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UCLA Extension Course OO Patterns

Case Studies Using Patterns

� The following slides describe several case studies using C++ and
patterns to build highly extensible software

� The examples include

1. Expression trees
– e.g., Factory, Bridge, Adapter

2. System Sort
– e.g., Facade, Adapter, Iterator, Singleton, Factory Method,

Strategy, Bridge, Double-Checked Locking Optimization
3. Sort Verifier

– e.g., Strategy, Factory Method, Facade, Iterator, Singleton
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Case Study 1: Expression Tree Evaluator

� The following inheritance and dynamic binding example constructs
expression trees

– Expression trees consist of nodes containing operators and
operands

� Operators have different precedence levels, different associativities,
and different arities, e.g.,

� Multiplication takes precedence over addition

� The multiplication operator has two arguments, whereas unary
minus operator has only one

� Operands are integers, doubles, variables, etc.

� We’ll just handle integers in this example . . .
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Expression Tree Diagram
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Data-Driven Version

� A typical data-driven method for implementing
expression trees involves using a struct/union to
represent data structure, e.g.,

typedef struct Tree_Node Tree_Node;
struct Tree_Node {

enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {

char op_[2];
int num_;

} o;
#define num_ o.num_
#define op_ o.op_

union {
Tree_Node *unary_;
struct { Tree_Node *l_, *r_; } binary_;

} c;
#define unary_ c.unary_
#define binary_ c.binary_
};
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Print Tree Function

� A typical data-driven implementation use a
switch statement and a recursive function to build
and evaluate a tree, e.g.,

void print_tree (Tree_Node *root) {
switch (root->tag_) {
case NUM: printf ("%d", root->num_); br e
case UNARY:

printf ("%s", root->op_[0]);
print_tree (root->unary_);
printf (")"); break;

case BINARY:
printf ("(");
print_tree (root->binary_.l_);
printf ("%s", root->op_[0]);
print_tree (root->binary_.r_);
printf (")"); break;

default:
printf (error, unknown type\n);
exit (1);

}
}
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Limitations with Data-Driven Approach

� Problems or limitations with the typical data-driven approach include

– Little or no use of encapsulation

� Incomplete modeling of the application domain, which results in

1. Tight coupling between nodes and edges in union representation
2. Complexity being in algorithms rather than the data structures

– e.g., switch statements are used to select between various types
of nodes in the expression trees

– Compare with binary search!
3. Data structures are “passive” and functions do most processing

work explicitly

Copyright c
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More Limitations with Data-Driven Approach

� The program organization makes it difficult to extend, e.g.,

– Any small changes will ripple through the entire design and
implementation

� e.g., see the “ternary” extension below
– Easy to make mistakes switching on type tags . . .

� Solution wastes space by making worst-case assumptions wrt
structs and unions

– This is not essential, but typically occurs
– Note that this problem becomes worse the bigger the size of the

largest item becomes!
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OO Alternative

� Contrast previous data-driven approach with an object-oriented
decomposition for the same problem:

– Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture

– Discover several classes involved:

� class Node: base class that describes expression tree vertices:

� class Int Node: used for implicitly converting int to Tree node

� class Unary Node: handles unary operators, e.g., -10, +10, !a

� class Binary Node: handles binary operators, e.g., a + b, 10 -
30

� class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes

– Note, these classes model entities in the application domain

� i.e., nodes and edges (vertices and arcs)

Copyright c
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Relationships Between Tree and Node Classes
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Design Patterns in the Expression Tree Program

� Factory

– Centralize the assembly of resources necessary to create an
object

� e.g., decouple Node subclass initialization from their subsequent
use

� Bridge

– Decouple an abstraction from its implementation so that the two
can vary independently

� e.g., printing the contents of a subtree and managing dynamic
memory

Copyright c
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Design Patterns in the Expression Tree Program
(cont’d)

� Adapter

– Convert the interface of a class into another interface clients expect

� e.g., make Tree conform to interfaces expected by C++
iostreams operators

Copyright c
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C++ Node Interface
class Tree; // Forward declaration

// Describes the Tree vertices
class Node {
friend class Tree;
protected: // Only visible to derived classes

Node () : use_ (1) {}

/* pure */ virtual void print (ostream &) const = 0;

// Important to make destructor virtual!
virtual ˜Node ();

private:
int use_; // Reference counter.

};

Copyright c
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C++ Tree Interface
#include "Node.h"
// Bridge class that describes the Tree edges and
// acts as a Factory.
class Tree {
public:

// Factory operations
Tree (int);
Tree (const char *, Tree &);
Tree (const char *, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
˜Tree ();
void print (ostream &) const;

private:
Node *node_; // pointer to a rooted subtree

Copyright c
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C++ Int Node Interface

#include "Node.h"

class Int_Node : public Node {
public:

Int_Node (int k);
virtual void print (ostream &stream) const;

private:
int num_; // operand value.

};
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C++ Unary Node Interface

#include "Node.h"

class Unary_Node : public Node {
public:

Unary_Node (const char *op, const Tree &t);
virtual void print (ostream &stream) const;

private:
const char *operation_;
Tree operand_;

};

Copyright c
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C++ Binary Node Interface

#include "Node.h"

class Binary_Node : public Node {
public:

Binary_Node (const char *op,
const Tree &t1,
const Tree &t2);

virtual void print (ostream &s) const;
private:

const char *operation_;
Tree left_;
Tree right_;

};

Copyright c
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Memory Layout for C++ Version
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C++ Int Node Implementations

#include "Int_Node.h"

Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

}

Copyright c
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C++ Unary Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const char *op, const Tree &t1)
: operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<

<< this->operand_ // recursive call!
<< ")";

}

Copyright c
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C++ Binary Node Implementation

#include "Binary_Node.h"

Binary_Node::Binary_Node (const char *op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call

<< " " << this->operation_
<< " " << this->right_ // recursive call
<< ")";

}

Copyright c
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Initializing the Node Subclasses
� Problem

– How to ensure the Node subclasses are initialized properly

� Forces

– There are different types of Node subclasses

� e.g., take different number and type of arguments
– We want to centralize initialization in one place because it is likely

to change . . .

� Solution

– Use a Factory pattern to initialize the Node subclasses

Copyright c
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The Factory Pattern

� Intent

– Centralize the assembly of resources necessary to create an
object

� Decouple object creation from object use by localizing creation
knowledge

� This pattern resolves the following forces:

– Decouple initialization of the Node subclasses from their
subsequent use

– Makes it easier to change or add new Node subclasses later on

� e.g., Ternary nodes . . .

� A generalization of the Factory Method pattern

Copyright c
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Structure of the Factory Pattern

FactoryFactory

make_product()

Product product = ...Product product = ...

return productreturn product

createscreates

ProductProduct
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Using the Factory Pattern

� The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const char *op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const char *op,
const Tree &t1,
const Tree &t2):

: node_ (new Binary_Node (op, t1, t2)) {}

Copyright c
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Printing Subtrees
� Problem

– How do we print subtrees without revealing their types?

� Forces

– The Node subclass should be hidden within the Tree instances
– We don’t want to become dependent on the use of Nodes ,

inheritance, and dynamic binding, etc.
– We don’t want to expose dynamic memory management details to

application developers

� Solution

– Use the Bridge pattern to shield the use of inheritance and
dynamic binding

Copyright c
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The Bridge Pattern

� Intent

– Decouple an abstraction from its implementation so that the two
can vary independently

� This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
– interface is closed to prevent direct code changes
– Implementation is open to allow extensibility

2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<

Copyright c
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Structure of the Bridge Pattern
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Using the Bridge Pattern

Int  NodeInt  Node
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Illustrating the Bridge Pattern in C++
� The Bridge pattern is used for printing expression trees:

void Tree::print (ostream &os) const {
this->node_->print (os);

}

� Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

– i.e., the Tree interface is fixed, whereas the Node implementation
varies

– However, clients need not be concerned about the variation . . .
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Integrating with C++ I/O Streams

� Problem

– Our Tree interface uses a print method, but most C++
programmers expect to use I/O Streams

� Forces

– Want to integrate our existing C++ Tree class into the I/O Stream
paradigm without modifying our class or C++ I/O

� Solution

– Use the Adapter pattern to integrate Tree with I/O Streams

Copyright c
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The Adapter Pattern

� Intent

– Convert the interface of a class into another interface client expects

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

� This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Copyright c
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Structure of the Adapter Pattern

AdapterAdapter

request()

1: request ()

2: specific_request()

TargetTarget

request()

clientclient
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Using the Adapter Pattern

iostreamiostream

operator<<
2: print()

TreeTree

print()

1: operator<<

clientclient TargetTarget

operator<<
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Using the Adapter Pattern

� The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {
tree.print (s);
// This triggers Node * virtual call via
// tree.node_->print (s), which is
// implemented as the following:
// (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

� Note how the C++ code shown above uses I/O streams to “adapt”
the Tree interface . . .
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C++ Tree Implementation

� Reference counting via the “counted body” idiom

Tree::Tree (const Tree &t): node_ (t.node_) {
// Sharing, ref-counting.

++this->node_->use_;
}

void Tree::operator= (const Tree &t) {
// order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)

delete this->node_;
this->node_ = t.node_;

}

Copyright c
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C++ Tree Implementation (cont’d)

Tree::˜Tree () {
// Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)

delete this->node_;
}

Copyright c
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C++ Main Program
#include <iostream.h>
#include "Tree.h"

int main (int, char *[]) {
const Tree t1 = Tree ("*", Tree ("-", 5),

Tree ("+", 3, 4));
cout << t1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree ("*", t1, t1);

// prints (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl;

return 0;
// Destructors of t1 and t2 recursively

} // delete entire tree when leaving scope.

Copyright c
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Expression Tree Diagram 1
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Expression Tree Diagram 2
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Adding Ternary Nodes

� Extending the existing program to support ternary nodes is
straightforward

– i.e., just derive new class Ternary Node to handle ternary
operators, e.g., a == b ? c : d, etc.

#include "Node.h"
class Ternary_Node : public Node {
public:

Ternary_Node (const char *, const Tree &,
const Tree &, const Tree &);

virtual void print (ostream &) const;
private:

const char *operation_;
Tree left_, middle_, right_; };

Copyright c
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C++ Ternary Node Implementation
#include "Ternary_Node.h"
Ternary_Node::Ternary_Node (const char *op,

const Tree &a,
const Tree &b,
const Tree &c)

: operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("

<< this->left_ // recursive call
<< "," << this->middle_ // recursive call
<< "," << this->right_ // recursive call
<< ")";

}
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C++ Ternary Node Implementation (cont’d)

// Modified class Tree Factory
class Tree { // add 1 class constructor
public:

Tree (const char *, const Tree &,
const Tree &, const Tree &)

: node_ (new Ternary_Node (op, l, m, r)) {}
// Same as before . . .
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Differences from Data-Driven Implementation

� On the other hand, modifying the original data-driven approach
requires changing 1) the original data structures, e.g.,

struct Tree_Node {
enum {

NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {

// same as before. But, add this:
struct {

Tree_Node *l_, *m_, *r_;
} ternary_;

} c;
#define ternary_ c.ternary_
};

Copyright c
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Differences from Data-Driven Implementation (cont’d)

� and 2) many parts of the code, e.g.,

void print_tree (Tree_Node *root) {
// same as before
case TERNARY: // must be TERNARY.

printf ("(");
print_tree (root->ternary_.l_);
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

// same as before
}

Copyright c
1997-2003 Vanderbilt University 46

UCLA Extension Course OO Patterns

Summary of Expression Tree Example
� OO version represents a more complete modeling of the application

domain

– e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

� Use of C++ language features simplifies the design and facilitates
extensibility

– e.g., implementation follows directly from design

� Use of patterns helps to motivate, justify, and generalize design
choices

Copyright c
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Potential Problems with OO Design

� Solution is very “data structure rich”

– e.g., requires configuration management to handle many headers
and .cc files!

� May be somewhat less efficient than original data-driven approach

– e.g., due to virtual function overhead

� In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

� As a rule, be careful of micro vs. macro optimizations

– i.e., always profile your code!
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Case Study 2: System Sort

� Develop a general-purpose system sort

– It sorts lines of text from standard input and writes the result to
standard output

– e.g., the UNIX system sort

� In the following, we’ll examine the primary forces that shape the
design of this application

� For each force, we’ll examine patterns that resolve it

Copyright c
1997-2003 Vanderbilt University 49

UCLA Extension Course OO Patterns

External Behavior of System Sort

� A “line” is a sequence of characters terminated by a newline

� default ordering is lexicographic by bytes in machine collating
sequence (e.g., ASCII)

� The ordering is affected globally by the following options:

– Ignore case (-i )
– Sort numerically (-n )
– Sort in reverse (-r )
– Begin sorting at a specified field (-f )
– Begin sorting at a specified column (-c )

� Note, our program need not sort files larger than main memory

Copyright c
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High-level Forces
� Solution should be both time and space efficient

– e.g., must use appropriate algorithms and data structures
– Efficient I/O and memory management are particularly important
– Our solution uses minimal dynamic binding (to avoid unnecessary

overhead)

� Solution should leverage reusable components

– e.g., iostreams, Array and Stack classes, etc.

� Solution should yield reusable components

– e.g., efficient input classes, generic sort routines, etc.
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Top-level Algorithmic View of the Solution

� Note the use of existing C++ mechanisms like I/O streams

// Reusable function
template <class ARRAY> void
sort (ARRAY &a);

int main (int argc, char *argv[])
{

parse_args (argc, argv);
Input_Array input;

cin >> input;
sort (input);
cout << input;

}
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Top-level Algorithmic View of the Solution (cont’d)

� Avoid the grand mistake of using top-level algorithmic view to
structure the design . . .

– Structure the design to resolve the forces!
– Don’t focus on algorithms or data, but instead look at the problem,

its participants, and their interactions!
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General OOD Solution Approach

� Identify the classes in the application and solution space

– e.g., stack, array, input class, options, access table, sorts, etc.

� Recognize and apply common design patterns

– e.g., Singleton, Factory, Adapter, Iterator

� Implement a framework to coordinate components

– e.g., use C++ classes and parameterized types
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C++ Class Model
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C++ Class Components

� Tactical components

– Stack

� Used by non-recursive quick sort
– Array

� Stores pointers to lines and fields
– Access Table

� Used to store and sort input
– Input

� Efficiently reads arbitrary sized input using only 1 dynamic
allocation and 1 copy
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C++ Class Components

� Strategic components

– System Sort

� integrates everything . . .
– Sort AT Adapter

� integrates the Array and the Access Table
– Options

� Manages globally visible options
– Sort

� e.g., both quicksort and insertion sort
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Detailed Format for Solution

� Note the separation of concerns

// Prototypes
template <class ARRAY> void sort (ARRAY &a);
void operator >> (istream &, Access_Table<Line_Ptrs> &);
void operator << (ostream &,

const Access_Table<Line_Ptrs> &);

int main (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);
cin >> System_Sort::instance ()->access_table ();
sort (System_Sort::instance ()->access_table ());
cout << System_Sort::instance ()->access_table ();

}
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Reading Input Efficiently
� Problem

– The input to the system sort can be arbitrarily large (e.g., up to 1/2
size of main memory)

� Forces

– To improve performance solution must minimize:
1. Data copying and data manipulation
2. Dynamic memory allocation

� Solution

– Create an Input class that reads arbitrary input efficiently
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Access Table Format

A
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C
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R
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A
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ACCESS  BUFFER
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The Input Class

� Efficiently reads arbitrary-sized input using only 1 dynamic allocation

class Input
{
public:

// Reads from <input> up to <terminator>,
// replacing <search> with <replace>. Returns
// pointer to dynamically allocated buffer.
char *read (istream &input,

int terminator = EOF,
int search = ’\n’,
int replace = ’\0’);

// Number of bytes replaced.
size_t replaced () const;
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The Input Class
// Size of buffer.
size_t size () const;

private:
// Recursive helper method.
char *recursive_read ();

// . . .
};
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Design Patterns in System Sort
� Facade

– Provide a unified interface to a set of interfaces in a subsystem

� Facade defines a higher-level interface that makes the
subsystem easier to use

– e.g., sort provides a facade for the complex internal details of
efficient sorting

� Adapter

– Convert the interface of a class into another interface clients expect

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

– e.g., make Access Table conform to interfaces expected by
sort and iostreams
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Design Patterns in System Sort (cont’d)

� Factory

– Centralize the assembly of resources necessary to create an
object

– e.g., decouple initialization of Line Ptrs used by Access Table
from their subsequent use

� Bridge

– Decouple an abstraction from its implementation so that the two
can vary independently

– e.g., comparing two lines to determine ordering
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Design Patterns in System Sort (cont’d)

� Strategy

– Define a family of algorithms, encapsulate each one, and make
them interchangeable

– e.g., allow flexible pivot selection

� Singleton

– Ensure a class has only one instance, and provide a global point
of access to it

– e.g., provides a single point of access for the system sort facade
and for program options
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Design Patterns in System Sort (cont’d)

� Double-Checked Locking Optimization

– Ensures atomic initialization or access to objects and eliminates
unnecessary locking overhead

– e.g., allows multiple threads to execute sort

� Iterator

– Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

– e.g., provides a way to print out the sorted lines without exposing
representation or initialization
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Sort Algorithm
� For efficiency, two types of sorting algorithms are used:

1. Quicksort
– Highly time and space efficient sorting arbitrary data
– O(n log n) average-case time complexity
– O(n2) worst-case time complexity
– O(log n) space complexity
– Optimizations are used to avoid worst-case behavior

2. Insertion sort
– Highly time and space efficient for sorting “almost ordered” data
– O(n2) average- and worst-case time complexity
– O(1) space complexity
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Quicksort Optimizations

1. Non-recursive

� Uses an explicit stack to reduce function call overhead

2. Median of 3 pivot selection

� Reduces probability of worse-case time complexity

3. Guaranteed (log n) space complexity

� Always “pushes” larger partition

4. Insertion sort for small partitions

� Insertion sort runs fast on almost sorted data
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Selecting a Pivot Value

� Problem

– There are various algorithms for selecting a pivot value

� e.g., randomization, median of three, etc.

� Forces

– Different input may sort more efficiently using different pivot
selection algorithms

� Solution

– Use the Strategy pattern to select the pivot selection algorithm
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The Strategy Pattern

� Intent

– Define a family of algorithms, encapsulate each one, and make
them interchangeable

� Strategy lets the algorithm vary independently from clients that
use it

� This pattern resolves the following forces

1. How to extend the policies for selecting a pivot value without
modifying the main quicksort algorithm

2. Provide a one size fits all interface without forcing a one size fits all
implementation
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Structure of the Strategy Pattern

Strategy
algorithm_interface()

Concrete
Strategy A

algorithm_interface()

STRATEGY

Concrete
Strategy B

algorithm_interface()

Concrete
Strategy C

algorithm_interface()

Context
context_interface()
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Using the Strategy Pattern

RandomRandom

MedianMedian
ofof

ThreeThree

quick_sortquick_sort

pivot_strat->get_pivot (array, lo, hi)

Pivot
Strategy

get_pivot()

Select
First
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Implementing the Strategy Pattern

� ARRAY is the particular “context”

template <class ARRAY>
void sort (ARRAY &array)
{

Pivot<ARRAY> *pivot_strat = Pivot<ARRAY>::make_pivot
(Options::instance ()->pivot_strat ());

quick_sort (array, pivot_strat);
}
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Implementing the Strategy Pattern
template <class ARRAY, class PIVOT_STRAT>
quick_sort (ARRAY &array, PIVOT_STRAT *pivot_strat)
{

for (;;) {
ARRAY::TYPE pivot; // typename ARRAY::TYPE pivot . .

pivot = pivot_strat->get_pivot (array, lo, hi);

// Partition array[lo, hi] relative to pivot . . .
}

}
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Devising a Simple Sort Interface
� Problem

– Although the implementation of the sort function is complex, the
interface should be simple to use

� Key forces

– Complex interface are hard to use, error prone, and discourage
extensibility and reuse

– Conceptually, sorting only makes a few assumptions about the
“array” it sorts

� e.g., supports operator[] methods, size, and element TYPE
– We don’t want to arbitrarily limit types of arrays we can sort

� Solution

– Use the Facade and Adapter patterns to simplify the sort program
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Facade Pattern

� Intent

– Provide a unified interface to a set of interfaces in a subsystem

� Facade defines a higher-level interface that makes the
subsystem easier to use

� This pattern resolves the following forces:

1. Simplifies the sort interface
– e.g., only need to support operator[] and size methods, and

element TYPE
2. Allows the implementation to be efficient and arbitrarily complex

without affecting clients
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Structure of the Facade Pattern

HIDDENHIDDEN

EXTERNALLYEXTERNALLY

VISIBLEVISIBLE

FacadeFacade
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Using the Facade Pattern

StackStack

QuickQuick
SortSort

TYPETYPE

EXTERNALLYEXTERNALLY

VISIBLEVISIBLE

ARRAYARRAY

SortSort

ARRAYARRAY

InsertInsert
SortSort

ARRAYARRAY

HIDDENHIDDEN
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The Adapter Pattern
� Intent

– Convert the interface of a class into another interface clients expect

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

� This pattern resolves the following forces:

1. How to transparently integrate the Access Table with the sort
routine

2. How to transparently integrate the Access Table with the C++
iostream operators
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Structure of the Adapter Pattern

TargetTarget

request()

AdapterAdapter

request()

AdapteeAdaptee

specific_request()

1: request ()

2: specific_request()

clientclient
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Using the Adapter Pattern

sortsort

ARRAYARRAY

1: ARRAY::TYPE t
= array[i]

ARRAYARRAY

Access_TableAccess_Table

ARRAYARRAY::::TYPETYPE
operator[]operator[]
size()size()

make_table()make_table()
length()length()
element()element()

TYPETYPE

"conforms to""conforms to"

"conforms to""conforms to"

Sort_AT_AdapterSort_AT_Adapter

typedef Line_Ptrs TYPEtypedef Line_Ptrs TYPE
make_table()make_table()
operator[]operator[]
size()size()

Line_PtrsLine_Ptrs
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Dynamic Array

� Defines a variable-sized array for use by the Access Table

template <class T>
class Array
{
public:

Array (size_t size = 0);
int init (size_t size);
T &operator[](size_t index);
size_t size () const;
// . . .

private:
T *array_;
size_t size_;

};
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The Access Table Class
� Efficiently maps indices onto elements in the data buffer

template <class T>
class Access_Table
{
public:

// Factory Method for initializing Access_Table.
virtual int make_table (size_t num_lines,

char *buffer) = 0;
// Release buffer memory.
virtual ˜Access_Table () { delete [] buffer_; }
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The Access Table Class (cont’d)

// Retrieve reference to <indexth> element.
T &element (size_t index) {

return access_array_[index];
}

// Length of the access_array.
size_t length () const {

return access_array_.size ();
}

protected:
Array<T> access_array_; // Access table is array of T.
char *buffer_; // Hold the data buffer.

};
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The Sort AT Adapter Class

� Adapts the Access Table to conform to the ARRAYinterface expected
by sort

struct Line_Ptrs {
// Comparison operator used by sort().
int operator< (const Line_Ptrs &);

// Beginning of line and field/column.
char *bol_, *bof_;

};
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The Sort AT Adapter Class
class Sort_AT_Adapter :

// Note the use of the class form of the Adapter
private Access_Table<Line_Ptrs> {

public:
virtual int make_table (size_t num_lines, char *buffer);

typedef Line_Ptrs TYPE; // Type trait.

// These methods adapt Access_Table methods . . .
T &operator[] (size_t index) {

return element (index);
}

size_t size () const { return length (); }
};
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Centralizing Option Processing
� Problem

– Command-line options must be global to many parts of the sort
program

� Key forces

– Unrestricted use of global variables increases system coupling and
can violate encapsulation

– Initialization of static objects in C++ can be problematic

� Solution

– Use the Singleton pattern to centralize option processing
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Singleton Pattern

� Intent

– Ensure a class has only one instance, and provide a global point
of access to it

� This pattern resolves the following forces:

1. Localizes the creation and use of “global” variables to well-defined
objects

2. Preserves encapsulation
3. Ensures initialization is done after program has started and only

on first use
4. Allow transparent subclassing of Singleton implementation
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Structure of the Singleton Pattern

SingletonSingleton
static instance()static instance()
singleton_operation()singleton_operation()
get_singleton_data()get_singleton_data()
static unique_instance_static unique_instance_
singleton_data_singleton_data_

if (unique_instance_ == 0)if (unique_instance_ == 0)

  unique_instance_ = new Singleton;  unique_instance_ = new Singleton;

return unique_instance_;return unique_instance_;
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Using the Singleton Pattern

OptionsOptions

static instance()static instance()
bool enabled()bool enabled()
field_offset()field_offset()
static unique_instance_static unique_instance_
options_options_

if (unique_instance_ == 0)if (unique_instance_ == 0)

  unique_instance_ = new Options;  unique_instance_ = new Options;

return unique_instance_;return unique_instance_;
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Options Class
� This manages globally visible options

class Options
{
public:

static Options *instance ();
void parse_args (int argc, char *argv[]);

// These options are stored in octal order
// so that we can use them as bitmasks!
enum Option { FOLD = 01, NUMERIC = 02,

REVERSE = 04, NORMAL = 010 };
enum Pivot_Strategy { MEDIAN, RANDOM, FIRST };
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Options Class

bool enabled (Option o);

int field_offset (); // Offset from BOL.
Pivot_Strategy pivot_strat ();
int (*compare) (const char *l, const char *r);

protected:
Options (); // Ensure Singleton.

u_long options_; // Maintains options bitmask . . .
int field_offset_;
static Options *instance_; // Singleton.

};
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Using the Options Class

� The following is the comparison operator used by sort

int Line_Ptrs::operator< (const Line_Ptrs &rhs) {
Options *options = Options::instance ();

if (options->enabled (Options::NORMAL))
return strcmp (this->bof_, rhs.bof_) < 0;

else if (options->enabled (Options::FOLD))
return strcasecmp (this->bof_, rhs.bof_) < 0;

else
// assert (options->enabled (Options::NUMERIC));
return numcmp (this->bof_, rhs.bof_) < 0;

}
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Efficiently Avoiding Race Conditions for Singleton
Initialization

� Problem

– A multi-threaded program might have execute multiple copies of
sort in different threads

� Key forces

– Subtle race conditions can cause Singletons to be created multiple
times

– Locking every access to a Singleton can be too costly

� Solution

– Use the Double-Checked Locking Optimization pattern to
efficiently avoid race conditions when initialization Singletons
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The Double-Checked Locking Optimization Pattern
� Intent

– Ensures atomic initialization or access to objects and eliminates
unnecessary locking overhead

� This pattern resolves the following forces:

1. Ensures atomic initialization or access to objects, regardless of
thread scheduling order

2. Keeps locking overhead to a minimum
– e.g., only lock on first access, rather than for the entire Singleton

instance() method
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Structure of the Double-Checked Locking Optimization
Pattern

MutexMutex

SingletonSingleton

static instance()static instance()
static unique_instance_static unique_instance_

if  (unique_instance_ == NULL)  {if  (unique_instance_ == NULL)  {
    mutex_.acquire ();    mutex_.acquire ();
    if  (unique_instance_  == NULL)    if  (unique_instance_  == NULL)
        unique_instance_ = new Singleton;        unique_instance_ = new Singleton;
    mutex_.release ();    mutex_.release ();
}}
return unique_instance_;return unique_instance_;
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Using the Double-Checked Locking Optimization
Pattern

� Uses the Adapter pattern to turn ordinary classes into Singletons
optimized automatically with the Double-Checked Locking Optimization
pattern

template <class TYPE, class LOCK>
class Singleton {
public:

static TYPE *instance ();
protected:

static TYPE *instance_;
static LOCK lock_;

};
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Using the Double-Checked Locking Optimization
Pattern

template <class TYPE, class LOCK> TYPE *
Singleton<TYPE, LOCK>::instance () {

// Perform the Double-Check.
if (instance_ == 0) {

Guard<LOCK> mon (lock_);
if (instance_ == 0)

instance_ = new TYPE;
}
return instance_;

}
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Simplifying Comparisons
� Problem

– The comparison operator shown above is somewhat complex

� Forces

– It’s better to determine the type of comparison operation during the
initialization phase

– But the interface shouldn’t change

� Solution

– Use the Bridge pattern to separate interface from implementation
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The Bridge Pattern

� Intent

– Decouple an abstraction from its implementation so that the two
can vary independently

� This pattern resolves the following forces that arise when building
extensible software

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
– Closed to prevent direct code changes
– Open to allow extensibility

2. How to simplify the Line_Ptrs::operator< implementation
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Structure of the Bridge Pattern

ImplementorImplementor

method_impl()

1: method_impl()

ConcreteConcrete
ImplementorAImplementorA

method_impl() ConcreteConcrete
ImplementorBImplementorB

method_impl()

AbstractionAbstraction

method()
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Using the Bridge Pattern

1: compare()

Line_PtrsLine_Ptrs
operator<

OptionsOptions

compare()

strcmp()
strcasecmp()

numcmp()
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Using the Bridge Pattern
� The following is the comparison operator used by sort

int
Line_Ptrs::operator<(const Line_Ptrs &rhs)
{

return (*Options::instance ()->compare)
(bof_, rhs.bof_);

}

� This solution is much more concise

� However, there’s an extra level of function call indirection . . .

– Which is equivalent to a virtual function call
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Initializing the Comparison Operator

� Problem

– How does the compare pointer-to-method get assigned?
int (*compare) (const char *left, const char *right);

� Forces

– There are many different choices for compare , depending on
which options are enabled

– We only want to worry about initialization details in one place
– Initialization details may change over time
– We’d like to do as much work up front to reduce overhead later on

� Solution

– Use a Factory pattern to initialize the comparison operator
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The Factory Pattern

� Intent

– Centralize the assembly of resources necessary to create an
object

� Decouple object creation from object use by localizing creation
knowledge

� This pattern resolves the following forces:

– Decouple initialization of the compare operator from its
subsequent use

– Makes it easier to change comparison policies later on

� e.g., adding new command-line options
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Structure of the Factory Pattern

FactoryFactory

make_product()

Product product = ...Product product = ...

return productreturn product

createscreates

ProductProduct
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Using of the Factory Pattern for Comparisons

CompareCompare
FunctionFunction

OptionsOptions

parse_args()

initialize compareinitialize compare

createscreates
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Code for Using the Factory Pattern

� The following initialization is done after command-line options are
parsed

Options::parse_args (int argc, char *argv[])
{

// . . .
if (this->enabled (Options::NORMAL))

this->compare = &strcmp;
else if (this->enabled (Options::FOLD))

this->compare = &strcasecmp;
else if (this->enabled (Options::NUMERIC))

this->compare = &numcmp;
// . . .
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Code for Using the Factory Pattern (cont’d)

int numcmp (const char *s1, const char * s2)
{

double d1 = strtod (s1, 0), d2 = strtod (s2, 0);

if (d1 < d2) return -1;
else if (d1 > d2) return 1;
else // if (d1 == d2)

return 0;
}
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Initializing the Access Table

� Problem

– One of the nastiest parts of the whole system sort program is
initializing the Access Table

� Key forces

– We don’t want initialization details to affect subsequent processing
– Makes it easier to change initialization policies later on

� e.g., using the Access Table in non-sort applications

� Solution

– Use the Factory Method pattern to initialize the Access Table
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Factory Method Pattern
� Intent

– Define an interface for creating an object, but let subclasses decide
which class to instantiate

� Factory Method lets a class defer instantiation to subclasses

� This pattern resolves the following forces:

– Decouple initialization of the Access Table from its subsequent
use

– Improves subsequent performance by pre-caching beginning of
each field and line

– Makes it easier to change initialization policies later on

� e.g., adding new command-line options

Copyright c
1997-2003 Vanderbilt University 111



UCLA Extension Course OO Patterns

Structure of the Factory Method Pattern

ConcreteConcrete
ProductProduct

ProductProduct

CreatorCreator

factory_method() = 0
make_product()

Product *product = factory_method()Product *product = factory_method()

return productreturn product

ConcreteConcrete
CreatorCreator

factory_method()

return new Concrete_Productreturn new Concrete_Product

CREATES
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Using the Factory Method Pattern for Access Table
Initialization

Access TableAccess Table

make_table() = 0

Sort ATSort AT
AdapterAdapter

make_table()

// initialize the table// initialize the table

Line PtrsLine Ptrs

TYPETYPE
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Using the Factory Method Pattern for the
Sort AT Adapter

� The following iostream Adapter initializes the Sort AT Adapter
access table

template <class T>
void operator>> (istream &is, Access_Table<T> &at)
{

Input input;
// Read entire stdin into buffer.
char *buffer = input.read (is);
size_t num_lines = input.replaced ();

// Factory Method initializes Access_Table<>.
at.make_table (num_lines, buffer);

}
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Implementing the Factory Method Pattern
� The Access Table Factory class has a Factory Method that initializes

Sort AT Adapter

// Factory Method initializes Access_Table.
int Sort_AT_Adapter::make_table (size_t num_lines,

char *buffer)
{

// Array assignment op.
this->access_array_.resize (num_lines);
this->buffer_ = buffer; // Obtain ownership.

size_t count = 0;
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Implementing the Factory Method Pattern (cont’d)
// Iterate through the buffer and determine
// where the beginning of lines and fields
// must go.
for (Line_Ptrs_Iter iter (buffer, num_lines);

iter.is_done () == 0;
iter.next ())

{
Line_Ptrs line_ptr = iter.current_element ();
this->access_array_[count++] = line_ptr;

}
}
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Initializing the Access Table with Input Buffer

� Problem

– We’d like to initialize the Access Table without having to know the
input buffer is represented

� Key force

– Representation details can often be decoupled from accessing
each item in a container or collection

� Solution

– Use the Iterator pattern to scan through the buffer
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Iterator Pattern

� Intent

– Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

� Note that STL is heavily based on iterators

� The Iterator pattern provides a way to initialize the Access Table
without knowing how the buffer is represented:

Line_Ptrs_Iter::Line_Ptrs_Iter
(char *buffer, size_t num_lines);
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Iterator Pattern (cont’d)

Line_Ptrs
Line_Ptrs_Iter::current_element ()
{

Line_Ptrs lp;

// Determine beginning of next line and next field . . .
lp.bol_ = // . . .
lp.bof_ = // . . .

return lp;
}
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Iterator Pattern (cont’d)

� The Iterator pattern also provides a way to print out the sorted lines
without exposing representation

template <class T>
void operator<< (ostream &os,

const Access_Table<T> &at)
{

if (Options::instance ()->enabled (Options::REVERSE))
for (size_t i = at.size (); i > 0; --i)

os << at[i - 1];

else
for (size_t i = 0; i < at.size (); ++i)

os << at[i];
}
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Summary of System Sort Case Study

� This case study illustrates using OO techniques to structure a
modular, reusable, and highly efficient system

� Design patterns help to resolve many key forces

� Performance of our system sort is comparable to existing UNIX
system sort

– Use of C++ features like parameterized types and inlining
minimizes penalty from increased modularity, abstraction, and
extensibility
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Case Study 3: Sort Verifier

� Verify whether a sort routine works correctly

– i.e., output of the sort routine must be an ordered permutation of
the original input

� This is useful for checking our system sort routine!

– The solution is harder than it looks at first glance . . .

� As before, we’ll examine the key forces and discuss design patterns
that resolve the forces
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General Form of Solution
� The following is a general use-case for this routine:

template <class ARRAY> void
sort (ARRAY &a);

template <class ARRAY> int
check_sort (const ARRAY &o, const ARRAY &p);

int main (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

Input_Array input;
Input_Array potential_sort;
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General Form of Solution (cont’d)

cin >> input;

copy (input, potential_sort);
sort (potential_sort);

if (check_sort (input, potential_sort) == -1)
cerr << "sort failed" << endl;

else
cout << "sort worked" << endl;

}
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Common Problems

7 13 4 15 18 13 8 4

0 0 0 0 0 0 0 0
713 41518 138 4

4 4 7 8 13 13 15 18

unsorted

sorted, but

not permuted

permuted, but

not sorted

sorted and

permuted

� Several common problems:

– Sort routine may zero out data

� though it will appear sorted . . . ;-)
– Sort routine may fail to sort data
– Sort routine may erroneously add new values
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Forces

� Solution should be both time and space efficient

– e.g., it should not take more time to check than to sort in the first
place!

– Also, this routine may be run many times consecutively, which may
facilitate certain space optimizations

� We cannot assume the existence of a “correct” sorting algorithm . . .

– Therefore, to improve the chance that our solution is correct, it
must be simpler than writing a correct sorting routine

� Quis costodiet ipsos custodes?

� (Who shall guard the guardians?)
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Forces (cont’d)
� Multiple implementations will be necessary, depending on properties

of the data being examined, e.g.,

1. if data values are small (in relation to number of items) and
integrals use . . .

2. if data has no duplicate values use . . .
3. if data has duplicate values use . . .

� This problem illustrates a simple example of “program families”

– i.e., we want to reuse as much code and/or design across multiple
solutions as possible
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Strategies

� Implementations of search structure vary according to data, e.g.,

1. Range Vector
– O(N) time complexity and space efficient for sorting “small”

ranges of integral values
2. Binary Search (version 1)

– O(n log n) time complexity and space efficient but does not
handle duplicates

3. Binary Search (version 2)
– O(n log n) time complexity, but handles duplicates

4. Hashing
– O(n) best/average case, but O(n2) worst case, handles

duplicates, but potentially not as space efficient
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General OOD Solution Approach

� Identify the “objects” in the application and solution space

– e.g., use a search structure ADT organization with member
function such as insert and remove

� Recognize common design patterns

– e.g., Strategy and Factory Method

� Implement a framework to coordinate multiple implementations

– e.g., use classes, parameterized types, inheritance and dynamic
binding
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General OOD solution approach (cont’d)

� C++ framework should be amenable to:

– Extension and Contraction

� May discover better implementations

� May need to conform to resource constraints

� May need to work on multiple types of data
– Performance Enhancement

� May discover better ways to allocate and cache memory

� Note, improvements should be transparent to existing code . . .
– Portability

� May need to run on multiple platforms
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High-level Algorithm
� e.g., pseudo code

template <class ARRAY>
int check_sort (const ARRAY &original,

const ARRAY &potential_sort)
{

Perform basic sanity check to see if the
potential_sort is actually in order
(can also detect duplicates here)
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High-level Algorithm (cont’d)

if (basic sanity check succeeds) then
Initialize search structure, srchstrct
for i < 0 to size - 1 loop

insert (potential_sort[i])
into srchstrct

for i < 0 to size - 1 loop
if remove (original[i]) from

srchstrct fails then
return ERROR

return SUCCESS
else

return ERROR
end if

}
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C++ Class Model

BinaryBinary
SearchSearch
DupsDups

SearchSearch
StructStruct

TYPETYPE

TYPETYPE

BinaryBinary
SearchSearch
NodupsNodups

TYPETYPE

HashHash
TableTable

TYPETYPE

RangeRange
VectorVector

LONGLONG
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C++ Class Interfaces

� Search structure base class.

template <class T>
class Search_struct_Strategy
{
public:

virtual int insert (const T &new_item) = 0;
virtual int remove (const T &existing_item) = 0;
virtual ˜Search_struct_Strategy () = 0;

};
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C++ Class interfaces (cont’d)
� Strategy Factory class

template <class ARRAY>
Search_Strategy
{
public:

// Singleton method.
static Search_Strategy *instance ();

// Factory Method
virtual Search_struct_Strategy<ARRAY::TYPE> *

make_strategy (const ARRAY &);
};
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C++ Class interfaces (cont’d)

� Strategy subclasses

// Note the template specialization
class Range_Vector :

public Search_struct_Strategy<long>
{ typedef long TYPE; /* . . . */ };

template <class ARRAY>
class Binary_Search_Nodups :

public Search_struct_Strategy<ARRAY::TYPE>
{

typedef T TYPE; /* . . . */
};
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C++ Class interfaces (cont’d)
template <class ARRAY>
class Binary_Search_Dups :

public Search_struct_Strategy<ARRAY::TYPE>
{

typedef T TYPE; /* . . . */
};

template <class T>
class Hash_Table :

public Search_struct_Strategy<T>
{

typedef T TYPE; /* . . . */
};
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Design Patterns in Sort Verifier

� Factory Method

– Define an interface for creating an object, but let subclasses decide
which class to instantiate

� Factory Method lets a class defer instantiation to subclasses

� In addition, the Facade, Iterator, Singleton, and Strategy patterns are
used
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Using the Strategy Pattern

RangeRange
VectorVector

longlong

BinaryBinary
SearchSearch
DupsDups

TYPETYPE

BinaryBinary
SearchSearch
NodupsNodups

TYPETYPE

SearchSearch
StructStruct

StrategyStrategy

TYPETYPE

check_sortcheck_sort

HashHash
TableTable

TYPETYPE

� This pattern extends the
strategies for checking if
an array is sorted without
modifying the check sort
algorithm
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The Factory Method Pattern

� Intent

– Define an interface for creating an object, but let subclasses decide
which class to instantiate

� Factory Method lets a class defer instantiation to subclasses

� This pattern resolves the following force:

1. How to extend the initialization strategy in the sort verifier
transparently
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Structure of the Factory Method Pattern

ConcreteConcrete
ProductProduct

ProductProduct

CreatorCreator

factory_method() = 0
make_product()

Product *product = factory_method()Product *product = factory_method()

return productreturn product

ConcreteConcrete
CreatorCreator

factory_method()

return new Concrete_Productreturn new Concrete_Product

CREATES
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Using the Factory Method Pattern

SearchSearch
StructStruct

SearchSearch
StrategyStrategy

make_strategy()

New  SearchNew  Search
StructStruct

New  SearchNew  Search
StrategyStrategy

make_strategy()

return new New_Search_Structreturn new New_Search_Struct

CREATES
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Implementing the check sort Function
� e.g., C++ code for the sort verification strategy

template <class ARRAY> int
check_sort (const ARRAY &orig, const ARRAY &p_sort)
{

if (orig.size () != p_sort.size ())
return -1;

auto_ptr < Search_struct_Strategy<ARRAY::TYPE> > ss =
Search_Strategy<ARRAY>::instance ()->make_strategy

(p_sort);
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Implementing the check sort Function (cont’d)

for (int i = 0; i < p_sort.size (); ++i)
if (ss->insert (p_sort[i]) == -1)

return -1;

for (int i = 0; i < orig.size (); ++i)
if (ss->remove (orig[i]) == -1)

return -1;

return 0;
// auto_ptr’s destructor deletes the memory . . .

}
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Initializing the Search Structure

� Factory Method

template <class ARRAY>
Search_struct_Strategy<ARRAY::TYPE> *
Search_Strategy<ARRAY>::make_strategy

(const ARRAY &potential_sort)
{

int duplicates = 0;

for (size_t i = 1; i < potential_sort.size (); ++i)
if (potential_sort[i] < potential_sort[i - 1])

return 0;
else if (potential_sort[i] == potential_sort[i - 1])

++duplicates;
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Initializing the Search Structure (cont’d)

if (duplicates == 0)
return new Binary_Search_Nodups<ARRAY>

(potential_sort);
else if (size % 2)

return new Binary_Search_Dups<ARRAY>
(potential_sort, duplicates)

else return new Hash_Table<ARRAY::TYPE>
(size, &hash_function);

}
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Specializing the Search Structure for Range Vectors
template <Array<long> > Search_struct_Strategy<long> *
Search_Strategy<Array<long> >::make_strategy

(const Array<long> &potential_sort)
{

int duplicates = 0;

for (size_t i = 1; i < size; ++i)
if (potential_sort[i] < potential_sort[i - 1])

return 0;
else if (potential_sort[i] == potential_sort[i - 1])

++duplicates;

long range = potential_sort[size - 1] -
potential_sort[0];
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Specializing the Search Structure for Range Vectors
if (range <= size)

return new Range_Vector (potential_sort[0],
potential_sort[size - 1])

else if (duplicates == 0)
return new Binary_Search_Nodups<long>

(potential_sort);
else if (size % 2)

return new Binary_Search_Dups<long>
(potential_sort, duplicates)

else return new Hash_Table<long>
(size, &hash_function);

}
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Summary of Sort Verifier Case Study

� The sort verifier illustrates how to use OO techniques to structure a
modular, extensible, and efficient solution

– The main processing algorithm is simplified
– The complexity is pushed into the strategy objects and the strategy

selection factory
– Adding new solutions does not affect existing code
– The appropriate ADT search structure is selected at run-time

based on the Strategy pattern
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