efficiency as we define it is simply the SRT effective-
ness divided by the total number of SRT operatiars,theof-
fered load The higher the fraction of SRT operation deadlines
that were made, again without missing any HRT deadlines, the
higher the efficiency of a strategy. B e o
In general, the measured efficiency is only important when
the offered load has significandes., when the SRT and HRT Figyre 4: Relative Performance of RMS, RMS+MLF, and
operations together exceed the feasible utilization bound fgrE
the CPU, as is seen in operating regions 7 through 11. Other-
wise, the effectiveness measure is sufficient to distinguish fifer, such as might be expected to occur from variations in
behaviors of the scheduling strategies. The distribution of gfnext-generation DRE system’s environment. The vertical
ficiency values, as shown in Section 4.2, provides insight indgis in Figure 4 shows an average weighted SRT performance
the finer-grained behavior of each strategy. In aggregate, fisction, over the different operating regions described in Sec-
information can be used to profile the response of a strategyig® 3.2, which are shown on the horizontal axis. For each
the offered load and load jitter in each operating region.  sample, a value of zero was assigned if any HRT deadlines
were missed in that sample, or otherwise the value was the
o number of SRT deadlines made. An average was then taken
4 Emplrlcal Results over those values in each operating region, for each strategy.
The RMS strategy showed increasing performance across
We now present results from new analysis of the trials dgperating regions 0 through 6. It then rapidly decreased
scribed in Section 3, using the open experimental platform dlerough operating region 7 to minimal performance in operat-
scribed in Section 2. Specifically, we systematically examiimg regions 8 through 11. The RMS+MLF and MUF strategies
the hypotheses described in Table 1 and note how our obsebedh showed cyclic patterns of performance across operating
tions do or do not support the hypothesis in each case. We ttaggons 0 through 11, with the cycle spanning four operating
empirically evaluate the differences between the RMS+MLEgions.
and MUF strategies in practice. In the process, we also unin addition to the SRT performance differences indicated in
cover insights relevant to developers of mission-critical DREgure 4, we note that while RMS offered the best SRT per-

{g{/pothesis. The efficiency and effectiveness of each
scheduling strategy are sensitivestovironmentafactors,i.e.,

80 1

60

over (SRT deadlines mad:

40

average
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formance in operating regions 0 through 7, in operating teetween policy in RMS+MLF and MUF and the observed per-

gion 7 RMS showed 5 samples with missed HRT deadlinesmance differences, under the experimental conditions de-
(in operating regions 8 through 11 RMS showed missed HR@ribed in Section 3.2. We therefore focus on whether mean-
deadlines in each sample). We also note that while MUF pergful correlation can be established between differences in
formed slightly better than RMS+MLF in operating region 3he mechanisms used to implement RMS+MLF and MUF and
MUF had a single sample with a single missed HRT deadlitie observed performance.

late in the operating region. Synopsis of results. Figure 5 shows the weighted fraction

Analysis of results. Figure 4 shows strong correlation beof SRT deadlines made for each sample in operating region 8.
tween the performance of scheduling strategies and envird/e note two main characteristics of operating region 8:
mental factors. More interestingly, the results discussed above
correlate with different factors for RMS than the RMS+MLF
or MUF, and correlate with the same factor for RMS+MLF and
MUF. In particular, the RMS performance correlated strongly =
with varying total load, but had no observable correlation with

the variations in load jitter. RMS+MLF and MUF performance g =
showed strong correlation with load jitter, but only weak cor-
relation (.e.,, amplitude of the performance cycle) with varia-
tions in system load. Moreover, tlfferencein performance
between RMS+MLF and MUF varied meaningfully as a func- ©
tion of the additional jitter in resource request execution times,
although the offered load and load jitter of resource requests *

were kept the same for the two strategies in each operating T
region of our experiments. e T e e e s o o o8 es | 1

fraction of SRT deadlines made

Summary. The results above support the hypothesis that theFigure 5: Weighted SRT Fraction in Operating Region 8
efficiency and effectiveness of each scheduling strategy are

sensitive toenvironmentafactors, and refine the hypothesis

with respect to which factors are the most relevant to each af. As with each of the operating regions 7 through 11, the
the strategies studied. In the ASFD program, we collaborated total load is above the feasible threshold, while the criti-
with DRE system developers to identify canonical scheduling cal load remains feasible. Figure 5 illustrates two impor-
strategies and important environmental factors and to examine tant similarities between performance of the RMS+MLF
the sensitivities of those in realistic operating environments. and MUF strategies under these conditions. First, both
Furthermore the results presented above identify which strate- strategies achieved hidavelsof SRT deadline success,
gies performed best under different environmental conditions. with no missed HRT deadlines.

In Section 5 we extend these observations and make obsena- The distribution of values is similar and is reasonably
tions for mission-critical COTS-based DRE systems in gen- well bounded in each case. MUF showed slightly more
eral, to ensure environmental factors are adequately addressedyariation in its SRT performance values, and consis-

in selecting middleware scheduling strategies. tently exhibited slightly lower levels of success than
RMS+MLF.
4.2 Mechanism-Level Correlation Figure 6 shows the weighted fraction of SRT deadlines

Hypothesis. Performance differences between simil mﬁdefo'r each §ample in operating reg?on 9. Operating region

. : ad slightly higher total load than region 8, but more impor-
scheduling strategies may correlate more strongly WL’!@ntl had an additional medium-low (0-5 msec) level of load
mechanism-level factors than policy-level factors. ranty o .

jitter. Under these conditions, both strategies showed lower

Overview of the analysis. To evaluate this hypothesis, weaverage levels of SRT deadline success, and a wider range of
examine how differences in mechanism-level factors correlues overall. Interestingly, while the overall ranges of val-
lated with differences in the performance of each strategy. \Wes were similar, MUF showed a much more continuous dis-
focus on the extent to which each strategy meets non-crititdution of values than RMS+MLF. Interestingly, while MUF
deadlines under different conditions of load and load jittead slightly lower minimum and maximum values, its perfor-
where policy differences do not distinguish the strategies. A&nce on average was better than that of RMS+MLF. We also
we argued in Section 1.3, there is no meaningful correlatinate a single sample in which MUF missed one HRT deadline,
toward the end of the time spent in operating region 9.
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different mechanism-level responses to environmental factors
with real-time behvaior. We found that benchmarking canon-
ical scheduling strategies in the ASFD operating environment
was essential to evaluate our middleware scheduling imple-
© mentation. Section 5 describes recommendations to develop-
ers of next-generation DRE systems based on these observa-
o tions.

9

number of samples in range

40

4.3 Correlation with a Plausible Model

20

Hypothesis. Performance differences show meaningful cor-
-y relation to a plausible model for mechanism-level behavior.
Y e ez a2 o as e o owe 0a 1 Qverview of the analysis. To evaluate this hypothesis, we

missed HRT deadline fraction of SRT deadlines made

compare fine-grain differences in performance data to differ-
Figure 6: Weighted SRT Fraction in Operating Region 9 ences in mechanisms and their plausible responses to varia-
tions in environmental conditionsge., load and load jitter. In
rticular, we examine weighted SRT performance in operat-
regions 8 through 11, each of which represents a canonical
e of load and load jitter conditions.
nopsis of results. Figure 7 shows the weighted fraction

Analysis of results. In each of the graphs above, the Iev%a
and distribution of SRT performance values distinguish tf&fs
strategies in ways that map well to mechanism-level differ-
ences. For MUF, the ordering of HRT operations in a dynami . . . .
gueue necessarily adds overhead compared to the best-2 SSRT-d(-eadImes. madg for each sgmpl_e n operatm_g region
: ) X f8 7\ similar relationship between high jitter and low jitter to
performance of multiple FIFO queues at different thread prior-
ities, which is how RMS+MLF manages its HRT operations.
As discussed previously, the policy differences in the absence
of other factors indicate the type of similar performance seen
in Figure 5, albeit with a downward shift in the MUF values
due to mechanism-level dynamic scheduling overhead.
Consider the pacing of operation dispatch requests under
conditions of little or no load jitter, and the handling of re-
guests in priority order. These factors offer evidence that in
Figure 5 we do in fact see the best-case mechanism-level per-
formance of the RMS+MLF strategy, where in each 20Hz
frame the highest priority operations all run to completion, -
then the next highest priority, and so forth. In figure 6, we see
evidence that the performance differences indicates pulses of o8 — = L W &
preemption overhead, contributing to higher overhead on aver-
age in RMS+MLF. We note especially the reasonably periodiq:igure 7: Weighted SRT Fraction in Operating Region 10
and bi-modal distribution of the RMS+MLF performance val-
ues. T'hIS suggests that thg medlum-.low Ievgl of load Jltterﬂérformance of the strategies is shown in operating regions 8
operating region 9 resulted in non-optimal arrival patterns with 4 10. MUF values are offset slightly downward in region

lower priority requests arriving immediately before a highgy and the overall distributions of values are narrow, albeit at
priority request. In practice systems are architected to avRigler evels than in region 8.

realizihg thg worst case request arrival pfatterns which resg'f:igure 8 shows the weighted fraction of SRT deadlines
in a critical instant [21]. The degree to which one succeeds;igge for each sample in operating region 11. A similar rela-
affected by variations in job arrival and processing times. tionship between medium-low and medium-high jitter to per-
Summary. The results above support the hypothesis tHarmance of the strategies is shown in operating region 11.
performance differences between similar scheduling straJF values are distributed more continuously than those of
gies may correlate more strongly with mechanism-level fadMS+MLF.

tors than policy-level factors. We focused our attention émalysis of results. In each of the graphs above, and those
implementation mechanisms of scheduling strategies in gf®wn in Section 4.2, the performance differences between
ASFD operating environment. In doing so, we correlatéde strategies correlate strongly with the expected response of

2
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5.1 Summary of Lessons Learned

— As we noted in Section 1.1, the use of COTS operating systems

and middleware is highly desirable for building and maintain-

- ing mission-critical DRE systems in a cost-effective manner.

However, COTS software cannot simply be applied to applica-

w© tions with specialized processing requirements, without care-

ful empirical study of the implications of the specific policies

o and mechanisms employed within those systems. In partic-

ular, real-time applications have stringent requirements that

@ may vary with environmental stimuli, system load or opera-

[IJ tor intervention.

T e e D i s os o1 es w4 Fundamental difficulties in providing predictable behavior
resten oSy sessines mece of complex systems when they are under moderate to heavy

Figure 8: Weighted SRT Fraction in Operating Region 11loads can compound this problem. Individual policies and

mechanisms, such as those for the scheduling strategies we

have studied, may exhibit differing overheads and sensitivi-

mechanism-level factors to the load and load jitter conditiofss o environmental conditions. However, with judicial use
in each operating region. Specifically, it appears that a phasiiec TS building blocks and armed with a core understan-
effectin the pacing of HRT operations due to jitter is respongig of the underlying mechanisms it is possible to build high-
ble for these results, with RMS+MLF suffering little preempserformance, real-time applications. Our research has identi-

tion overhead in the zero-jitter regions (0,4,8), higher preempsy several key areas where developers can improve system
tion overhead in the regions with medium-low or medium-highsnavior and predictability:

jitter (1,3,5,7,9,11), and then low preemption overhead again
in the high-jitter regions (2,6,10). e Observation. The efficiency and effectiveness of each

Summary. The results above support the hypothesis thggheduling strategy are sensitivestavironmentafactors.

performance differences show meaningful correlation t0,3&qcommendation. Middleware researchers and DRE sys-

plausible moderll for mechanilsm-llevell befhﬁlwor.' Our obsenygs, gevelopers should collaborate to ensure that (1) the envi-
tions suggest that intermediate levels of jitter introduced &y, ental sensitivities of particular scheduling strategies are
periments descn}?ed. In Section 3 Ie;gl to grhe.ater overhead of\{ig characterized in realistic operating environments, and (2)
RMS+MLF mechanisms. We attribute this effect t0 greatgfy taciorg present in a particular DRE system’s particular op-

preemption and context switching overhead as a result 0f &ting environment are used to choose between scheduling
form of phasing in the arrival of HRT dispatch reqUESts_Qﬁategies for that system

the jitter was increased or decreased away from medium lev-
els, RMS+MLF showed less distribution in its SRT deadline Observation. Performance differences between simi-
success values overall. In Section 5, we offer recommen#a- scheduling strategies may correlate more strongly with
tions based on our experiences establishing the empirical ip@chanism-level factors than policy-level factors.

sis for (and constructing) this model, identify key elements of

the model, and suggest further hypotheses and experiments Becommendatlon. M|d_dleware researchershould fo.-
validate the model as future work. cus attention on mechanism-level implementation details of

scheduling strategies in COTS-based environments, to offer
(1) robust real-time assurances and (2) control over trade-offs
5 Lessons Learned and Future Re-foroptimization. Moreoverdeveloperof COTS-based DRE
systems should benchmark their scheduling strategies in op-
search erationally meaningful environments, to evaluate the extent to

) ‘which a particular middleware implementation has addressed
Below, we present key observations and recommendatigiisse issues.

based on our empirical results from Section 4. These observa-

tions and recommendations apply both to the particular avien- Observation. Performance differences between the

ics mission computing application we have studied and tqR#S+MLF and MUF strategies show meaningful correlation

larger family of mission-critical DRE systems. We also d¢e a plausible model for mechanism-level behavior. Specifi-

scribe future work to validate a model for scheduling variabitally, our results suggest that preemption and queue overhead

ity based on our observations. effects are important factors for modeling the performance
differences between these strategies.

10
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e Recommendation. Middleware researchers and developve will evaluate as future work. Specifically, we will examine
ers of COTS-based mission-critical DRE systems should ctile following hypotheses regarding the MUF and RMS+MLF
laborate to construct, extend, and empirically evaluate detaigtihitegies—and the experiment following each hypothesis—to
models formechanism-levedcheduling and dispatching bevalidate this middleware scheduling model:

havior in COTS hardware and software environments. More- ) ) ] ]
over, these models should be evaluated rigorously in term@ &fypothesis 1. Overhead differences in the middleware and

critical assurances and non-critical performance. In particuf@® ¢an be shown to account for the observed latency differ-
as preferred models emerge from this effort, additional att€H1c€s between the strategid® validate this hypothesis, we

tion should be paid to refining, cross-validating models acré¥§ devising experiments to measure and compare key sources
applications and domains, and unifying models where poégﬁ_overhead, such as queue depths, queue ordering cost, thread
ble to attain a more coherent picture of COTS-based real-tiftext switch cost, degree of preemption, in the middleware
QoS management. This larger-scale effort will in turn lead &\d OS under experimental conditions comparable to those de-
higher-quality models and techniques for managing real-tisfgibed in Section 3.

QoS in mission-critical COTS-based DRE systems. e Hypothesis 2. The question of whether (a) thread pre-

emption and context switching overhead or (b) overhead from
5.2 Future Work ordering operations in a dynamic queue is greater under

ach distinct set of load and load jitter conditions, can be

Our experimental results in Section refempirical:results vgh .
own to account for the performance differences between the

. - . S
|d_ated L ab'!'ty of scheduling frameworks to adapt StratIQT\/IS+MLF and MUF strategies under those conditio®
gies to changing load and operation mode. However, the

also raised issues related to the sensitivity of the mechani%’r%ilsd""te this hypothesis, we are dewsmg' experlments to mea-
) . : ; sure and compare the complete preemption timeline for all op-
used in the operational environment. It is common practice :
- . rations to the measured middleware and OS overhead factors
when designing real-time systems to select a strategy based'On . - )
. . under comparable experimental conditions to those described
worst-case analysis. However, our results show that this is no ;
. . . . . 10" Section 3.
necessarily optimal nor desirable. In practice, different poli-
cies and their implementation exhibit varying overheads and
sensitivities to environmental conditions.
For example, in theory, we would expect that partitionid ~ Related Work
the HRT and SRT operations by scheduling priority would . o
protect the critical operations, thus ensuring they always meégtributed real-time and embedded (DRE) computing is an
their deadlines. This is not the case, however, as shownéyerging field of study. An increasing number of research
the missed critical deadline in operating region 9 for MU€fforts are focusing on e_nd-to-end _quallty pf service (QoS)
(see Section 4.2). We would also suspect that given a fe@spperties, such as timeliness, by integrating QoS manage-
ble schedule for the critical tasks the use of a non-preemptivent policies and mechanisnesg, real-time scheduling into
dispatching strategy for the critical operations as provided $fgndards-based middleware, such as Real-time CORBA. Pio-
the MUF implementation would result in overall lower ovemeering efforts are beginning to extend this field by providing
head as the overhead of preemption is not necessary nor Witta-capabilities, such as configuration flexibility, reflection,
queue depths be large for our structured environment. Wtled ultimately adaptation, while still meeting strict QoS as-
this appears to be true for operating regions 0 through 7, ungléfances. This section describes representative work that is

heavy loads it breaks down. related to our Kokyu framework.

These observations lead to the identification of several lsg\ylonics platform research. The following two branches of

aspects of the system that contribute to variability of the 1€ earch are en deavoring to make QoS-managed system in-

sults: _ _ frastructure a prevalent and reusable feature of avionics com-
e Operation scheduling parameters puting systems:
e Preemption model based on thread priorities and request . )
arrival e Avionics domain platform research. Standardized

e Queueing discipline for ordering within each thread p@vionics platforms, such as the ARINC Avionics Application
ority level and Software Standard Interface (APEX) for Integrated Modular

« Mechanism overhead in response to the above factors’Vionics (IMA) [28], provide QoS assurances for systems in
the avionics domain. McElhone [29] examines the question

We propose these factors as the basis for a mechanism-lefdiow to support operations with soft real-time constraints
model for variability of different scheduling strategies, whicand possibly long running or variable length computations, in

canonical avionics-specific platforms, such as IMA.
11



e Open systems avionics research.Sharp, Doerr, o UCITMO. The Time-triggered Message-triggered Ob-
et al. [23, 24] address the challenge of retaining key Qqgé&cts (TMO) project [36] at the University of California,
assurances in avionics systems, while achieving improwesine, supports the integrated design of distributed OO sys-
ments in modularity, reuse, cycle times, and cost across faems and real-time simulators of their operating environments.
ilies of flight software applications. The Bold Stroke avionFhe TMO model provides structured timing semantics for
ics domain-specific middleware described in Section 2 hdistributed real-time object-oriented applications by extend-
emerged and evolved through that work. Our research on fleg conventional invocation semantics for object methods,
ible and adaptive real-time scheduling and dispatching was, CORBA operations, to include (1) invocation of time-
conducted within the context of the Bold Stroke infrastructureiggered operations based on system times and (2) invoca-
and has contributed to its evolution. tion and time bounded execution of conventional message-

CORBA-related QoS middleware research. There is a triggered operations. TMO, Kokyu, and TAO are complemen-
growing body of work related to CORBA-based QoS midary technologies because (1) TMO and Kokyu extend and
dleware. We focus below on related CORBA middleware rgéneralize TAO's existing time-based invocation capabilities
search efforts that address scheduling or other forms of adaipd (2) TAO provides a configurable and dependable connec-
tive Q0S management. tion infrastructure needed by the TMO CNCM service.

e Standard specifications. The OMG Real-Time Non-CORBA QoSresearch. Inadditionto CORBA-related

CORBA 1.0 [30] specification includes interfaces for aR0S middleware research, our work on Kokyg is also related
optional scheduling service that can be implemented readfythe following QoS research conducted outside CORBA:
using Kokyu’s flexible scheduling and dispatching capabil- e Utah CRM. Regehr and Lepreau [37] propose the CPU
ities. We plan to release an implementation of this serviBesource Manager (CRM), a middleware service for man-
built using the Kokyu framework. Emerging COTS midaging processor allocation using scheduling abstractions pro-
dleware standards, such as Dynamic Scheduling Real-Twiged by commaodity-off-the-shelf (COTS) operating systems.
Common Object Request Broker Architecture (CORBA) 2They examine different kinds of QoS reservations and propose
(DSRTCORBA) [31], as well as the non-CORBA Real-Tima unifying low-level middleware abstraction layer to shield
Specification for Java" (RTSJ) [32], generalize the possiblelevelopers from accidental complexities produced by varia-
range of scheduler implementations, rather than specifytians in scheduling abstractions at the operating system level.
a particular scheduling approach. Kokyu offers a natu@ur approach focuses @mcapsulatiorf scheduling and dis-
basis for reuse of policies and mechanisms in implementipatching policies, and providing flexible infrastructure to al-
schedulers and associated dispatching infrastructures Idar arbitrary composition of heuristics. Rather than enclosing
either of these standards. a known set of common abstractions, our aim is to provide

¢ BBN QuO. The Quality ObjectsQuO) distributed ob- flexible support for diverse and possibly unanticipated combi-
ject middleware is developed at BBN Technologies [33]. Qq@tiqns of scheduling requirements, mechanisms, and policies
is based on CORBA and provides the following support for aj- Middleware.
ile applications running in wide-area networks: (ljp-time e UCI RED-Linux Scheduling Framework. Wang,
performance tuning and configuratidghrough the specifica-et al. [38], at the University of California, Irvine, have pro-
tion of QoS regionsbehavior alternatives, and reconfiguratioposed a general scheduling framework to unify three distinct
strategies that allows the QuO run-time to adaptively trigdends of scheduling approachepriority-based time-based
reconfiguration as system conditions change (representedbg share-based They decompose scheduling behavior into
transitions between operating regions) andé2pbaclacross policy (allocator) and mechanismd{spatching components,
software and distribution boundaries based on a control logpich are similar to the Kokyu scheduling service framework.
in which client applications and server objects request levélsey have implemented the dispatching portion of this frame-
of service and are notified of changes in service. We havework in their real-time extensions to the Linux kernel, called
tegrated Kokyu into the QuO framework, as described in [4RED-Linux. While the RED-Linux approach to scheduling re-

e UCSB Realize. The Realize project at UCSB has déles on special-purpose extensions to the OS kernel, our Kokyu
veloped an approach based on object migration and replig@mework relies only on commonly available OS features,
tion, to improve performance of soft real-time distributed sy§Uch as preemptive thread priorities. Our dispatching mech-
tems [34, 35]. This approach constitutes a higher level of ad@giSms can therefore augment standards-based CORBA mid-
tive control for soft real-time QoS management, and is cofféware and can perform effectively on a wide range of com-
plementary to Kokyu. In particular, a system developer mighonly available real-time and general-purpose OS platforms.
apply Realize to provide soft real-time load balancing across Feedback Control Scheduling. One of the most im-
endsystems, using the Kokyu framework to integrate schecadrtant areas of related work is the pioneering research on
ing and dispatching of both critical and non-critical load.
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