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Introduction

� Developing portable, reuseable, and e�cient

communication software is hard

� OS platforms are often fundamentally in-
compatible

{ e.g., di�erent concurrency and I/O models

� Thus, it may be impractical to directly reuse:

{ Algorithms

{ Detailed designs

{ Interfaces

{ Implementations
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Case Study
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� OO framework for call center management

developed for Ericsson
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Problem: Cross-platform Reuse

� Original OO framework was developed for

UNIX and later ported to Windows NT

� UNIX and Windows NT have fundamentally
di�erent I/O models

{ i.e., synchronous vs. asynchronous

� Thus, direct reuse of original framework was

infeasible: : :
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Solution: Reuse Design Patterns

� Design patterns support reuse of software

architecture

� Patterns embody successful solutions to prob-
lems that arise when developing software in
a particular context

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Design patterns greatly reduced project risk

at Ericsson by leveraging proven design ex-

pertise
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Example Pattern: Reactor

� Intent

{ Decouple event demultiplexing and event handler

dispatching from the services performed in response

to events

� This pattern solves a key problem for single-
threaded communication software:

{ How to e�ciently demultiplex multiple types of

events from multiple sources of events within a

single thread of control

� A pattern description captures the static

and dynamic structure and collaboration among

key participants in a micro-architecture
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Structure of the Reactor Pattern

Reactor

handle_events()
register_handler(h, type)
remove_handler(h, type) Event Handler

handle_event(type)
get_handle()
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   h->handle_event (event_type)
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� Participants in the Reactor pattern

7

Collaborations in the Reactor

Pattern

main
program

INITIALIZE

REGISTER  HANDLER

callback :
Concrete

Event_Handler

START  EVENT  LOOP

EVENT  OCCURS

reactor
: Reactor

dispatch()

FOREACH  EVENT  DO

handle_event()

select()

Reactor()

register_handler(callback)

get_handle()
EXTRACT  HANDLE

REMOVE  HANDLER handle_close()
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� Dynamic interaction among participants in

the Reactor pattern
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Using the Reactor Pattern for

CCM

:: Reactor Reactor
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OS  EVENT  DEMULTIPLEXING  INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Session: Session
IOIO

: Event: Event
HandlerHandler

: Session: Session
IOIO

: Event: Event
HandlerHandler

: Switch: Switch
IOIO

1: handle_event()1: handle_event()

4: send(msg)4: send(msg)

2: recv(msg)2: recv(msg)
3: route(msg)3: route(msg)
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Implementing the Reactor on

UNIX and Windows NT

� Major di�erence is UNIX reactive I/O vs.
Windows NT proactive I/O

{ Reactive I/O is synchronous

{ Proactive I/O can be asynchronous

. Requires additional interfaces to \arm" the I/O

mechanism

� Other di�erences include

{ Resource limitations

. e.g., Windows NT limits number of HANDLEs

per-thread

{ Demultiplexing fairness

. e.g., WaitForMultipleEvents always returns

the lowest active HANDLE
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CCM Software Architecture
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Patterns used in CCM

Active ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

FactoryFactory
MethodMethodIteratorIterator AdapterAdapter

TemplateTemplate
MethodMethod

TACTICALTACTICAL

PATTERNSPATTERNS

STRATEGIC

PATTERNS

ConnectorConnector AcceptorAcceptor

RouterRouter

ServiceService
ConfiguratorConfigurator

ReactorReactor

ServiceService
StreamStream

� The CCM components are based upon a

family of design pattern
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Strategic and Tactical Patterns

� Strategic design patterns have an extensive
impact on the software architecture

{ Typically oriented to solutions in a particular do-

main

{ e.g., Reactor pattern in the domain of event-driven,

connection-oriented communication software

� Tactical design patterns have a relatively lo-
calized impact on a software architecture

{ Typically domain-independent

{ e.g., Wrapper, Adapter, Bridge, Factory Method,

and Strategy

� It is important to understand both types of

patterns
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Summary of Case Study

� Real-world constraints of OS platforms can
preclude direct reuse of communication soft-
ware

{ e.g., must often use non-portable features for per-

formance

� Reuse of design patterns may be the only

viable means to leverage previous develop-

ment expertise

� Complex telecommunication software sys-

tems contain hundreds of reusable design

patterns
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Bene�ts of Design Patterns

� Design patterns enable large-scale reuse of

software architectures

� Patterns explicitly capture expert knowledge

and design tradeo�s

� Patterns help improve developer communi-

cation

� Patterns help ease the transition to object-

oriented technology
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Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience rather

than by testing

� Integrating patterns into a software devel-

opment process is a human-intensive activ-

ity
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Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and reuse

existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with appli-

cation developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully
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The Future of Patterns

� Integration of patterns together with frame-
works

{ Achieve reuse of both design and code

� Integration of patterns to form systems of
patterns

{ Focus more on strategic, rather than tactical, pat-

terns

� Integration with popular object-oriented meth-
ods and software process models

{ More focus on patterns throughout the software

lifecycle
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Books and Magazines on Patterns

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

Reading, MA, 1994.

{ \Pattern Languages of Program Design," editors

James O. Coplien and Douglas C. Schmidt, Addison-

Wesley, Reading, MA, 1995

� Special Issues in Journals

{ \Theory and Practice of Object Systems" (guest

editor: Stephen P. Berczuk)

{ \Communications of the ACM" (guest editors: Dou-

glas C. Schmidt, Ralph Johnson, and Mohamed

Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and De

Souza
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Conferences and Workshops on

Patterns

� Joint Pattern Languages of Programs Con-
ferences

{ 3rd PLoP

. September 4�6, 1996, Monticello, Illinois, USA

{ 1st EuroPLoP

. July 10�14, 1996, Kloster Irsee, Germany

{ http://www.cs.wustl.edu/~schmidt/jointPLoP�96.html/

� USENIX COOTS, June 17�21, Toronto,
Canada

{ http://www.cs.wustl.edu/~schmidt/COOTS�96.html

� IEEE GLOBECOM '96, November 18�22,
London, England

{ http://crg.eee.kcl.ac.uk/comchap/gc96cfp.html
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Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit that imple-

ments many communication software pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to ics.uci.edu (128.195.1.1)

{ Transfer the �les gnu/C++ wrappers.tar.gz and
gnu/ACE-documentation/*.gz

� Mailing list

{ ace-users@ics.uci.edu

{ ace-users-request@ics.uci.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/
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