
Empirical Differences Between COTS Middleware Scheduling Strategies�

Christopher D. Gill, Fred Kuhns, and Ron K. Cytron Douglas C. Schmidt
fcdgill, fredk, cytrong@cs.wustl.edu schmidt@uci.edu

Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine

This paper has been submitted to the 4th International Sym-
posium on Distributed Objects and Applications, Irvine, CA,
October-November, 2002.

Abstract

The proportion of complex distributed real-time embedded
(DRE) systems made up of commercial-off-the-shelf (COTS)
hardware and software is increasing significantly in response
to the difficulty and expense of building DRE systems entirely
from scratch. In previous work, we showed how applying dif-
ferent scheduling strategies in middleware can allow COTS-
based solutions to provide both assurance and optimization of
real-time constraints for important classes of mission-critical
DRE systems. There are few empirical studies, however, that
help developers of COTS-based DRE systems to make crucial
distinctions between strategies that appear similar in policy,
but whose run-time effects may differ in practice.

This paper provides two contributions to the study of real-
time quality of service (QoS) assurance and performance in
COTS-based DRE systems. First, we examine in detail two hy-
brid static/dynamic scheduling strategies that should behave
similarly according to policy alone, but that in fact produce
different results under the same conditions, both in utilization
and in meeting real-time assurances. Second, we offer recom-
mendations based on these results for developers of mission-
critical DRE systems, such as the Boeing Bold Stroke platform
used in the Adaptive Software Flight Demonstration (ASFD)
program under which our experiments were conducted. These
contributions address and highlight the importance of the fol-
lowing issues to real-time scheduling in COTS environments:
(1) careful mapping of scheduling policies into implementa-
tion mechanisms and (2) benchmarking and analysis of actual
systems in representative operational environments.

Keywords: Dynamic Scheduling Algorithms and Analy-
sis, Real-Time Assurance and Optimization, Distributed Real-
time and Embedded Systems, Mission Critical Systems, Qual-
ity of Service Issues, Middleware and APIs.

�This work was supported in part by Boeing, DARPA ITO, DARPA con-
tract F33615-00-C-1697 (PCES) and AFRL contracts F3615-97-D-1155/DO
(WSOA) and F33645-97-D-1155 (ASTD/ASFD).

1 Introduction

1.1 Motivation: Distributed Real-Time and
Embedded Systems

Distributed, real-time, and embedded (DRE) systems are be-
coming increasingly widespread and important. Examples of
DRE systems includeautonomous agent teams, e.g., multi-
robot environment mapping,manufacturing process automa-
tion, e.g., high-performance assembly lines, anddefense sys-
tems, e.g., avionics mission computing systems. Although
there are many types of DRE systems, they must all achieve
the following capabilities:

� Managing connections and data transfer between distinct
endsystems

� Offering predictable and efficient control over end-to-end
system resources and

� Operating within computing and memory resource limi-
tations imposed by stringent weight, cost, and power con-
straints.

Designing DRE systems that can offer strong assurances of
real-time predictability, and yet are parsimonious in their use
of limited computing resources is hard; building them on
time and within budget is even harder. Therefore, study-
ing real-time policies and mechanisms within commercial-off-
the-shelf (COTS) systems empirically is essential to ensure
mission-critical DRE systems can be built and maintained in a
cost-effective manner.

Our previous work [1, 2] has quantified the benefits of ap-
plying multiple scheduling paradigms in COTS middleware
to support the quality of service (QoS) demands of mission-
critical DRE systems that possess a mix of hard and soft
real-time requirements, such as avionics mission computing
systems [3], mission-critical distributed audio/video process-
ing [4, 5], and real-time robotic systems [6]. However, our
previous work also showed that when more than one strat-
egy is plausible for a given system based on policy alone, the
best choice of which strategy to apply may not be obvious.1

1We distinguish thepolicy of a scheduling strategy,i.e., thealgorithm for
ordering operations it schedules, from themechanismsused to implement that
policy, e.g., prioritized threads, queues, and timers.

1

This paper therefore presents additional empirical results and
analysis of multi-paradigm COTS middleware to offer insights
into a canonical choice between two hybrid static/dynamic
scheduling strategies. We suggest guidelines for choosing be-
tween the strategies examined in this research, and posit a
model and hypotheses to test that model for further investi-
gation of these issues as future work.

The research presented in this paper was conducted in the
context of a real-world mission-critical DRE application: a
research operational flight program (OFP) designed for tech-
nology transfer to production avionics mission computing sys-
tems. This paper can therefore be viewed as a case study of the
application of scheduling strategies in middleware for next-
generation DRE systems. The results it presents apply to a
class of DRE systems that cross-cuts application domains that
manage both critical and non-critical real-time requirements.

1.2 Context: Real-Time CORBA Middleware

DRE systems have historically been custom developed in an
ad hocand inflexible manner. While many operational sys-
tems have been built this way, this development process failed
to address the following challenges adequately: (1) reducing
total ownership costs, (2) providing portable QoS manage-
ment, and (3) tailoring resource provisioning to assurecriti-
cal system requirements are met in the worst case, while re-
covering resources appropriately to improvenon-critical per-
formance in the average case. In recent years, the following
technologies have converged to address these challenges:

Distributed object computing (DOC) middleware. DOC
middleware is systems software that resides between the ap-
plications and the underlying operating systems, network pro-
tocol stacks, and hardware [7]. It offers clients portable
language-independent and location-transparent invocation of
methods on target object implementations [8]. DOC middle-
ware simplifies application development by off-loading the te-
dious and error-prone aspects of distributed computing from
application developers to middleware developers.

Real-Time CORBA. Real-time CORBA [9] is a DOC mid-
dleware standard that adds capabilities that support end-to-end
predictability for remote operations to the original CORBA
specification. It improves system predictability and bounds or
avoids priority inversions, by supporting end-to-end manage-
ment of system resources. To implement Real-time CORBA
effectively, an Object Request Broker (ORB) must provide
run-time support to automate many DRE features, such as con-
nection management, marshaling/demarshaling, demultiplex-
ing, language and OS independence, resource scheduling and
load balancing, error handling and fault-tolerance, and secu-
rity. However, first-generation ORBs did not provide features
or optimizations to support DRE systems with stringent QoS
requirements.

The ACE ORB (TAO). To meet the stringent QoS require-
ments of DRE systems, researchers at Washington Univer-
sity in St. Louis and the University of California, Irvine
have developed a second-generation ORB called TAO [10],
which is an open-source implementation of Real-time CORBA
that supports efficient, predictable, and flexible DRE com-
puting. Prior work on TAO has explored many dimensions
of high-performance and real-time ORB design and perfor-
mance, including scalable event processing [11], request de-
multiplexing [12], I/O subsystem [13] and protocol [14] inte-
gration, connection architectures [15], asynchronous [16] and
synchronous [17] concurrent request processing, adaptive load
balancing [18], meta-programming mechanisms [19], and IDL
stub/skeleton optimizations [20].

Kokyu Multi-paradigm Scheduling Framework. To in-
crease responsiveness to varying operational environments, we
have recently [2] extended our prior research on static [10] and
dynamic [3] scheduling for Real-time CORBA by incorporat-
ing a strategized scheduling frameworkcalledKokyu2 within
the TAO Real-Time Event Service. Kokyu addresses the chal-
lenge that nosingle scheduling paradigm performs best in
all environments, by enabling the configuration and empirical
evaluation of multiple scheduling paradigms, including:

� Static scheduling strategies,e.g., rate monotonic
scheduling (RMS) [21],

� Dynamic scheduling strategies,e.g., earliest deadline
first (EDF) [21] and minimum laxity first (MLF) [6], and

� Hybrid static/dynamic scheduling strategies,e.g., max-
imum urgency first (MUF) [6] and RMS+MLF [22].

This paper focuses on the hybrid static/dynamic MUF [6]
and RMS+MLF [22] strategies, which were demonstrated in
our recent work [2] to be preferable in COTS-based middle-
ware when the total system load is infeasible but the critical
subset of that load is still feasible. Specifically, both MUF and
RMS+MLF were able to (1)partition critical and non-critical
resource utilization using static mechanisms (such as thread
priorities in COTS-based systems), and then (2) dynamically
schedule singleoperations3 within one [22] or more [6] of the
partitions. The results in this paper illustrate how the Kokyu
framework can provide adaptability across product families,
operating systems, and most importantly environmental con-
ditions, while preserving the rigorous scheduling guarantees
and testability offered by prior work on statically scheduled
CORBA operations [10, 23, 24] and multi-paradigm schedul-
ing [2].

2Kokyu is a Japanese word meaning literally “breath”, but also implying
timing and coordination.

3We term the short-lived computation performed each time an event is
pushed to a component anoperation.

2

1.3 Performance Differences Between Similar
Strategies

A crucial question for developers of mission-critical DRE sys-
tems is whether the differencesin policy alonebetween alter-
native scheduling strategies are sufficient to distinguish which
strategy (or sequence of alternative strategies) should be used
in practiceunder a given set of system and environmental con-
ditions. This paper presents empirical evidence that policy
alone isnot sufficient. Careful prototyping, modeling, analy-
sis, and optimization of the actual behavior of the enforcement
mechanisms themselves is therefore necessary to ensure good
choices.

The work described in this paper is motivated by empiri-
cal results from our work on multi-paradigm scheduling [2].
Our results revealed differences in the performance of two
scheduling strategies, RMS+MLF and MUF, that might have
been expected to perform more similarly under the condi-
tions of the experiment. Specifically, in terms of policy alone,
the RMS+MLF and MUF strategies might not be expected to
show meaningful differences in actual real-time performance.
Our reasoning is presented below:

1. Under the experimental conditions described in Sec-
tion 3, the sequence of resource requests for both critical
and non-critical operations was identical in our experi-
ments under the RMS+MLF and MUF scheduling strate-
gies.

2. The pseudo-random sequence of jitter added to critical
and non-critical operations was identical for RMS+MLF
and MUF.

3. Since both RMS+MLF and MUF monotonically priori-
tize critical requests ahead of non-critical ones, the avail-
ability of the CPU to non-critical processing, as a func-
tion of time, should have been identical.

4. Since the RMS+MLF and MUF strategies both use laxity
to order non-critical requests in a lowest-priority queue,
the order in which non-critical requests were serviced
should have been identical for the two strategies as well.

Clearly, policy alone is insufficient to explain the results we
saw in our recent work with Kokyu. These results indicate
the need to consider how that policy model might be extended
to account for variations in the performance due to properties
of the mechanisms used to implement the policies. This pa-
per therefore presents new analysis of data obtained from our
earlier experiments, and identifies newly discovered correla-
tions within those data. For future work we offer a plausible
model for the observed behavior of the RMS+MLF and MUF
scheduling strategies and suggest additional hypotheses and
experiments as to verify that model.

1.4 Paper Organization

The remainder of this paper is organized as follows: Section 2
describes the application, middleware, OS, and hardware con-
figurations that comprise the open experimentation platform
used for our empirical studies; Section 3 summarizes the ex-
perimental design factors relevant to the performance differ-
ences between scheduling strategies in our previous work;
Section 4 presents new findings based on further analysis of
the data; Section 5 summarizes our observations and makes
recommendations based on our results, identifies a plausible
model for variability in the scheduling strategies, and suggests
hypotheses and experiments for future work; Section 6 com-
pares our research on Kokyu with related work; Finally, Sec-
tion 7 offers concluding remarks.

2 Open Experimentation Platform

This paper focuses on experiments conducted under the Adap-
tive Software Flight Demonstration (ASFD) program [25] on
a mission-critical system that is representative of an important
class of DRE systems:the operational flight program (OFP)
in an avionics mission computing system. An OFP manages
sensors and operator displays, navigates the aircraft’s course,
and controls on-board equipment. The avionics system used
for those experiments consisted of OFP components hosted
on theBold Strokedomain-specific middleware infrastructure,
which in turn is built using the distribution middleware ca-
pabilities and common middleware services provided by the
TAO Real-time CORBA ORB.

MMoottoorroollaaDDyy44--117777DDyy44--778833 DDyy44--117777

VVMMEE
BBaacckkppllaannee

EEtthheerrnneett

BBOOLLDD SSTTRROOKKEE
IINNFFRRAASSTTRRUUCCTTUURREE

OOFFPP
CCOOMMPPOONNEENNTT

EEVVEENNTT CCHHAANNNNEELL

SS
CC
HH
EE
DD
UU
LL
EE
RR

OOFFPP
CCOOMMPPOONNEENNTT

OOFFPP
CCOOMMPPOONNEENNTT

BBOOLLDD SSTTRROOKKEE
IINNFFRRAASSTTRRUUCCTTUURREE

OOFFPP
CCOOMMPPOONNEENNTT

UUnniixx
WWoorrkkssttaattiioonn

NNTT DDeesskkttoopp

MMaapp DDiissppllaayy PPrroocceessssiinngg OOFFPP PPrroocceessssiinnggEEVVEENNTT CCHHAANNNNEELL

EEVVEENNTT CCHHAANNNNEELL

VVXXWWOORRKKSS RRTTOOSS

TTAAOO OORRBB CCOORREE

VVXXWWOORRKKSS RRTTOOSS VVXXWWOORRKKSS RRTTOOSS

11555533
BBuuss

Figure 1: Open Experimentation Platform Hardware and Soft-
ware

Figure 1 [2] illustrates the following OS/hardware, middle-
ware, and application layers of the open experimentation plat-

3

form:4

COTS OS/hardware. The COTS hardware and operating
system used in the experiments described in Section 3 con-
sisted of a commercial VME-64 chassis with four commercial
processor cards, a desktop computer running Windows NT 4.0
used for data gathering and visualization, and a portable UNIX
workstation used to load executable programs onto the boards
in the VME chassis and as a file server for a digital map dis-
play.

Two COTS processor cards, a Dy4-783 and a Dy4-177,
performed the map display function. The Dy4-783 card had
a memory-mapped display processor and the Dy4-177 card
hosted an application component that ran the map display al-
gorithms. The OFP system was distributed across the remain-
ing two processor cards. The first system card was a 200 MHz,
PowerPC 604, Motorola card, which ran the experimental sys-
tem on the VxWorks [26] 5.3.1 real-time operating system.
The second system card was a 100 MHz, PowerPC 603, Dy4-
177 card. This card contained a MIL-STD-1553 MUX bus
interface card and the Ethernet interface for the VME chas-
sis. All external communication,e.g., over the 1553 bus to
connected sensors and actuators (calledremote terminals) in
the aircraft, or over the VME backplane to diagnostic and de-
bug systems, went through this card. This card also controlled
timing for frame sequencing and display updates, upon which
operation rates on the Motorola card depended.

DOC middleware. The COTS distributed object computing
middleware used for the ASFD demonstration was based on
the TAO 1.2 implementation of Real-time CORBA [10, 9].
The TAO Real-time Event Channel [11] is a publish/subscribe
service that mediates communication between components
acting as proxies for (1) remote terminals that interact with
the physical environment and (2) the operations that process
the data. Sensor proxies flush relevant data to a Bold Stroke
replication servicethat propagates the data between endsys-
tems. The sensor proxies thenpushevents through the Real-
time Event Channel to the processing operations. Operation
deadlines in the experimental system correspond to the points
in time when their respective output values must be delivered
and flushed to the replication service.

The Kokyu framework provides scheduling and dispatching
services to TAO’s Real-time Event Channel. Kokyu is respon-
sible for (1) isolating critical processing from non-critical pro-
cessing and (2) making the remaining CPU time available to
non-critical processing. Kokyu provides these services via a

4This platform, and the studies conducted on it, were supported under the
Adaptive Software Flight Demonstration (ASFD) program hosted by the Boe-
ing Phantom Works Open Systems Architecture organization. This work was
administered by the Embedded Systems Branch of the Information Direc-
torate, Air Force Research Labs (AFRL), Wright-Patterson Air Force Base,
Dayton, Ohio. Portions of the TAO ORB and the Bold Stroke open experi-
mentation platform were developed under support from DARPA ITO.

scheduling strategy with which it is configured to (1) assign
priorities to operations and (2) to specify the queueing disci-
pline used at each priority level. By configuring TAO’s Real-
time Event Channel according to the specified set of priori-
ties and queue disciplines, the middleware services described
above enforce the mission computing system’s real-time QoS
assurances and performance.
Bold Stroke domain-specific middleware. The open ex-
perimentation platform for our work is based on the Bold
Stroke domain-specific middleware [23, 24]. Bold Stroke
uses COTS hardware and middleware to produce a standards-
based component architecture for military avionics mission
computing capabilities, such as navigation, data link man-
agement, and weapons control. A driving objective of Bold
Stroke is to support reusable product-line applications, lead-
ing to a highly configurable application component model and
supporting reusable middleware services, such replication and
persistence services.

Bold Stroke has been developed and deployed using DOC
middleware components and services based on the TAO Real-
time ORB, the TAO Real-time Event Channel, and the Kokyu
framework. Bold Stroke uses TAO’s Real-time Event Chan-
nel atop the TAO ORB to communicate between components
(1) on the same endsystem and (2) distributed across differ-
ent endsystems. The Kokyu scheduler maintains information
required for priority-preserving dispatching, which in the ex-
perimental framework described in Section 3 was performed
in dispatching queues within the TAO Real-time Event Chan-
nel.
OFP application. The OFP application used as the basis of
our multi-paradigm scheduling experiments provides avion-
ics mission computing capabilities for an AV-8B (Harrier) air-
craft. It is a distributed OFP implemented in C++ using the
Boeing AV-8 Open Systems Core Avionics Requirements air-
frame [27] and the Boeing Bold Stroke domain-specific mid-
dleware. All major OFP components were implemented as
periodically invoked operations, executed by event consumers.
Each operation belongs to one of two equivalence classes:

� Hard real-time (HRT) for critical operations —Critical
operations in the HRT class are those whose failure to
meet any given deadline has potentially significant con-
sequences for the correctness of the application.

� Soft real-time (SRT) for non-critical operations—
Deadline success for the non-critical SRT operations is
desirable but not strictly mandatory.

There were five pre-defined rates of execution in the sys-
tem: 40 Hz, 20 Hz, 10 Hz, 5 Hz, and 1 Hz. Each operation
ran at one of these rates. For the ASFD open experimentation
platform, new 20 Hz SRT functions were added to the OFP,
including routes and steering components, as well as a digital
map display.

4

3 Relevant Experimental Characteris-
tics

This section outlines experimental factors relevant to analy-
sis and modeling of the observed performance differences be-
tween Maximum Urgency First (MUF) [6], and Rate Mono-
tonic Scheduling (RMS)+Minimum Laxity First (MLF) [22]
under representative environmental conditions with varying
load andload jitter on the open experimentation platform de-
scribed in Section 2. The remainder of this section describes
the new hypotheses we investigated for this paper, the vari-
ables that were controlled, and the variables that were mea-
sured in our studies.

3.1 Hypotheses

The hypotheses explored in these studies are shown in Table 1.
This table also notes how we conducted our analysis to evalu-
ate each hypothesis.

Hypothesis Analysis
The efficiency and effec-
tiveness of each schedul-
ing strategy are sensitive to
environmentalfactors, i.e.,
load and load jitter.

We examine both efficiency
and effectiveness across
widely varying load and
load jitter conditions.

Performance differences
between similar scheduling
strategies may corre-
late more strongly with
mechanism-level factors
than policy-level factors.

We examine performance
of similar strategies in con-
ditions under which behav-
ior is expected to be similar
by policy alone.

Performance differences
show meaningful correla-
tion to a plausible model for
mechanism-level behavior.

We compare fine-grain
differences in performance
data to differences in mech-
anisms and their plausible
responses to variations in
environmental conditions,
i.e., load and load jitter.

Table 1: Hypotheses Studied and Analysis Approaches

To test these hypotheses through study of the empirical dif-
ferences between the similar RMS+MLF and MUF hybrid
static/dynamic scheduling strategies, we examined detailed
operation dispatching success and failure data collected on the
experimentation platform described in Section 2. The data
came from identical trials using each of the following canoni-
cal scheduling strategies:
� RMS [21], which is a purely static strategy that assigns

priorities in rate order and manages requests at each pri-
ority level in first-in-first-out (FIFO) order. We examined
RMS performance for comparison as it gives insight into
the bounds of sensitivity to increasing load and load jitter.

� MUF [6], which is a hybrid static/dynamic strategy
that assigns static priorities by operation criticality, and
schedules within each static priority by minimum laxity.

� RMS+MLF [22], is also a hybrid static/dynamic strategy,
which first schedules critical operations according to rate
and then non-critical operations at lower priority accord-
ing to laxity.

We selected these strategies for further analysis since our ear-
lier work [2] showed them to be the most applicable to OFP
application requirements to support both hard real-time (HRT)
and soft real-time (SRT) operations under a range of load and
load jitter conditions.

3.2 Controlled Variables

To manage the effects of varying load and load jitter in the
more diverse operating environments in which they are being
asked to run, many next-generation DRE systems must satisfy
resource demands that

1. Vary overall at longer time-scales across a series of stable
epochs of operation and

2. Produce different degrees of jitter in invocation-to-
invocation demands across shorter time-scales within
each epoch.

To model variation in both load and load jitter imposed by
these types of demands, the experiments on which the analy-
sis presented here is based added operations to a sequence of
twelve epochs of operation, each representing a distinctop-
erating region[4] numbered 0–11, as shown in Figure 2 [2].
In this section, we summarize the experimental characteris-

00

33

22

11

1111

1100

99

88

77

66

55

44

NNOONN--CCRRIITTIICCAALL LLOOAADD

MM
EE

AA
NN

 JJ
IITT

TT
EE

RR

Figure 2: Operating Regions

tics of these operating regions to characterize the observed dif-
ferences between the RMS+MLF and MUF scheduling strate-
gies.

As we discussed in Section 1.3, the following experimen-
tal characteristics are relevant to examine the differences in
performance between the RMS+MLF and MUF scheduling
strategies:

� The sequence of resource requests for both critical and
non-critical operations

5

� The pseudo-random sequence of jitter added to critical
and non-critical operations

� The relative ordering of critical and non-critical request
partitions and

� The ordering of non-critical operations.

We now consider each of these characteristics in turn:
Sequence of resource requests.Resource requests were
made at each of the following rates: 20 Hz, 10 Hz, 5 Hz, and
1 Hz. The phasing of application operations was organized to
reduce contention for the CPU overall, and to provide regular
windows of low contention for the CPU, in which to extract
collected data without interfering with the experiment itself.
Figure 3 [2] shows the resulting framing of operations in the
executing OFP.

KK EEYY:: 1100HHZZ

DDAATTAA

55HHZZ

11HHZZ

OONNEE SSEECCOONNDD

Figure 3: Framing of Operation Requests and Metrics Data
Extraction Points

In addition to the fixed OFP operations, which were present
and active in each operating region, we introduced chains of
additional 20 Hz SRT navigation route leg5 updates to each
operating region. Computing route legs was implemented with
each route segment successfully completed requesting the next
segment, up to the length of the chain. We varied the length of
the request chain to move from lowest to highestfundamental
non-critical load. We did this incrementally from region 1 to
region 11, while keeping the fundamental critical load constant
across operating regions. We kept the non-critical load the
same in region 0 and region 1 to ensure that we compared
the effects of two different levels of jitter with no change in
fundamental load in at least one case.

The key observation regarding the analysis presented in this
paper is that both the RMS+MLF and MUF scheduling strate-
gies used the same framing sequence (shown in Figure 3) and
the same sequence of load. The same load in both critical and
non-critical operations was therefore offered for each strategy,
so we can meaningfully compare the performance differences
between the strategies.
Pseudo-random jitter sequence. To examine the effects of
(1) varying levels of load jitter across similar fundamental

5A route leg is a segment of a navigation route computed in one operation
invocation.

loads and (2) similar levels of jitter across varying non-critical
loads, we added an additional HRT event consumer to the sec-
ond Dy4-177 card at each of the following rates: 10 Hz, 5
Hz, and 1 Hz HRT. In these experiments, the additional opera-
tions acted as surrogates for the workload variation that would
normally be associated with a distributed production OFP in a
variable environment. The CPU utilization by these additional
HRT event consumers was randomized across a given range
in each operating region, with the range of variation cycling
every four regions through the following:

1. 0 msec (lowest mean and lowest variance)
2. 0–5 msec (medium-low mean, medium variance)
3. 5–10 msec (highest mean, medium variance)
4. 0–10 msec (medium-high mean, highest variance)

Table 2 summarizes the HRT execution variability added
to each operating region.Total variability was thus lowest in
regions 0, 4, and 8, higher in regions 1, 5, and 9, higher still
in regions 3, 7, and 11, and highest in regions 2, 6, and 10.
The range of variability was lowest in regions 0, 4, and 8,
was comparable in odd-numbered regions, and was highest in
regions 2, 6, and 10.

Regions Variable HRT Execution
0,4,8 0 msec
1,5,9 0 to 5 msec

2,6,10 5 to 10 msec
3,7,11 0 to 10 msec

Table 2: Load Jitter For Each Operating Region

The key observation for the analysis presented in this paper
is that the execution time variability within each range was
implemented as a pseudo-randomsequence initialized with the
same seed for each strategy. The load and load jitter were
therefore identical for the RMS+MLF and MUF strategies.

Relative ordering of request partitions. By policy, both
the RMS+MLF and MUF scheduling strategies (1) partition
critical operations from non-critical operations, and (2) sched-
ule operations in the critical partition in preference to oper-
ations in the non-critical partition. Moreover, these policies
were implemented using thread priorities from a preemptive
multi-tasking real-time OS (VxWorks) as described in Sec-
tion 2. The relative ordering of request partitions was therefore
also the same for RMS+MLF and MUF.

Ordering of non-critical operations. By policy, both
RMS+MLF and MUF place all non-critical operations in a
lowest-priority queue managed by operation laxity. The same
values for relevant operation characteristics (i.e., period and
execution time) were used for each operation under each strat-
egy. The non-critical operations were therefore handled the
same way under the RMS+MLF and MUF strategies.

6

3.3 Measured Variables

Section 3.2 showed that at a policy level the RMS+MLF and
MUF strategies were indistinguishable under thecontrolled
variables of the experiment. Below, we examine themeasured
variables of the experiment, which distinguish the behavior of
the RMS+MLF and MUF strategies. We also offer insights
into the possible reasons for those differences in Section 5.

To measure the response of each strategy to the varying load
and load jitter described in Section 3.2, we instrumented the
application and middleware using lightweight, high-resolution
time stamps to characterize system behavior. We focus here on
the missed and made operation deadlines.

The missed and made operation deadlines offer two kinds
of information. First, we can assess the real-timeeffectiveness
of a scheduling strategy by measuring the number (and cate-
gory) of deadlines made. Our definition of real-time effective-
ness differs from conventional notions of throughput: within
a sample, each SRT operations is counted only if it made its
deadline, and no HRT operation deadlines were missed in the
entire sample. The higher the total number of SRT deadlines
that were made without missing any HRT deadlines, the higher
the level of performance of the strategy. Second, we can as-
sess the real-timeefficiencyof the scheduling strategies by also
examining thefraction of SRT operation deadlines that were
made. Efficiency as we define it is simply the SRT effective-
ness divided by the total number of SRT operations,i.e., theof-
fered load. The higher the fraction of SRT operation deadlines
that were made, again without missing any HRT deadlines, the
higher the efficiency of a strategy.

In general, the measured efficiency is only important when
the offered load has significance,i.e., when the SRT and HRT
operations together exceed the feasible utilization bound for
the CPU, as is seen in operating regions 7 through 11. Other-
wise, the effectiveness measure is sufficient to distinguish the
behaviors of the scheduling strategies. The distribution of ef-
ficiency values, as shown in Section 4.2, provides insight into
the finer-grained behavior of each strategy. In aggregate, this
information can be used to profile the response of a strategy to
the offered load and load jitter in each operating region.

4 Empirical Results

We now present results from new analysis of the trials de-
scribed in Section 3, using the open experimental platform de-
scribed in Section 2. Specifically, we systematically examine
the hypotheses described in Table 1 and note how our observa-
tions do or do not support the hypothesis in each case. We thus
empirically evaluate the differences between the RMS+MLF
and MUF strategies in practice. In the process, we also un-
cover insights relevant to developers of mission-critical DRE

systems.

4.1 Efficiency and Effectiveness of SRT Opera-
tion Dispatching

Hypothesis. The efficiency and effectiveness of each
scheduling strategy are sensitive toenvironmentalfactors,i.e.,
load and load jitter.
Overview of the analysis. To evaluate this hypothesis, we
examine how the efficiency and effectiveness of each strat-
egy varied with changing load and load jitter. In addi-
tion to RMS+MLF and MUF (which are similar hybrid
static/dynamic strategies), we also examine the behavior of the
canonical RMS static strategy for purposes of comparison.
Synopsis of results. Figure 4 shows the relative sensitivity
of RMS, RMS+MLF, and MUF to variations in load and load

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11

operating region

av
er

ag
e

o
ve

r
(S

R
T

 d
ea

d
lin

es
 m

ad
e

[H
R

T
 m

is
se

d
 =

 0
])

RMS

MUF

RMS+MLF

Figure 4: Relative Performance of RMS, RMS+MLF, and
MUF

jitter, such as might be expected to occur from variations in
a next-generation DRE system’s environment. The vertical
axis in Figure 4 shows an average weighted SRT performance
function, over the different operating regions described in Sec-
tion 3.2, which are shown on the horizontal axis. For each
sample, a value of zero was assigned if any HRT deadlines
were missed in that sample, or otherwise the value was the
number of SRT deadlines made. An average was then taken
over those values in each operating region, for each strategy.

The RMS strategy showed increasing performance across
operating regions 0 through 6. It then rapidly decreased
through operating region 7 to minimal performance in operat-
ing regions 8 through 11. The RMS+MLF and MUF strategies
both showed cyclic patterns of performance across operating
regions 0 through 11, with the cycle spanning four operating
regions.

In addition to the SRT performance differences indicated in
Figure 4, we note that while RMS offered the best SRT per-

7

formance in operating regions 0 through 7, in operating re-
gion 7 RMS showed 5 samples with missed HRT deadlines
(in operating regions 8 through 11 RMS showed missed HRT
deadlines in each sample). We also note that while MUF per-
formed slightly better than RMS+MLF in operating region 9,
MUF had a single sample with a single missed HRT deadline
late in the operating region.

Analysis of results. Figure 4 shows strong correlation be-
tween the performance of scheduling strategies and environ-
mental factors. More interestingly, the results discussed above
correlate with different factors for RMS than the RMS+MLF
or MUF, and correlate with the same factor for RMS+MLF and
MUF. In particular, the RMS performance correlated strongly
with varying total load, but had no observable correlation with
the variations in load jitter. RMS+MLF and MUF performance
showed strong correlation with load jitter, but only weak cor-
relation (i.e., amplitude of the performance cycle) with varia-
tions in system load. Moreover, thedifferencein performance
between RMS+MLF and MUF varied meaningfully as a func-
tion of the additional jitter in resource request execution times,
although the offered load and load jitter of resource requests
were kept the same for the two strategies in each operating
region of our experiments.

Summary. The results above support the hypothesis that the
efficiency and effectiveness of each scheduling strategy are
sensitive toenvironmentalfactors, and refine the hypothesis
with respect to which factors are the most relevant to each of
the strategies studied. In the ASFD program, we collaborated
with DRE system developers to identify canonical scheduling
strategies and important environmental factors and to examine
the sensitivities of those in realistic operating environments.
Furthermore the results presented above identify which strate-
gies performed best under different environmental conditions.
In Section 5 we extend these observations and make observa-
tions for mission-critical COTS-based DRE systems in gen-
eral, to ensure environmental factors are adequately addressed
in selecting middleware scheduling strategies.

4.2 Mechanism-Level Correlation

Hypothesis. Performance differences between similar
scheduling strategies may correlate more strongly with
mechanism-level factors than policy-level factors.

Overview of the analysis. To evaluate this hypothesis, we
examine how differences in mechanism-level factors corre-
lated with differences in the performance of each strategy. We
focus on the extent to which each strategy meets non-critical
deadlines under different conditions of load and load jitter
where policy differences do not distinguish the strategies. As
we argued in Section 1.3, there is no meaningful correlation

between policy in RMS+MLF and MUF and the observed per-
formance differences, under the experimental conditions de-
scribed in Section 3.2. We therefore focus on whether mean-
ingful correlation can be established between differences in
the mechanisms used to implement RMS+MLF and MUF and
the observed performance.

Synopsis of results. Figure 5 shows the weighted fraction
of SRT deadlines made for each sample in operating region 8.
We note two main characteristics of operating region 8:

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of SRT deadlines made

n
u

m
b

er
 o

f
sa

m
p

le
s

in
 r

an
g

e

MUF

RMS+MLF

Figure 5: Weighted SRT Fraction in Operating Region 8

1. As with each of the operating regions 7 through 11, the
total load is above the feasible threshold, while the criti-
cal load remains feasible. Figure 5 illustrates two impor-
tant similarities between performance of the RMS+MLF
and MUF strategies under these conditions. First, both
strategies achieved highlevelsof SRT deadline success,
with no missed HRT deadlines.

2. The distribution of values is similar and is reasonably
well bounded in each case. MUF showed slightly more
variation in its SRT performance values, and consis-
tently exhibited slightly lower levels of success than
RMS+MLF.

Figure 6 shows the weighted fraction of SRT deadlines
made for each sample in operating region 9. Operating region
9 had slightly higher total load than region 8, but more impor-
tantly had an additional medium-low (0-5 msec) level of load
jitter. Under these conditions, both strategies showed lower
average levels of SRT deadline success, and a wider range of
values overall. Interestingly, while the overall ranges of val-
ues were similar, MUF showed a much more continuous dis-
tribution of values than RMS+MLF. Interestingly, while MUF
had slightly lower minimum and maximum values, its perfor-
mance on average was better than that of RMS+MLF. We also
note a single sample in which MUF missed one HRT deadline,
toward the end of the time spent in operating region 9.

8

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of SRT deadlines made

n
u

m
b

er
 o

f
sa

m
p

le
s

in
 r

an
g

e

MUF

RMS+MLF

missed HRT deadline

Figure 6: Weighted SRT Fraction in Operating Region 9

Analysis of results. In each of the graphs above, the level
and distribution of SRT performance values distinguish the
strategies in ways that map well to mechanism-level differ-
ences. For MUF, the ordering of HRT operations in a dynamic
queue necessarily adds overhead compared to the best-case
performance of multiple FIFO queues at different thread prior-
ities, which is how RMS+MLF manages its HRT operations.
As discussed previously, the policy differences in the absence
of other factors indicate the type of similar performance seen
in Figure 5, albeit with a downward shift in the MUF values
due to mechanism-level dynamic scheduling overhead.

Consider the pacing of operation dispatch requests under
conditions of little or no load jitter, and the handling of re-
quests in priority order. These factors offer evidence that in
Figure 5 we do in fact see the best-case mechanism-level per-
formance of the RMS+MLF strategy, where in each 20Hz
frame the highest priority operations all run to completion,
then the next highest priority, and so forth. In figure 6, we see
evidence that the performance differences indicates pulses of
preemption overhead, contributing to higher overhead on aver-
age in RMS+MLF. We note especially the reasonably periodic
and bi-modal distribution of the RMS+MLF performance val-
ues. This suggests that the medium-low level of load jitter in
operating region 9 resulted in non-optimal arrival patterns with
lower priority requests arriving immediately before a higher
priority request. In practice systems are architected to avoid
realizing the worst case request arrival patterns which result
in a critical instant [21]. The degree to which one succeeds is
affected by variations in job arrival and processing times.

Summary. The results above support the hypothesis that
performance differences between similar scheduling strate-
gies may correlate more strongly with mechanism-level fac-
tors than policy-level factors. We focused our attention on
implementation mechanisms of scheduling strategies in the
ASFD operating environment. In doing so, we correlated

different mechanism-level responses to environmental factors
with real-time behvaior. We found that benchmarking canon-
ical scheduling strategies in the ASFD operating environment
was essential to evaluate our middleware scheduling imple-
mentation. Section 5 describes recommendations to develop-
ers of next-generation DRE systems based on these observa-
tions.

4.3 Correlation with a Plausible Model

Hypothesis. Performance differences show meaningful cor-
relation to a plausible model for mechanism-level behavior.
Overview of the analysis. To evaluate this hypothesis, we
compare fine-grain differences in performance data to differ-
ences in mechanisms and their plausible responses to varia-
tions in environmental conditions,i.e., load and load jitter. In
particular, we examine weighted SRT performance in operat-
ing regions 8 through 11, each of which represents a canonical
case of load and load jitter conditions.
Synopsis of results. Figure 7 shows the weighted fraction
of SRT deadlines made for each sample in operating region
10. A similar relationship between high jitter and low jitter to

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of SRT deadlines made

n
u

m
b

er
 o

f
sa

m
p

le
s

in
 r

an
g

e

MUF

RMS+MLF

Figure 7: Weighted SRT Fraction in Operating Region 10

performance of the strategies is shown in operating regions 8
and 10. MUF values are offset slightly downward in region
10, and the overall distributions of values are narrow, albeit at
lower levels than in region 8.

Figure 8 shows the weighted fraction of SRT deadlines
made for each sample in operating region 11. A similar rela-
tionship between medium-low and medium-high jitter to per-
formance of the strategies is shown in operating region 11.
MUF values are distributed more continuously than those of
RMS+MLF.
Analysis of results. In each of the graphs above, and those
shown in Section 4.2, the performance differences between
the strategies correlate strongly with the expected response of

9

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of SRT deadlines made

n
u

m
b

er
 o

f
sa

m
p

le
s

in
 r

an
g

e

MUF

RMS+MLF

Figure 8: Weighted SRT Fraction in Operating Region 11

mechanism-level factors to the load and load jitter conditions
in each operating region. Specifically, it appears that a phasing
effect in the pacing of HRT operations due to jitter is responsi-
ble for these results, with RMS+MLF suffering little preemp-
tion overhead in the zero-jitter regions (0,4,8), higher preemp-
tion overhead in the regions with medium-low or medium-high
jitter (1,3,5,7,9,11), and then low preemption overhead again
in the high-jitter regions (2,6,10).
Summary. The results above support the hypothesis that
performance differences show meaningful correlation to a
plausible model for mechanism-level behavior. Our observa-
tions suggest that intermediate levels of jitter introduced ex-
periments described in Section 3 led to greater overhead of the
RMS+MLF mechanisms. We attribute this effect to greater
preemption and context switching overhead as a result of a
form of phasing in the arrival of HRT dispatch requests–as
the jitter was increased or decreased away from medium lev-
els, RMS+MLF showed less distribution in its SRT deadline
success values overall. In Section 5, we offer recommenda-
tions based on our experiences establishing the empirical ba-
sis for (and constructing) this model, identify key elements of
the model, and suggest further hypotheses and experiments to
validate the model as future work.

5 Lessons Learned and Future Re-
search

Below, we present key observations and recommendations
based on our empirical results from Section 4. These observa-
tions and recommendations apply both to the particular avion-
ics mission computing application we have studied and to a
larger family of mission-critical DRE systems. We also de-
scribe future work to validate a model for scheduling variabil-
ity based on our observations.

5.1 Summary of Lessons Learned

As we noted in Section 1.1, the use of COTS operating systems
and middleware is highly desirable for building and maintain-
ing mission-critical DRE systems in a cost-effective manner.
However, COTS software cannot simply be applied to applica-
tions with specialized processing requirements, without care-
ful empirical study of the implications of the specific policies
and mechanisms employed within those systems. In partic-
ular, real-time applications have stringent requirements that
may vary with environmental stimuli, system load or opera-
tor intervention.

Fundamental difficulties in providing predictable behavior
of complex systems when they are under moderate to heavy
loads can compound this problem. Individual policies and
mechanisms, such as those for the scheduling strategies we
have studied, may exhibit differing overheads and sensitivi-
ties to environmental conditions. However, with judicial use
of COTS building blocks and armed with a core understan-
ing of the underlying mechanisms it is possible to build high-
performance, real-time applications. Our research has identi-
fied several key areas where developers can improve system
behavior and predictability:

� Observation. The efficiency and effectiveness of each
scheduling strategy are sensitive toenvironmentalfactors.

� Recommendation. Middleware researchers and DRE sys-
tem developers should collaborate to ensure that (1) the envi-
ronmental sensitivities of particular scheduling strategies are
well characterized in realistic operating environments, and (2)
the factors present in a particular DRE system’s particular op-
erating environment are used to choose between scheduling
strategies for that system.

� Observation. Performance differences between simi-
lar scheduling strategies may correlate more strongly with
mechanism-level factors than policy-level factors.

� Recommendation. Middleware researchersshould fo-
cus attention on mechanism-level implementation details of
scheduling strategies in COTS-based environments, to offer
(1) robust real-time assurances and (2) control over trade-offs
for optimization. Moreover,developersof COTS-based DRE
systems should benchmark their scheduling strategies in op-
erationally meaningful environments, to evaluate the extent to
which a particular middleware implementation has addressed
these issues.

� Observation. Performance differences between the
RMS+MLF and MUF strategies show meaningful correlation
to a plausible model for mechanism-level behavior. Specifi-
cally, our results suggest that preemption and queue overhead
effects are important factors for modeling the performance
differences between these strategies.

10

� Recommendation. Middleware researchers and develop-
ers of COTS-based mission-critical DRE systems should col-
laborate to construct, extend, and empirically evaluate detailed
models formechanism-levelscheduling and dispatching be-
havior in COTS hardware and software environments. More-
over, these models should be evaluated rigorously in terms of
critical assurances and non-critical performance. In particular,
as preferred models emerge from this effort, additional atten-
tion should be paid to refining, cross-validating models across
applications and domains, and unifying models where possi-
ble to attain a more coherent picture of COTS-based real-time
QoS management. This larger-scale effort will in turn lead to
higher-quality models and techniques for managing real-time
QoS in mission-critical COTS-based DRE systems.

5.2 Future Work

Our experimental results in Section refempirical:results val-
idated the ability of scheduling frameworks to adapt strate-
gies to changing load and operation mode. However, they
also raised issues related to the sensitivity of the mechanisms
used in the operational environment. It is common practice
when designing real-time systems to select a strategy based on
worst-case analysis. However, our results show that this is not
necessarily optimal nor desirable. In practice, different poli-
cies and their implementation exhibit varying overheads and
sensitivities to environmental conditions.

For example, in theory, we would expect that partitioning
the HRT and SRT operations by scheduling priority would
protect the critical operations, thus ensuring they always meet
their deadlines. This is not the case, however, as shown by
the missed critical deadline in operating region 9 for MUF
(see Section 4.2). We would also suspect that given a feasi-
ble schedule for the critical tasks the use of a non-preemptive
dispatching strategy for the critical operations as provided by
the MUF implementation would result in overall lower over-
head as the overhead of preemption is not necessary nor will
queue depths be large for our structured environment. While
this appears to be true for operating regions 0 through 7, under
heavy loads it breaks down.

These observations lead to the identification of several key
aspects of the system that contribute to variability of the re-
sults:

� Operation scheduling parameters
� Preemption model based on thread priorities and request

arrival
� Queueing discipline for ordering within each thread pri-

ority level and
� Mechanism overhead in response to the above factors.

We propose these factors as the basis for a mechanism-level
model for variability of different scheduling strategies, which

we will evaluate as future work. Specifically, we will examine
the following hypotheses regarding the MUF and RMS+MLF
strategies–and the experiment following each hypothesis–to
validate this middleware scheduling model:

�Hypothesis 1. Overhead differences in the middleware and
OS can be shown to account for the observed latency differ-
ences between the strategies.To validate this hypothesis, we
are devising experiments to measure and compare key sources
of overhead, such as queue depths, queue ordering cost, thread
context switch cost, degree of preemption, in the middleware
and OS under experimental conditions comparable to those de-
scribed in Section 3.

� Hypothesis 2. The question of whether (a) thread pre-
emption and context switching overhead or (b) overhead from
ordering operations in a dynamic queue is greater under
each distinct set of load and load jitter conditions, can be
shown to account for the performance differences between the
RMS+MLF and MUF strategies under those conditions.To
validate this hypothesis, we are devising experiments to mea-
sure and compare the complete preemption timeline for all op-
erations to the measured middleware and OS overhead factors
under comparable experimental conditions to those described
in Section 3.

6 Related Work

Distributed real-time and embedded (DRE) computing is an
emerging field of study. An increasing number of research
efforts are focusing on end-to-end quality of service (QoS)
properties, such as timeliness, by integrating QoS manage-
ment policies and mechanisms,e.g., real-time scheduling into
standards-based middleware, such as Real-time CORBA. Pio-
neering efforts are beginning to extend this field by providing
meta-capabilities, such as configuration flexibility, reflection,
and ultimately adaptation, while still meeting strict QoS as-
surances. This section describes representative work that is
related to our Kokyu framework.

Avionics platform research. The following two branches of
research are endeavoring to make QoS-managed system in-
frastructure a prevalent and reusable feature of avionics com-
puting systems:

� Avionics domain platform research. Standardized
avionics platforms, such as the ARINC Avionics Application
Software Standard Interface (APEX) for Integrated Modular
Avionics (IMA) [28], provide QoS assurances for systems in
the avionics domain. McElhone [29] examines the question
of how to support operations with soft real-time constraints
and possibly long running or variable length computations, in
canonical avionics-specific platforms, such as IMA.

11

� Open systems avionics research.Sharp, Doerr,
et al. [23, 24] address the challenge of retaining key QoS
assurances in avionics systems, while achieving improve-
ments in modularity, reuse, cycle times, and cost across fam-
ilies of flight software applications. The Bold Stroke avion-
ics domain-specific middleware described in Section 2 has
emerged and evolved through that work. Our research on flex-
ible and adaptive real-time scheduling and dispatching was
conducted within the context of the Bold Stroke infrastructure,
and has contributed to its evolution.

CORBA-related QoS middleware research. There is a
growing body of work related to CORBA-based QoS mid-
dleware. We focus below on related CORBA middleware re-
search efforts that address scheduling or other forms of adap-
tive QoS management.

� Standard specifications. The OMG Real-Time
CORBA 1.0 [30] specification includes interfaces for an
optional scheduling service that can be implemented readily
using Kokyu’s flexible scheduling and dispatching capabil-
ities. We plan to release an implementation of this service
built using the Kokyu framework. Emerging COTS mid-
dleware standards, such as Dynamic Scheduling Real-Time
Common Object Request Broker Architecture (CORBA) 2.0
(DSRTCORBA) [31], as well as the non-CORBA Real-Time
Specification for JavaTM (RTSJ) [32], generalize the possible
range of scheduler implementations, rather than specifying
a particular scheduling approach. Kokyu offers a natural
basis for reuse of policies and mechanisms in implementing
schedulers and associated dispatching infrastructures for
either of these standards.

� BBN QuO. TheQuality Objects(QuO) distributed ob-
ject middleware is developed at BBN Technologies [33]. QuO
is based on CORBA and provides the following support for ag-
ile applications running in wide-area networks: (1)run-time
performance tuning and configurationthrough the specifica-
tion of QoS regions, behavior alternatives, and reconfiguration
strategies that allows the QuO run-time to adaptively trigger
reconfiguration as system conditions change (represented by
transitions between operating regions) and (2)feedbackacross
software and distribution boundaries based on a control loop
in which client applications and server objects request levels
of service and are notified of changes in service. We have in-
tegrated Kokyu into the QuO framework, as described in [4].

� UCSB Realize. The Realize project at UCSB has de-
veloped an approach based on object migration and replica-
tion, to improve performance of soft real-time distributed sys-
tems [34, 35]. This approach constitutes a higher level of adap-
tive control for soft real-time QoS management, and is com-
plementary to Kokyu. In particular, a system developer might
apply Realize to provide soft real-time load balancing across
endsystems, using the Kokyu framework to integrate schedul-
ing and dispatching of both critical and non-critical load.

� UCI TMO. The Time-triggered Message-triggered Ob-
jects (TMO) project [36] at the University of California,
Irvine, supports the integrated design of distributed OO sys-
tems and real-time simulators of their operating environments.
The TMO model provides structured timing semantics for
distributed real-time object-oriented applications by extend-
ing conventional invocation semantics for object methods,
i.e., CORBA operations, to include (1) invocation of time-
triggered operations based on system times and (2) invoca-
tion and time bounded execution of conventional message-
triggered operations. TMO, Kokyu, and TAO are complemen-
tary technologies because (1) TMO and Kokyu extend and
generalize TAO’s existing time-based invocation capabilities
and (2) TAO provides a configurable and dependable connec-
tion infrastructure needed by the TMO CNCM service.

Non-CORBA QoS research. In addition to CORBA-related
QoS middleware research, our work on Kokyu is also related
to the following QoS research conducted outside CORBA:

� Utah CRM. Regehr and Lepreau [37] propose the CPU
Resource Manager (CRM), a middleware service for man-
aging processor allocation using scheduling abstractions pro-
vided by commodity-off-the-shelf (COTS) operating systems.
They examine different kinds of QoS reservations and propose
a unifying low-level middleware abstraction layer to shield
developers from accidental complexities produced by varia-
tions in scheduling abstractions at the operating system level.
Our approach focuses onencapsulationof scheduling and dis-
patching policies, and providing flexible infrastructure to al-
low arbitrary composition of heuristics. Rather than enclosing
a known set of common abstractions, our aim is to provide
flexible support for diverse and possibly unanticipated combi-
nations of scheduling requirements, mechanisms, and policies
in middleware.

� UCI RED-Linux Scheduling Framework. Wang,
et al. [38], at the University of California, Irvine, have pro-
posed a general scheduling framework to unify three distinct
kinds of scheduling approaches:priority-based, time-based,
andshare-based. They decompose scheduling behavior into
policy (allocator) and mechanism (dispatching) components,
which are similar to the Kokyu scheduling service framework.
They have implemented the dispatching portion of this frame-
work in their real-time extensions to the Linux kernel, called
RED-Linux. While the RED-Linux approach to scheduling re-
lies on special-purpose extensions to the OS kernel, our Kokyu
framework relies only on commonly available OS features,
such as preemptive thread priorities. Our dispatching mech-
anisms can therefore augment standards-based CORBA mid-
dleware and can perform effectively on a wide range of com-
monly available real-time and general-purpose OS platforms.

� Feedback Control Scheduling. One of the most im-
portant areas of related work is the pioneering research on

12

feedback control real-time scheduling (FCS), conducted by
Stankovic, Lu,et al., at the University of Virginia. They apply
control theory to real-time scheduling [39, 40, 41, 42, 43, 44]
for soft real-time systems, to reduce the number of missed
deadlines at run-time. We consider the FCS work highly com-
plementary to our efforts to model, and distinguish through
empirical study, strategies for real-time assurance and perfor-
mance optimization.

The primary difference between the FCS work and our
Kokyu work is that they focus on controlling a single per-
formance metric, the deadline performance of soft real-time
tasks. Our research is aimed primarily at distributed rate-
based systems where at least two classes of operations are
present, and deadlines for the highest class must be assured
before soft real-time performance is optimized. For example,
FCS specifies amiss ratio function[42], which is compara-
ble to the fraction of SRT deadlines made that is described in
Section 3.3, though they measure the fraction of srt deadlines
missed, rather than made. However, we then predicate this
raw measure of soft real-time performance with whetherany
critical deadlines have been missed in each sample, to obtain
a performance metric that considers multiple criticality levels.

7 Concluding Remarks

New increasingly non-deterministic types of processing, such
as video and imaging [4], are being targeted for transition to
existing mission-critical distributed real-time and embedded
(DRE) systems. In recent work [2], we showed how Kokyu’s
ability to manage variations in execution load and load jitter
through alternative scheduling strategies increases the appli-
cability of these techniques to DRE systems built using COTS
software architectures. This paper extended those results by
further analysis that offers more exact guidance on choice of
scheduling strategies to developers of mission-critical DRE
systems. In particular, this paper presented new empirical ev-
idence that the observed performance differences between the
RMS+MLF and MUF strategies are due to mechanism-level
effects in the face of load jitter, rather than policy-level differ-
ences in the capabilities of the scheduling strategies.

Acknowledgments

We gratefully acknowledge the support and direction of the
AFRL program manager for ASFD, Kenneth Littlejohn, and
of Boeing Bold Stroke Principal Investigators Bryan Doerr and
David Sharp. In addition, we would like to thank Greg Holt-
meyer for his contributions to this research.

References
[1] C. D. Gill, R. Cytron, and D. C. Schmidt, “Middleware

Scheduling Optimization Techniques for Distributed
Real-Time and Embedded Systems,” inProceedings of the7th

Workshop on Object-oriented Real-time Dependable Systems,
(San Diego, CA), IEEE, Jan. 2002.

[2] C. Gill, D. C. Schmidt, and R. Cytron, “Multi-Paradigm
Scheduling for Distributed Real-Time Embedded Computing,”
IEEE Proceedings Special Issue on Modeling and Design of
Embedded Software, Oct. 2002.

[3] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”
Real-Time Systems, The International Journal of Time-Critical
Computing Systems, special issue on Real-Time Middleware,
vol. 20, Mar. 2001.

[4] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal,
R. Shapiro, C. Rodrigues, M. Atighetchi, and D. Karr,
“Comparing and Contrasting Adaptive Middleware Support in
Wide-Area and Embedded Distributed Object Applications,” in
Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), pp. 625–634,
IEEE, Apr. 2001.

[5] D. A. Karr, C. Rodrigues, Y. Krishnamurthy, I. Pyarali, and
D. C. Schmidt, “Application of the QuO Quality-of-Service
Framework to a Distributed Video Application,” in
Proceedings of the 3rd International Symposium on Distributed
Objects and Applications, (Rome, Italy), OMG, Sept. 2001.

[6] D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of
Sensor-Based Control Systems,” inReal-Time Programming
(W. Halang and K. Ramamritham, eds.), Tarrytown, NY:
Pergamon Press, 1992.

[7] R. E. Schantz and D. C. Schmidt, “Middleware for Distributed
Systems: Evolving the Common Structure for Network-centric
Applications,” inEncyclopedia of Software Engineering
(J. Marciniak and G. Telecki, eds.), New York: Wiley & Sons,
2002.

[8] M. Henning and S. Vinoski,Advanced CORBA Programming
with C++. Reading, MA: Addison-Wesley, 1999.

[9] Object Management Group,The Common Object Request
Broker: Architecture and Specification, Revision 2.6, Dec.
2001.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”
Computer Communications, vol. 21, pp. 294–324, Apr. 1998.

[11] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA ’97, (Atlanta, GA), pp. 184–199,
ACM, Oct. 1997.

[12] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computing, vol. 47, no. 4, 1998.

[13] F. Kuhns, D. C. Schmidt, C. O’Ryan, and D. Levine,
“Supporting High-performance I/O in QoS-enabled ORB
Middleware,”Cluster Computing: the Journal on Networks,
Software, and Applications, vol. 3, no. 3, 2000.

13

[14] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and
J. Parsons, “The Design and Performance of a Pluggable
Protocols Framework for Real-time Distributed Object
Computing Middleware,” inProceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

[15] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, special issue on Real-time
Computing in the Age of the Web and the Internet, vol. 21,
no. 2, 2001.

[16] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and
J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,” in
Proceedings of the Middleware 2000 Conference, ACM/IFIP,
Apr. 2000.

[17] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons,
I. Pyarali, and D. L. Levine, “Evaluating Policies and
Mechanisms to Support Distributed Real-Time Applications
with CORBA,” Concurrency and Computing: Practice and
Experience, vol. 13, no. 2, pp. 507–541, 2001.

[18] O. Othman, C. O’Ryan, and D. C. Schmidt, “An Efficient
Adaptive Load Balancing Service for CORBA,”IEEE
Distributed Systems Online, vol. 2, Mar. 2001.

[19] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran,
“Evaluating Meta-Programming Mechanisms for ORB
Middleware,”IEEE Communication Magazine, special issue
on Evolving Communications Software: Techniques and
Technologies, vol. 39, Oct. 2001.

[20] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP
Protocol Engine for Minimal Footprint Multimedia Systems,”
Journal on Selected Areas in Communications special issue on
Service Enabling Platforms for Networked Multimedia
Systems, vol. 17, Sept. 1999.

[21] C. Liu and J. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,”JACM,
vol. 20, pp. 46–61, Jan. 1973.

[22] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin, “Scheduling Periodic
Jobs that Allow Imprecise Results,”IEEE Transactions on
Computers, vol. 39, pp. 1156–1174, Sept. 1990.

[23] D. C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development,” inProceedings
of the 10th Annual Software Technology Conference, Apr.
1998.

[24] B. S. Doerr and D. C. Sharp, “Freeing Product Line
Architectures from Execution Dependencies,” inProceedings
of the 11th Annual Software Technology Conference, Apr.
1999.

[25] W.-P. A. F. B. Air Force Research Labs, “Adaptive Software
Flight Demonstration (ASFD).” Delivery Order 003 of the
WSSTS contract to The Boeing Company, number
F33615-97-D-1155, 1999.

[26] Wind River Systems, “VxWorks 5.3.”
www.wrs.com/products/html/vxworks.html.

[27] T. B. Company, “Open Systems Core Avionics Requirement
(OSCAR).” http://www.acq.osd.mil/osjtf/pdf/oscar.pdf.

[28] ARINC Incorporated, Annapolis, Maryland, USA,Document
No. 653: Avionics Application Software Standard Inteface
(Draft 15), Jan. 1997.

[29] C. McElhone, “Soft Computations within Integrated Avionics
Systems,” inProceedings of the IEEE National Aerospace and
Electronics Conference (NAECON 2000), Oct. 2000.

[30] Object Management Group,Real-time CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., Mar. 1999.

[31] Object Management Group,Dynamic Scheduling Real-Time
CORBA 2.0 Joint Final Submission, OMG Document
orbos/2001-06-09 ed., Apr. 2001.

[32] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull,
The Real-Time Specification for Java. Addison-Wesley, 2000.

[33] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural
Support for Quality of Service for CORBA Objects,”Theory
and Practice of Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[34] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser,
“Dynamic Migration Algorithms for Distributed Object
Systems,” in21st IEEE International Conference on
Distributed Computing Systems (ICDCS), (Phoenix AZ),
IEEE, Apr. 2001.

[35] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser,
“Dynamic Scheduling of Distributed Method Invocations,” in
21st IEEE Real-Time Systems Symposium, (Orlando, FL),
IEEE, Nov. 2000.

[36] K. H. K. Kim, “Object Structures for Real-Time Systems and
Simulators,”IEEE Computer, pp. 62–70, Aug. 1997.

[37] J. Regehr and J. Lepreau, “The Case for Using Middleware to
Manage Diverse Soft Real-Time Schedulers,” inProceedings
of the International Workshop on Multimedia Middleware
(M3W ’01), (Ottowa, Canada), Oct. 2001.

[38] Y.-C. Wang and K.-J. Lin, “Implementing A General
Real-Time Scheduling Framework in the RED-Linux
Real-Time Kernel,” inIEEE Real-Time Systems Symposium,
pp. 246–255, IEEE, Dec. 1999.

[39] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback
Control Real-Time Scheduling: Framework, Modeling, and
Algorithms,” Journal of Real-Time Systems, Special Issue on
Control-Theoretical Approaches to Real-Time Computing,
2002, to appear.

[40] C. Lu,Feedback Control Real-Time Scheduling. PhD thesis,
University of Virginia, Charlottesville, VA, May 2001.

[41] J. A. Stankovic, T. He, T. F. Abdelzaher, M. Marley, G. Tao,
S. H. Son, and C. Lu, “Feedback Control Scheduling in
Distributed Systems,” inThe 22nd IEEE Real-Time Systems
Symposium (RTSS ’01), (London UK), Dec. 2001.

[42] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,
and M. Marley, “Performance Specifications and Metrics for
Adaptive Real-Time Systems,” inThe 21st IEEE Real-Time
Systems Symposium (RTSS ’00), (Orlando FL), Dec. 2000.

[43] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and
Evaluation of a Feedback Control EDF Scheduling
Algorithm,” in The 20th IEEE Real-Time Systems Symposium
(RTSS ’99), (Phoenix AZ), Dec. 1999.

[44] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The Case for
Feedback Control Real-Time Scheduling,” in11th EuroMicro
Conference on Real-Time Systems, (York UK), June 1999.

14

