
Experience Using Design Patterns

to Evolve Communication

Software Across Diverse

Platforms

Douglas C. Schmidt

Washington University

schmidt@cs.wustl.edu

1

Introduction

� Developing portable, reuseable, and e�cient

communication software is hard

� OS platforms are often fundamentally in-
compatible

{ e.g., di�erent concurrency and I/O models

� Thus, it may be impractical to directly reuse:

{ Algorithms

{ Detailed designs

{ Interfaces

{ Implementations

2

Case Study

CALL CENTER
MANAGER

SUPERSUPER--
VISORVISOR

NETWORK

MD110MD110 ERICSSONERICSSON

TELECOMTELECOM

SWITCHESSWITCHES

EVENTEVENT

SERVERSERVER

: Reactor: Reactor

SupervisorSupervisor
and Switchand Switch
HandlersHandlers

SUPERSUPER--
VISORVISOR

SUPERSUPER--
VISORVISOR

SUPERSUPER--
VISORVISOR

MD110MD110 ERICSSONERICSSON

� OO framework for call center management

developed for Ericsson

3

Problem: Cross-platform Reuse

� Original OO framework was developed for

UNIX and later ported to Windows NT

� UNIX and Windows NT have fundamentally
di�erent I/O models

{ i.e., synchronous vs. asynchronous

� Thus, direct reuse of original framework was

infeasible: : :

4

Solution: Reuse Design Patterns

� Design patterns support reuse of software

architecture

� Patterns embody successful solutions to prob-
lems that arise when developing software in
a particular context

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Design patterns greatly reduced project risk

at Ericsson by leveraging proven design ex-

pertise

5

Example Pattern: Reactor

� Intent

{ Decouple event demultiplexing and event handler

dispatching from the services performed in response

to events

� This pattern solves a key problem for single-
threaded communication software:

{ How to e�ciently demultiplex multiple types of

events from multiple sources of events within a

single thread of control

� A pattern description captures the static

and dynamic structure and collaboration among

key participants in a micro-architecture

6

Structure of the Reactor Pattern

Reactor

handle_events()
register_handler(h, type)
remove_handler(h, type) Event Handler

handle_event(type)
get_handle()

A

Concrete
Event

Handler

n

1

select (handles)

foreach h in handles loop

 h->handle_event (event_type)

end loop

Handles

n

1

A
P
P
L
IC
A
T
IO
N
-
S
P
E
C
IF
IC

A
P
P
L
IC
A
T
IO
N
-
IN
D
E
P
E
N
D
E
N
T

� Participants in the Reactor pattern

7

Collaborations in the Reactor

Pattern

main
program

INITIALIZE

REGISTER HANDLER

callback :
Concrete

Event_Handler

START EVENT LOOP

EVENT OCCURS

reactor
: Reactor

dispatch()

FOREACH EVENT DO

handle_event()

select()

Reactor()

register_handler(callback)

get_handle()
EXTRACT HANDLE

REMOVE HANDLER handle_close()

I
N
I
T
I
A
L
I
Z
A
T
I
O
N

M
O
D
E

E
V
E
N
T

H
A
N
D
L
I
N
G

M
O
D
E

� Dynamic interaction among participants in

the Reactor pattern

8

Using the Reactor Pattern for

CCM

:: Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS EVENT DEMULTIPLEXING INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Session: Session
IOIO

: Event: Event
HandlerHandler

: Session: Session
IOIO

: Event: Event
HandlerHandler

: Switch: Switch
IOIO

1: handle_event()1: handle_event()

4: send(msg)4: send(msg)

2: recv(msg)2: recv(msg)
3: route(msg)3: route(msg)

9

Implementing the Reactor on

UNIX and Windows NT

� Major di�erence is UNIX reactive I/O vs.
Windows NT proactive I/O

{ Reactive I/O is synchronous

{ Proactive I/O can be asynchronous

. Requires additional interfaces to \arm" the I/O

mechanism

� Other di�erences include

{ Resource limitations

. e.g., Windows NT limits number of HANDLEs

per-thread

{ Demultiplexing fairness

. e.g., WaitForMultipleEvents always returns

the lowest active HANDLE

10

CCM Software Architecture

Session Router
Module

Presentation
Module

Event Filter
Module

Event Analysis
Module

Presentation
Module

Switch Router
Module

Reactor

MD110MD110 ERICSSONERICSSON

TELECOMTELECOM

SWITCHESSWITCHES

SUPERSUPER

VISORSVISORS

MD110MD110 ERICSSONERICSSON

MD110MD110 ERICSSONERICSSON

SUPERSUPER

VISORSVISORS

SUPERSUPER

VISORSVISORS

Switch IO

Session IO

11

Patterns used in CCM

Active ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

FactoryFactory
MethodMethodIteratorIterator AdapterAdapter

TemplateTemplate
MethodMethod

TACTICALTACTICAL

PATTERNSPATTERNS

STRATEGIC

PATTERNS

ConnectorConnector AcceptorAcceptor

RouterRouter

ServiceService
ConfiguratorConfigurator

ReactorReactor

ServiceService
StreamStream

� The CCM components are based upon a

family of design pattern

12

Strategic and Tactical Patterns

� Strategic design patterns have an extensive
impact on the software architecture

{ Typically oriented to solutions in a particular do-

main

{ e.g., Reactor pattern in the domain of event-driven,

connection-oriented communication software

� Tactical design patterns have a relatively lo-
calized impact on a software architecture

{ Typically domain-independent

{ e.g., Wrapper, Adapter, Bridge, Factory Method,

and Strategy

� It is important to understand both types of

patterns

13

Summary of Case Study

� Real-world constraints of OS platforms can
preclude direct reuse of communication soft-
ware

{ e.g., must often use non-portable features for per-

formance

� Reuse of design patterns may be the only

viable means to leverage previous develop-

ment expertise

� Complex telecommunication software sys-

tems contain hundreds of reusable design

patterns

14

Bene�ts of Design Patterns

� Design patterns enable large-scale reuse of

software architectures

� Patterns explicitly capture expert knowledge

and design tradeo�s

� Patterns help improve developer communi-

cation

� Patterns help ease the transition to object-

oriented technology

15

Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience rather

than by testing

� Integrating patterns into a software devel-

opment process is a human-intensive activ-

ity

16

Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and reuse

existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with appli-

cation developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully

17

The Future of Patterns

� Integration of patterns together with frame-
works

{ Achieve reuse of both design and code

� Integration of patterns to form systems of
patterns

{ Focus more on strategic, rather than tactical, pat-

terns

� Integration with popular object-oriented meth-
ods and software process models

{ More focus on patterns throughout the software

lifecycle

18

Books and Magazines on Patterns

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

Reading, MA, 1994.

{ \Pattern Languages of Program Design," editors

James O. Coplien and Douglas C. Schmidt, Addison-

Wesley, Reading, MA, 1995

� Special Issues in Journals

{ \Theory and Practice of Object Systems" (guest

editor: Stephen P. Berczuk)

{ \Communications of the ACM" (guest editors: Dou-

glas C. Schmidt, Ralph Johnson, and Mohamed

Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and De

Souza

19

Conferences and Workshops on

Patterns

� Joint Pattern Languages of Programs Con-
ferences

{ 3rd PLoP

. September 4�6, 1996, Monticello, Illinois, USA

{ 1st EuroPLoP

. July 10�14, 1996, Kloster Irsee, Germany

{ http://www.cs.wustl.edu/~schmidt/jointPLoP�96.html/

� USENIX COOTS, June 17�21, Toronto,
Canada

{ http://www.cs.wustl.edu/~schmidt/COOTS�96.html

� IEEE GLOBECOM '96, November 18�22,
London, England

{ http://crg.eee.kcl.ac.uk/comchap/gc96cfp.html

20

Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit that imple-

ments many communication software pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to ics.uci.edu (128.195.1.1)

{ Transfer the �les gnu/C++ wrappers.tar.gz and
gnu/ACE-documentation/*.gz

� Mailing list

{ ace-users@ics.uci.edu

{ ace-users-request@ics.uci.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/

21

