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Introduction

e Developing portable, reuseable, and efficient
communication software is hard

e OS platforms are often fundamentally in-
compatible

— e.g., different concurrency and I/O models

e Thus, it may be impractical to directly reuse:

— Algorithms
— Detailed designs
— Interfaces

— Implementations
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e OO framework for call center management
developed for Ericsson

Problem: Cross-platform Reuse

e Original OO framework was developed for
UNIX and later ported to Windows NT

e UNIX and Windows NT have fundamentally
different 1I/O models

— j.e., synchronous vs. asynchronous

e Thus, direct reuse of original framework was
infeasible. ..




Solution: Reuse Design Patterns

e Design patterns support reuse of software
architecture

e Patterns embody successful solutions to prob-
lems that arise when developing software in
a particular context

— They are particularly useful for articulating how
and why to resolve non-functional forces

e Design patterns greatly reduced project risk
at Ericsson by leveraging proven design ex-
pertise

Example Pattern: Reactor

e Intent

— Decouple event demultiplexing and event handler
dispatching from the services performed in response
to events

e T his pattern solves a key problem for single-
threaded communication software:

— How to efficiently demultiplex multiple types of
events from multiple sources of events within a
single thread of control

e A pattern description captures the static
and dynamic structure and collaboration among
key participants in a micro-architecture

Structure of the Reactor Pattern
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e Participants in the Reactor pattern

e Dynamic interaction among participants in
the Reactor pattern




Using the Reactor Pattern for
CCM
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Implementing the Reactor on
UNIX and Windows NT
e Major difference is UNIX reactive 1/O vs.
Windows NT proactive 1/O

— Reactive I/O is synchronous

— Proactive I/O can be asynchronous

> Requires additional interfaces to “arm’” the I/O
mechanism

e Other differences include
— Resource limitations

> e.g., Windows NT limits number of HANDLESs
per-thread

— Demultiplexing fairness

> e.g., WaitForMultipleEvents always returns
the lowest active HANDLE
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e The CCM components are based upon a
family of design pattern
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Strategic and Tactical Patterns

e Strategic design patterns have an extensive
impact on the software architecture

— Typically oriented to solutions in a particular do-
main

— e.g., Reactor pattern in the domain of event-driven,

connection-oriented communication software

e Tactical design patterns have a relatively lo-
calized impact on a software architecture

— Typically domain-independent

— e.g., Wrapper, Adapter, Bridge, Factory Method,
and Strategy

e It is important to understand both types of
patterns
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Summary of Case Study

e Real-world constraints of OS platforms can
preclude direct reuse of communication soft-
ware

— e.g., must often use non-portable features for per-
formance

e Reuse of design patterns may be the only
viable means to leverage previous develop-
ment expertise

o Complex telecommunication software sys-
tems contain hundreds of reusable design
patterns
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Benefits of Design Patterns

e Design patterns enable large-scale reuse of
software architectures

e Patterns explicitly capture expert knowledge
and design tradeoffs

e Patterns help improve developer communi-
cation

e Patterns help ease the transition to object-
oriented technology
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Drawbacks to Design Patterns

e Patterns do not lead to direct code reuse

e Patterns are deceptively simple

e Teams may suffer from pattern overload

e Patterns are validated by experience rather
than by testing

e Integrating patterns into a software devel-
opment process is a human-intensive activ-

ity
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Suggestions for Using Patterns
Effectively

e Do not recast everything as a pattern

— Instead, develop strategic domain patterns and reuse
existing tactical patterns

e Institutionalize rewards for developing pat-
terns

e Directly involve pattern authors with appli-
cation developers and domain experts

e Clearly document when patterns apply and
do not apply

e Manage expectations carefully

17

The Future of Patterns
e Integration of patterns together with frame-
works

— Achieve reuse of both design and code

e Integration of patterns to form systems of
patterns

— Focus more on strategic, rather than tactical, pat-
terns

e Integration with popular object-oriented meth-
ods and software process models

— More focus on patterns throughout the software
lifecycle
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Books and Magazines on Patterns

o BOOks

— Gamma et al.,, “Design Patterns: Elements of
Reusable Object-Oriented Software” Addison-Wesley,
Reading, MA, 1994,

— “Pattern Languages of Program Design,” editors
James O. Coplien and Douglas C. Schmidt, Addison-
Wesley, Reading, MA, 1995

e Special Issues in Journals

— “Theory and Practice of Object Systems” (guest
editor: Stephen P. Berczuk)

— “Communications of the ACM" (guest editors: Dou-
glas C. Schmidt, Ralph Johnson, and Mohamed
Fayad)

e Magazines
— C++4 Report and Journal of Object-Oriented Pro-
gramming, columns by Coplien, Vlissides, and De
Souza
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Conferences and Workshops on
Patterns
e Joint Pattern Languages of Programs Con-
ferences
— 3rd PLoP
> September 4—6, 1996, Monticello, Illinois, USA
— 1st EuroPLoP
> July 10—14, 1996, Kloster Irsee, Germany

— http://www.cs.wustl.edu/~schmidt/jointPLoP—-96.html/

e USENIX COOTS, June 17—-21, Toronto,
Canada

— http://www.cs.wustl.edu/~schmidt/COOTS—96.html

e [IEEE GLOBECOM '96, November 18—22,
London, England

— http://crg.eee.kcl.ac.uk/comchap/gc96cfp.html
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Obtaining ACE

e The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit that imple-
ments many communication software pat-
terns

e All source code for ACE is freely available
— Anonymously ftp to ics.uci.edu (128.195.1.1)

— Transfer the files gnu/C++ wrappers.tar.gz and
gnu/ACE-documentation/*.gz

e Mailing list
— ace-users@ics.uci.edu

— ace-users-request®@ics.uci.edu

¢ WWW URL

— http://www.cs.wustl.edu/~schmidt/
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