
UCLA Extension Course

Object-Oriented Design Case Studies with
Patterns and C++

Douglas C. Schmidt
Department of Electrical Engineering and Computer Science

Vanderbilt University
d.schmidt@vanderbilt.edu

http://www.cs.wustl.edu/ schmidt/

UCLA Extension Course OO Patterns

Case Studies Using Patterns

� The following slides describe several case studies using C++ and
patterns to build highly extensible software

� The examples include

1. Expression trees
– e.g., Factory, Bridge, Adapter

2. System Sort
– e.g., Facade, Adapter, Iterator, Singleton, Factory Method,

Strategy, Bridge, Double-Checked Locking Optimization
3. Sort Verifier

– e.g., Strategy, Factory Method, Facade, Iterator, Singleton

Copyright c
1997-2003 Vanderbilt University 1

UCLA Extension Course OO Patterns

Case Study 1: Expression Tree Evaluator

� The following inheritance and dynamic binding example constructs
expression trees

– Expression trees consist of nodes containing operators and
operands

� Operators have different precedence levels, different associativities,
and different arities, e.g.,

� Multiplication takes precedence over addition

� The multiplication operator has two arguments, whereas unary
minus operator has only one

� Operands are integers, doubles, variables, etc.

� We’ll just handle integers in this example . . .

Copyright c
1997-2003 Vanderbilt University 2

UCLA Extension Course OO Patterns

Expression Tree Diagram

5 3 4

BINARY

NODES

555 333 444

INTEGER

NODES

UNARY

NODE

*

+

Copyright c
1997-2003 Vanderbilt University 3

U
C

LA
E

xtension
C

ourse
O

O
P

atterns

E
xpression

Tree
B

ehavior

�

E
xpression

trees

–
Trees

m
ay

be
“evaluated”

via
differenttraversals

�

e.g.,in-order,post-order,pre-order,level-order
–

T
he

evaluation
step

m
ay

perform
various

operations, e.g.,

�

Traverse
and

printthe
expression

tree

�

R
eturn

the
“value”

ofthe
expression

tree

�

G
enerate

code

�

P
erform

sem
antic

analysis

C
opyright

c

1997-2003
V

anderbiltU
niversity

4

UCLA Extension Course

Data-Driven Version

� A typical data-driven method for implementing
expression trees involves using a struct/union to
represent data structure, e.g.,

typedef struct Tree_Node Tree_Node;
struct Tree_Node {

enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {

char op_[2];
int num_;

} o;
#define num_ o.num_
#define op_ o.op_

union {
Tree_Node *unary_;
struct { Tree_Node *l_, *r_; } binary_;

} c;
#define unary_ c.unary_
#define binary_ c.binary_
};

Copyright c
1997-2003 Vanderbilt University

U
C

LA
E

xtension
C

ourse
O

O
P

atterns

M
em

ory
LayoutofD

ata-D
riven

V
ersion

T
re

e
N

o
d
e

T
re

e
N

o
d
e

1

1
|2

ta
g
_

u
se

_

o
p
_

n
u
m

_

u
n
a
ry

_

b
in

a
ry

_

M
E

M
O

R
Y

L
A

Y
O

U
T

C
L

A
S

S

R
E

L
A

T
IO

N
S

H
IP

S

�

H
ere’s

w
hatthe

m
em

ory
layoutofa

struct
T

re
e

N
o
d
e

objectlooks
like

C
opyright

c

1997-2003
V

anderbiltU
niversity

6

UCLA Extension Course

Print Tree Function

� A typical data-driven implementation use a
switch statement and a recursive function to build
and evaluate a tree, e.g.,

void print_tree (Tree_Node *root) {
switch (root->tag_) {
case NUM: printf ("%d", root->num_); br e
case UNARY:

printf ("%s", root->op_[0]);
print_tree (root->unary_);
printf (")"); break;

case BINARY:
printf ("(");
print_tree (root->binary_.l_);
printf ("%s", root->op_[0]);
print_tree (root->binary_.r_);
printf (")"); break;

default:
printf (error, unknown type\n);
exit (1);

}
}

Copyright c
1997-2003 Vanderbilt University

UCLA Extension Course OO Patterns

Limitations with Data-Driven Approach

� Problems or limitations with the typical data-driven approach include

– Little or no use of encapsulation

� Incomplete modeling of the application domain, which results in

1. Tight coupling between nodes and edges in union representation
2. Complexity being in algorithms rather than the data structures

– e.g., switch statements are used to select between various types
of nodes in the expression trees

– Compare with binary search!
3. Data structures are “passive” and functions do most processing

work explicitly

Copyright c
1997-2003 Vanderbilt University 8

UCLA Extension Course OO Patterns

More Limitations with Data-Driven Approach

� The program organization makes it difficult to extend, e.g.,

– Any small changes will ripple through the entire design and
implementation

� e.g., see the “ternary” extension below
– Easy to make mistakes switching on type tags . . .

� Solution wastes space by making worst-case assumptions wrt
structs and unions

– This is not essential, but typically occurs
– Note that this problem becomes worse the bigger the size of the

largest item becomes!

Copyright c
1997-2003 Vanderbilt University 9

UCLA Extension Course OO Patterns

OO Alternative

� Contrast previous data-driven approach with an object-oriented
decomposition for the same problem:

– Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture

– Discover several classes involved:

� class Node: base class that describes expression tree vertices:

� class Int Node: used for implicitly converting int to Tree node

� class Unary Node: handles unary operators, e.g., -10, +10, !a

� class Binary Node: handles binary operators, e.g., a + b, 10 -
30

� class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes

– Note, these classes model entities in the application domain

� i.e., nodes and edges (vertices and arcs)

Copyright c
1997-2003 Vanderbilt University 10

UCLA Extension Course OO Patterns

Relationships Between Tree and Node Classes

Unary
Node

Node

Tree3
1

1

11

2

Binary
Node

Ternary
Node

Int
Node

has
-a

Copyright c
1997-2003 Vanderbilt University 11

UCLA Extension Course OO Patterns

Design Patterns in the Expression Tree Program

� Factory

– Centralize the assembly of resources necessary to create an
object

� e.g., decouple Node subclass initialization from their subsequent
use

� Bridge

– Decouple an abstraction from its implementation so that the two
can vary independently

� e.g., printing the contents of a subtree and managing dynamic
memory

Copyright c
1997-2003 Vanderbilt University 12

UCLA Extension Course OO Patterns

Design Patterns in the Expression Tree Program
(cont’d)

� Adapter

– Convert the interface of a class into another interface clients expect

� e.g., make Tree conform to interfaces expected by C++
iostreams operators

Copyright c
1997-2003 Vanderbilt University 13

UCLA Extension Course OO Patterns

C++ Node Interface
class Tree; // Forward declaration

// Describes the Tree vertices
class Node {
friend class Tree;
protected: // Only visible to derived classes

Node () : use_ (1) {}

/* pure */ virtual void print (ostream &) const = 0;

// Important to make destructor virtual!
virtual ˜Node ();

private:
int use_; // Reference counter.

};

Copyright c
1997-2003 Vanderbilt University 14

UCLA Extension Course OO Patterns

C++ Tree Interface
#include "Node.h"
// Bridge class that describes the Tree edges and
// acts as a Factory.
class Tree {
public:

// Factory operations
Tree (int);
Tree (const char *, Tree &);
Tree (const char *, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
˜Tree ();
void print (ostream &) const;

private:
Node *node_; // pointer to a rooted subtree

Copyright c
1997-2003 Vanderbilt University 15

UCLA Extension Course OO Patterns

C++ Int Node Interface

#include "Node.h"

class Int_Node : public Node {
public:

Int_Node (int k);
virtual void print (ostream &stream) const;

private:
int num_; // operand value.

};

Copyright c
1997-2003 Vanderbilt University 16

UCLA Extension Course OO Patterns

C++ Unary Node Interface

#include "Node.h"

class Unary_Node : public Node {
public:

Unary_Node (const char *op, const Tree &t);
virtual void print (ostream &stream) const;

private:
const char *operation_;
Tree operand_;

};

Copyright c
1997-2003 Vanderbilt University 17

UCLA Extension Course OO Patterns

C++ Binary Node Interface

#include "Node.h"

class Binary_Node : public Node {
public:

Binary_Node (const char *op,
const Tree &t1,
const Tree &t2);

virtual void print (ostream &s) const;
private:

const char *operation_;
Tree left_;
Tree right_;

};

Copyright c
1997-2003 Vanderbilt University 18

UCLA Extension Course OO Patterns

Memory Layout for C++ Version

tag

op

vptr

use

Node
PART

num

Node
PART

ptr

operator

operand
(Tree PART)

Node
PART

operator

left
(Tree PART)

Node
PART

operator

right
(Tree PART)

left
(Tree PART)

right
(Tree PART)

middle
(Tree PART)

tag

op

Node

Int_Node

Node
PART

Tree operator_

operand_
(Tree PART)

Unary Node

Node
PART

operator_

left_
(Tree PART)

Binary
Node

Node
PART

operator_

right_
(Tree PART)

left_
(Tree PART)

right_
(Tree PART)

middle_
(Tree PART)

Ternary
Node

vptr

use_

Node
PART

num_

node_

� Memory layouts for
different subclasses of
Node

Copyright c
1997-2003 Vanderbilt University 19

UCLA Extension Course OO Patterns

C++ Int Node Implementations

#include "Int_Node.h"

Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

}

Copyright c
1997-2003 Vanderbilt University 20

UCLA Extension Course OO Patterns

C++ Unary Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const char *op, const Tree &t1)
: operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<

<< this->operand_ // recursive call!
<< ")";

}

Copyright c
1997-2003 Vanderbilt University 21

UCLA Extension Course OO Patterns

C++ Binary Node Implementation

#include "Binary_Node.h"

Binary_Node::Binary_Node (const char *op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call

<< " " << this->operation_
<< " " << this->right_ // recursive call
<< ")";

}

Copyright c
1997-2003 Vanderbilt University 22

UCLA Extension Course OO Patterns

Initializing the Node Subclasses
� Problem

– How to ensure the Node subclasses are initialized properly

� Forces

– There are different types of Node subclasses

� e.g., take different number and type of arguments
– We want to centralize initialization in one place because it is likely

to change . . .

� Solution

– Use a Factory pattern to initialize the Node subclasses

Copyright c
1997-2003 Vanderbilt University 23

UCLA Extension Course OO Patterns

The Factory Pattern

� Intent

– Centralize the assembly of resources necessary to create an
object

� Decouple object creation from object use by localizing creation
knowledge

� This pattern resolves the following forces:

– Decouple initialization of the Node subclasses from their
subsequent use

– Makes it easier to change or add new Node subclasses later on

� e.g., Ternary nodes . . .

� A generalization of the Factory Method pattern

Copyright c
1997-2003 Vanderbilt University 24

UCLA Extension Course OO Patterns

Structure of the Factory Pattern

FactoryFactory

make_product()

Product product = ...Product product = ...

return productreturn product

createscreates

ProductProduct

Copyright c
1997-2003 Vanderbilt University 25

UCLA Extension Course OO Patterns

Using the Factory Pattern

� The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const char *op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const char *op,
const Tree &t1,
const Tree &t2):

: node_ (new Binary_Node (op, t1, t2)) {}

Copyright c
1997-2003 Vanderbilt University 26

UCLA Extension Course OO Patterns

Printing Subtrees
� Problem

– How do we print subtrees without revealing their types?

� Forces

– The Node subclass should be hidden within the Tree instances
– We don’t want to become dependent on the use of Nodes ,

inheritance, and dynamic binding, etc.
– We don’t want to expose dynamic memory management details to

application developers

� Solution

– Use the Bridge pattern to shield the use of inheritance and
dynamic binding

Copyright c
1997-2003 Vanderbilt University 27

UCLA Extension Course OO Patterns

The Bridge Pattern

� Intent

– Decouple an abstraction from its implementation so that the two
can vary independently

� This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
– interface is closed to prevent direct code changes
– Implementation is open to allow extensibility

2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<

Copyright c
1997-2003 Vanderbilt University 28

UCLA Extension Course OO Patterns

Structure of the Bridge Pattern

ImplementorImplementor

method_impl()

1: method_impl()

ConcreteConcrete
ImplementorAImplementorA

method_impl() ConcreteConcrete
ImplementorBImplementorB

method_impl()

AbstractionAbstraction

method()

Copyright c
1997-2003 Vanderbilt University 29

UCLA Extension Course OO Patterns

Using the Bridge Pattern

Int NodeInt Node

print() BinaryBinary
NodeNode

print()

NodeNode

print()

1: print()

UnaryUnary
NodeNode
print()

TernaryTernary
NodeNode

print()

TreeTree

print()

Copyright c
1997-2003 Vanderbilt University 30

UCLA Extension Course OO Patterns

Illustrating the Bridge Pattern in C++
� The Bridge pattern is used for printing expression trees:

void Tree::print (ostream &os) const {
this->node_->print (os);

}

� Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

– i.e., the Tree interface is fixed, whereas the Node implementation
varies

– However, clients need not be concerned about the variation . . .

Copyright c
1997-2003 Vanderbilt University 31

UCLA Extension Course OO Patterns

Integrating with C++ I/O Streams

� Problem

– Our Tree interface uses a print method, but most C++
programmers expect to use I/O Streams

� Forces

– Want to integrate our existing C++ Tree class into the I/O Stream
paradigm without modifying our class or C++ I/O

� Solution

– Use the Adapter pattern to integrate Tree with I/O Streams

Copyright c
1997-2003 Vanderbilt University 32

UCLA Extension Course OO Patterns

The Adapter Pattern

� Intent

– Convert the interface of a class into another interface client expects

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

� This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Copyright c
1997-2003 Vanderbilt University 33

UCLA Extension Course OO Patterns

Structure of the Adapter Pattern

AdapterAdapter

request()

1: request ()

2: specific_request()

TargetTarget

request()

clientclient

AdapteeAdaptee

specific_request()

Copyright c
1997-2003 Vanderbilt University 34

UCLA Extension Course OO Patterns

Using the Adapter Pattern

iostreamiostream

operator<<
2: print()

TreeTree

print()

1: operator<<

clientclient TargetTarget

operator<<

Copyright c
1997-2003 Vanderbilt University 35

UCLA Extension Course OO Patterns

Using the Adapter Pattern

� The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {
tree.print (s);
// This triggers Node * virtual call via
// tree.node_->print (s), which is
// implemented as the following:
// (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

� Note how the C++ code shown above uses I/O streams to “adapt”
the Tree interface . . .

Copyright c
1997-2003 Vanderbilt University 36

UCLA Extension Course OO Patterns

C++ Tree Implementation

� Reference counting via the “counted body” idiom

Tree::Tree (const Tree &t): node_ (t.node_) {
// Sharing, ref-counting.

++this->node_->use_;
}

void Tree::operator= (const Tree &t) {
// order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)

delete this->node_;
this->node_ = t.node_;

}

Copyright c
1997-2003 Vanderbilt University 37

UCLA Extension Course OO Patterns

C++ Tree Implementation (cont’d)

Tree::˜Tree () {
// Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)

delete this->node_;
}

Copyright c
1997-2003 Vanderbilt University 38

UCLA Extension Course OO Patterns

C++ Main Program
#include <iostream.h>
#include "Tree.h"

int main (int, char *[]) {
const Tree t1 = Tree ("*", Tree ("-", 5),

Tree ("+", 3, 4));
cout << t1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree ("*", t1, t1);

// prints (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl;

return 0;
// Destructors of t1 and t2 recursively

} // delete entire tree when leaving scope.

Copyright c
1997-2003 Vanderbilt University 39

UCLA Extension Course OO Patterns

Expression Tree Diagram 1

Binary
Node

Unary
Node

Int
Node

t1

55
33

44

-

print()
*

+

� Expression tree for t1 = ((-
5) * (3 + 4))

Copyright c
1997-2003 Vanderbilt University 40

UCLA Extension Course OO Patterns

Expression Tree Diagram 2

Binary
Node

Unary
Node

Int
Node

t1

55
33

44

-

print()

t2

*

*

+

� Expression tree for t2 = (t1
* t1)

Copyright c
1997-2003 Vanderbilt University 41

UCLA Extension Course OO Patterns

Adding Ternary Nodes

� Extending the existing program to support ternary nodes is
straightforward

– i.e., just derive new class Ternary Node to handle ternary
operators, e.g., a == b ? c : d, etc.

#include "Node.h"
class Ternary_Node : public Node {
public:

Ternary_Node (const char *, const Tree &,
const Tree &, const Tree &);

virtual void print (ostream &) const;
private:

const char *operation_;
Tree left_, middle_, right_; };

Copyright c
1997-2003 Vanderbilt University 42

UCLA Extension Course OO Patterns

C++ Ternary Node Implementation
#include "Ternary_Node.h"
Ternary_Node::Ternary_Node (const char *op,

const Tree &a,
const Tree &b,
const Tree &c)

: operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("

<< this->left_ // recursive call
<< "," << this->middle_ // recursive call
<< "," << this->right_ // recursive call
<< ")";

}

Copyright c
1997-2003 Vanderbilt University 43

UCLA Extension Course OO Patterns

C++ Ternary Node Implementation (cont’d)

// Modified class Tree Factory
class Tree { // add 1 class constructor
public:

Tree (const char *, const Tree &,
const Tree &, const Tree &)

: node_ (new Ternary_Node (op, l, m, r)) {}
// Same as before . . .

Copyright c
1997-2003 Vanderbilt University 44

UCLA Extension Course OO Patterns

Differences from Data-Driven Implementation

� On the other hand, modifying the original data-driven approach
requires changing 1) the original data structures, e.g.,

struct Tree_Node {
enum {

NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {

// same as before. But, add this:
struct {

Tree_Node *l_, *m_, *r_;
} ternary_;

} c;
#define ternary_ c.ternary_
};

Copyright c
1997-2003 Vanderbilt University 45

UCLA Extension Course OO Patterns

Differences from Data-Driven Implementation (cont’d)

� and 2) many parts of the code, e.g.,

void print_tree (Tree_Node *root) {
// same as before
case TERNARY: // must be TERNARY.

printf ("(");
print_tree (root->ternary_.l_);
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

// same as before
}

Copyright c
1997-2003 Vanderbilt University 46

UCLA Extension Course OO Patterns

Summary of Expression Tree Example
� OO version represents a more complete modeling of the application

domain

– e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

� Use of C++ language features simplifies the design and facilitates
extensibility

– e.g., implementation follows directly from design

� Use of patterns helps to motivate, justify, and generalize design
choices

Copyright c
1997-2003 Vanderbilt University 47

UCLA Extension Course OO Patterns

Potential Problems with OO Design

� Solution is very “data structure rich”

– e.g., requires configuration management to handle many headers
and .cc files!

� May be somewhat less efficient than original data-driven approach

– e.g., due to virtual function overhead

� In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

� As a rule, be careful of micro vs. macro optimizations

– i.e., always profile your code!

Copyright c
1997-2003 Vanderbilt University 48

UCLA Extension Course OO Patterns

Case Study 2: System Sort

� Develop a general-purpose system sort

– It sorts lines of text from standard input and writes the result to
standard output

– e.g., the UNIX system sort

� In the following, we’ll examine the primary forces that shape the
design of this application

� For each force, we’ll examine patterns that resolve it

Copyright c
1997-2003 Vanderbilt University 49

UCLA Extension Course OO Patterns

External Behavior of System Sort

� A “line” is a sequence of characters terminated by a newline

� default ordering is lexicographic by bytes in machine collating
sequence (e.g., ASCII)

� The ordering is affected globally by the following options:

– Ignore case (-i)
– Sort numerically (-n)
– Sort in reverse (-r)
– Begin sorting at a specified field (-f)
– Begin sorting at a specified column (-c)

� Note, our program need not sort files larger than main memory

Copyright c
1997-2003 Vanderbilt University 50

UCLA Extension Course OO Patterns

High-level Forces
� Solution should be both time and space efficient

– e.g., must use appropriate algorithms and data structures
– Efficient I/O and memory management are particularly important
– Our solution uses minimal dynamic binding (to avoid unnecessary

overhead)

� Solution should leverage reusable components

– e.g., iostreams, Array and Stack classes, etc.

� Solution should yield reusable components

– e.g., efficient input classes, generic sort routines, etc.

Copyright c
1997-2003 Vanderbilt University 51

UCLA Extension Course OO Patterns

Top-level Algorithmic View of the Solution

� Note the use of existing C++ mechanisms like I/O streams

// Reusable function
template <class ARRAY> void
sort (ARRAY &a);

int main (int argc, char *argv[])
{

parse_args (argc, argv);
Input_Array input;

cin >> input;
sort (input);
cout << input;

}

Copyright c
1997-2003 Vanderbilt University 52

UCLA Extension Course OO Patterns

Top-level Algorithmic View of the Solution (cont’d)

� Avoid the grand mistake of using top-level algorithmic view to
structure the design . . .

– Structure the design to resolve the forces!
– Don’t focus on algorithms or data, but instead look at the problem,

its participants, and their interactions!

Copyright c
1997-2003 Vanderbilt University 53

UCLA Extension Course OO Patterns

General OOD Solution Approach

� Identify the classes in the application and solution space

– e.g., stack, array, input class, options, access table, sorts, etc.

� Recognize and apply common design patterns

– e.g., Singleton, Factory, Adapter, Iterator

� Implement a framework to coordinate components

– e.g., use C++ classes and parameterized types

Copyright c
1997-2003 Vanderbilt University 54

UCLA Extension Course OO Patterns

C++ Class Model

Stack

System
Sort

TYPE

Options

GLOBAL

TACTICAL

COMPONENTS

STRATEGIC

COMPONENTS

Sort

Sort_AT
Adapter

Access
Table

Input

Sort_AT
Adapter

Line_Ptrs

TYPE

Array

TYPE

Sort

ARRAY

Copyright c
1997-2003 Vanderbilt University 55

UCLA Extension Course OO Patterns

C++ Class Components

� Tactical components

– Stack

� Used by non-recursive quick sort
– Array

� Stores pointers to lines and fields
– Access Table

� Used to store and sort input
– Input

� Efficiently reads arbitrary sized input using only 1 dynamic
allocation and 1 copy

Copyright c
1997-2003 Vanderbilt University 56

UCLA Extension Course OO Patterns

C++ Class Components

� Strategic components

– System Sort

� integrates everything . . .
– Sort AT Adapter

� integrates the Array and the Access Table
– Options

� Manages globally visible options
– Sort

� e.g., both quicksort and insertion sort

Copyright c
1997-2003 Vanderbilt University 57

UCLA Extension Course OO Patterns

Detailed Format for Solution

� Note the separation of concerns

// Prototypes
template <class ARRAY> void sort (ARRAY &a);
void operator >> (istream &, Access_Table<Line_Ptrs> &);
void operator << (ostream &,

const Access_Table<Line_Ptrs> &);

int main (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);
cin >> System_Sort::instance ()->access_table ();
sort (System_Sort::instance ()->access_table ());
cout << System_Sort::instance ()->access_table ();

}

Copyright c
1997-2003 Vanderbilt University 58

UCLA Extension Course OO Patterns

Reading Input Efficiently
� Problem

– The input to the system sort can be arbitrarily large (e.g., up to 1/2
size of main memory)

� Forces

– To improve performance solution must minimize:
1. Data copying and data manipulation
2. Dynamic memory allocation

� Solution

– Create an Input class that reads arbitrary input efficiently

Copyright c
1997-2003 Vanderbilt University 59

UCLA Extension Course OO Patterns

Access Table Format

A
C

C
E

S
S

A

R
R

A
Y

ACCESS BUFFER

Copyright c
1997-2003 Vanderbilt University 60

UCLA Extension Course OO Patterns

The Input Class

� Efficiently reads arbitrary-sized input using only 1 dynamic allocation

class Input
{
public:

// Reads from <input> up to <terminator>,
// replacing <search> with <replace>. Returns
// pointer to dynamically allocated buffer.
char *read (istream &input,

int terminator = EOF,
int search = ’\n’,
int replace = ’\0’);

// Number of bytes replaced.
size_t replaced () const;

Copyright c
1997-2003 Vanderbilt University 61

UCLA Extension Course OO Patterns

The Input Class
// Size of buffer.
size_t size () const;

private:
// Recursive helper method.
char *recursive_read ();

// . . .
};

Copyright c
1997-2003 Vanderbilt University 62

UCLA Extension Course OO Patterns

Design Patterns in System Sort
� Facade

– Provide a unified interface to a set of interfaces in a subsystem

� Facade defines a higher-level interface that makes the
subsystem easier to use

– e.g., sort provides a facade for the complex internal details of
efficient sorting

� Adapter

– Convert the interface of a class into another interface clients expect

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

– e.g., make Access Table conform to interfaces expected by
sort and iostreams

Copyright c
1997-2003 Vanderbilt University 63

UCLA Extension Course OO Patterns

Design Patterns in System Sort (cont’d)

� Factory

– Centralize the assembly of resources necessary to create an
object

– e.g., decouple initialization of Line Ptrs used by Access Table
from their subsequent use

� Bridge

– Decouple an abstraction from its implementation so that the two
can vary independently

– e.g., comparing two lines to determine ordering

Copyright c
1997-2003 Vanderbilt University 64

UCLA Extension Course OO Patterns

Design Patterns in System Sort (cont’d)

� Strategy

– Define a family of algorithms, encapsulate each one, and make
them interchangeable

– e.g., allow flexible pivot selection

� Singleton

– Ensure a class has only one instance, and provide a global point
of access to it

– e.g., provides a single point of access for the system sort facade
and for program options

Copyright c
1997-2003 Vanderbilt University 65

UCLA Extension Course OO Patterns

Design Patterns in System Sort (cont’d)

� Double-Checked Locking Optimization

– Ensures atomic initialization or access to objects and eliminates
unnecessary locking overhead

– e.g., allows multiple threads to execute sort

� Iterator

– Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

– e.g., provides a way to print out the sorted lines without exposing
representation or initialization

Copyright c
1997-2003 Vanderbilt University 66

UCLA Extension Course OO Patterns

Sort Algorithm
� For efficiency, two types of sorting algorithms are used:

1. Quicksort
– Highly time and space efficient sorting arbitrary data
– O(n log n) average-case time complexity
– O(n2) worst-case time complexity
– O(log n) space complexity
– Optimizations are used to avoid worst-case behavior

2. Insertion sort
– Highly time and space efficient for sorting “almost ordered” data
– O(n2) average- and worst-case time complexity
– O(1) space complexity

Copyright c
1997-2003 Vanderbilt University 67

UCLA Extension Course OO Patterns

Quicksort Optimizations

1. Non-recursive

� Uses an explicit stack to reduce function call overhead

2. Median of 3 pivot selection

� Reduces probability of worse-case time complexity

3. Guaranteed (log n) space complexity

� Always “pushes” larger partition

4. Insertion sort for small partitions

� Insertion sort runs fast on almost sorted data

Copyright c
1997-2003 Vanderbilt University 68

UCLA Extension Course OO Patterns

Selecting a Pivot Value

� Problem

– There are various algorithms for selecting a pivot value

� e.g., randomization, median of three, etc.

� Forces

– Different input may sort more efficiently using different pivot
selection algorithms

� Solution

– Use the Strategy pattern to select the pivot selection algorithm

Copyright c
1997-2003 Vanderbilt University 69

UCLA Extension Course OO Patterns

The Strategy Pattern

� Intent

– Define a family of algorithms, encapsulate each one, and make
them interchangeable

� Strategy lets the algorithm vary independently from clients that
use it

� This pattern resolves the following forces

1. How to extend the policies for selecting a pivot value without
modifying the main quicksort algorithm

2. Provide a one size fits all interface without forcing a one size fits all
implementation

Copyright c
1997-2003 Vanderbilt University 70

UCLA Extension Course OO Patterns

Structure of the Strategy Pattern

Strategy
algorithm_interface()

Concrete
Strategy A

algorithm_interface()

STRATEGY

Concrete
Strategy B

algorithm_interface()

Concrete
Strategy C

algorithm_interface()

Context
context_interface()

Copyright c
1997-2003 Vanderbilt University 71

UCLA Extension Course OO Patterns

Using the Strategy Pattern

RandomRandom

MedianMedian
ofof

ThreeThree

quick_sortquick_sort

pivot_strat->get_pivot (array, lo, hi)

Pivot
Strategy

get_pivot()

Select
First

Copyright c
1997-2003 Vanderbilt University 72

UCLA Extension Course OO Patterns

Implementing the Strategy Pattern

� ARRAY is the particular “context”

template <class ARRAY>
void sort (ARRAY &array)
{

Pivot<ARRAY> *pivot_strat = Pivot<ARRAY>::make_pivot
(Options::instance ()->pivot_strat ());

quick_sort (array, pivot_strat);
}

Copyright c
1997-2003 Vanderbilt University 73

UCLA Extension Course OO Patterns

Implementing the Strategy Pattern
template <class ARRAY, class PIVOT_STRAT>
quick_sort (ARRAY &array, PIVOT_STRAT *pivot_strat)
{

for (;;) {
ARRAY::TYPE pivot; // typename ARRAY::TYPE pivot . .

pivot = pivot_strat->get_pivot (array, lo, hi);

// Partition array[lo, hi] relative to pivot . . .
}

}

Copyright c
1997-2003 Vanderbilt University 74

UCLA Extension Course OO Patterns

Devising a Simple Sort Interface
� Problem

– Although the implementation of the sort function is complex, the
interface should be simple to use

� Key forces

– Complex interface are hard to use, error prone, and discourage
extensibility and reuse

– Conceptually, sorting only makes a few assumptions about the
“array” it sorts

� e.g., supports operator[] methods, size, and element TYPE
– We don’t want to arbitrarily limit types of arrays we can sort

� Solution

– Use the Facade and Adapter patterns to simplify the sort program

Copyright c
1997-2003 Vanderbilt University 75

UCLA Extension Course OO Patterns

Facade Pattern

� Intent

– Provide a unified interface to a set of interfaces in a subsystem

� Facade defines a higher-level interface that makes the
subsystem easier to use

� This pattern resolves the following forces:

1. Simplifies the sort interface
– e.g., only need to support operator[] and size methods, and

element TYPE
2. Allows the implementation to be efficient and arbitrarily complex

without affecting clients

Copyright c
1997-2003 Vanderbilt University 76

UCLA Extension Course OO Patterns

Structure of the Facade Pattern

HIDDENHIDDEN

EXTERNALLYEXTERNALLY

VISIBLEVISIBLE

FacadeFacade

Copyright c
1997-2003 Vanderbilt University 77

UCLA Extension Course OO Patterns

Using the Facade Pattern

StackStack

QuickQuick
SortSort

TYPETYPE

EXTERNALLYEXTERNALLY

VISIBLEVISIBLE

ARRAYARRAY

SortSort

ARRAYARRAY

InsertInsert
SortSort

ARRAYARRAY

HIDDENHIDDEN

Copyright c
1997-2003 Vanderbilt University 78

UCLA Extension Course OO Patterns

The Adapter Pattern
� Intent

– Convert the interface of a class into another interface clients expect

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

� This pattern resolves the following forces:

1. How to transparently integrate the Access Table with the sort
routine

2. How to transparently integrate the Access Table with the C++
iostream operators

Copyright c
1997-2003 Vanderbilt University 79

UCLA Extension Course OO Patterns

Structure of the Adapter Pattern

TargetTarget

request()

AdapterAdapter

request()

AdapteeAdaptee

specific_request()

1: request ()

2: specific_request()

clientclient

Copyright c
1997-2003 Vanderbilt University 80

UCLA Extension Course OO Patterns

Using the Adapter Pattern

sortsort

ARRAYARRAY

1: ARRAY::TYPE t
= array[i]

ARRAYARRAY

Access_TableAccess_Table

ARRAYARRAY::::TYPETYPE
operator[]operator[]
size()size()

make_table()make_table()
length()length()
element()element()

TYPETYPE

"conforms to""conforms to"

"conforms to""conforms to"

Sort_AT_AdapterSort_AT_Adapter

typedef Line_Ptrs TYPEtypedef Line_Ptrs TYPE
make_table()make_table()
operator[]operator[]
size()size()

Line_PtrsLine_Ptrs

Copyright c
1997-2003 Vanderbilt University 81

UCLA Extension Course OO Patterns

Dynamic Array

� Defines a variable-sized array for use by the Access Table

template <class T>
class Array
{
public:

Array (size_t size = 0);
int init (size_t size);
T &operator[](size_t index);
size_t size () const;
// . . .

private:
T *array_;
size_t size_;

};

Copyright c
1997-2003 Vanderbilt University 82

UCLA Extension Course OO Patterns

The Access Table Class
� Efficiently maps indices onto elements in the data buffer

template <class T>
class Access_Table
{
public:

// Factory Method for initializing Access_Table.
virtual int make_table (size_t num_lines,

char *buffer) = 0;
// Release buffer memory.
virtual ˜Access_Table () { delete [] buffer_; }

Copyright c
1997-2003 Vanderbilt University 83

UCLA Extension Course OO Patterns

The Access Table Class (cont’d)

// Retrieve reference to <indexth> element.
T &element (size_t index) {

return access_array_[index];
}

// Length of the access_array.
size_t length () const {

return access_array_.size ();
}

protected:
Array<T> access_array_; // Access table is array of T.
char *buffer_; // Hold the data buffer.

};

Copyright c
1997-2003 Vanderbilt University 84

UCLA Extension Course OO Patterns

The Sort AT Adapter Class

� Adapts the Access Table to conform to the ARRAYinterface expected
by sort

struct Line_Ptrs {
// Comparison operator used by sort().
int operator< (const Line_Ptrs &);

// Beginning of line and field/column.
char *bol_, *bof_;

};

Copyright c
1997-2003 Vanderbilt University 85

UCLA Extension Course OO Patterns

The Sort AT Adapter Class
class Sort_AT_Adapter :

// Note the use of the class form of the Adapter
private Access_Table<Line_Ptrs> {

public:
virtual int make_table (size_t num_lines, char *buffer);

typedef Line_Ptrs TYPE; // Type trait.

// These methods adapt Access_Table methods . . .
T &operator[] (size_t index) {

return element (index);
}

size_t size () const { return length (); }
};

Copyright c
1997-2003 Vanderbilt University 86

UCLA Extension Course OO Patterns

Centralizing Option Processing
� Problem

– Command-line options must be global to many parts of the sort
program

� Key forces

– Unrestricted use of global variables increases system coupling and
can violate encapsulation

– Initialization of static objects in C++ can be problematic

� Solution

– Use the Singleton pattern to centralize option processing

Copyright c
1997-2003 Vanderbilt University 87

UCLA Extension Course OO Patterns

Singleton Pattern

� Intent

– Ensure a class has only one instance, and provide a global point
of access to it

� This pattern resolves the following forces:

1. Localizes the creation and use of “global” variables to well-defined
objects

2. Preserves encapsulation
3. Ensures initialization is done after program has started and only

on first use
4. Allow transparent subclassing of Singleton implementation

Copyright c
1997-2003 Vanderbilt University 88

UCLA Extension Course OO Patterns

Structure of the Singleton Pattern

SingletonSingleton
static instance()static instance()
singleton_operation()singleton_operation()
get_singleton_data()get_singleton_data()
static unique_instance_static unique_instance_
singleton_data_singleton_data_

if (unique_instance_ == 0)if (unique_instance_ == 0)

 unique_instance_ = new Singleton; unique_instance_ = new Singleton;

return unique_instance_;return unique_instance_;

Copyright c
1997-2003 Vanderbilt University 89

UCLA Extension Course OO Patterns

Using the Singleton Pattern

OptionsOptions

static instance()static instance()
bool enabled()bool enabled()
field_offset()field_offset()
static unique_instance_static unique_instance_
options_options_

if (unique_instance_ == 0)if (unique_instance_ == 0)

 unique_instance_ = new Options; unique_instance_ = new Options;

return unique_instance_;return unique_instance_;

Copyright c
1997-2003 Vanderbilt University 90

UCLA Extension Course OO Patterns

Options Class
� This manages globally visible options

class Options
{
public:

static Options *instance ();
void parse_args (int argc, char *argv[]);

// These options are stored in octal order
// so that we can use them as bitmasks!
enum Option { FOLD = 01, NUMERIC = 02,

REVERSE = 04, NORMAL = 010 };
enum Pivot_Strategy { MEDIAN, RANDOM, FIRST };

Copyright c
1997-2003 Vanderbilt University 91

UCLA Extension Course OO Patterns

Options Class

bool enabled (Option o);

int field_offset (); // Offset from BOL.
Pivot_Strategy pivot_strat ();
int (*compare) (const char *l, const char *r);

protected:
Options (); // Ensure Singleton.

u_long options_; // Maintains options bitmask . . .
int field_offset_;
static Options *instance_; // Singleton.

};

Copyright c
1997-2003 Vanderbilt University 92

UCLA Extension Course OO Patterns

Using the Options Class

� The following is the comparison operator used by sort

int Line_Ptrs::operator< (const Line_Ptrs &rhs) {
Options *options = Options::instance ();

if (options->enabled (Options::NORMAL))
return strcmp (this->bof_, rhs.bof_) < 0;

else if (options->enabled (Options::FOLD))
return strcasecmp (this->bof_, rhs.bof_) < 0;

else
// assert (options->enabled (Options::NUMERIC));
return numcmp (this->bof_, rhs.bof_) < 0;

}

Copyright c
1997-2003 Vanderbilt University 93

UCLA Extension Course OO Patterns

Efficiently Avoiding Race Conditions for Singleton
Initialization

� Problem

– A multi-threaded program might have execute multiple copies of
sort in different threads

� Key forces

– Subtle race conditions can cause Singletons to be created multiple
times

– Locking every access to a Singleton can be too costly

� Solution

– Use the Double-Checked Locking Optimization pattern to
efficiently avoid race conditions when initialization Singletons

Copyright c
1997-2003 Vanderbilt University 94

UCLA Extension Course OO Patterns

The Double-Checked Locking Optimization Pattern
� Intent

– Ensures atomic initialization or access to objects and eliminates
unnecessary locking overhead

� This pattern resolves the following forces:

1. Ensures atomic initialization or access to objects, regardless of
thread scheduling order

2. Keeps locking overhead to a minimum
– e.g., only lock on first access, rather than for the entire Singleton

instance() method

Copyright c
1997-2003 Vanderbilt University 95

UCLA Extension Course OO Patterns

Structure of the Double-Checked Locking Optimization
Pattern

MutexMutex

SingletonSingleton

static instance()static instance()
static unique_instance_static unique_instance_

if (unique_instance_ == NULL) {if (unique_instance_ == NULL) {
 mutex_.acquire (); mutex_.acquire ();
 if (unique_instance_ == NULL) if (unique_instance_ == NULL)
 unique_instance_ = new Singleton; unique_instance_ = new Singleton;
 mutex_.release (); mutex_.release ();
}}
return unique_instance_;return unique_instance_;

Copyright c
1997-2003 Vanderbilt University 96

UCLA Extension Course OO Patterns

Using the Double-Checked Locking Optimization
Pattern

� Uses the Adapter pattern to turn ordinary classes into Singletons
optimized automatically with the Double-Checked Locking Optimization
pattern

template <class TYPE, class LOCK>
class Singleton {
public:

static TYPE *instance ();
protected:

static TYPE *instance_;
static LOCK lock_;

};

Copyright c
1997-2003 Vanderbilt University 97

UCLA Extension Course OO Patterns

Using the Double-Checked Locking Optimization
Pattern

template <class TYPE, class LOCK> TYPE *
Singleton<TYPE, LOCK>::instance () {

// Perform the Double-Check.
if (instance_ == 0) {

Guard<LOCK> mon (lock_);
if (instance_ == 0)

instance_ = new TYPE;
}
return instance_;

}

Copyright c
1997-2003 Vanderbilt University 98

UCLA Extension Course OO Patterns

Simplifying Comparisons
� Problem

– The comparison operator shown above is somewhat complex

� Forces

– It’s better to determine the type of comparison operation during the
initialization phase

– But the interface shouldn’t change

� Solution

– Use the Bridge pattern to separate interface from implementation

Copyright c
1997-2003 Vanderbilt University 99

UCLA Extension Course OO Patterns

The Bridge Pattern

� Intent

– Decouple an abstraction from its implementation so that the two
can vary independently

� This pattern resolves the following forces that arise when building
extensible software

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
– Closed to prevent direct code changes
– Open to allow extensibility

2. How to simplify the Line_Ptrs::operator< implementation

Copyright c
1997-2003 Vanderbilt University 100

UCLA Extension Course OO Patterns

Structure of the Bridge Pattern

ImplementorImplementor

method_impl()

1: method_impl()

ConcreteConcrete
ImplementorAImplementorA

method_impl() ConcreteConcrete
ImplementorBImplementorB

method_impl()

AbstractionAbstraction

method()

Copyright c
1997-2003 Vanderbilt University 101

UCLA Extension Course OO Patterns

Using the Bridge Pattern

1: compare()

Line_PtrsLine_Ptrs
operator<

OptionsOptions

compare()

strcmp()
strcasecmp()

numcmp()

Copyright c
1997-2003 Vanderbilt University 102

UCLA Extension Course OO Patterns

Using the Bridge Pattern
� The following is the comparison operator used by sort

int
Line_Ptrs::operator<(const Line_Ptrs &rhs)
{

return (*Options::instance ()->compare)
(bof_, rhs.bof_);

}

� This solution is much more concise

� However, there’s an extra level of function call indirection . . .

– Which is equivalent to a virtual function call

Copyright c
1997-2003 Vanderbilt University 103

UCLA Extension Course OO Patterns

Initializing the Comparison Operator

� Problem

– How does the compare pointer-to-method get assigned?
int (*compare) (const char *left, const char *right);

� Forces

– There are many different choices for compare , depending on
which options are enabled

– We only want to worry about initialization details in one place
– Initialization details may change over time
– We’d like to do as much work up front to reduce overhead later on

� Solution

– Use a Factory pattern to initialize the comparison operator

Copyright c
1997-2003 Vanderbilt University 104

UCLA Extension Course OO Patterns

The Factory Pattern

� Intent

– Centralize the assembly of resources necessary to create an
object

� Decouple object creation from object use by localizing creation
knowledge

� This pattern resolves the following forces:

– Decouple initialization of the compare operator from its
subsequent use

– Makes it easier to change comparison policies later on

� e.g., adding new command-line options

Copyright c
1997-2003 Vanderbilt University 105

UCLA Extension Course OO Patterns

Structure of the Factory Pattern

FactoryFactory

make_product()

Product product = ...Product product = ...

return productreturn product

createscreates

ProductProduct

Copyright c
1997-2003 Vanderbilt University 106

UCLA Extension Course OO Patterns

Using of the Factory Pattern for Comparisons

CompareCompare
FunctionFunction

OptionsOptions

parse_args()

initialize compareinitialize compare

createscreates

Copyright c
1997-2003 Vanderbilt University 107

UCLA Extension Course OO Patterns

Code for Using the Factory Pattern

� The following initialization is done after command-line options are
parsed

Options::parse_args (int argc, char *argv[])
{

// . . .
if (this->enabled (Options::NORMAL))

this->compare = &strcmp;
else if (this->enabled (Options::FOLD))

this->compare = &strcasecmp;
else if (this->enabled (Options::NUMERIC))

this->compare = &numcmp;
// . . .

Copyright c
1997-2003 Vanderbilt University 108

UCLA Extension Course OO Patterns

Code for Using the Factory Pattern (cont’d)

int numcmp (const char *s1, const char * s2)
{

double d1 = strtod (s1, 0), d2 = strtod (s2, 0);

if (d1 < d2) return -1;
else if (d1 > d2) return 1;
else // if (d1 == d2)

return 0;
}

Copyright c
1997-2003 Vanderbilt University 109

UCLA Extension Course OO Patterns

Initializing the Access Table

� Problem

– One of the nastiest parts of the whole system sort program is
initializing the Access Table

� Key forces

– We don’t want initialization details to affect subsequent processing
– Makes it easier to change initialization policies later on

� e.g., using the Access Table in non-sort applications

� Solution

– Use the Factory Method pattern to initialize the Access Table

Copyright c
1997-2003 Vanderbilt University 110

UCLA Extension Course OO Patterns

Factory Method Pattern
� Intent

– Define an interface for creating an object, but let subclasses decide
which class to instantiate

� Factory Method lets a class defer instantiation to subclasses

� This pattern resolves the following forces:

– Decouple initialization of the Access Table from its subsequent
use

– Improves subsequent performance by pre-caching beginning of
each field and line

– Makes it easier to change initialization policies later on

� e.g., adding new command-line options

Copyright c
1997-2003 Vanderbilt University 111

UCLA Extension Course OO Patterns

Structure of the Factory Method Pattern

ConcreteConcrete
ProductProduct

ProductProduct

CreatorCreator

factory_method() = 0
make_product()

Product *product = factory_method()Product *product = factory_method()

return productreturn product

ConcreteConcrete
CreatorCreator

factory_method()

return new Concrete_Productreturn new Concrete_Product

CREATES

Copyright c
1997-2003 Vanderbilt University 112

UCLA Extension Course OO Patterns

Using the Factory Method Pattern for Access Table
Initialization

Access TableAccess Table

make_table() = 0

Sort ATSort AT
AdapterAdapter

make_table()

// initialize the table// initialize the table

Line PtrsLine Ptrs

TYPETYPE

Copyright c
1997-2003 Vanderbilt University 113

UCLA Extension Course OO Patterns

Using the Factory Method Pattern for the
Sort AT Adapter

� The following iostream Adapter initializes the Sort AT Adapter
access table

template <class T>
void operator>> (istream &is, Access_Table<T> &at)
{

Input input;
// Read entire stdin into buffer.
char *buffer = input.read (is);
size_t num_lines = input.replaced ();

// Factory Method initializes Access_Table<>.
at.make_table (num_lines, buffer);

}

Copyright c
1997-2003 Vanderbilt University 114

UCLA Extension Course OO Patterns

Implementing the Factory Method Pattern
� The Access Table Factory class has a Factory Method that initializes

Sort AT Adapter

// Factory Method initializes Access_Table.
int Sort_AT_Adapter::make_table (size_t num_lines,

char *buffer)
{

// Array assignment op.
this->access_array_.resize (num_lines);
this->buffer_ = buffer; // Obtain ownership.

size_t count = 0;

Copyright c
1997-2003 Vanderbilt University 115

UCLA Extension Course OO Patterns

Implementing the Factory Method Pattern (cont’d)
// Iterate through the buffer and determine
// where the beginning of lines and fields
// must go.
for (Line_Ptrs_Iter iter (buffer, num_lines);

iter.is_done () == 0;
iter.next ())

{
Line_Ptrs line_ptr = iter.current_element ();
this->access_array_[count++] = line_ptr;

}
}

Copyright c
1997-2003 Vanderbilt University 116

UCLA Extension Course OO Patterns

Initializing the Access Table with Input Buffer

� Problem

– We’d like to initialize the Access Table without having to know the
input buffer is represented

� Key force

– Representation details can often be decoupled from accessing
each item in a container or collection

� Solution

– Use the Iterator pattern to scan through the buffer

Copyright c
1997-2003 Vanderbilt University 117

UCLA Extension Course OO Patterns

Iterator Pattern

� Intent

– Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

� Note that STL is heavily based on iterators

� The Iterator pattern provides a way to initialize the Access Table
without knowing how the buffer is represented:

Line_Ptrs_Iter::Line_Ptrs_Iter
(char *buffer, size_t num_lines);

Copyright c
1997-2003 Vanderbilt University 118

UCLA Extension Course OO Patterns

Iterator Pattern (cont’d)

Line_Ptrs
Line_Ptrs_Iter::current_element ()
{

Line_Ptrs lp;

// Determine beginning of next line and next field . . .
lp.bol_ = // . . .
lp.bof_ = // . . .

return lp;
}

Copyright c
1997-2003 Vanderbilt University 119

UCLA Extension Course OO Patterns

Iterator Pattern (cont’d)

� The Iterator pattern also provides a way to print out the sorted lines
without exposing representation

template <class T>
void operator<< (ostream &os,

const Access_Table<T> &at)
{

if (Options::instance ()->enabled (Options::REVERSE))
for (size_t i = at.size (); i > 0; --i)

os << at[i - 1];

else
for (size_t i = 0; i < at.size (); ++i)

os << at[i];
}

Copyright c
1997-2003 Vanderbilt University 120

UCLA Extension Course OO Patterns

Summary of System Sort Case Study

� This case study illustrates using OO techniques to structure a
modular, reusable, and highly efficient system

� Design patterns help to resolve many key forces

� Performance of our system sort is comparable to existing UNIX
system sort

– Use of C++ features like parameterized types and inlining
minimizes penalty from increased modularity, abstraction, and
extensibility

Copyright c
1997-2003 Vanderbilt University 121

UCLA Extension Course OO Patterns

Case Study 3: Sort Verifier

� Verify whether a sort routine works correctly

– i.e., output of the sort routine must be an ordered permutation of
the original input

� This is useful for checking our system sort routine!

– The solution is harder than it looks at first glance . . .

� As before, we’ll examine the key forces and discuss design patterns
that resolve the forces

Copyright c
1997-2003 Vanderbilt University 122

UCLA Extension Course OO Patterns

General Form of Solution
� The following is a general use-case for this routine:

template <class ARRAY> void
sort (ARRAY &a);

template <class ARRAY> int
check_sort (const ARRAY &o, const ARRAY &p);

int main (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

Input_Array input;
Input_Array potential_sort;

Copyright c
1997-2003 Vanderbilt University 123

UCLA Extension Course OO Patterns

General Form of Solution (cont’d)

cin >> input;

copy (input, potential_sort);
sort (potential_sort);

if (check_sort (input, potential_sort) == -1)
cerr << "sort failed" << endl;

else
cout << "sort worked" << endl;

}

Copyright c
1997-2003 Vanderbilt University 124

UCLA Extension Course OO Patterns

Common Problems

7 13 4 15 18 13 8 4

0 0 0 0 0 0 0 0
713 41518 138 4

4 4 7 8 13 13 15 18

unsorted

sorted, but

not permuted

permuted, but

not sorted

sorted and

permuted

� Several common problems:

– Sort routine may zero out data

� though it will appear sorted . . . ;-)
– Sort routine may fail to sort data
– Sort routine may erroneously add new values

Copyright c
1997-2003 Vanderbilt University 125

UCLA Extension Course OO Patterns

Forces

� Solution should be both time and space efficient

– e.g., it should not take more time to check than to sort in the first
place!

– Also, this routine may be run many times consecutively, which may
facilitate certain space optimizations

� We cannot assume the existence of a “correct” sorting algorithm . . .

– Therefore, to improve the chance that our solution is correct, it
must be simpler than writing a correct sorting routine

� Quis costodiet ipsos custodes?

� (Who shall guard the guardians?)

Copyright c
1997-2003 Vanderbilt University 126

UCLA Extension Course OO Patterns

Forces (cont’d)
� Multiple implementations will be necessary, depending on properties

of the data being examined, e.g.,

1. if data values are small (in relation to number of items) and
integrals use . . .

2. if data has no duplicate values use . . .
3. if data has duplicate values use . . .

� This problem illustrates a simple example of “program families”

– i.e., we want to reuse as much code and/or design across multiple
solutions as possible

Copyright c
1997-2003 Vanderbilt University 127

UCLA Extension Course OO Patterns

Strategies

� Implementations of search structure vary according to data, e.g.,

1. Range Vector
– O(N) time complexity and space efficient for sorting “small”

ranges of integral values
2. Binary Search (version 1)

– O(n log n) time complexity and space efficient but does not
handle duplicates

3. Binary Search (version 2)
– O(n log n) time complexity, but handles duplicates

4. Hashing
– O(n) best/average case, but O(n2) worst case, handles

duplicates, but potentially not as space efficient

Copyright c
1997-2003 Vanderbilt University 128

UCLA Extension Course OO Patterns

General OOD Solution Approach

� Identify the “objects” in the application and solution space

– e.g., use a search structure ADT organization with member
function such as insert and remove

� Recognize common design patterns

– e.g., Strategy and Factory Method

� Implement a framework to coordinate multiple implementations

– e.g., use classes, parameterized types, inheritance and dynamic
binding

Copyright c
1997-2003 Vanderbilt University 129

UCLA Extension Course OO Patterns

General OOD solution approach (cont’d)

� C++ framework should be amenable to:

– Extension and Contraction

� May discover better implementations

� May need to conform to resource constraints

� May need to work on multiple types of data
– Performance Enhancement

� May discover better ways to allocate and cache memory

� Note, improvements should be transparent to existing code . . .
– Portability

� May need to run on multiple platforms

Copyright c
1997-2003 Vanderbilt University 130

UCLA Extension Course OO Patterns

High-level Algorithm
� e.g., pseudo code

template <class ARRAY>
int check_sort (const ARRAY &original,

const ARRAY &potential_sort)
{

Perform basic sanity check to see if the
potential_sort is actually in order
(can also detect duplicates here)

Copyright c
1997-2003 Vanderbilt University 131

UCLA Extension Course OO Patterns

High-level Algorithm (cont’d)

if (basic sanity check succeeds) then
Initialize search structure, srchstrct
for i < 0 to size - 1 loop

insert (potential_sort[i])
into srchstrct

for i < 0 to size - 1 loop
if remove (original[i]) from

srchstrct fails then
return ERROR

return SUCCESS
else

return ERROR
end if

}

Copyright c
1997-2003 Vanderbilt University 132

UCLA Extension Course OO Patterns

C++ Class Model

BinaryBinary
SearchSearch
DupsDups

SearchSearch
StructStruct

TYPETYPE

TYPETYPE

BinaryBinary
SearchSearch
NodupsNodups

TYPETYPE

HashHash
TableTable

TYPETYPE

RangeRange
VectorVector

LONGLONG

Copyright c
1997-2003 Vanderbilt University 133

UCLA Extension Course OO Patterns

C++ Class Interfaces

� Search structure base class.

template <class T>
class Search_struct_Strategy
{
public:

virtual int insert (const T &new_item) = 0;
virtual int remove (const T &existing_item) = 0;
virtual ˜Search_struct_Strategy () = 0;

};

Copyright c
1997-2003 Vanderbilt University 134

UCLA Extension Course OO Patterns

C++ Class interfaces (cont’d)
� Strategy Factory class

template <class ARRAY>
Search_Strategy
{
public:

// Singleton method.
static Search_Strategy *instance ();

// Factory Method
virtual Search_struct_Strategy<ARRAY::TYPE> *

make_strategy (const ARRAY &);
};

Copyright c
1997-2003 Vanderbilt University 135

UCLA Extension Course OO Patterns

C++ Class interfaces (cont’d)

� Strategy subclasses

// Note the template specialization
class Range_Vector :

public Search_struct_Strategy<long>
{ typedef long TYPE; /* . . . */ };

template <class ARRAY>
class Binary_Search_Nodups :

public Search_struct_Strategy<ARRAY::TYPE>
{

typedef T TYPE; /* . . . */
};

Copyright c
1997-2003 Vanderbilt University 136

UCLA Extension Course OO Patterns

C++ Class interfaces (cont’d)
template <class ARRAY>
class Binary_Search_Dups :

public Search_struct_Strategy<ARRAY::TYPE>
{

typedef T TYPE; /* . . . */
};

template <class T>
class Hash_Table :

public Search_struct_Strategy<T>
{

typedef T TYPE; /* . . . */
};

Copyright c
1997-2003 Vanderbilt University 137

UCLA Extension Course OO Patterns

Design Patterns in Sort Verifier

� Factory Method

– Define an interface for creating an object, but let subclasses decide
which class to instantiate

� Factory Method lets a class defer instantiation to subclasses

� In addition, the Facade, Iterator, Singleton, and Strategy patterns are
used

Copyright c
1997-2003 Vanderbilt University 138

UCLA Extension Course OO Patterns

Using the Strategy Pattern

RangeRange
VectorVector

longlong

BinaryBinary
SearchSearch
DupsDups

TYPETYPE

BinaryBinary
SearchSearch
NodupsNodups

TYPETYPE

SearchSearch
StructStruct

StrategyStrategy

TYPETYPE

check_sortcheck_sort

HashHash
TableTable

TYPETYPE

� This pattern extends the
strategies for checking if
an array is sorted without
modifying the check sort
algorithm

Copyright c
1997-2003 Vanderbilt University 139

UCLA Extension Course OO Patterns

The Factory Method Pattern

� Intent

– Define an interface for creating an object, but let subclasses decide
which class to instantiate

� Factory Method lets a class defer instantiation to subclasses

� This pattern resolves the following force:

1. How to extend the initialization strategy in the sort verifier
transparently

Copyright c
1997-2003 Vanderbilt University 140

UCLA Extension Course OO Patterns

Structure of the Factory Method Pattern

ConcreteConcrete
ProductProduct

ProductProduct

CreatorCreator

factory_method() = 0
make_product()

Product *product = factory_method()Product *product = factory_method()

return productreturn product

ConcreteConcrete
CreatorCreator

factory_method()

return new Concrete_Productreturn new Concrete_Product

CREATES

Copyright c
1997-2003 Vanderbilt University 141

UCLA Extension Course OO Patterns

Using the Factory Method Pattern

SearchSearch
StructStruct

SearchSearch
StrategyStrategy

make_strategy()

New SearchNew Search
StructStruct

New SearchNew Search
StrategyStrategy

make_strategy()

return new New_Search_Structreturn new New_Search_Struct

CREATES

Copyright c
1997-2003 Vanderbilt University 142

UCLA Extension Course OO Patterns

Implementing the check sort Function
� e.g., C++ code for the sort verification strategy

template <class ARRAY> int
check_sort (const ARRAY &orig, const ARRAY &p_sort)
{

if (orig.size () != p_sort.size ())
return -1;

auto_ptr < Search_struct_Strategy<ARRAY::TYPE> > ss =
Search_Strategy<ARRAY>::instance ()->make_strategy

(p_sort);

Copyright c
1997-2003 Vanderbilt University 143

UCLA Extension Course OO Patterns

Implementing the check sort Function (cont’d)

for (int i = 0; i < p_sort.size (); ++i)
if (ss->insert (p_sort[i]) == -1)

return -1;

for (int i = 0; i < orig.size (); ++i)
if (ss->remove (orig[i]) == -1)

return -1;

return 0;
// auto_ptr’s destructor deletes the memory . . .

}

Copyright c
1997-2003 Vanderbilt University 144

UCLA Extension Course OO Patterns

Initializing the Search Structure

� Factory Method

template <class ARRAY>
Search_struct_Strategy<ARRAY::TYPE> *
Search_Strategy<ARRAY>::make_strategy

(const ARRAY &potential_sort)
{

int duplicates = 0;

for (size_t i = 1; i < potential_sort.size (); ++i)
if (potential_sort[i] < potential_sort[i - 1])

return 0;
else if (potential_sort[i] == potential_sort[i - 1])

++duplicates;

Copyright c
1997-2003 Vanderbilt University 145

UCLA Extension Course OO Patterns

Initializing the Search Structure (cont’d)

if (duplicates == 0)
return new Binary_Search_Nodups<ARRAY>

(potential_sort);
else if (size % 2)

return new Binary_Search_Dups<ARRAY>
(potential_sort, duplicates)

else return new Hash_Table<ARRAY::TYPE>
(size, &hash_function);

}

Copyright c
1997-2003 Vanderbilt University 146

UCLA Extension Course OO Patterns

Specializing the Search Structure for Range Vectors
template <Array<long> > Search_struct_Strategy<long> *
Search_Strategy<Array<long> >::make_strategy

(const Array<long> &potential_sort)
{

int duplicates = 0;

for (size_t i = 1; i < size; ++i)
if (potential_sort[i] < potential_sort[i - 1])

return 0;
else if (potential_sort[i] == potential_sort[i - 1])

++duplicates;

long range = potential_sort[size - 1] -
potential_sort[0];

Copyright c
1997-2003 Vanderbilt University 147

UCLA Extension Course OO Patterns

Specializing the Search Structure for Range Vectors
if (range <= size)

return new Range_Vector (potential_sort[0],
potential_sort[size - 1])

else if (duplicates == 0)
return new Binary_Search_Nodups<long>

(potential_sort);
else if (size % 2)

return new Binary_Search_Dups<long>
(potential_sort, duplicates)

else return new Hash_Table<long>
(size, &hash_function);

}

Copyright c
1997-2003 Vanderbilt University 148

UCLA Extension Course OO Patterns

Summary of Sort Verifier Case Study

� The sort verifier illustrates how to use OO techniques to structure a
modular, extensible, and efficient solution

– The main processing algorithm is simplified
– The complexity is pushed into the strategy objects and the strategy

selection factory
– Adding new solutions does not affect existing code
– The appropriate ADT search structure is selected at run-time

based on the Strategy pattern

Copyright c
1997-2003 Vanderbilt University 149

