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1 Introduction

This article describes the design and implementation of the
Reactor pattern [1] contained in the ACE framework [2]. The
Reactor pattern handles service requests that are delivered
concurrently to an application by one or more clients. Each
service of the application is implemented by a separateevent
handlerthat contains one or more methods responsible for
processing service-specific requests.

In the implementation of the Reactor pattern described
in this paper, event handler dispatching is performed
by an ACEReactor . The ACEReactor combines
the demultiplexing of input and output (I/O) events with
other types of events, such as timers and signals. At
the core of theACEReactor implementation is a syn-
chronous event demultiplexer, such asselect [3] or
WaitForMultipleObjects [4]. When the demulti-
plexer indicates the occurrence of designated events, the
ACEReactor automatically dispatches the method(s) of
pre-registered event handlers, which perform application-
specified services in response to the events.

This paper is organized as follows: Section 2 describes
the primary features in theACEReactor framework; Sec-
tion 3 outlines the OO design of theACEReactor im-
plementation [2]; Section 4 examines several examples that
demonstrate how theACEReactor simplifies the devel-
opment of concurrent, event-driven network applications;
Section 5 describes design rules to follow when using the
ACEReactor to develop event-driven applications; and
Section 6 presents concluding remarks.

2 Features of the ACE Reactor

The ACEReactor provides an OO demultiplexing and
dispatching framework that simplifies the development of
event-driven applications by providing the following fea-
tures:

Uniform OO demultiplexing and dispatching interface:
Applications that use theACEReactor do not directly
call low-level OS event demultiplexing APIs, such as
select or WaitForMultipleObjects . Instead, they

1This work was supported in part by Siemens SCR.

create concrete event handlers by inheriting from the
ACEEvent Handler base class. This class specifies vir-
tual methods that handle various types of events, such as
I/O events, timer events, signals, and synchronization events.
Applications that use the Reactor framework create concrete
event handlers and register them with theACEReactor .
Figure 1 shows the key components in theACEReactor .
This figure depicts concrete event handlers that implement
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Figure 1: The Reactor Components

the logging server described in Section 4.

Automate event handler dispatching: When activity oc-
curs on handles managed by anACEReactor , it auto-
matically invokes the appropriate virtual methods on the
pre-registered concrete event handlers. C++ event handler
objects are registered with theACEReactor , rather than
stand-alone functions. Registering objects as event handlers
allows state to be retained between hook method invocations
on concrete event handlers. This style of OO programming
is useful for developing event handlers that hold state across
multiple callbacks by theACEReactor dispatcher.
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Support transparent extensibility: The functionality of
theACEReactor and its registered event handlers can be
extended transparentlywithoutmodifying or recompiling ex-
isting code. To support this degree of extensibility, the Reac-
tor framework employs inheritance and dynamic binding to
decouple the following two responsibilities:

1. Lower-level event demultiplexing and dispatching
mechanisms– Low-level mechanisms managed by the
ACEReactor include detecting events on multiple
I/O handles, expiring timers, and dispatching the appro-
priate event handler methods to process these events.

2. Higher-level policies defined by applications to pro-
cess events– Higher-level policies performed by
application-specified concrete event handlers include
connection establishment strategies, data encoding and
decoding, and processing of service requests from
clients. For instance, the TAO [5] CORBA ORB uses
the Reactor framework to separate its low-level event
demultiplexing mechanisms from its higher-level poli-
cies for GIOP connection management and protocol
processing [5].

Increase reuse: TheACEReactor ’s demultiplexing and
dispatching mechanisms can be reused by many net-
work applications. Byreusing, rather thanreinventing,
these mechanisms, developers can concentrate on higher-
level application-specific event handler policies, rather than
wrestling repeatedly with low-level event demultiplexing
and dispatching mechanisms.

Developers who write programs using low-level event de-
multiplexing operations
like select andWaitForMultipleObjects directly
must reimplement, debug, and tune the same demultiplex-
ing and dispatching code for every application. In contrast,
all applications that utilize theACEReactor automatically
reuse its features, as well as future enhancements and opti-
mizations.

Eliminate common error-prone programming details:
The ACEReactor shields application developers from
error-prone details associated with programming low-level
OS event demultiplexing APIs likeselect . These error-
prone details involve setting and clearing bitmasks, detect-
ing and responding to interrupts, managing internal locks,
and dispatching hook methods for I/O and timeout process-
ing. For instance, theACEReactor eliminates several sub-
tle causes of errors withselect involving the misuse of
fd set bitmasks.

Improve portability: The ACEReactor runs atop sev-
eral event demultiplexing mech-
anisms, includingWaitForMultipleObjects , which
is available on Win32, andselect , which is avail-
able on Win32 and UNIX. TheACEReactor shields
applications from portability differences between the un-
derlying event demultiplexing mechanisms. As illus-
trated in Figure 6, theACEReactor exports the same

interface to applications, regardless of the native OS
APIs. Moreover, theACEReactor uses design pat-
terns like Bridge [6] to enhance its internal portabil-
ity. Thus, porting theACEReactor from select
to WaitForMultipleObjects required only localized
changes to the framework [7].

Thread-safety: The Reactor framework is fully thread-
safe. Therefore multiple threads can safely share a single
ACEReactor . Likewise, multipleACEReactor s can
run in separate threads within a process. The Reactor frame-
work provides the necessary synchronization mechanisms to
prevent race conditions and intra-class method deadlock [8].

Efficient demultiplexing: The ACEReactor performs
its event demultiplexing and dispatching logic efficiently.
For instance, theselect -basedACEReactor uses the
ACEHandle Set class described in Section 3.2 to avoid
examiningfd set bitmasks one bit at a time. This op-
timization is based on a sophisticated algorithm that uses
the C++ exclusive-or operator to reduce run-time complexity
from O(number of total bits)to O(number of enabled bits),
which can substantially reduce run-time overhead.

3 The OO Design of the Reactor
Framework

This section describes the OO design of theACEReactor
framework. We focus on the structure of its components
and key design decisions. Where appropriate, implemen-
tation details are also discussed. Section 3.1 outlines the
OS platform-independent components and Section 3.2 cov-
ers the platform-dependent components.

3.1 Platform-Independent Class Components

This subsection summarizes the platform-independent
classes in the Reactor framework, which include the
ACEReactor , ACETime Value , ACETimer Queue,
andACEEvent Handler .

3.1.1 The ACEReactor Class

The ACEReactor defines the public interface for the
Reactor framework. Figure 2 illustrates the key public
methods in theACEReactor class. The methods in the
ACEReactor can be grouped into the following general
categories:

Manager methods: The constructor andopen methods
create and initialize objects of theACEReactor by dy-
namically allocating various implementation objects de-
scribed in Section 3.2.1 and 3.2.2. TheACEReactor ’s
destructor andclose methods deallocate these objects. In
addition, to support the common use-case of one event loop
per application process, there is a staticinstance method
that returns a pointer to a singletonACEReactor , which
is created and managed by the Singleton pattern [6].
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class ACE_Reactor
{
public:

enum { DEFAULT_SIZE = FD_SETSIZE };

// = Singleton access point.
static ACE_Reactor *instance (void);

// = Initialization and termination methods.

// Initialize a Reactor instance that may
// contain <size> entries (<restart> indicates
// to restart system calls after interrupts).
ACE_Reactor (int size, int restart = 0);
virtual int open (int size = DEFAULT_SIZE,

int restart = 0);

// Perform cleanup activities to close down
// an instance of an <ACE_Reactor>.
void close (void);
˜ACE_Reactor (void);

// = I/O-based event handler methods.

// Register an <ACE_Event_Handler> object according
// to the <ACE_Reactor_Mask>(s), e.g., READ_MASK,
// WRITE_MASK, etc.
virtual int register_handler (ACE_Event_Handler *,

ACE_Reactor_Mask);

// Remove the handler associated with the
// appropriate <ACE_Reactor_Mask>(s).
virtual int remove_handler (ACE_Event_Handler *,

ACE_Reactor_Mask);

// = Timer-based event handler methods.

// Schedule an <event_handler> that will expire
// after <delay> amount of time. If it expires
// <arg> is passed in as the value to the
// <event_handler>’s <handle_timeout> callback
// method. If <interval> is != to
// <ACE_Time_Value::zero> it is used to
// reschedule the <event_handler> automatically.
// Returns a timer id that can be used to cancel
// the timer.
virtual long schedule_timer

(ACE_Event_Handler *,
const void *act,
const ACE_Time_Value &delta,
const ACE_Time_Value &interval);

// Cancel all timers associated with <eh>.
virtual void cancel_timer (ACE_Event_Handler *eh);

// Cancel the timer that matches the <timer_id>.
virtual void cancel_timer (long timer_id,

const void **arg = 0);
// = Event-loop methods

// Block process until I/O events occur or timer
// expires, then dispatch activated handler(s).
virtual int handle_events (void);

// Perform a timed event-loop that waits up to <tv>
// time units for events to occur; if no events
// occur then 0 is returned, otherwise return
// <TV> - actual-time-waited.
virtual int handle_events (ACE_Time_Value &tv);

private:
// Pointer to the implementation class,
// e.g., <ACE_Select_Reactor> or
// <ACE_WFMO_Reactor>.
Reactor_Impl *reactor_impl_;

};

Figure 2: Interface for theACEReactor

I/O-related methods: Applications can register concrete
event handlers that derive fromACEEvent Handler with
an ACEReactor via its register handler method.
Likewise, concrete event handlers can be removed via its
remove handler method.

Timer-related methods: The ACEReactor ’s timer
strategy orders the event handlers that are scheduled with it
according to their timeout deadlines. The methods provided
by theACEReactor ’s timer mechanisms include (1) regis-
tering concrete event handlers that will be executed at a user-
specified time in the future and (2) canceling one or more
previously registered event handlers.

Event-loop methods: After registering its initial concrete
event handlers, an application enters an event-loop that typi-
cally calls anACEReactor ’s handle events method
repeatedly. This method gathers the handles of all reg-
istered concrete event handlers, passes them to the un-
derlying OS event demultiplexing call,e.g., select or
WaitForMultipleObjects , and then can block for
an application-specified time interval awaiting the occur-
rence of various events, such as data events to arrive on
socket handles or timer deadlines to expire. Subsequently,
when I/O events occur and the handles become “ready,”
the ACEReactor notifies the appropriate pre-registered
concrete event handlers by invoking theirhandle * hook
method(s) defined by the application to process the event(s).

3.1.2 The ACE Event Handler Class

This base class specifies the interface used by the
ACEReactor to control and coordinate the demultiplex-
ing and dispatching of concrete event handlers. The virtual
methods in theACEEvent Handler interface are illus-
trated in Figure 3.

TheACEReactor implements its event-driven callback
mechanism viaconcrete event handlers, which inherit from
ACEEvent Handler . Concrete event handlers typically
provide an I/O handle that theACEReactor can retrieve
via the get handle method. When an application reg-
isters a concrete event handler with theACEReactor ’s
register handler method, theACEReactor calls
back to theget handle method on the concrete event han-
dler to retrieve the underlying I/O handle. If a concrete
event handler is used entirely to handle signals or timers, the
get handle method can be a no-op.

Concrete event handlers typically override one or more
virtual methods in ACEEvent Handler to perform
application-defined processing in response to various types
of events, including (1) I/O events,e.g., reading, writing, and
exceptions, (2) timer events and (3) signals.2

TheACETimer Queue class described in Section 3.1.4
uses concrete event handlers to process time-based events.
When a timer managed by this mechanism expires, the

2On Win32 theACEReactor can also handle synchronization events,
such as transitioning from the non-signaled to signaled state with Win32
mutexes [4].
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// Handle portability issues.
#elif defined (ACE_HAS_WIN32)
typedef HANDLE ACE_HANDLE;
#if defined (UNIX)
typedef int ACE_HANDLE;
#endif /* UNIX */

typedef u_long ACE_Reactor_Mask;

class ACE_Event_Handler
{
public:

// These values can be bitwise "or’d" together to
// instruct the <ACE_Reactor> to check for
// multiple events on a single ACE_HANDLE.
enum {

READ_MASK = (1 << 0),
WRITE_MASK = (1 << 2),
EXCEPT_MASK = (1 << 3),
ACCEPT_MASK = (1 << 3),
CONNECT_MASK = (1 << 4),
TIMER_MASK = (1 << 5),
SIGNAL_MASK = (1 << 8),
DONT_CALL = (1 << 9)

};

// Returns the I/O handle associated with the
// derived object.
virtual ACE_HANDLE get_handle (void) const;

// Called when event handler is removed from
// an <ACE_Reactor>.
virtual int handle_close (ACE_HANDLE,

ACE_Reactor_Mask);

// Called when input becomes available.
virtual int handle_input (ACE_HANDLE);

// Called when output is possible.
virtual int handle_output (ACE_HANDLE);

// Called when urgent data is available.
virtual int handle_except (ACE_HANDLE);

// Called when timer expires, <tv> stores the
// current time and <act> is the argument given
// when the handler was scheduled originally.
virtual int handle_timeout

(const ACE_Time_Value &tv,
const void *act = 0);

// Called when signal is triggered.
virtual int handle_signal (int signum);

};

Figure 3: Interface forACEEvent Handler

handle timeout method of the associated event handler
is invoked by theACEReactor . This method is passed
both (1) the current time and (2) thevoid * asynchronous
completion token(ACT) [9], which was passed as a pa-
rameter toschedule timer when the event handler was
scheduled originally.

When any handle * hook method in a concrete
event handler returns< 0, the ACEReactor auto-
matically invokes that handler’shandle close cleanup
method. When theACEReactor invokes this cleanup
method, it passes in theACEReactor Mask value,e.g.,
READ MASK, SIGNAL MASK, etc., corresponding to the
handle * hook method that returned�1. Application de-
velopers can override thehandle close method to per-
form cleanup activities, such as closing log files or delet-
ing dynamic memory allocated by the object. When the
handle close method returns and the concrete event
handler is no longer registered to handle any events, the
ACEReactor removes the event handler from from its in-
ternal tables.

3.1.3 The ACE Time Value Class

This C++ wrapper encapsulates the underlying OS plat-
form’s date and time structure, such as thestruct
timeval type defined on most UNIX platforms as follows:

struct timeval {
long secs;
long usecs;

};

Other OS platforms, such as POSIX and Win32, use
slightly different time representations. Therefore, the
ACETime Value class encapsulates these details to pro-
vide a portable C++ interface.

The primary methods in theACETime Value class are
illustrated in Figure 4. TheACETime Value wrapper uses
operator overloading to simplify time-based comparisons.
Overloading permits the use of standard arithmetic syntax
for relational expressions involving time comparisons.

Methods on theACETime Value class are imple-
mented to “normalize” time quantities. Normalization ad-
justs the two fields in atimeval structure to use a
canonical encoding scheme that ensures accurate compar-
isons. For example, after normalization, the quantity
ACETime Value (1, 1000000) will compare equal
to ACETime Value (2) . In contrast, a direct bitwise
comparison of these non-normalized class values would not
detect this equality.

The following code creates twoACETime Value
objects, which are constructed by adding user-supplied
command-line arguments to the current time. The appro-
priate ordering relationship between the two objects is then
displayed:

int main (int argc, char *argv[])
{

if (argc != 3)
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class ACE_Time_Value
{
public:

// = Initialization methods.
ACE_Time_Value (long sec = 0, long usec = 0);
ACE_Time_Value (const timeval &t);

// = Friend methods.
// Returns sum of two <ACE_Time_Value>s.
friend ACE_Time_Value operator +

(const ACE_Time_Value &lhs,
const ACE_Time_Value &rhs);

// Returns difference between two
// <ACE_Time_Value>s.
friend ACE_Time_Value operator -

(const ACE_Time_Value &lhs,
const ACE_Time_Value &rhs);

// = operators for normalized <ACE_Time_Value>s.
friend int operator <

(const ACE_Time_Value &lhs,
const ACE_Time_Value &rhs);

// Other relation operators...

private:
// ...

};
Figure 4: Interface forACETime Value

ACE_ERROR_RETURN ((LM_ERROR,
"usage: %d"
"time1 time2\n"),
1);

ACE_Time_Value curtime = ACE_OS::gettimeofday ();
ACE_Time_Value timer1 = curtime +

ACE_Time_Value (ACE_OS::atoi (argv[1]));
ACE_Time_Value timer2 = curtime +

ACE_Time_Value (ACE_OS::atoi (argv[2]));

if (timer1 > timer2)
ACE_DEBUG ((LM_DEBUG,

"timer 1 is greater\n"));
else if (timer2 > timer1)

ACE_DEBUG ((LM_DEBUG,
"timer 2 is greater\n"));

else
ACE_DEBUG ((LM_DEBUG,

"timers are equal\n"));
return 0;

}

The code shown above is portable to all OS platforms.
Note how the use of C++ features like wrapper classes and
operator overloading simplifies the use of time-related oper-
ations.

3.1.4 The ACE Timer Queue Class

The ACEReactor ’s timer-based mechanisms are useful
for applications that require timer support. For example,
Web servers require watch-dog timers that release resources
if clients do not send an HTTP request within a specific time
interval after they connect. Likewise, daemon configuration
frameworks like the Windows NTService Control
Manager [4] require services under their control to peri-
odically report their current status via “heartbeat” messages,
which can be used to restart services that have terminated
abnormally.

TheACETimer Queue class provides mechanisms that
allow applications to register time-based concrete event
handlers that derive fromACEEvent Handler . The
ACETimer Queue ensures that thehandle timeout
method in these event handlers is invoked at an application-
specified time in the future. The methods of the
ACETimer Queue class illustrated in Figure 5 enable ap-
plications to schedule, cancel, and invoke the timer objects.

class ACE_Timer_Queue
{
public:

// True if queue is empty, else false.
int is_empty (void) const;

// Returns earliest time in queue.
const ACE_Time_Value &earliest_time (void) const;

// Schedule a <handler> to be dispatched at
// the <future_time> and at subsequent
// <interval>s. Returns a timer id that can
// be used to cancel the timer.
virtual long schedule

(ACE_Event_Handler *handler,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval);

// Cancel all registered <ACE_Event_Handlers>
// that match the address of <handler>, which
// can be registered multiple times.
virtual int cancel (ACE_Event_Handler *handler);

// Cancel the single <ACE_Event_Handler>
// matching the <timer_id> value returned
// from <schedule>.
virtual int cancel (int timer_id,

const void **act = 0);

// Expire all timers <= <expire_time>. This
// method must be called manually since it
// is not invoked asynchronously.
virtual void expire

(const ACE_Time_Value &expire_time);
private:

// ...
};

Figure 5: InterfaceACETimer Queue

An application schedules a concrete event handler to
expire after delay amount of time. If it expires,
the act is passed as the value to the event handler’s
handle timeout hook method. Theinterval value is
used to reschedule the event handler automatically if it does
not equalACETime Value::zero .

The schedule method returns a timer id that uniquely
identifies each event handler’s registration in a timer queue
implementation. The timer id is used by thecancel
method to remove an event handler before it expires. If a
non-NULL act is passed tocancel it is set to theasyn-
chronous completion token(ACT) [9] passed in by the appli-
cation when the timer was originally scheduled. This makes
it possible to delete dynamically allocated ACTs to avoid
memory leaks.

By default, the ACETimer Queue used by the
ACEReactor is implemented as a heap. A heap is a
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“partially-ordered, almost-complete binary tree” that ensures
the average- and worst-case time complexity for inserting or
deleting a concrete event handler isO(lg n). Implementing
timers with heaps is particularly useful for real-time applica-
tions [10] and middleware [11] that require predictable and
low-latency timer operations.

TheACETimer Queue heap consists of tuples that con-
tain anACETime Value , ACEEvent Handler *, and
void *. The ACEEvent Handler * field points to the
concrete event handler scheduled to be run at the time spec-
ified by theACETime Value field. Thevoid * field is
the ACT argument supplied when a concrete event handler
is originally scheduled. When a timer expires, this ACT
is automatically passed to thehandle timeout method
described in Section 3.1.2. EachACETime Value in the
heap is stored inabsolutetime units,e.g., as generated by the
ACEOS gettimeofday API.

Virtual methods are used in theACETimer Queue in-
terface. Thus, applications can extend the default ACE im-
plementation to support alternative data structures, such as
delta-lists [12] or timing wheels [13]. Delta-lists store time
in “relative” units represented as offsets or “deltas” from the
earliestACETime Value at the front of the list. Timing
wheels use a circular buffer that makes it possible to start,
stop, and maintain timers within the range of the wheel in
O(1) time. The ACE framework provides a several alterna-
tive timer queue implementations.

3.2 Platform-Dependent Class Components

The ACEReactor class is the public interface that ap-
plications use to access the ACE Reactor framework. The
ACEReactor interface consists of virtual methods. There-
fore, it can be extended via inheritance. The most common

way to extendACEReactor is not to subclass it, how-
ever. Instead, the Bridge pattern [6] is used to decouple
theACEReactor interface from itsACEReactor Impl
subclass implementations, as shown in Figure 6.

The implementation ofACEReactor Impl subclasses
differ across OS platforms. However, the method names and
overall functionality provided by theACEReactor inter-
face remains the same. This uniformity stems from the mod-
ularity of theACEReactor ’s design, which enhances its
reuse, portability, and maintainability.

Two of the ACEReactor Impl subclasses provided
by the ACE framework includeACESelect Reactor
andACEWFMOReactor , which encapsulate theselect
andWaitForMultipleObjects OS event demultiplex-
ing calls, respectively. TheWaitForMultipleObjects
and select versions of theACEReactor implementa-
tion are outlined below.

3.2.1 The ACESelectReactor Class

Theselect -basedACEReactor contains three arrays of
ACEEvent Handler * , as shown in Figure 6 (1). These
arrays store pointers to registered concrete event handlers
that process various types of events specified by applications.

The ACEHandle Set class provides an efficient C++
wrapper for the underlyingfd set bitmask data type. An
fd set maps the I/O handle name-space onto a compact
bit-vector representation and provides operations for en-
abling, disabling, and testing bits corresponding to I/O han-
dles. Thefd set s are passed to theselect call when
an application calls theACEReactor handle events
method.

TheACEHandle Set class optimizes several common
fd set operations by (1) using “full-word” comparisons to
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minimize unnecessary bit manipulations, (2) caching certain
values to avoid recalculating bit-offsets on each call, and (3)
using an exclusive-or algorithm that is linear in the num-
ber of active handles in anfd set , rather than the number
of potentiallyactive handles, which can substantially reduce
run-time overhead.

3.2.2 The ACE WFMO Reactor Class

TheWaitForMultipleObjects interface is more gen-
eral thanselect , allowing applications to wait for a wider-
range of events, such as synchronization events. Therefore,
the WaitForMultipleObjects -basedACEReactor
requires neither the threeACEEvent Handler * arrays
nor theACEHandle Set class. Instead, a single array of
ACEEvent Handler pointers and an array of handles are
allocated and used internally to store the registered concrete
event handlers.

4 Distributed Logging Service Exam-
ple

The Reactor framework is intended to simplify the develop-
ment of event-driven applications, such as Web servers [14,
15] and CORBA Object Request Brokers [11]. This section
describes the design and implementation of a distributed log-
ging service that illustrates how to use theACEReactor .

4.1 Overview

A distributed logging service keeps records diagnostic infor-
mation sent from one or more applications in a central loca-
tion. The logging service described below allows clients to
send log records to a central logging server, as shown in Fig-
ure 7. The logging service combines the event demultiplex-
ing and dispatching features of theACEReactor together
with the C++ socket wrappers described in [16].

The key components in the logging service are described
below:

Application logging interface: Application processes,
e.g., P1, P2, P3, running on client hosts use the
ACELog Msg C++ class to generate various types of log-
ging records, such asLM ERROR and LM DEBUG. The
ACELog Msg::log method provides aprintf -style in-
terface. Figure 8 outlines several of the priority levels and
data format for records that are exchanged between the client
application, the client logging daemon, and the server log-
ging daemon. When invoked by an application, the logging
interface formats and timestamps the logging records and
writes them to a well-known STREAM pipe [17]. Aclient
logging daemonis responsible for processing these records,
as described next.

Client logging daemon: The client logging daemon runs
on every host machine participating in the distributed log-
ging service. Each client logging daemon receives logging

int spawn (void) {
    if (ACE_OS::fork () == -1)
        ACE_ERROR (LM_ERROR,
        "unable to fork in function spawn");
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Figure 7: Components in the Distributed Logging Service

enum Log_Priority
{

// = TITLE
// These enumerals indicate the relative
// priorities of the logging messages.

// Messages that contain information normally
// used only when debugging a program.
LM_DEBUG,

// Critical conditions, e.g., hard device errors
LM_ERROR,

// ...
};

struct Log_Record
{

enum {
// Maximum number of bytes in logging record.
MAXLOGMSGLEN = 1024

};

// Type of logging record.
Log_Priority type_;
// length of the logging record.
long length_;
// Time logging record generated.
long time_stamp_;
// Id of process that generated the record.
long pid_;
// Logging record data.
char rec_data_[MAXLOGMSGLEN];

};
Figure 8: Logging Record Format
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records from applications on this machine using some form
of localhost-only IPC, such as STREAM pipes or UNIX do-
main sockets.

The client logging daemon continuously receives the log-
ging records from application processes. It then converts the
multi-byte record header fields into network-byte order. Fi-
nally, it forwards the records to theserver logging daemon
using TCP. The server typically runs on a remote host.

Server logging daemon: The server logging daemon con-
tinuously collects, reformats, and outputs the incoming log-
ging records it receives from its client logging daemons. The
logging information displayed by the server indicates (1) the
time the logging record was generated by the client applica-
tion’s logging interface, (2) the host machine the application
was running on, (3) the process identifier of the application,
(4) the priority level of the logging record, (5) the command-
line name (i.e., “argv[0] ”) of the application, and (6) a
string that contains the text of the logging message.

The remainder of this section focuses on the server log-
ging daemon. VariousACEReactor and ACE C++ socket
wrapper mechanisms are illustrated and described in this ex-
ample.

4.2 The Server Logging Daemon

The interface and implementation of the classes used to
construct the server logging daemon are described below.
The logging server runs in a single process, handling log-
ging records from clients. Event demultiplexing is provided
by theACEReactor , which dispatches incoming logging
records received from clients in a round-robin fashion.

Each time the application invokes thehandle events
method on theACEReactor , one logging record is read
from each client whose associated I/O handle became ac-
tive. Logging records are written to the standard output of
the server logging daemon. This output can be redirected to
various devices such as printers, persistent storage reposito-
ries, or network management consoles.

Several C++ class components appear in the logging ser-
vice architecture. The inheritance and template parameteri-
zation relationships between the various components are il-
lustrated in Figure 9 using Booch notation [18]. To enhance
reuse and extensibility, the components in this figure are de-
signed to decouple the following aspects of the server log-
ging daemon architecture, which are described from the bot-
tom to the top of Figure 9:

Reactor framework components: The components in the
Reactor framework encapsulate the lowest-level mechanisms
for performing event demultiplexing and dispatching of con-
crete event handler hook methods. These components are
discussed in Section 3.

Connection-related components: These generic tem-
plates implement the Acceptor-Connector pattern [19],
which provides a reusable connection factory. The
ACEAcceptor implements the Acceptor component in
this pattern – it accepts network connections from remote

clients and createsACESvc Handler s that process data
exchanged with the connected client. These components are
discussed in Section 4.2.1.

Application-specific components: These components im-
plement the application-specific portion of the distributed
logging service. TheLogging Acceptor class supplies
concrete parameterized types to theACEAcceptor , which
creates a connection handling instantiation that is specific for
the logging application. Likewise, theLogging Handler
class is instantiated with concrete types that provide the
application-specific functionality necessary to receive and
process logging records from remote clients. These com-
ponents are discussed in Section 4.2.2.

Using this highly-decoupled OO decomposition enhances
the design and extensibility of the server logging daemon.
Each component is described below.

4.2.1 Connection-related Components

The following classes are used to implement the Acceptor
component in the Acceptor-Connector pattern [19]. The Ac-
ceptor component decouples the (1)passiveconnection es-
tablishment and service initialization from (2) the processing
performed by the two endpoints of a service once they are
connected and initialized.

The ACE Acceptor class: This class provides a generic
template for a family of classes that standardize and auto-
mate the steps necessary to accept network connection re-
quests from clients. Figure 10 illustrates the interface for the
ACEAcceptor class.

The ACEAcceptor template class inherits from
ACEEvent Handler , which allows itshandle input
method to be dispatched with the Reactor framework. In
addition, this template class is parameterized by a concrete
SVCHANDLER, which understands how to perform I/O with
clients, and aPEERACCEPTORclass, which understands
how to accept client connections.

Classes instantiated fromACEAcceptor are capable of
the following behavior:

1. Accepting connection requests sent from remote
clients;

2. Dynamically allocating an object of theSVCHANDLER
subclass;

3. Registering this object with an instance of the
ACEReactor . In turn, theSVCHANDLERclass must
know how to process data exchanged with the client.

The ACEAcceptor class implementation is shown in
Figure 11.3 When one or more connection requests ar-
rive, thehandle input method is dispatched automati-
cally by theReactor . This method behaves as follows.
First, it dynamically creates a newSVCHANDLERobject,

3This is a simplified version of theACEAcceptor . For a complete
implementation see [19].
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Figure 9: Components in the Server Logging Daemon

template <class SVC_HANDLER,
class PEER_ACCEPTOR>

class ACE_Acceptor : public ACE_Event_Handler
{

// = TITLE
// A template class that handles connection
// requests from a remote client.

public:
ACE_Acceptor (ACE_Reactor *r,

const PEER_ACCEPTOR::PEER_ADDR &a);
˜ACE_Acceptor (void);

protected:
virtual ACE_HANDLE get_handle (void) const;
virtual int handle_input (ACE_HANDLE);
virtual int handle_close

(ACE_HANDLE = ACE_INVALID_HANDLE,
ACE_Reactor_Mask = ACE_Event_Handler::READ_MASK);

private:
// Accept connections.
PEER_ACCEPTOR acceptor_;

};
Figure 10: Acceptor Class Interface

// Shorthand names
#define SH SVC_HANDLER
#define PA PEER_ACCEPTOR

template <class SH, class PA>
ACE_Acceptor<SH, PA>::ACE_Acceptor

(ACE_Reactor *reactor,
const PA::PEER_ADDR &addr)

: acceptor_ (addr)
{

// Register to accept connections.
reactor->register_handler

(this,
ACE_Event_Handler::ACCEPT_MASK);

}

template <class SH, class PA> ACE_HANDLE
ACE_Acceptor<SH, PA>::get_handle (void) const
{

// Return the underlying I/O handle
// when called by Reactor during
// registration.
return this->acceptor_.get_handle ();

}

template <class SH, class PA> int
ACE_Acceptor<SH, PA>::handle_close

(ACE_HANDLE, ACE_Reactor_Mask)
{

// Close down the Acceptor and
// release the handle resources.
return this->acceptor_.close ();

}

template <class SH, class PA>
ACE_Acceptor<SH, PA>::˜ACE_Acceptor (void)
{

this->handle_close ();
}

// Template Method that accepts connections
// from client hosts, creates and activates
// a service handler.

template <class SH, class PA> int
ACE_Acceptor<SH, PA>::handle_input

(ACE_HANDLE)
{

// Create a new Svc_Handler.
SH *svc_handler = new SH;

// Accept connection into the handler.
this->acceptor_.accept (svc_handler->peer ());

// Activate the handler.
svc_handler->open (0);

}

Figure 11: Acceptor Class Implementation
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which is responsible for processing data sent and received
from the new client. Next, it accepts an incoming con-
nection into theSVCHANDLER. Finally, it calls theopen
hook on the newSVCHANDLER. As shown below, this hook
method can register the newly createdSVCHANDLERwith
theACEReactor .

The ACE Svc Handler class: This parameterized type
provides a generic template for processing data exchanged
with clients. In the distributed logging service, for exam-
ple, the I/O format involves logging records. However, dif-
ferent formats can be substituted easily for other applica-
tions. The interface of theACESvc Handler class is de-
picted in Figure 12. As with theACEAcceptor class, this

// Receive client message from the remote clients.

template <class PEER_STREAM>
class ACE_Svc_Handler : public ACE_Event_Handler
{
public:

ACE_Svc_Handler (void);

// Must be filled in by subclass
virtual int open (void *) = 0;

PEER_STREAM &peer (void);

// Demultiplexing hooks.
virtual ACE_HANDLE get_handle (void) const;

protected:
// Connection open to the client.
PEER_STREAM peer_stream_;

};

Figure 12: SvcHandler Class Interface

class inherits functionality from theACEEvent Handler
base class. This allows concrete event handlers instantiated
from ACESvc Handler to be created dynamically and
registered with theACEReactor . The handle input
method in theACEAcceptor class automatically performs
this behavior.

Figure 13 illustrates theACESvc Handler class imple-
mentation. Note how the combination of inheritance, dy-

#define PS PEER_STREAM

// Extract the underlying PS (e.g., for
// use by accept()).

template <class PS> PS &
ACE_Svc_Handler<PS>::peer (void)
{

return this->peer_stream_;
}

template <class PS> ACE_HANDLE
ACE_Svc_Handler<PS>::get_handle (void) const
{

// Return the underlying I/O handle
// when called by Reactor during
// registration.
return this->peer_stream_.get_handle ();

}
Figure 13: SvcHandler Class Implementation

namic binding, and parameterized types decouples (1) the
general-purpose portions of the framework,e.g., connection
establishment from (2) the application-specific functionality,
e.g., receiving logging records.

Concrete event handlers are typically closed down when a
client process exits or when a serious transmission error oc-
curs. When theACEReactor is instructed to remove an
ACESvc Handler from its internal tables,e.g., when the
service handler’shandle input method return�1 upon
receiving EOF from a peer service handler, it automatically
invokes the service handler’shandle close method. By
default, this method deallocates the service handler’s mem-
ory, which was originally allocated by thehandle input
method in theACEAcceptor class.

4.2.2 Application-specific Services

The following classes implement the application-specific
portion of a service, which is the logging server daemon in
this example.

The Logging Acceptor class: To implement the server
daemon portion of the distributed logging application the
Logging Acceptor class is instantiated from the generic
ACEAcceptor template, as follows:

typedef ACE_Acceptor <Logging_Handler,
ACE_SOCK_Acceptor>

Logging_Acceptor;

TheSVCHANDLERtemplate parameter is instantiated with
the Logging Handler class described below. Likewise,
thePEERACCEPTORtemplate parameter is replaced by the
ACESOCKAcceptor class. TheACESOCK* instanti-
ated types are part of a C++ socket wrapper [16] that encap-
sulates the socket interface and allows data to be transmitted
reliably between peer processes.

By using parameterized types, the classes that perform
IPC can be any network programming interface that con-
forms to the API used by theACEAcceptor . For ex-
ample, depending on certain properties of the underlying
OS platform, such as whether it is a BSD or System V
variant of UNIX, the logging application may instantiate
the ACESvc Handler class to use eitherSOCKSAP or
TLI SAP, which is the ACE C++ wrapper for the System V
Transport Layer Interface (TLI), as illustrated below:

// Logging application.

#if defined (USE_SOCKETS)
typedef ACE_SOCK_Stream PEER_STREAM;
#elif defined (USE_TLI)
typedef ACE_TLI_Stream PEER_STREAM;
#endif /* USE_SOCKETS */

class Logging_Handler
: public ACE_Svc_Handler<PEER_STREAM>

{
// ...

};

The flexibility offered by template-based extensibility is use-
ful when developing applications that must run portably
across multiple OS platforms.
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The Logging Handler class: This class is created by in-
stantiating theACESvc Handler class as follows:

class Logging_Handler :
public ACE_Svc_Handler<ACE_SOCK_Stream>

{
public:

// Initialization hook called by
// the <ACE_Acceptor>.
virtual int open (void *) {

ACE_SOCK_Stream::PEER_ADDR addr;

// Cache remove host name.
peer ().get_remote_addr (addr);
ACE_OS::strcpy (host_name_,

addr.get_host_name ());

// Register ourselves with the Reactor so it
// will dispatch us automatically when input
// data arrive from clients.
ACE_Reactor::instance ()->register_handler

(this, ACE_Event_Handler::READ_MASK);
}

// Demultiplexing hook called by
// the <ACE_Reactor>.
virtual int handle_input (ACE_HANDLE);

private:
char host_name_[MAXHOSTNAME];

};

The open hook caches the host address of the associated
client when an object of this class is dynamically allocated.
As illustrated by the “console” window in Figure 7, the name
of this host is printed along with the logging records received
from a client logging daemon.

The PEERSTREAMparameter is instantiated with the
ACESOCKStream class. Thehandle input method is
called automatically by theACEReactor when input ar-
rives on the underlyingACESOCKStream . This method
can be implemented as follows:

// Hook method for handling the reception of
// remote logging transmissions from clients.

int
Logging_Handler::handle_input (ACE_HANDLE)
{

// Retrieve exactly 4 bytes for the length.
ACE_INT32 n =

peer_stream_.recv_n (&len, sizeof len);

if (n != sizeof len)
// Trigger handle_close().
return -1;

else {
ACE_Log_Record lr;

size_t len = ntohl (len);
n = this->peer_stream_.recv_n (&lr, len));

if (n != len)
ACE_ERROR_RETURN ((LM_ERROR,

"%p at host %s\n",
"client logger",
this->host_name_),

-1);
lr.decode ();

if (lr.len == n)
lr.print (this->host_name_, 0, stderr);

else
ACE_ERROR_RETURN ((LM_DEBUG,

"lr.len = %d, n = %d\n",

lr.len,
n),
-1);

return 0; // Keep handler registered.
}

}

This method performs tworecv s to simulate a message-
oriented service via the underlying TCP connection. This be-
havior is necessary since TCP is bytestream protocol, rather
than record protocol.4 The firstrecv reads the length of the
following logging record, which is stored as a fixed-size in-
teger. The secondrecv then reads this many bytes to obtain
the actual record. Naturally, the client sending this message
must follow the same message framing protocol.

4.2.3 The main() Driver Program

The following event-loop drives theACEReactor -based
logging server:

int
main (int argc, char *argv[])
{

// 1. Set the program name with the logger.
ACE_LOG_MSG->open (argv[0]);

// Ensure correct usage.
if (argc != 2)

ACE_ERROR_RETURN ((LM_ERROR,
"usage: %n port-number"),

-1);

// 2. Create an addr and an acceptor.
ACE_INET_Addr port (ACE_OS::atoi (argv[1]));
Logging_Acceptor acceptor

(ACE_Reactor::instance (), port);

// 3. Loop forever, handling client requests.
for (;;)

ACE_Reactor::instance ()->handle_events ();

/* NOTREACHED */
return 0;

}

In Step 1, anACELog Msg is created to direct any log-
ging records generated by the server to its own standard error
stream. The example code in Figures 11 and 13 illustrates
how the server uses the application logging interface to log
its own diagnostic messages locally. Since this local config-
uration does not use the server logging daemon there is no
danger of causing an infinitely recursive logging loop.

In step 2, the server creates aLogging Acceptor ,
whose constructor registers itself with theACEReactor
singleton. In step 3, the server enters an endless loop that
blocks in thehandle events method until events are re-
ceived from client logging daemons.

Figure 14 illustrates the state of the logging server daemon
after two clients have been dispatched by theACEReactor
and become participants in the distributed logging service.
As shown in the figure, aLogging Handler has been dy-
namically instantiated and registered for each client.

4Note that this implementation is not entirely robust in its handling of
“short reads.”
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Figure 14: Run-time Configuration of the Server Logging
Daemon

When events arrive at the server, theACEReactor au-
tomatically dispatches thehandle input method of the
Logging Acceptor and Logging Handler . For in-
stance, when connection requests arrive from client logging
daemons, theACEReactor invokes thehandle input
method of theLogging Acceptor . This method accepts
the new connection and creates aLogging Handler that
reads all data sent by the client and displays it on the standard
output stream. Likewise, when logging records or shutdown
messages arrive from connected client logging daemons, the
ACEReactor invokes thehandle input method of the
correspondingLogging Handler .

Figure 7 portrays the entire system during execution. Log-
ging records are generated from the client application’slog-
ging interfacevia theACELog Msg::log method. This
method forwards the logging records to theclient logging
daemonrunning on the same host as the application. The
client logging daemon then transmits the record across the
network to theserver logging daemon, where it is displayed
on the server’s logging console.

4.3 Evaluating Alternative Logger Implemen-
tations

The distributed logging service described in Section 4.2 was
originally programmed in C and used in a commercial on-
line transaction processing product. This section compares
the C++ and C versions of the distributed logging service in
terms of several software quality factors such as modularity,
extensibility, reusability, and portability.

4.3.1 The non-OO C-based Logging Service

The original logging service was developed for a BSD
UNIX-based commercial on-line transaction processing
product. It was written in C and used BSD sockets and
select directly. Later, it was ported to other operating sys-
tems, such as System V UNIX and Win32.

The original C implementation was hard to modify, ex-
tend, and port, due to the following problems:

Tightly-coupled functionality: In the original C logging
service, the event demultiplexing, service dispatching, and
event processing operations were tightly-coupled with the
code that accepted client connection requests and received
client logging records.

Excessive use of global variables: Several global data
structures were used to maintain the relationship between (1)
per-client context information, such as the client hostname
and current processing status, and (2) I/O handles that iden-
tify the appropriate context record. Therefore, any enhance-
ments or modifications to the program directly affected the
existing source code.

4.3.2 The OO C++-based Logging Service

The OOACEReactor -based version of the logging ser-
vice described in this paper uses data abstraction, inheri-
tance, dynamic binding, and templates to provide the fol-
lowing benefits:

Avoid global variables: The ACEReactor -based log-
ging service contains no global variables. Instead,
the ACEReactor singleton was used to register each
Logging Handler , which encapsulates the client address
and the underlying I/O handle used to communicate with
clients.

Decouple policies and mechanisms: Applicationpolicies
that process incoming connections and data are decoupled
from the lower-levelmechanismsthat perform demultiplex-
ing and dispatching. Decoupling policies and mechanisms
has the following advantages:

� Reusability: The ACE Reactor framework provides
reusable components that perform all the lower-level event
demultiplexing and service dispatching. Thus, only a small
amount of application-specific code is required to implement
the server logging daemon, as shown in Section 4. This code
is primarily concerned with application processing activities,
such as accepting new connections and receiving client log-
ging records.

� Extensibility: The separation of policies and mech-
anisms in theACEReactor ’s architecture enhances ex-
tensibility both above and below its public interface. For
example, it is straightforward to extend the server logging
daemon’s functionality,e.g., to add an “authenticated log-
ging” feature. Such extensions simply inherit from the
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ACEEvent Handler base class and selectively imple-
ment the necessary virtual method(s). Likewise, by instan-
tiating theACEAcceptor andACESvc Handler tem-
plates, subsequent applications may be produced without re-
developing existing infrastructure. In contrast, modifying
the original non-OO C version in this manner required di-
rect changes to the existing code.

� Portability: It is possible to modify the underly-
ing event demultiplexing mechanism of theACEReactor
without affecting existing application code. For example,
porting theACEReactor -based distributed logging ser-
vice from a BSD platform to a System V or win32 platform
requires no visible changes to application code. In contrast,
porting the original C version of the distributed logging ser-
vice fromselect to WaitForMultipleObjects was
tedious and error-prone. For example, several subtle errors
were introduced into the source code that did not manifest
themselves until run-time.

� Efficiency: In certain types of applications, such
as real-time embedded control systems, data is avail-
able immediately on one or more handles. There-
fore, polling these handles via non-blocking I/O may be
more efficient than using OS event demultiplexers like
select orWaitForMultipleObjects . Extending the
ACEReactor to support this alternative demultiplexing
implementation did not require modifications to its public
interface.

One consequence of the use of OO in the Reactor frame-
work is that it uses dynamic binding extensively. [16] dis-
cusses why avoiding dynamic binding is often advisable
when designing “thin” C++ wrappers for sockets. On some
compilers, the overhead resulting from indirect virtual table
dispatching may be fairly high. In such cases, developers
may need to refrain from using dynamic binding extensively.

In general, however, the significant increase in clarity, ex-
tensibility, and modularity provided by theACEReactor
framework more than compensates for the slight decrease
in efficiency. Furthermore, theACEReactor is typi-
cally used to develop distributed applications. The major
sources of overhead in distributed systems result from activ-
ities like caching, latency, network/host interface hardware,
presentation-level formatting, memory-to-memory copying,
and process management [20]. Therefore, the additional in-
direction caused by dynamic binding is typically insignifi-
cant by comparison [21]. In addition, good C++ compilers
can optimize virtual method overhead away completely via
the use of “adjustor thunks” [22].

5 Design Rules for Using the Reactor
Effectively

The ACEReactor is a powerful framework for demulti-
plexing events and dispatching event handlers. Like other
frameworks, however, learning to use theACEReactor
takes time and effort. One way to shorten the learning

curve is to understand thedesign rulesnecessary to use the
ACEReactor effectively. The design rules described be-
low are based on extensive experience gained by helping
ACE users program the Reactor framework correctly.

5.1 Understand Concrete Event Handler Re-
turn Value Semantics

Context: The return values of the varioushandle *
hook methods defined by concrete event handlers cause the
ACEReactor to behave in different ways. The intent of
using return values to trigger different behaviors is to reduce
the complexity of theACEReactor ’s API. However, the
return values are often a source of surprise to programmers.
Therefore, it is important to understand the effects of the val-
ues returned from thehandle * methods, which fall into
the following three cases:

1. Zero: When a handle * method returns zero
(0) this informs theACEReactor that the event handler
wishes to continue being processed as before,i.e., it should
remain in a table in theACEReactor ’s implementation.
Thus, theACEReactor will continue to include the handle
of this event handler next time it invokes its event demulti-
plexer viahandle events . This is the “normal” behav-
ior of event handlers whose lifetime extends beyond a single
handle * method dispatch.

2. Greater than zero: When ahandle * method re-
turns greater than zero (> 0) this informs theACEReactor
that the event handler wishes to be dispatched againbefore
theACEReactor blocks on its event demultiplexer. This
feature is useful for cooperative event handlers to enhance
overall system “fairness.” In particular, it allows one event
handler to allow other event handlers to be dispatched before
it retains control again.

3. Less than zero: When a handle * method re-
turns less than zero (< 0) this informs theACEReactor
that the event handler wants to be closed and removed
from the ACEReactor ’s internal tables. To accom-
plish this, theACEReactor invokes the event handler’s
handle close cleanup method. This method can perform
user-defined termination activities, such as deleting dynamic
memory allocated by the object or closing log files. When
thehandle close method returns, theACEReactor re-
moves the associated concrete event handler from its internal
tables.

To minimize problems withhandle * return values, ob-
serve the following design rules when implementing con-
crete event handlers:

Design rule 0: Do not manually delete event handler ob-
jects or call handle close explicitly – Instead, ensure
the ACEReactor invokes thehandle close cleanup
method automatically. Thus, applications must follow
the proper protocol,i.e., either by (1) returning a nega-
tive value from ahandle * hook method or (2) calling
remove handler .
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This design rule ensures that anACEReactor can
cleanup its internal tables properly. If this rule is not obeyed,
the ACEReactor will incur unpredictable memory man-
agement problems when it later tries to remove externally
deleted concrete event handlers. Subsequent design rules
elaborate on how to ensure that theACEReactor invokes
thehandle close cleanup method.

Design rule 1: Return expressions inhandle * methods
of classes inheriting fromACEEvent Handler should be
constant. This design rule makes it easier to statically check
whether thehandle * methods are returning appropriate
values. If this rule must be violated, developers must precede
the return statement with a comment that explains why a
variable is used rather than a constant.

Design rule 2: Return statements inhandle * methods
of classes inheriting fromACEEvent Handler that do
not return 0 must be preceded by a comment stating what
the return value signifies. This design rule ensures that all
non-0 return values are explicitly intended by developers.

5.2 Understand the handleclose() Cleanup
Hook Semantics

Context: The handle close cleanup hook method
must be called by theACEReactor either (1) implic-
itly, i.e., when a handle * method returns a negative
value like �1 or (2) explicitly, i.e., if an application
calls theremove handler method to remove a concrete
event handler. In particular, theACEReactor will not
call handle close automatically when an I/O handle is
closed, either by the local application or a remote applica-
tion. Thus, applications must determine when an I/O handle
has closed down and must take the appropriate steps so the
ACEReactor will trigger the handle close cleanup
method.

Example: The followingLogging Handler code frag-
ment from Section 4.2.2 illustrates how to trigger the cleanup
hook incorrectly:

// Hook method for handling the reception of
// remote logging transmissions from clients.

int
Logging_Handler::handle_input (ACE_HANDLE)
{

return peer_stream_.recv (&len, sizeof len);
}

Note that this method will only trigger thehandle close
hook whenrecv fails, i.e., returns�1. However, it will not
work correctly whenrecv returns 0 or> 0. To minimize
problems withhandle close cleanup methods, therefore,
observe the following design rules when implementing con-
crete event handlers:

Design rule 3: Return a negative value from ahandle *
method when you want to trigger the corresponding
handle close cleanup method on the concrete event han-
dler. The following revisedLogging Handler code frag-
ment illustrates how to trigger the cleanup hook correctly:

// Hook method for handling the reception of
// remote logging transmissions from clients.

int
Logging_Handler::handle_input (ACE_HANDLE)
{

ssize_t n =
peer_stream_.recv (&len, sizeof len);

if (n == 0)
// Trigger handle_close().
return -1;

// ...

// Keep handler registered for ‘‘normal’’ case.
return 0;

}

When thehandle input method receives a 0 fromrecv ,
it returns�1. This value triggers theACEReactor to call
thehandle close cleanup hook.

The value�1 is typically used to trigger the cleanup hook
since it’s a common error code with theACEOSwrappers
for native OS APIs. However, any negative value from a
handle * method will triggerhandle close .

Design rule 4: Confine allEvent Handler cleanup ac-
tivities to thehandle close cleanup method. In gen-
eral, it is easier to consolidate all the cleanup activities in
the handle close method, rather than dispersing them
throughout thehandle * methods or other methods in an
event handler. This design rule is particularly important to
follow when dealing with dynamically allocated event han-
dlers that must be cleaned up withdelete this (see Rule
9).

5.3 Remember that ACETime Value Argu-
ments are Relative

Context: It’s important to re-
member that bothACETime Value arguments passed to
the schedule timer method of theACEReactor are
specifiedrelativeto the current time.

Example: The following code schedules an object to print
the name of the executable program,i.e., argv[0] , every
interval number of seconds, startingdelay seconds in
the future:

class Hello_World : public ACE_Event_Handler
{
public:

virtual int handle_timeout
(const ACE_Time_Value &tv,

const void *act)
{

ACE_DEBUG ((LM_DEBUG,
"%[s] %d, %d\n",
act,
tv.sec (),
tv.usec ()));

return 0;
}

};

int main (int argc, char *argv[])
{

if (argc != 3)
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ACE_ERROR_RETURN ((LM_ERROR,
"usage: %s delay interval\n",
argv[0]), -1);

Hello_World handler; // timer object.

ACE_Time_Value delay = ACE_OS::atoi (argv[1]);
ACE_Time_Value interval = ACE_OS::atoi (argv[2]);

// Schedule the timer.
ACE_Reactor::instance ()->schedule_timer

(&handler,
(const void *) argv[0],
delay,
interval);

// Run the event loop.
for (;;)

ACE_Reactor::instance ()->handle_events ();

/* NOTREACHED */
}

A common mistake is to pass anabsolutetime value to
schedule timer . For instance, consider a different ex-
ample:

ACE_Time_Value delay = ACE_OS::atoi (argv[1]);
delay += ACE_OS::gettimeofday ();

// Callback every following 10 seconds.
ACE_Time_Value interval = delay + 10;

ACE_Reactor::instance ()->schedule_timer
(&handler,

0,
delay,
interval);

However, this timer will not expire for along time in the
future since it adds the current time of day to thedelay and
interval requests by the user.

The following is a design rule to follow when implement-
ing concrete event handlers to minimize problems with ab-
soluteACETime Value s:

Design rule 5: Do not use absolute times as the third or
fourth arguments toACEReactor::schedule timer .
In general, these arguments should be less than an extremely
long delay, which is significantly less than the current time.

5.4 Track ACE Event Handler Lifetimes
Carefully

Various problems arise from failing to track the lifetimes
of ACEEvent Handler s that are registered with an
ACEReactor . These problems are hard to track down
without the use of a memory error detection tool like Pu-
rify [23], which catches some, but not all, of the following
lifetime-related problems:

5.4.1 Use Non-dynamically Allocated Event Handlers
Sparingly

Context: Certain types of applications, such as embed-
ded real-time systems, try to minimize the use of dy-
namic memory,e.g., to make system performance more

predictable. It’s important to be very careful to use non-
dynamically allocated concrete event handlers correctly with
anACEReactor .

Example: Consider the following concrete event handler
definition:

class My_Event_Handler : public ACE_Event_Handler
{
public:

My_Event_Handler (const char *str = "hello")
: str_ (ACE_OS::strnew (str)) {}

virtual int handle_close
(ACE_HANDLE = ACE_INVALID_HANDLE,

ACE_Reactor_Mask = ACE_Event_Handler::READ_MASK)
{

// Commit suicide.
delete this;

}

˜My_Event_Handler (void) {
delete [] this->str_;

}

// ...
private:

char *str_;
};

This class deletes itself when it’s removed from the
ACEReactor via its handle close cleanup method.
Although this may look somewhat unconventional, it is a per-
fectly valid C++ idiom. However, it only works as long as
the object being deleted was allocated dynamically.

In contrast, if the object being deleted wasnot allocated
dynamically, the global dynamic memory heap will be cor-
rupted. The reason is that thedelete operator will interpret
this as a valid address in the heap. This will cause subtle
memory management problems when thedelete operator
tries to insert the non-heap memory into its internal freelist.

The following example illustrates a common use-case that
can corrupt the heap:

int main (void)
{

// Non-dynamically allocated.
My_Event_Handler my_event_handler;

ACE_Reactor::instance ()->register_handler
(&my_event_handler,

ACE_Event_Handler::READ_MASK);

// ...

// Run event-loop.
while (/* ...event loop not finished... */)

ACE_Reactor::instance ()->handle_events ();

// The <handle_close> method deletes an
// object that wasn’t allocated dynamically...
ACE_Reactor::instance ()->remove_handler

(&my_event_handler,
ACE_Event_Handler::READ_MASK);

return 0;
}

The problem with the code above is that the
ACEReactor will invoke thehandle close method of
My Event Handler when remove handler is called.
Unfortunately, thehandle close method will delete
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this on themy event handler object, which was not
allocated dynamically.

One way to guard against this problem is to place the de-
structor in the private section of theMy Event Handler
class,i.e.:

class My_Event_Handler : public ACE_Event_Handler
{
public:

My_Event_Handler (const char *str);
// ...

private:
// Place destructor into the private section
// to ensure dynamic allocation.
˜My_Event_Handler (void);
// ...

};

In this class, theMy Event Handler destructor is placed
in the private access control section of the class. This
C++ idiom ensures that all instances of this classmustbe al-
located dynamically. If an instance is accidentally defined as
astatic or auto , it will be flagged as an error at compile-
time.

The following is a design rule to follow when implement-
ing concrete event handlers to minimize problems with con-
crete event handler lifetimes:

Design rule 6: Do not delete event handlers that were not
allocated dynamically. Any handle close method that
containsdelete this and whose class does not have a
private destructor may be in violation of this design rule.
In the absence of a convention checker that can identify this
case statically, thedelete this should be preceded im-
mediately by a comment explaining why this idiom is used.

5.4.2 Remove Concrete Event Handler Appropriately

Context: As described above, determining how to remove
concrete event handlers from anACEReactor can be
tricky. The following examples illustrate some other com-
mon problems.

Example: The following program illustrates another com-
mon problem related to the lifetimes of concrete event han-
dlers:

ACE_Reactor reactor;

int main (void)
{

My_Event_Handler my_event_handler;

ACE_Reactor::instance ()->register_handler
(&my_event_handler,

ACE_Event_Handler::READ_MASK);

while (/* ...event loop not finished... */)
ACE_Reactor::instance ()->handle_events ();

// The destructor of the ACE_Reactor singleton
// will be called when the process exits. It
// removes all registered event handlers.
return 0;

}

The lifetime ofmy event handler is defined by the life-
time of the main function. In contrast, the lifetime of
the ACEReactor singleton is defined by the lifetime of
the process. Thus, when the process exits, the destruc-
tor for the reactor will be called.5 The destructor for
theACEReactor removes all event handlers that are still
registered by calling theirhandle close method. If
my event handler is still registered with thereactor ,
however, itshandle close method will be calledafter the
object has gone out of scope and been destroyed.

The following are three more design rules to follow when
implementing concrete event handlers to minimize problems
with concrete event handler lifetimes:

Design rule 7: Always allocate concrete event handlers
dynamically from the heap. This is a relatively straightfor-
ward solution to many of problems related to the lifetime of
concrete event handlers. If it is not possible to follow this
rule, a comment must be provided when the concrete event
handler is registered with theACEReactor explaining
why dynamic allocation is not used. This comment should
appear immediately before theregister handler state-
ment that registers the statically allocated concrete event
handler with theACEReactor .

Design rule 8: RemoveACEEvent Handler s from
their associatedACEReactor before exiting the scope
where they are “live”. This rule should be used in cases
where Rule 7 is not followed.

Design rule 9: Allow the delete this idiom in the
handle close method only, i.e., do not allowdelete
this in the otherhandle * methods or in other meth-
ods in the event handler. This rule makes it easier to
check whether there are potential problems with deleting
non-dynamically allocated memory. It also ensures that
the ACEReactor doesn’t try to access a pointer to a
deleted event handler. Naturally, components unrelated to
theACEReactor may have different rules governing self-
deletion.

Design rule 10: Only delete this when the final reg-
istered event has been removed from anACEReactor for
a concrete event handler. This rule avoids “dangling point-
ers” that can otherwise occur by prematurely deleting a con-
crete event handler that registered with anACEReactor
for multiple events.

For instance, themy event handler could be regis-
tered both forREAD andWRITE events, as follows:

ACE_Reactor::instance ()->register_handler
(&my_event_handler,

ACE_Event_Handler::READ_MASK
| ACE_Event_Handler::WRITE_MASK);

In this case, when thehandle input method returns
�1 the ACEReactor will invoke the handle close
cleanup hook method. This method mustnot delete

5This is ensured by theACEObject Manager , which destroys all
singletons in ACE before a process exits.
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this until theWRITEMASKis also removed for that con-
crete event handler,e.g., by having it return a negative value
or explicitly removing it via

ACE_Reactor::instance ()->remove_handler
(&my_event_handler,

ACE_Event_Handler::WRITE_MASK);

The following method illustrates one way to keep track of
this information:

class My_Event_Handler : public ACE_Event_Handler
{
public:

My_Event_Handler (void)
{

// Keep track of which bits are enabled.
ACE_SET_BITS (this->mask_,

ACE_Event_Handler::READ_MASK
| ACE_Event_Handler::WRITE_MASK);

// Register ourselves with the Reactor for
// both READ and WRITE events.
ACE_Reactor::instance ()->register_handler

(this, this->mask_);
}

virtual int handle_close (ACE_HANDLE h,
ACE_Reactor_Mask mask)

{
if (mask == ACE_Event_Handler::READ_MASK) {

ACE_CLR_BITS (this->mask_,
ACE_Event_Handler::READ_MASK);

// Perform READ_MASK cleanup logic.
}
else if (mask == ACE_Event_Handler::WRITE_MASK) {

ACE_CLR_BITS (this->mask_,
ACE_Event_Handler::WRITE_MASK);

// Perform WRITE_MASK cleanup logic.
}

// Only delete ourselves if we’ve been closed
// down for both READ and WRITE events.
if (this->mask_ == 0)

delete this;
}

// ... handle_input() and handle_output() methods.

private:
ACE_Reactor_Mask mask_;
// Keep track of when to delete this.

The solution above maintains anACEReactor Mask that
keeps track of when all events a concrete event handler is
registered for have been removed from anACEReactor .

5.5 Beware ofWRITE MASK Semantics

Context: The WRITEMASKcan be used to instruct the
ACEReactor to callback to anevent handler when-
ever an application canwrite to an I/O handle without
blocking. The following code illustrates how to register an
event handler using theWRITEMASK:

ACE_Reactor::instance ()->mask_ops
(event_handler,

ACE_Event_Handler::WRITE_MASK,
ACE_Reactor::ADD_MASK);

It is always ok to write to a handleunlessthe connec-
tion is flow controlled. Thus, thisACEReactor will

keep calling back thehandle output method of the
event handler until (1) the connection flow controls
or (2) the mask ops method is instructed to clear the
WRITEMASK.

Example: A common programming mistake is to for-
get to clear theWRITEMASKonce there’s no longer any
more data to write to the connection. This omission
will cause theACEReactor to continuously invoke the
handle output method of the concrete event handler
that’s registered with theWRITEMASK. Therefore, the fol-
lowing design rule should be followed to avoid this problem:

Design rule 11: Clear the WRITEMASKwhen you no
longer want the concrete event handler’shandle output
method to get called back.

The following code illustrates how to ensure the
handle output method is no longer called back:

ACE_Reactor::instance ()->mask_ops
(event_handler,

ACE_Event_Handler::WRITE_MASK,
ACE_Reactor::CLR_MASK);

TheACEReactor defines a short-hand method for accom-
plishing the same thing:

ACE_Reactor::instance ()->cancel_wakeup
(event_handler,

ACE_Event_Handler::WRITE_MASK);

These methods are typically called when there are no more
output messages pending on a concrete event handler.

To facilitate automated checking of this rule, programmers
must insert comments into theirhandle output methods.
These comments will indicate which return paths arenot
intended to clear theWRITEMASK, i.e., the event handler
wants to continue to be called back when it’s “ok to write.”
Likewise, programmers should also comment the path(s)
where theWRITEMASKis removed. If there are no paths in
thehandle output method that clear theWRITEMASK,
this indicates a potential violation of this design rules.

For example, the followinghandle output method il-
lustrates a potential application of this design rule:

int
My_Event_Handler::handle_output (ACE_HANDLE)
{

if (/* output queue is now empty */) {
/* Removing WRITE_MASK */
ACE_Reactor::instance ()->cancel_wakeup

(event_handler,
ACE_Event_Handler::WRITE_MASK);

return 0;
} else {

// ... continue to transmit messages
// from the output queue.
/* Not removing WRITE_MASK */
return 0;

}
}

If there were no comments indicating theWRITEMASKis
removed this would be a violation of the design rule.
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5.6 Register Concrete Event Handlers Appro-
priately

Context: There are two ways to register a concrete event
handler with anACEReactor for I/O operations:

� Explicitly pass the handle: This approach uses the
following ACEReactor method:

int register_handler
(ACE_HANDLE io_handle,

ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);

and passes theACEHANDLEof the I/O device explicitly,
i.e.:

void register_socket (ACE_HANDLE socket,
ACE_Event_Handler *handler)

{
ACE_Reactor::instance ()->register_handler
(socket,

handler,
ACE_Event_Handler::READ_MASK);

// ...
}

Note that thisregister handler method allows the
same concrete event handler to be registered with multi-
ple ACEHANDLEs. This feature of the Reactor framework
makes it possible to minimize the amount of state required
to handle many clients that are connected simultaneously to
the same event handler.

� Implicitly pass the handle: This
approach uses the otherregister handler method on
theACEReactor :

int register_handler
(ACE_Event_Handler *event_handler,

ACE_Reactor_Mask mask);

In this case, a “double-dispatch” [6] is performed by the
ACEReactor to obtain the underlyingACEHANDLEfrom
the concrete event handler via itsget handle method.
This method is defined with the following signature in the
ACEEvent Handler base class:

virtual ACE_HANDLE get_handle (void) const;

Example: When using implicit registration, a common
mistake is to omit theconst on theget handle method
when deriving fromACEEvent Handler . Omitting the
const prevents the compiler from properly overriding the
get handle method in the subclass. Instead, it willhide
the method in the subclass, thereby generating code that will
call thebase classget handle method, which returns�1

by default. Therefore, it is important to obey the following
design rule:

Design rule 12: Make sure the signature of the
get handle method is consistent with the one in the
ACEEvent Handler base class. If you don’t follow
this rule, and you “implicitly” pass theACEHANDLE
to the ACEReactor , the defaultget handle in the
ACEEvent Handler base class will return�1, which is
erroneous.

5.7 Remove Closed Handles/Handlers from
the Reactor by Centralizing Cleanup
Tasks

Context: When a connection is closed down, the handle
is no longer valid for I/O. In this case,select will con-
tinue to report that the handle is “ready for reading” so that
the handle can be closed, which is typically done by calling
ACEOS::close or ACEOS::closesocket in a con-
crete event handler’shandle close cleanup method.

Example: A common mistake when writing applications
with the Reactor is to fail to remove defunct handles and
their associated event handlers from theACEReactor . If
you fail to do this, however, theACEReactor will con-
tinually callback thehandle input method on the event
handler until the handle and its handler are removed from the
ACEReactor . The following design rule helps to avoid
this problem:

Design rule 13: Return a negative value from the
handle * methods when a connection closes down (or
when an error occurs on the connection) and centralize
cleanup activities in thehandle close method.

Code that follows this design rule is usually structured as
follows:

int handle_input (ACE_HANDLE handle)
{

// ...
ssize_t result =

ACE_OS::read (handle, buf, bufsize);

if (result <= 0)
// Connection has closed down or an
// error has occurred.
return -1;

else
// ...

When the�1 is returned, theACEReactor will call
your handle close cleanup method. To avoid re-
source leaks, make sure this method gives the event han-
dler a chance to delete itself and close its handle,e.g.,
ACEOS::close (handle) . Oncehandle close re-
turns, theACEReactor will automatically remove the
handle /handler tuple from its internal table if the handle
is no longer registered for any types of events.

5.8 Use theDONT CALL Flag to Avoid Re-
cursive handle close() Callbacks

Context: Earlier rules covered how an event handler’s
handle close hook is automatically invoked by an
ACEReactor when the handler is removed eitherexplic-
itly, e.g., when theremove handler method is called,
or implicitly, e.g., by returning a negative value from a
handle * method. Applications must be careful, however,
if they call remove handler within thehandle close
cleanup method since this can trigger infinite recursion.

18



Example: The following handle close method will
infinitely recurse since theremove handler method will
reinvokehandle close again:

int
My_Event_Handler::handle_close

(ACE_HANDLE,
ACE_Reactor_Mask)

{
// ...

ACE_Reactor::instance ()->remove_handler
(this->get_handle (),

// Remove all the events for which we’re
// registered.
ACE_Event_Handler::RWE_MASK);

// ...
}

The following design rule prevents infinite recursion from
occurring.

Design rule 14: Always pass the DONTCALL flag to
remove handler when calling it in ahandle close
method. This rule ensures that theACEReactor will not
invoke thehandle close method recursively. The fol-
lowing code illustrates how to do this:

int
My_Event_Handler::handle_close

(ACE_HANDLE,
ACE_Reactor_Mask)

{
// ...

ACE_Reactor::instance ()->remove_handler
(this->get_handle (),

// Remove all the events for which we’re
// registered. We must pass the DONT_CALL
// flag here to avoid infinite recursion.
ACE_Event_Handler::RWE_MASK |
ACE_Event_Handler::DONT_CALL);

// ...
}

Incidentally,remove handler is typically called from
within handle close in situations where (1) a concrete
event handler is registered for multiple events and (2) the
first time handle close is called should trigger a com-
plete shutdown of the event handler. Thus, it’s essential
thathandle close also remove the other events this event
handler is registered for with theACEReactor .

5.9 Don’t Overload the ACE Event Handler
handle *() methods

Context: It is generally not a good idea for subclasses to
overload virtual methods inherited from a base class. In C++,
this overloading “hides” the inherited function in subclass,
i.e.,

class My_Event_Handler :
public ACE_Event_Handler

{
// Overload the base classes’ method:
// virtual int handle_input (ACE_HANDLE)
virtual int handle_input (void);

}

In this example, theMy Event Handler class over-
loads thehandle input method, which is defined in the
ACEEvent Handler base class. However, this function
has a side-effect of “hiding” the method in the base class,
which is usually undesirable.

Example: Although overloading of base class meth-
ods is problematic with C++ applications in general,
it is particularly tricky for classes that subclass from
ACEEvent Handler . In particular, application develop-
ers may not realize that thehandle input method on an
My Event Handler object will not be dispatched when
input events occur on theACEReactor that this object is
registered with because the signatures do not match exactly.
To avoid this problem altogether, simply abide by the follow-
ing design rule:

Design rule 15: Do not overload anyhandle * methods
in ACEEvent Handler subclasses. Naturally, it is fine to
override these methods as necessary in order to customize
the behavior of the desiredhandle * hooks. Many C++
compilers warn about this behavior, but it’s generally good
to avoid it whenever possible to avoid confusion.

5.10 Beware of Deadlock in Multi-threaded
Reactor Applications

Context: Although Reactor’s are generally used to imple-
ment single-threaded concurrent applications, they also can
be used to in multi-threaded applications. In this context, it’s
important to beware of deadlock between multiple threads
that are sharing a commonACEReactor .

Example: When theACEReactor dispatches a call-
back to an event handler’shandle * method it holds
an ACEToken for the duration of the callback. This
ACEToken is defined as arecursive mutex[24], which
keeps track of the identify of the thread that holds the mu-
tex in order to avoid “self-deadlock.” If the dispatched
handle * method directly or indirectly calls back into
the ACEReactor within the same thread of control, the
ACEToken ’s acquire method detects this automatically
and simply increases its count of the lock recursion nesting
depth, rather than deadlocking the thread.

Even with recursive mutexes, however, it is still possi-
ble to incur deadlock if (1) the originalhandle * callback
method makes a blocking call to a method in another thread
and (2) that method in the second thread directly or indirectly
calls into the sameACEReactor . In this case, deadlock
occurs since theACEReactor ’s ACEToken does not re-
alize that the second thread is calling on behalf of the first
thread where thehandle * hook method was originally
dispatched.

To avoid deadlock when using theACEReactor in a
multi-threaded application, try to apply the following design
rule:

Design rule 16: Do not make blocking calls to other
threads inhandle * methods if these threads will directly
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or indirectly call back into the sameACEReactor . It
may be necessary to use anACEMessage Queue to ex-
change information asynchronously if ahandle * callback
method must communicate with another thread that accesses
the sameACEReactor .

5.11 Ensure Controlling Thread Owns Event-
loop in Multi-threaded Reactor Applica-
tions

Context: Only one thread of control at a time can invoke
the handle events method on anACEReactor . To
ensure this, eachACEReactor keeps track of the thread
of control that “owns” its event loop. By default, the owner
of anACEReactor is the identifier of the thread that ini-
tialized it. There are certain use-cases, however, where
the thread that initializes anACEReactor is different
from the thread that ultimately runs its event-loop via the
handle events method.

Example: Consider the following erroneous C++ code
fragment:

class My_Server :
public ACE_Task<ACE_NULL_SYNCH>

{
public:

// Initializer.
int open (size_t size) {

// This call sets the owner
// of the event-loop to
// <ACE_OS::thr_self>.
reactor_.open (size);

// Make this an Active Object
// (inherited from <ACE_Task>).
this->activate ();
// ...

}

// Hook method entry point for
// the Active Object. This runs
// in a new thread of control.
int svc (void) {

// ...

// This call will return -1
// since the new thread of
// control doesn’t ‘‘own’’ this
// <reactor_> instance.
reactor_.handle_events ();

}

private:
ACE_Reactor reactor_;

};

Since My Server inherits from ACETask , calling its
activate method will make theMy Server object be-
come an Active Object [25], which runs itssvc hook
method entry point in a separate thread of control. Therefore,
the handle events method will fail since it still thinks
the owner of thisACEReactor is the original thread that
initialized it.

It is straightforward to fix this code by simply hav-
ing the new thread of control become the owner of the
ACEReactor , as follows:

int svc (void) {
// ...

// Have this thread become the
// new owner of <reactor_>’s event-loop.
reactor_.owner (ACE_OS::thr_self ());

// Now this call works correctly.
reactor_.handle_events ();
// ...

}

Design rule 17: Ensure that the thread running an
ACEReactor ’s event loop becomes the controlling thread
by assigning its thread identifier via theowner method.
The one exception to this rule is if the thread running the
handle events method is the same thread that created
this particular instance of theACEReactor .

6 Concluding Remarks

The ACEReactor is an OO framework designed to sim-
plify the development of concurrent, event-driven distributed
applications. By encapsulating low-level OS event demul-
tiplexing mechanisms within an OO C++ interface, the
ACEReactor makes it easier to develop correct, compact,
portable, and efficient applications. Likewise, by separat-
ing policiesandmechanisms, theACEReactor enhances
reuse, improves portability, and provides transparent exten-
sibility.

The following C++ language features are used to enhance
to the design of theACEReactor and its applications.

Classes: The encapsulation provided by C++ classes im-
proves portability. For instance, theACEReactor class
shields applications from differences between OS event
demultiplexers like WaitForMultipleObjects and
select .

Objects: Registering concrete event handlerobjects, rather
than stand-alonefunctions, with the ACEReactor helps
integrate application-specific state together with the methods
that use this state.

Inheritance and dynamic binding: These features facil-
itate transparent extensibility by allowing developers to en-
hance the functionality of theACEReactor and its associ-
ated applications without modifying existing code.

Templates: C++ parameterized types help increase the
reusability by factoring variability into uniform classes,
which can be “plugged” into the generic templates.
For instance, theACEAcceptor can be instantiated
with SVCHANDLERs other thanLogging Handler and
PEERACCEPTORs other thanACESOCKAcceptor .

Perhaps the greatest challenge to using the
ACEReactor is that its “inversion of control” program-
ming model makes it hard to determine where an applica-
tion’s main flow of control is executing. This is a common
challenge with other callback-based dispatcher mechanisms,
such as the X-windows event loop.
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The C++ source code and documentation for the
ACEReactor and ACE socket wrappers is available at
www.cs.wustl.edu/ �schmidt/ACE.html . Also
included with this release are a suite of test programs and
examples, as well as many other C++ wrappers that encap-
sulate named pipes, STREAM pipes,mmap, and the System
V IPC mechanisms (i.e., message queues, shared memory,
and semaphores).
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