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UCLA Extension Course OO Patterns

Case Studies Using Patterns

e The following slides describe several case studies using C++ and
patterns to build highly extensible software

e The examples include

1. Expression trees
— e.g., Factory, Bridge, Adapter
2. System Sort
— e.g., Facade, Adapter, lIterator, Singleton, Factory Method,
Strategy, Bridge, Double-Checked Locking Optimization
3. Sort Verifier
— e.g., Strategy, Factory Method, Facade, Iterator, Singleton
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Case Study 1: Expression Tree Evaluator
e The following inheritance and dynamic binding example constructs
expression trees

— Expression trees consist of nodes containing operators and
operands

x Operators have different precedence levels, different associativities,

and different arities, e.g.,
- Multiplication takes precedence over addition
- The multiplication operator has two arguments, whereas unary
minus operator has only one
x Operands are integers, doubles, variables, etc.
- We'll just handle integers in this example . . .
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Expression Tree Diagram
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Print _Tree Function Data-Driven Version

e A typical data-driven implementation use a e A typical data-driven method for implementing
switch statement and a recursive function to build expression trees involves using a struct/union to
and evaluate a tree, e.g., represent data structure, e.g.,

void print_tree (Tree_Node *root) {
switch (root->tag ) {
case NUM: printf ("%d", root->num_); br
case UNARY:
printf ("%s", root->op_[0]);
print_tree (root->unary_);
printf (")"); break; ; ;
case BINARY: } (;f“ num_

pr!ntf 0 . ) #define num_ o.num_
pr!nt_trﬁe |(lroot->b|nary_.l_), #define op_  0.0p_
printf ("%s", root->op_[0]); union {
pr!nt_trflati .(root->l?inary_.r_); Tree_Node *unary :

de]ParLIJrlltt'f (")); break; struct { Tree_Node *_, *r_; } binary_;

- } ¢

printf (error, unknown type\n);
exit (1);

}

typedef struct Tree_Node Tree_Node;
struct Tree Node {
enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {
char op_[2];

#define unary_ c.unary_
#define binary_ c.binary_

} h
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Limitations with Data-Driven Approach

e Problems or limitations with the typical data-driven approach include
— Little or no use of encapsulation
e Incomplete modeling of the application domain, which results in

1. Tight coupling between nodes and edges in union representation
2. Complexity being in algorithms rather than the data structures
— e.g., switch statements are used to select between various types
of nodes in the expression trees
— Compare with binary search!
3. Data structures are “passive” and functions do most processing
work explicitly
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More Limitations with Data-Driven Approach

e The program organization makes it difficult to extend, e.g.,

— Any small changes will ripple through the entire design and
implementation
x e.g., see the “ternary” extension below

— Easy to make mistakes switching on type tags . . .

e Solution wastes space by making worst-case assumptions wrt
structs and unions

— This is not essential, but typically occurs
— Note that this problem becomes worse the bigger the size of the
largest item becomes!
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OO Alternative
e Contrast previous data-driven approach with an object-oriented
decomposition for the same problem:

— Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture
— Discover several classes involved:
x class Node: base class that describes expression tree vertices:
- class Int_Node: used for implicitly converting int to Tree node
- class Unary_Node: handles unary operators, e.g., -10, +10, la
- class Binary_Node: handles binary operators, e.g., a + b, 10 -
30
x class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes
— Note, these classes model entities in the application domain
* i.e., nodes and edges (vertices and arcs)
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Relationships Between Tree and Node Classes

Binary Unary Int
Node Node Node

1 1
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Design Patterns in the Expression Tree Program

e Factory

— Centralize the assembly of resources necessary to create an
object

* e.g., decouple Node subclass initialization from their subsequent
use

e Bridge

— Decouple an abstraction from its implementation so that the two
can vary independently
x e.g., printing the contents of a subtree and managing dynamic
memory

Copyright ©1997-2003 Vanderbilt University
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Design Patterns in the Expression Tree Program
(contd)

e Adapter

— Convert the interface of a class into another interface clients expect
x e.g., make Tree conform to interfaces expected by C++
iostreams operators

Copyright ©1997-2003 Vanderbilt University
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C++ Node Interface
class Tree; /| Forward declaration

/I Describes the Tree vertices

class Node {

friend class Tree;

protected: // Only visible to derived classes
Node () : use_ (1) {}

[* pure */ virtual void print (ostream &) const = O;

/I Important to make destructor virtual!
virtual "Node ();

private:
int use_; // Reference counter.

h
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C++ Tree Interface

#include "Node.h"
/I Bridge class that describes the Tree edges and
/I acts as a Factory.
class Tree {
public:
/I Factory operations
Tree (int);
Tree (const char *, Tree &);
Tree (const char *, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
“Tree ();
void print (ostream &) const;
private:
Node *node_; // pointer to a rooted subtree
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C++ Int_Node Interface
#include "Node.h"

class Int_Node : public Node {
public:

Int_Node (int K);

virtual void print (ostream &stream) const;
private:

int num_; // operand value.

J3
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C++ Unary _Node Interface
#include "Node.h"

class Unary_Node : public Node {
public:
Unary_Node (const char *op, const Tree &t);
virtual void print (ostream &stream) const;
private:
const char *operation_;
Tree operand_;

h
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C++ Binary _Node Interface
#include "Node.h"

class Binary_Node : public Node {
public:
Binary_Node (const char *op,
const Tree &tl,
const Tree &t2);
virtual void print (ostream &s) const;
private:
const char *operation_;
Tree left_;
Tree right_;

h
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Memory Layout for C++ Version

e Memory
different
Node

operator_ operator_ operator_

operand_ left_ left_
(Tree PART) (Tree PART) (Tree PART)

Unary Node

middle_
(Tree PART)

num_

Int_Node Ternary
Node

layouts
subclasses

for
of
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C++ Int_Node Implementations

#include "Int_Node.h"
Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

}

Copyright ©1997-2003 Vanderbilt University
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C++ Unary _Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const char *op, const Tree &tl)
. operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<
<< this->operand_ // recursive call!
<< M-
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C++ Binary _Node Implementation
#include "Binary_Node.h"

Binary_Node::Binary_Node (const char *op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call
<< " " << this->operation_
<< " " << this->right_ // recursive call
<< "7
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Initializing the Node Subclasses

e Problem
— How to ensure the Node subclasses are initialized properly
e Forces

— There are different types of Node subclasses
x e.g., take different number and type of arguments

— We want to centralize initialization in one place because it is likely
to change . . .

e Solution

— Use a Factory pattern to initialize the Node subclasses

Copyright ©1997-2003 Vanderbilt University
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The Factory Pattern

e [ntent

— Centralize the assembly of resources necessary to create an
object
x Decouple object creation from object use by localizing creation
knowledge

e This pattern resolves the following forces:

— Decouple initialization of the Node subclasses from their
subsequent use

— Makes it easier to change or add new Node subclasses later on
x e.g., Ternary nodes . . .

e A generalization of the Factory Method pattern

Copyright ©1997-2003 Vanderbilt University
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Structure of the Factory Pattern

Factory

make_product() Q_

O

N
N

creates

Product product =..
return product

Product

Copyright ©1997-2003 Vanderbilt University

UCLA Extension Course OO Patterns

Using the Factory Pattern

e The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const char *op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const char *op,
const Tree &tl,
const Tree &t2):
: node_ (new Binary_Node (op, t1, t2)) {}

Copyright ©1997-2003 Vanderbilt University
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Printing Subtrees

e Problem
— How do we print subtrees without revealing their types?
e Forces

— The Node subclass should be hidden within the Tree instances

— We don’t want to become dependent on the use of Nodes,
inheritance, and dynamic binding, etc.

— We don’t want to expose dynamic memory management details to
application developers

e Solution

— Use the Bridge pattern to shield the use of inheritance and
dynamic binding

Copyright ©1997-2003 Vanderbilt University
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The Bridge Pattern

e [ntent

— Decouple an abstraction from its implementation so that the two
can vary independently

e This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
— interface is closed to prevent direct code changes
— Implementation is open to allow extensibility
2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<

Copyright ©1997-2003 Vanderbilt University
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Structure of the Bridge Pattern

1: method_impl()

Abstraction Implementor
method() method_impl()

/

Concrete
ImplementorA

method impl() | Coperete
ImplementorB

method impl()
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Using the Bridge Pattern

1: print()
—

Tree Node
print() prini()

Int Node
Binary |

Node|Unary
print) | Node

print()

print()
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lllustrating the Bridge Pattern in C++

e The Bridge pattern is used for printing expression trees:

void Tree:print (ostream &o0s) const {
this->node_->print (0s);

}

e Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

— I.e., the Tree interface is fixed, whereas the Node implementation
varies
— However, clients need not be concerned about the variation . . .

Copyright ©1997-2003 Vanderbilt University
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Integrating with C++ I/O Streams

e Problem

— Our Tree interface uses a print method, but most C++
programmers expect to use 1/O Streams

e Forces

— Want to integrate our existing C++ Tree class into the 1/0 Stream
paradigm without modifying our class or C++ I/O

e Solution

— Use the Adapter pattern to integrate Tree with I/O Streams

Copyright ©1997-2003 Vanderbilt University
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The Adapter Pattern

e [ntent

— Convert the interface of a class into another interface client expects
x Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

e This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Copyright ©1997-2003 Vanderbilt University
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Structure of the Adapter Pattern

1 request ()
—>

client Target

request()

Adapter Adaptee

request() | 5. specific_ request() specific_request()
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Using the Adapter Pattern

1: operator<<
—_—>

client Target
operator<<

jiostream

—
2: print()

operator<<

Copyright ©1997-2003 Vanderbilt University
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Using the Adapter Pattern

e The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {

tree.print (s);

/I This triggers Node * virtual call via
/I tree.node_->print (s), which is

/I implemented as the following:

/I (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

e Note how the C++ code shown above uses I/O streams to “adapt”

the Tree interface. . .
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C++ Tree Implementation
e Reference counting via the “counted body” idiom

Tree::Tree (const Tree &t): node_  (t.node ) {
/I Sharing, ref-counting.
++this->node_->use_;

}

void Tree::operator= (const Tree &t) {
/I order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)
delete this->node_;
this->node_ = t.node_;

}

Copyright ©1997-2003 Vanderbilt University
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C++ Tree Implementation (contd)

Tree:"Tree () {
/I Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)
delete this->node_;

Copyright ©1997-2003 Vanderbilt University
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C++ Main Program
#include <iostream.h>
#include "Tree.h"

int main (int, char *[]) {
const Tree t1 = Tree (™", Tree ("-", 5),
Tree ("+", 3, 4));
cout << t1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree (™", t1, tl);

/I prints  (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl

return O;
/I Destructors of t1 and t2 recursively
} /I delete entire tree when leaving scope.
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Expression Tree Diagram 1

O

5)* (3 +4))

{7
&
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Expression Tree Diagram 2

e Expression tree for t2 = (t1
*11)
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Adding Ternary _Nodes

e Extending the existing program to support ternary nodes is
straightforward

— lLe., just derive new class Ternary_Node to handle ternary
operators, e.g.,a==b? c: d, etc.

#include "Node.h"
class Ternary Node : public Node {
public:
Ternary_Node (const char *, const Tree &,
const Tree &, const Tree &);
virtual void print (ostream &) const;
private:
const char *operation_;
Tree left_, middle_, right_; };

Copyright ©1997-2003 Vanderbilt University
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C++ Ternary _Node Implementation
#include "Ternary_Node.h"
Ternary_Node::Ternary_Node (const char *op,
const Tree &a,
const Tree &b,
const Tree &c)
. operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("
<< this->left_ // recursive call
<< "" << this->middle_ // recursive call
<< ™" << this->right_ // recursive call
<< "

}

Copyright ©1997-2003 Vanderbilt University




UCLA Extension Course OO Patterns

C++ Ternary _Node Implementation (cont'd)

/I Modified class Tree Factory
class Tree { // add 1 class constructor
public:
Tree (const char *, const Tree &,
const Tree &, const Tree &)
: node_ (new Ternary_Node (op, I, m, ) {}
/I Same as before . . .

Copyright ©1997-2003 Vanderbilt University
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Differences from Data-Driven Implementation

e On the other hand, modifying the original data-driven approach
requires changing 1) the original data structures, e.g.,

struct Tree_Node {
enum {
NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {
/I same as before. But, add this:
struct {
Tree_Node *l_, *m_, *r_;
} ternary_;
}c
#define ternary_ c.ternary_

h
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Differences from Data-Driven Implementation (cont'd)
e and 2) many parts of the code, e.g.,

void print_tree (Tree Node *root) {

Il same as before

case TERNARY: // must be TERNARY.
printf ("(");
print_tree (root->ternary .l );
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

Il same as before

Copyright ©1997-2003 Vanderbilt University
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Summary of Expression Tree Example

e OO version represents a more complete modeling of the application
domain

— e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

e Use of C++ language features simplifies the design and facilitates
extensibility

— e.g., implementation follows directly from design

e Use of patterns helps to motivate, justify, and generalize design
choices

Copyright ©1997-2003 Vanderbilt University




UCLA Extension Course OO Patterns

Potential Problems with OO Design

Solution is very “data structure rich”

— e.g., requires configuration management to handle many headers
and .cc files!

May be somewhat less efficient than original data-driven approach
— e.g., due to virtual function overhead

In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

As a rule, be careful of micro vs. macro optimizations

— Ie., always profile your code!

Copyright ©1997-2003 Vanderbilt University
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Case Study 2: System Sort

e Develop a general-purpose system sort

— It sorts lines of text from standard input and writes the result to
standard output
— e.g., the UNIX system sort

e In the following, we’ll examine the primary forces that shape the
design of this application

e For each force, we'll examine patterns that resolve it

Copyright ©1997-2003 Vanderbilt University
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External Behavior of System Sort

A “line” is a sequence of characters terminated by a newline

default ordering is lexicographic by bytes in machine collating
sequence (e.g., ASCII)

The ordering is affected globally by the following options:

— Ignore case (-i )

— Sort numerically (-n)

— Sort in reverse (-r )

— Begin sorting at a specified field (-f )

— Begin sorting at a specified column (-c )

Note, our program need not sort files larger than main memory

Copyright ©1997-2003 Vanderbilt University
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High-level Forces

e Solution should be both time and space efficient

— e.g., must use appropriate algorithms and data structures

— Efficient /0O and memory management are particularly important

— Our solution uses minimal dynamic binding (to avoid unnecessary
overhead)

e Solution should leverage reusable components
— e.g., iostreams, Array and Stack classes, etc.
e Solution should yield reusable components

— e.g., efficient input classes, generic sort routines, etc.

Copyright ©1997-2003 Vanderbilt University
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Top-level Algorithmic View of the Solution
e Note the use of existing C++ mechanisms like I/O streams

/I Reusable function
template <class ARRAY> void
sort (ARRAY &a);

int main (int argc, char *argv[])
{
parse_args (argc, argv);
Input_Array input;

cin >> input;

sort (input);
cout << input;
}

Copyright ©1997-2003 Vanderbilt University
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Top-level Algorithmic View of the Solution (cont'd)

e Avoid the grand mistake of using top-level algorithmic view to
structure the design . . .

— Structure the design to resolve the forces!
— Don't focus on algorithms or data, but instead look at the problem,
its participants, and their interactions!

Copyright ©1997-2003 Vanderbilt University
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General OOD Solution Approach

¢ |dentify the classes in the application and solution space

— e.g., stack, array, input class, options, access table, sorts, etc.
e Recognize and apply common design patterns

— e.g., Singleton, Factory, Adapter, Iterator
e Implement a framework to coordinate components

— e.g., use C++ classes and parameterized types

Copyright ©1997-2003 Vanderbilt University
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C++ Class Model

Ontions System
GLOBAL
Sort AT
Adapter
STRATEGIC Sort o
COMPONENTS ine TS

/ Sort AT
/ Adapter

¥ ARRAY|

Sort : ———n
[ TVE |
TACTICAL Access
COMPONENTS Table

£
T Input
Stack
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C++ Class Components

e Tactical components

— Stack
*x Used by non-recursive quick sort
— Array
x Stores pointers to lines and fields
— Access_Table
x Used to store and sort input
— Input
x Efficiently reads arbitrary sized input using only 1 dynamic
allocation and 1 copy

Copyright ©1997-2003 Vanderbilt University
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C++ Class Components

e Strategic components

— System_Sort
* integrates everything . . .
— Sort_AT_Adapter
x integrates the Array and the Access _Table
— Options
*x Manages globally visible options
— Sort
x e.g., both quicksort and insertion sort

Copyright ©1997-2003 Vanderbilt University
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Detailed Format for Solution
e Note the separation of concerns

/I Prototypes
template <class ARRAY> void sort (ARRAY &a);
void operator >> (istream &, Access_Table<Line Ptrs> &);
void operator << (ostream &,
const Access_Table<Line_Ptrs> &);

int main (int argc, char *argv[])

{
Options:instance ()->parse_args (argc, argv);
cin >> System_Sort::iinstance ()->access_table ();
sort (System_Sort::instance ()->access_table ());
cout << System_Sort::instance ()->access_table ();

Copyright ©1997-2003 Vanderbilt University
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Reading Input Efficiently

Problem

— The input to the system sort can be arbitrarily large (e.g., up to 1/2
size of main memory)

Forces

— To improve performance solution must minimize:
1. Data copying and data manipulation
2. Dynamic memory allocation

Solution

— Create an Input class that reads arbitrary input efficiently
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Access Table Format

ACCESS BUFFER

o=

ACCESS ARRAY
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The Input Class

e Efficiently reads arbitrary-sized input using only 1 dynamic allocation

class Input
{
public:
/[ Reads from <input> up to <terminator>,
/I replacing <search> with <replace>. Returns
/I pointer to dynamically allocated buffer.
char *read (istream &input,
int terminator = EOF,
int search = "\n’,
int replace = "\0%;
/I Number of bytes replaced.
size_t replaced () const;

Copyright ©1997-2003 Vanderbilt University
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The Input Class

/I Size of buffer.
size_t size () const;

private:
/I Recursive helper method.
char *recursive_read ();

n. ..
h
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Design Patterns in System Sort

e Facade

— Provide a unified interface to a set of interfaces in a subsystem
x Facade defines a higher-level interface that makes the
subsystem easier to use
— e.g., sort provides a facade for the complex internal details of
efficient sorting

e Adapter

— Convert the interface of a class into another interface clients expect
x Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces
— e.g., make Access _Table conform to interfaces expected by
sort and iostreams
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Design Patterns in System Sort (cont'd)

e Factory

— Centralize the assembly of resources necessary to create an
object

— e.g., decouple initialization of Line _Ptrs used by Access _Table
from their subsequent use

e Bridge

— Decouple an abstraction from its implementation so that the two
can vary independently
— e.g., comparing two lines to determine ordering
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Design Patterns in System Sort (cont'd)

e Strategy

— Define a family of algorithms, encapsulate each one, and make
them interchangeable
— e.g., allow flexible pivot selection

e Singleton

— Ensure a class has only one instance, and provide a global point
of access to it

— e.g., provides a single point of access for the system sort facade
and for program options

Copyright ©1997-2003 Vanderbilt University
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Design Patterns in System Sort (cont'd)

e Double-Checked Locking Optimization

— Ensures atomic initialization or access to objects and eliminates
unnecessary locking overhead
— e.g., allows multiple threads to execute sort

e |terator

— Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

— e.g., provides a way to print out the sorted lines without exposing
representation or initialization

Copyright ©1997-2003 Vanderbilt University
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Sort Algorithm

e For efficiency, two types of sorting algorithms are used:

1. Quicksort
— Highly time and space efficient sorting arbitrary data
— O(n log n) average-case time complexity
— 0O(n2) worst-case time complexity
— O(log n) space complexity
— Optimizations are used to avoid worst-case behavior
2. Insertion sort
— Highly time and space efficient for sorting “almost ordered” data
— 0O(n2) average- and worst-case time complexity
— O(1) space complexity
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Quicksort Optimizations

. Non-recursive
e Uses an explicit stack to reduce function call overhead
. Median of 3 pivot selection
e Reduces probability of worse-case time complexity
. Guaranteed (log n) space complexity
e Always “pushes” larger partition
. Insertion sort for small partitions

e Insertion sort runs fast on almost sorted data
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Selecting a Pivot Value

e Problem

— There are various algorithms for selecting a pivot value
* e.g., randomization, median of three, etc.

e Forces

— Different input may sort more efficiently using different pivot
selection algorithms

e Solution

— Use the Strategy pattern to select the pivot selection algorithm
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The Strategy Pattern

e [ntent

— Define a family of algorithms, encapsulate each one, and make
them interchangeable
x Strategy lets the algorithm vary independently from clients that
use it

e This pattern resolves the following forces

1. How to extend the policies for selecting a pivot value without
modifying the main quicksort algorithm

2. Provide a one size fits all interface without forcing a one size fits all
implementation
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Structure of the Strategy Pattern

STRATEGY

Context Strategy

context_interface( algorithm_interface()

Concrete Concrete
Strategy A Strategy C

algorithm_interface() algorithm_interface()

Concrete
Strategy B
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Using the Strategy Pattern

Prot
Strategy

gt pivof)

quick sort

pivot strat->get_pivot (array, lo, hi) g /

Select
First || Random
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Implementing the Strategy Pattern

e ARRAY is the particular “context”

template <class ARRAY>
void sort (ARRAY &array)

{
Pivot<ARRAY> *pivot_strat = Pivot<ARRAY>::make_pivot
(Options::instance ()->pivot_strat ());

quick_sort (array, pivot_strat);

}
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Implementing the Strategy Pattern

template <class ARRAY, class PIVOT_STRAT>
quick_sort (ARRAY &array, PIVOT_STRAT *pivot_strat)
{
for (;;) {
ARRAY::TYPE pivot; // typename ARRAY:TYPE pivot . .

pivot = pivot_strat->get_pivot (array, lo, hi);

/I Partition array[lo, hi] relative to pivot . . .

}
}
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Devising a Simple Sort Interface

e Problem

— Although the implementation of the sort function is complex, the
interface should be simple to use

e Key forces

— Complex interface are hard to use, error prone, and discourage
extensibility and reuse

— Conceptually, sorting only makes a few assumptions about the
“array” it sorts
* e.g., supports operator]] methods, size, and element TYPE

— We don’t want to arbitrarily limit types of arrays we can sort

e Solution

— Use the Facade and Adapter patterns to simplify the sort program
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Facade Pattern

e [ntent

— Provide a unified interface to a set of interfaces in a subsystem
x Facade defines a higher-level interface that makes the
subsystem easier to use

e This pattern resolves the following forces:

1. Simplifies the sort interface
— e.g., only need to support operator(] and size methods, and
element TYPE
2. Allows the implementation to be efficient and arbitrarily complex
without affecting clients
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Structure of the Facade Pattern

Facade
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Using the Facade Pattern

———

— ARRAY |
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The Adapter Pattern

e [ntent

— Convert the interface of a class into another interface clients expect
x Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

e This pattern resolves the following forces:

1. How to transparently integrate the Access _Table with the sort
routine

2. How to transparently integrate the Access _Table with the C++
iostream operators
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Structure of the Adapter Pattern

1: request ()

client Target
request()

Adapter Adaptee

B — .
1equestl) | - specific request()  [Specific request()
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Using the Adapter Pattern

"conforms to"
i |ARRAY
ARRAY::TYPE
operatorf[]
size()

1: ARRAY:TYPE t
= array[i]
"conforms to"

Line_Ptrs /

Sort AT Adapter

typedef Line_Ptrs TYPE Access Table
make_table() =
operatorf(] make_table()
size() length()

element()
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Dynamic Array
e Defines a variable-sized array for use by the Access _Table

template <class T>

class Array

{

public:
Array (size_t size = 0);
int init (size_t size);
T &operator[](size_t index);
size_t size () const;
n. ..

private:
T *array_;
size t size ;

h
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The Access _Table Class

e Efficiently maps indices onto elements in the data buffer

template <class T>
class Access_Table
{
public:
/I Factory Method for initializing Access_Table.
virtual int make_table (size_t num_lines,
char *buffer) = 0;
/I Release buffer memory.
virtual “Access_Table () { delete [] buffer_; }
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The Access _Table Class (cont'd)

/I Retrieve reference to <indexth> element.
T &element (size t index) {
return access_array_[index];

}

/I Length of the access_array.
size_t length () const {

return access_array_.size ();
}

protected:
Array<T> access_array ; // Access table is array of T.
char *buffer_; // Hold the data buffer.

h
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The Sort _AT _Adapter Class

e Adapts the Access_Table to conform to the ARRAYinterface expected
by sort

struct Line_Ptrs {
/I Comparison operator used by sort().
int operator< (const Line_Ptrs &);

/I Beginning of line and field/column.
char *bol_, *bof_;

h
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The Sort _AT _Adapter Class
class Sort_ AT_Adapter :
/I Note the use of the class form of the Adapter
private Access_Table<Line_Ptrs> {
public:
virtual int make_table (size_t num_lines, char *buffer);

typedef Line_Ptrs TYPE; /[ Type trait.
/I These methods adapt Access_Table methods . . .

T &operator[] (size_t index) {
return element (index);
}

size_t size () const { return length (); }

J3
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Centralizing Option Processing

e Problem

— Command-line options must be global to many parts of the sort
program

e Key forces

— Unrestricted use of global variables increases system coupling and
can violate encapsulation
— Initialization of static objects in C++ can be problematic

e Solution

— Use the Singleton pattern to centralize option processing
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Singleton Pattern

e [Intent

— Ensure a class has only one instance, and provide a global point
of access to it

e This pattern resolves the following forces:

1. Localizes the creation and use of “global” variables to well-defined
objects
. Preserves encapsulation
. Ensures initialization is done after program has started and only
on first use
. Allow transparent subclassing of Singleton implementation
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Structure of the Singleton Pattern

if (unique_instance_ == 0)
unique_instance_ = new Singleton;
return unique_instance ;

/
/
/
/
/

Singleton
static instance()
singleton_operation()
get singleton data()
static unique_instance
singleton_data_
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Using the Singleton Pattern

if (unique_instance_ = 0)
unique_instance_ = new Options;
return unique_instance ;

/
/
/

Options

static instance() G
bool enabled()

field offset()

static unique_instance
options _
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Options Class

e This manages globally visible options

class Options
{
public:
static Options *instance ();
void parse_args (int argc, char *argvl]);

/I These options are stored in octal order

/I so that we can use them as bitmasks!

enum Option { FOLD = 01, NUMERIC = 02,
REVERSE = 04, NORMAL = 010 };

enum Pivot_Strategy { MEDIAN, RANDOM, FIRST },
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Options Class

bool enabled (Option 0);

int field_offset (); // Offset from BOL.
Pivot_Strategy pivot_strat ();
int (*compare) (const char *|, const char *r);

protected:
Options (); // Ensure Singleton.

u_long options_; // Maintains options bitmask . . .
int field offset ;
static Options *instance_; // Singleton.
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Using the Options Class
e The following is the comparison operator used by sort

int Line_Ptrs::operator< (const Line_Ptrs &rhs) {
Options *options = Options::instance ();

if (options->enabled (Options::NORMAL))
return strcmp (this->bof_, rhs.bof ) < 0;

else if (options->enabled (Options::FOLD))
return strcasecmp (this->bof , rhs.bof ) < 0;

else
/I assert (options->enabled (Options::NUMERIC));
return numcmp (this->bof_, rhs.bof ) < 0;

}
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Initialization

e Problem

— A multi-threaded program might have execute multiple copies of
sort in different threads

e Key forces

— Subtle race conditions can cause Singletons to be created multiple
times
— Locking every access to a Singleton can be too costly

e Solution

— Use the Double-Checked Locking Optimization pattern to
efficiently avoid race conditions when initialization Singletons
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The Double-Checked Locking Optimization Pattern

e [ntent

— Ensures atomic initialization or access to objects and eliminates
unnecessary locking overhead

e This pattern resolves the following forces:

1. Ensures atomic initialization or access to objects, regardless of
thread scheduling order
2. Keeps locking overhead to a minimum
— e.g., only lock on first access, rather than for the entire Singleton
instance() method
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Structure of the Double-Checked Locking Optimization
Pattern

if (unique_instance =—NULL) {
mutex_.acquire ();
if (unique_instance_ =—NULL)
unique_instance = new Singleton;
mutex_.release ();

}
return unique_instance ;

e
e
e
e
7

Singleton P

static instance() O~
static unique_instance _

N
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Using the Double-Checked Locking Optimization
Pattern

e Uses the Adapter pattern to turn ordinary classes into Singletons
optimized automatically with the Double-Checked Locking Optimization
pattern

template <class TYPE, class LOCK>
class Singleton {
public:

static TYPE *instance ();
protected:

static TYPE *instance_;

static LOCK lock_;

J3
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Using the Double-Checked Locking Optimization
Pattern

template <class TYPE, class LOCK> TYPE *
Singleton<TYPE, LOCK>:instance () {
/I Perform the Double-Check.
if (instance_ == 0) {
Guard<LOCK> mon (lock_);
if (instance_ == 0)
instance_ = new TYPE;

}

return instance_;

}
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Simplifying Comparisons

e Problem
— The comparison operator shown above is somewhat complex

e Forces

— It's better to determine the type of comparison operation during the
initialization phase
— But the interface shouldn’t change

e Solution

— Use the Bridge pattern to separate interface from implementation
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The Bridge Pattern

e [ntent

— Decouple an abstraction from its implementation so that the two
can vary independently

e This pattern resolves the following forces that arise when building
extensible software

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
— Closed to prevent direct code changes
— Open to allow extensibility

2. How to simplify the Line_Ptrs:.operator< implementation
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Structure of the Bridge Pattern

1: method_impl()

Abstraction Implementor
method() method_impl()

/

Concrete
ImplementorA

method impl() | Coperete
ImplementorB

method impl()
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Using the Bridge Pattern

1 compare() :
Line Ptrs > | Options

operator< compare()

i) streasecrmp()
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Using the Bridge Pattern

e The following is the comparison operator used by sort
int
Line_Ptrs::operator<(const Line_Ptrs &rhs)

{

return (*Options:instance ()->compare)
(bof_, rhs.bof);

}

e This solution is much more concise
e However, there’s an extra level of function call indirection . . .

— Which is equivalent to a virtual function call
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Initializing the Comparison Operator

e Problem

— How does the compare pointer-to-method get assigned?
int (*compare) (const char *left, const char *right);

e Forces

— There are many different choices for compare , depending on
which options are enabled

— We only want to worry about initialization details in one place

— Initialization details may change over time

— We'd like to do as much work up front to reduce overhead later on

e Solution

— Use a Factory pattern to initialize the comparison operator
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The Factory Pattern

e [ntent

— Centralize the assembly of resources necessary to create an
object
x Decouple object creation from object use by localizing creation
knowledge

e This pattern resolves the following forces:

— Decouple initialization of the compare operator from its
subsequent use

— Makes it easier to change comparison policies later on
x e.g., adding new command-line options
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Structure of the Factory Pattern

Factory

make_product()

O

creates

Product product =..
return product

Product
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Using of the Factory Pattern for Comparisons

Options

parse args() Q|

creates

initialize compare

Compare
Function
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Code for Using the Factory Pattern

e The following initialization is done after command-line options are
parsed

Options::parse_args (int argc, char *argv[])
{
n. ..
if (this->enabled (Options::NORMAL))
this->compare = &strcmp;
else if (this->enabled (Options::FOLD))
this->compare = &strcasecmp;
else if (this->enabled (Options::NUMERIC))
this->compare = &numcmp;
n. ..
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Code for Using the Factory Pattern (cont'd)

int numcmp (const char *sl1, const char * s2)

{
double d1 = strtod (s1, 0), d2 = strtod (s2, 0);

if (d1 < d2) return -1;

else if (d1 > d2) return 1;

else // if (d1 == d2)
return 0O;
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Initializing the Access _Table

e Problem

— One of the nastiest parts of the whole system sort program is
initializing the Access _Table

e Key forces

— We don’t want initialization details to affect subsequent processing
— Makes it easier to change initialization policies later on
* e.g., using the Access_Table in non-sort applications

e Solution

— Use the Factory Method pattern to initialize the Access _Table
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Factory Method Pattern

e [ntent

— Define an interface for creating an object, but let subclasses decide
which class to instantiate
x Factory Method lets a class defer instantiation to subclasses

e This pattern resolves the following forces:

— Decouple initialization of the Access _Table from its subsequent
use

— Improves subsequent performance by pre-caching beginning of
each field and line

— Makes it easier to change initialization policies later on
x e.g., adding new command-line options
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Structure of the Factory Method Pattern

Creator

factory method() =0
make_product()

AN
AN
N\

P T0 du («'t Product *product = factory_method()ﬁ

return product

Concrete
Creator

factory method()Q

\
Concrete \

CREATES A
return new Concrete_ProductS

Product |<
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Using the Factory Method Pattern for Access  _Table

Initialization T—{P;_:"l

Access Table
make_table() = 0

—

Line Ptrs

|
Sort AT :
Adapter

make_table() O

N

// initialize the table
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Using the Factory Method Pattern for the
Sort _AT _Adapter

e The following iostream Adapter initializes the Sort _AT_Adapter
access table

template <class T>
void operator>> (istream &is, Access_Table<T> &at)
{ .

Input input;

/I Read entire stdin into buffer.

char *buffer = input.read (is);

size_t num_lines = input.replaced ();

/I Factory Method initializes Access_Table<>.
at.make_table (num_lines, buffer);

}
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Implementing the Factory Method Pattern

e The Access_Table_Factory class has a Factory Method that initializes
Sort_AT_Adapter

/I Factory Method initializes Access_Table.
int Sort AT_Adapter::make_table (size_t num_lines,
char *buffer)
{
/I Array assignment op.
this->access_array_.resize (num_lines);
this->buffer_ = buffer; // Obtain ownership.

size_t count = O;
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Implementing the Factory Method Pattern (contd)

/I lterate through the buffer and determine
/I where the beginning of lines and fields
/I must go.
for (Line_Ptrs_Iter iter (buffer, num_lines);
iter.is_done () == O;
iter.next ())

{

Line_Ptrs line_ptr = iter.current_element ();
this->access_array_[count++] = line_ptr;
}
}
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Initializing the Access _Table with Input Buffer

e Problem

— We'd like to initialize the Access_Table without having to know the
input buffer is represented

e Key force

— Representation details can often be decoupled from accessing
each item in a container or collection

e Solution

— Use the lterator pattern to scan through the buffer
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Iterator Pattern

e [ntent

— Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

e Note that STL is heavily based on iterators

e The Iterator pattern provides a way to initialize the Access_Table
without knowing how the buffer is represented:

Line_Ptrs_lter::Line_Ptrs_lter
(char *buffer, size t num_lines);
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Iterator Pattern (cont'd)

Line_ Ptrs
Line_Ptrs_lter::current_element ()

{
Line_Ptrs Ip;

/I Determine beginning of next line and next field . . .
Ip.bol_ =1/ . ..
Ip.bof_ =1/ . ..

return Ip;

Copyright ©1997-2003 Vanderbilt University




UCLA Extension Course OO Patterns
Iterator Pattern (cont'd)

e The Iterator pattern also provides a way to print out the sorted lines
without exposing representation

template <class T>
void operator<< (ostream &os,
const Access_Table<T> &at)
{
if (Options::instance ()->enabled (Options::REVERSE))
for (size_t i = atsize (); i > 0; --i)
0s << atfi - 1J;

else
for (size_t i = 0; i < at.size (); ++i)
0s << at[i];

}
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Summary of System Sort Case Study

e This case study illustrates using OO techniques to structure a
modular, reusable, and highly efficient system

e Design patterns help to resolve many key forces

e Performance of our system sort is comparable to existing UNIX
system sort

— Use of C++ features like parameterized types and inlining
minimizes penalty from increased modularity, abstraction, and
extensibility
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Case Study 3: Sort Verifier

e \erify whether a sort routine works correctly

— I.e., output of the sort routine must be an ordered permutation of
the original input

e This is useful for checking our system sort routine!
— The solution is harder than it looks at first glance . . .

e As before, we'll examine the key forces and discuss design patterns
that resolve the forces
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General Form of Solution

e The following is a general use-case for this routine:

template <class ARRAY> void
sort (ARRAY &a);

template <class ARRAY> int
check _sort (const ARRAY &o, const ARRAY &p);

int main (int argc, char *argv[])

{

Options::instance ()->parse_args (argc, argv);

Input_Array input;
Input_Array potential_sort;
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General Form of Solution (contd)

cin >> input;

copy (input, potential_sort);
sort (potential_sort);

if (check_sort (input, potential_sort) == -1)
cerr << "sort failed" << endl;

else
cout << "sort worked" << endl;
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Common Problems

unsorted ‘ 7 | 13| 1] 15 18| 13| 8 |

sorted, but
not permuted

permuted, but
not sorted

sorted and
permuted

e Several common problems:

— Sort routine may zero out data
x though it will appear sorted . . . ;-)
— Sort routine may fail to sort data
— Sort routine may erroneously add new values
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Forces

e Solution should be both time and space efficient

— e.g., it should not take more time to check than to sort in the first
place!

— Also, this routine may be run many times consecutively, which may
facilitate certain space optimizations

e We cannot assume the existence of a “correct” sorting algorithm . . .

— Therefore, to improve the chance that our solution is correct, it
must be simpler than writing a correct sorting routine
* QuIs costodiet ipsos custodes?
- (Who shall guard the guardians?)
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Forces (cont'd)

e Multiple implementations will be necessary, depending on properties

of the data being examined, e.g.,

1. if data values are small (in relation to number of items) and

integrals use . . .
2. if data has no duplicate values use . . .
3. if data has duplicate values use . . .

e This problem illustrates a simple example of “program families”

— le., we want to reuse as much code and/or design across multiple

solutions as possible
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Strategies

e Implementations of search structure vary according to data, e.g.,

1. Range Vector
— O(N) time complexity and space efficient for sorting “small”
ranges of integral values
2. Binary Search (version 1)
— O(n log n) time complexity and space efficient but does not
handle duplicates
3. Binary Search (version 2)
— O(n log n) time complexity, but handles duplicates
4. Hashing
— O(n) best/average case, but O(n2) worst case, handles
duplicates, but potentially not as space efficient
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General OOD Solution Approach

¢ |dentify the “objects” in the application and solution space

— e.g., use a search structure ADT organization with member
function such as insert  and remove

e Recognize common design patterns

— e.g., Strategy and Factory Method

e Implement a framework to coordinate multiple implementations

— e.g., use classes, parameterized types, inheritance and dynamic
binding
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General OOD solution approach (cont'd)

e C++ framework should be amenable to:

— Extension and Contraction

*x May discover better implementations

*x May need to conform to resource constraints

x May need to work on multiple types of data
— Performance Enhancement

*x May discover better ways to allocate and cache memory

x Note, improvements should be transparent to existing code . . .
— Portability

*x May need to run on multiple platforms
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High-level Algorithm

e €.g., pseudo code

template <class ARRAY>

int check_sort (const ARRAY &original,
const ARRAY &potential_sort)

{

Perform basic sanity check to see if the
potential_sort is actually in order
(can also detect duplicates here)
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High-level Algorithm (contd) C++ Class Model

if (basic sanity check succeeds) then
Initialize search structure, srchstrct — -
for i < 0 to size - 1 loop Search
insert (potential_sorti]) Struct

|

into srchstrct

for i < 0 to size - 1 loop
if remove (originalli]) from
srchstrct fails then
return ERROR
— 1

return SUCCESS __

VE |
—

else

return ERROR ]ngarl)l’
end if earc

Dups
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C++ Class Interfaces C++ Class interfaces (contd)

e Search structure base class. e Strategy Factory class

template <class T> template <class ARRAY>

class Search_struct_Strategy Search_Strategy

{ {

public: public:
virtual int insert (const T &new_item) = O; /I Singleton method.
virtual int remove (const T &existing_item) = O; static Search_Strategy *instance ();
virtual “Search_struct_Strategy () = 0;

% /I Factory Method

virtual Search_struct_Strategy<ARRAY:: TYPE> *
make_strategy (const ARRAY &);
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C++ Class interfaces (contd)

e Strategy subclasses

/I Note the template specialization
class Range_ Vector :

public Search_struct_Strategy<long>
{ typedef long TYPE; /* . . . * }

template <class ARRAY>
class Binary_Search_Nodups :
public Search_struct_Strategy<ARRAY:: TYPE>

{
typedef T TYPE; /* . . . */
h
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C++ Class interfaces (contd)

template <class ARRAY>
class Binary_Search_Dups :
public Search_struct Strategy<ARRAY:: TYPE>

{
typedef T TYPE; /* . . . */
h

template <class T>
class Hash_Table :
public Search_struct_Strategy<T>

{
typedef T TYPE; /* . . . */

J3
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Design Patterns in Sort Verifier

e Factory Method

— Define an interface for creating an object, but let subclasses decide
which class to instantiate
x Factory Method lets a class defer instantiation to subclasses

¢ In addition, the Facade, Iterator, Singleton, and Strategy patterns are
used
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Using the Strategy Pattern

i

Search )

Struct e This pattern extends the
strategies for checking if
an array is sorted without
modifying the check _sort
algorithm

check sort

———n

\
long |

Range T [ TYPE |
Vector | | Binary Bina

Search Searcrl}l’
Dups Nodups

Copyright ©1997-2003 Vanderbilt University




UCLA Extension Course OO Patterns

The Factory Method Pattern

e [ntent

— Define an interface for creating an object, but let subclasses decide
which class to instantiate
x Factory Method lets a class defer instantiation to subclasses

e This pattern resolves the following force:

1. How to extend the initialization strategy in the sort verifier
transparently
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Structure of the Factory Method Pattern

Creator

factory method() =0
make_product()

AN
AN
N\

P ro du («'t Product *product = factory_method()ﬁ

return product

Concrete
Creator

factory method()Q

\
Concrete \

Product |<<%Y% :

return new Concrete_ProductS
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Using the Factory Method Pattern

Search
Strategy
make strategy()

Search
Struct

New Search
Strategy

make_strategy() Of

New Search .
Struct i AN

CREATES

return new New_Search_StructS
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Implementing the check _sort Function

e e.g., C++ code for the sort verification strategy

template <class ARRAY> int
check_sort (const ARRAY &orig, const ARRAY &p_sort)

if (orig.size () '= p_sort.size ())
return -1,

auto_ptr < Search_struct_Strategy<ARRAY:: TYPE> > ss =
Search_Strategy<ARRAY>::instance ()->make_strategy

(p_sort);
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Implementing the check _sort Function (contd)

for (int i = 0; i < p_sort.size (); ++i)
if (ss->insert (p_sort[i]) == -1)
return -1,

for (int i = 0; i < orig.size (); ++i)
if (ss->remove (orig[i]) == -1)
return -1,

return O;
/I auto_ptr's destructor deletes the memory . . .

}
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Initializing the Search Structure

e Factory Method

template <class ARRAY>

Search_struct_Strategy<ARRAY:TYPE> *

Search_Strategy<ARRAY>::make_strategy
(const ARRAY &potential_sort)

{

int duplicates = 0;

for (size_t i = 1; i < potential_sort.size (); ++i)
if (potential_sort[i] < potential_sort[i - 1])
return O;
else if (potential_sort[i] == potential_sort[i - 1])
++duplicates;

Copyright ©1997-2003 Vanderbilt University

UCLA Extension Course OO Patterns

Initializing the Search Structure (cont’d)

if (duplicates == 0)
return new Binary Search_Nodups<ARRAY>
(potential_sort);
else if (size % 2)
return new Binary_Search_Dups<ARRAY>
(potential_sort, duplicates)
else return new Hash_Table<ARRAY:TYPE>
(size, &hash_function);
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Specializing the Search Structure for Range Vectors

template <Array<long> > Search_struct_Strategy<long> *
Search_Strategy<Array<long> >::make_strategy
(const Array<long> &potential_sort)

{

int duplicates = 0;

for (size t i = 1; i < size; ++i)
if (potential_sort[i] < potential_sort[i - 1])
return O;
else if (potential_sort[i] == potential_sort[i - 1])
++duplicates;

long range = potential_sort[size - 1] -
potential_sort[0];
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Specializing the Search Structure for Range Vectors
if (range <= size)
return new Range Vector (potential sort[0],
potential_sort[size - 1])
else if (duplicates == 0)
return new Binary_Search_Nodups<long>
(potential_sort);
else if (size % 2)
return new Binary_Search_Dups<long>
(potential_sort, duplicates)
else return new Hash_Table<long>
(size, &hash_function);
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Summary of Sort Verifier Case Study

e The sort verifier illustrates how to use OO techniques to structure a
modular, extensible, and efficient solution

— The main processing algorithm is simplified

— The complexity is pushed into the strategy objects and the strategy
selection factory

— Adding new solutions does not affect existing code

— The appropriate ADT search structure is selected at run-time
based on the Strategy pattern
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