An Overview of the Real-time CORBA Specification

Douglas C. Schmidt Fred Kuhns
schmidt@uci.edu fredk@cs.wustl.edu
Electrical and Computer Engineering Dept. Computer Science Dept.
University of California, Irvine, 92697 Washington University, St. Louis, MO 63130

This article appeared in the June 2000 IEEE Computer spe©ver the past two years, the use of CORBA middleware
cial issue on Object-Oriented Real-time Distributed Compltitas increased significantly in domains, such as aerospace,
ing, edited by Philip Sheu and Eltefaat Shokri. telecommunications, medical systems, and distributed inter-
active simulations, that are characterized by stringent QoS
requirements. The acceptance of CORBA in these domains
stems from the following two factors:

To be an effective platform for performance-sensitive real-timeq  \aturation of patterns and frameworks: Over the

systems, distributed object computing middleware must SyRs; decade, a substantial amount of R&D effort has focused

port application quality of service (QoS) requirements end-tgn patterns and frameworks for high-performance and real-

end. This article describes how the OMG's Real-time CORBf\e applications and middleware. For instance, research con-

specification defines standard policies and mechanisms thgtied as part of the DARPA Quorum project the QuO project

permit the specification and enforcement of end-to-end Qog; ggN [3], and the TAO [4] and TMO [5] projects at Wash-
ington University and UC Irvine, have identified key design

. patterns, optimization principles, and frameworks that instan-
1 Introduction tiate these patterns into high-quality, QoS-enabled DOC mid-

. . ) dleware components.
A growing class of real-time systems require end-to-end sup-

port for various quality of service (QoS) aspects, such as band2. Maturation of standards: = Over the past decade, the

width, latency, jitter, and dependability. These systems inclU@dG’s suite of standards has matured considerably, partic-

command and control systems [1], manufacturing process cél@rly with respect to high-performance and real-time sys-

trol systems, video-conferencing, large-scale distributed inf&ms. For instance, the OMG has recently adopted the Min-

active simulations, and testbeam data acquisition systemsimdm CORBA [6], CORBA Messaging [7], and Real-time

addition to requiring support for stringent QoS requiremenfs®RBA [8] specifications. Minimum CORBA removes fea-

these systems have becoemebling technologiefor compa- tures from the complete OMG CORBA specification that are

nies in markets where deregulation, global competition, ai@t required by real-time and embedded systems. The Mes-

budget restrictions necessitate increased software producti$&ging specification defines several asynchronous method in-

and quality. vocation models and exports QoS policies to applications. The
Requirements for increased software productivity and quReal-time CORBA specification includes features to manage

ity motivate the use oflistributed object computing (DOC)CPU, network, and memory resources. This amp]e d.escrlbes

middleware such as CORBA [2], which is an industry stanthe key features of the Real-time CORBA specification that

dard being defined by the Object Management Group (OM@}e most relevant to researchers and developers of distributed

DOC middleware resides between applications and the (fal-time and embedded systems.

derlying operating systems, protocol stacks, and hardware in

complex real-time systems. CORBA helps to decrease the

cycle-time a_nd effor.t required to develop high-quality systes  Qyerview of Real-time CORBA

by composing applications out of reusable software compo-

nent services, rather than building them entirely from scratcfhe Real-time CORBA (RT-CORBA) 1.0 specification defines

“This work was supported in part by AFOSR grant F49620_00_1_033%tandard features that support end-to-end predictability for op-

Boeing, BBN, Cisco, DARPA contract 9701516, NSF grant NCR-9628218fations infixed-priority CORBA applications. This specifica-
Motorola, Siemens, and Sprint. tion extends the existing CORBA standard [2] and the recently

Abstract




adopted OMG Messaging specification [7]. In particular, RBS thread scheduling priorities. The RT-CORBA specifica-
CORBA 1.0 leverages features from GIOP/IIOP version ltibn focuses on operating systems that allow applications to
and the Messaging specification’s QoS policy framework. Apecify scheduling priorities and policies. For example, the
these features and specifications are being integrated intor&ad-time extensions in IEEE POSIX 1003.1c define a static
forthcoming CORBA 3.0 standard. priority FIFO scheduling policy that meets this requirement.

As shown in Figure 1 an ORB endsystem [4] consists of ngt Real-Time ORB endsystem: ORBs are responsible for

communicating requests between clients and servers transpar-
ently. A real-time ORB endsystem must provide standard in-
terfaces that allow applications to specify their resource re-
guirements to the ORB. The policy framework defined by the
OMG Messaging specification [7] allows applications to con-
figure ORB endsystem resources, such as thread priorities,
buffers for message queueing, transport-level connections, and
network signaling, in order to control ORB behavior.

END-TO-END PRIORITY
PROPAGATION
in args
operation()

OBJECT

out args + return value

+-—O0

SrANDARD

EXPLICIT SYNCHRONIZERS

BINDING - OBJECT ADAPTER . . L . .
-« > 4. Real-time services and applications: Having a real-time
[ GIOP §§ J ORB manage endsystem and communication resources only
provides a partial solution. Real-time CORBA ORBs must
PROTOCOL also preserve efficient, scalable, and predictable behavior end-
PROPERTIES

to-end for higher-level services and application components.
For example, a global scheduling service [4, 9] can be used to
08 /0 SUBSYSTEM manage and schedule distributed resources. Such a schedul-
ing service can interact with an ORB to provide mechanisms
that support the specification and enforcement of end-to-end

Figure 1: ORB Endsystem Features for Real-Time CORB/Aperation timing behavior. Application developers can then
structure their programs to exploit the features exported by the

work interfaces, operating system I/0 subsystems and comff@/-time ORB and its associated higher-level services.

nication protocols, and CORBA-compliant middleware com- To manage these capabilities, RT-CORBA defines standard

ponents and services. The RT-CORBA specification idenfierfaces and QoS policies that allow applications to con-
fies capabilities that must hertically (i.e., network interface figure and control (Lprocessor resourcesia thread pools,

«» application layer) antiorizontally(i.e., peer-to-peer) inte- yyiq ity mechanisms, intra-process mutexes, and a global
grated and managed by ORB endsystems to ensure end-to;

. 4 Vitied eh duling service, (2rommunication resourcegia pro-
predictable behavior faactivities' that flow between CORBA tocol properties and explicit bindings, and (@emory re-

clients and servers. Below, we outline these capabilities, stafircesvia buffering requests in queues and bounding the
ing from the Iowest level of allbst.ractlon and building up 9se of thread pools. Applications typically specify these
higher-level services and applications. real-time QoS policies along with other policies when they

1. Communication infrastructure resource management; ¢all standard ORB operations, such eate _POA or
An RT-CORBA endsystem must leverage policies and medf@lidate  _connection . For instance, when an object ref-
anisms in the underlying communication infrastructure thgfence is created using a QoS-enabled POA, the POA ensures
support resource guarantees. This support can range fron{rﬁl?ﬁny serv.er-.5|de policies that affgct cllent'-5|de requests are
managing the choice of the connection used for a particufaoedded within tagged comonent in the object reference.
invocation to (2) exploiting advanced QoS features, such Gys enables clients WhO.II’.IVOke operatlons on such ob!ect ref-
controlling the ATM virtual circuit cell pacing rate. erences to honor the policies required by the target object.
Figure 1 illustrates how the various RT-CORBA features re-
2. OS scheduling mechanisms: ORBs exploit OS mech- |ate to the existing CORBA standard. Below, we describe how
anisms to schedule application-level activities end-to-efRI-CORBA features can be used to manage (1) processor re-
Since the RT-CORBA 1.0 specification targets fixed-prioriources and (2) inter-ORB communication. We also outline
real-time systems, these mechanisms correspond to manaBMCORBA features for managing memory resources, though

OS KERNEL OS KERNEL

0S 1/0 SUBSYSTEM

NETWORK ADAPTERS,

NETWORK

1An activity represents the end-to-end flow of information between a client 2Tagged components are name/value pairs that can be used to export at-
and its server that includes the request when it is in memory, within the trafmsutes, such as security or QoS values, from a server to its clients within
port, as well as one or more threads. object references [2].



ORB ENDSYSTEM A can be assigned a CORBA priority, which ranges in value be-

tween 0 and 32767. Each ORB endsystem along an activity
path can be customized to map CORBA priorities to native
priorities, which may be unique on different endsystems. Fig-
ure 2 illustrates how CORBA priorities can be mapped onto
two different native ORB endsystem priorities.

Priority models: The RT-CORBA specification defines a
PriorityModel policy with two values,SERVERDECLARED
and CLIENT_PROPAGATED as shown in Figure 3 and de-

—)
[
]
(A) SERVER (1)SERVER
ORB ENDSYSTEM B DECLARED PRIORITY

IS PRE-SET

(3) CLIENT'S PRIORITY
IS NOT PROPAGATED
BY INVOCATION

Figure 2: Mapping CORBA Priorities to Native Priorities =~ MODEL

the specification is less explicit on this topic, so we merge our
memory management discussion with the two main topics.

. (B) CLIENT GLOBAL CORBA PRIORITY =100
2.1 Managing Processor Resources PROPAGATED —{ SERVICE SERVICE
MODEL CONTEXT CONTEXT
Strict control over the scheduling and execution of processor =100 M =100

resources is essential for many fixed-priority real-time applica-

tions. Thereforg, th.e RT-CORBA speqﬂcaﬂon gngbles chgnt YNXOS WINNT SOLARIS
and server applications to (1) determine the priority at whichpporiTy PRIORITY PRIORITY
CORBA invocations will be processed, (2) allow servers to =100
pre-define pools of threads, (3) bound the priority of ORB

th reads, and (4) ensure that intra-process thread Synchroni Current::priority(100) Current::priority(100) Current::priority(100)
have consistent semantics in order to minimize priority inve to_native(100) => 100 to_native(100) => 5 to_native(100) => 135
sion [10].

It is important to recognize that RT-CORBA's priority
mechanisms cannot work miracles. In particular, ORB mid-
dleware cannot magically imbue a non-real-time OS or com-
munication infrastructure with completely deterministic bé;-cr'bEd below.
havior. When used in the appropriate environment, howevers Server declared priorities: This model allows a server
certain RT-CORBA features help application developers ataddictate the priority at which an invocation made on a par-
integrators configure heterogeneous systems to preserve plicar object will execute. In the server declared model, the

=5 =135

Figure 3: Real-time CORBA Priority Models

ities end-to-end, as described below. priority is designated priori by a server based on the value of
thePriorityModel policy in the POA where the object was ac-
2.1.1 Priority Mechanisms tivated. A single priority is encoded into the object reference,

which is then published to the client as a tagged componentin
Conventional [2] CORBA ORBs provide no standard way fen object reference, as shown in Figure 3 (A).
clients to indicate the relative priorities of their requests to Although the server declares the priority, the client ORB is
ORB endsystems. This feature is necessary, however, to miware of the selected priority model policy and can use this
mize end-to-end priority inversion, as well as to bound latenigyformation internally. For example, priority-banded connec-
and jitter for applications with deterministic real-time QoS reions can be implemented on the client by matching invoca-
quirements. Therefore, the RT-CORBA specification defingsn priorities and priority-bands with priorities advertised by
the following platform-independentmechanisms to control theserver. Thus, the ORB can guarantee that client invocations
priority of operation invocations. on a particular object are performed at the designated priority

Priority type system: The RT-CORBA specification define<? the server.

two types of priorities -CORBAand native— to handle OS e Client propagated priorities:  Although the server de-
heterogeneity. Each one-way or two-way CORBA operatictared model is useful for certain real-time applications, it is



not suited for all application use-cases. For instance, one way Outbound transforms: These transforms are per-
for a server to avoid priority inversions is to process incorfermed when ammnwardoperation is invoked from a servant.
ing requests at a priority equivalent to the client thread than onward operation occurs whenever a servant invokes an
invoked the operation originally [10]. The RT-CORBA clienbperation on an object.
propagated model allows clients to declare invocation priori-
tie; that mgst be honored by.se_rvers. In this quelz each inﬁ?l'.z Thread Pools
cation carries the CORBA priority of the operation in the ser-
vice context list that is tunneled with its GIOP request. Eashany embedded systems use multi-threading to (1) distin-
ORB endsystem along the activity path between the client agush between different types of service, such as high-priority
server maps this end-to-end CORBA priority to a native Q8. low-priority tasks [1] and (2) support thread preemption to
priority and processes the request at this priority. Moreovprevent unbounded priority inversion. Prior to the RT-CORBA
if the client invokes a two-way operation, its CORBA prioritgpecification, however, there was no standard API for pro-
will determine the priority of the reply. gramming multi-threaded CORBA servers. Thus, it was not
Figure 3 (B) depicts the case where an invocation fronpassible to use CORBA to program multi-threaded real-time
client on ORB endsysterd to a server on ORB endsystensystems without using proprietary ORB featutes.
C results in an invocation on an intervening ORB endsys-One way to implement a server ORB without threads is to
tem B, each running operating systems with different nativesse areactiveconcurrency model [11]. In this approach, a
thread priority ranges. The CORBA priority of the client iserver ORB reads each request from the underlying commu-
propagated with the request. Each intervening server alanigation mechanism, processes it to completion, and then re-
the activity path maps the client's CORBA priority to a nativirieves the next request and so forth. If all requests require
priority that is appropriate for its host platform and end-te fixed, relatively short amount of processing, a reactive con-
end global priority. For example, on Windows NT the globalurrency model may be feasible. However, many distributed
CORBA priority can be mapped to a native OS priority of 2@pplications have complex object implementations that run for
Likewise, on Solaris, the same global CORBA priority can hariable and/or long durations. Moreover, to avoid unbounded
mapped to a real-time thread with a priority of 135. priority inversion and deadlock, real-time applications often
require some form of pre-emptive multi-threading.
Priority transforms:  The client propagated and server de- 15 address these concurrency issues, therefore, the
clared priority models described above are not sufficient {8f.coRBA specification defines a standaifread pool
all applications. For instance, the server declared model opl¥qel [11]. This model allows server developers to pre-
maps priorities to objects, which may be too coarse-grained fcate pools of threads and to set certain thread attributes,
more dynamic use-cases. Likewise, although the client propgen as default priority levels. Thread pools are useful for real-
gated model is more dynamic, there are use-cases where aggjls ORB endsystems and applications that want to leverage
cations require additional control over the ultimate priority gte penefits of multi-threading, while bounding the amount of
which a given invocation is processed. For example, differgRbmory resources, such as stack space, they consume. More-
priority ceiling protocols may be required in a server to handlGer, thread pools can be optionally configured to buffer or not
inbound invocations.e., before the upcall is performed, angyffer requests, which provides further control over memory
outbound invocations.e., before a client or servant perform%sage_

a remote method invocation. Thread pools can be defined and associated with POAs in
To support these uses-cases, therefore, the RT-CORBART-CORBA server. Each POA must be associated with
specification permits a server application to defit@rity one thread pool, although a thread pool can be associated with
transformsthat set the priority at which particular invocationgyitiple POAs. Figure 4 illustrates the creation and associa-

are performede.g, based on external factors, such as curref¥§,, of thread pools in a server.
server load, operation criticality [4], or the state of a global The RT-CORBA specification defines two different thread

scheduling sgrvice [9]. Transforms are implementedasks pool styleswith andwithout lanesas described below.
that are applied as requests are received or sent. A transform

hook is passed the current CORBA priority and target objectifiread pools: The simplest RT-CORBA thread pool model

and can change the invocation priority, potentially by callir@flows developers to control the overall concurrency level
out to application-supplied code. The following two priorityvithin server ORBs and applications. A thread pool is cre-
transform models are defined in RT-CORBA: ated with a fixed number of statically allocated threads that

e Inbound transforms: These transforms are applied 3Strictly speaking, the RT-CORBA specification is an optional part of the
. . . . CORBA standard, though ORBs that implement it are obliged to adhere to its
during the invocation upcall,e., after reception by the ORB " =" 4 nolicies
Core, but before the servant operation is dispatched in a server.

4



Default Thread Pool A Thread Pool B Thead Pool A Thead Pool B
Thread Pool

= EES ) B

PRIORITY PRIORITY RIORITY PRIORITY
PRIORITY 10 35 50 20 PRIORITY 10 PRIORITY 35 PRIORITY 20
AN X

/

POA A
EEEE
10 50 50 35

k\
N,

N,
N,

SERVER ORB CORE

v AN
Figure 5: Buffering Requests in RT-CORBA Thread Pools
()l rovon | Y I
HIREADS SERVER ORB CORE for applications, such as avionics mission computing [1], with

real-time periodic processing requirements. In these scenar-
ios, it is desirable to partition the threads in a thread pool into
different subsets, each with different priorities. Therefore, RT-
an ORB uses to process client messages. These pre-allodafedBA defines ahread pool with lanesnodel, which en-
threads will consume system resources even if they are Ales developers to bound both the overall concurrency of a
used, however. Therefore, RT-CORBA provides an interfa2@ver and the amount of work performed at a given priority
that allows server developers to pre-allocate an initial numbel-
of so-calledstatic threads, while allowing this pool to grow For each lane in this thread pool model, the server specifies
dynamically to handle bursts of client requests. the CORBA priority, static thread count, and dynamic thread
Server applications can use tlecate _threadpool count. Dynamic threads are assigned the lane priority. Thread
API to specify (1) the default number of static threads thpbols with lanes can be configured to allow lanes with higher
are created initially, (2) the maximum number of threads th@&iorities to borrow threads from lanes with lower priorities. If
can be created dynamically, and (3) the defapitiority of all a thread is borrowed, its priority is temporarily raised to that
these threads. If a request arrives and all existing threadsgfrehe lane that borrows it. When the invocation processing
busy, a new thread may be created to handle the request.idlNeomplete, its priority reverts to its previous value and the
additional thread will be created, however, if the maximuthread returns to its original lane. Thread pools with lanes also
number of threads in the pool have been spawned. can be configured to support request buffering if no threads are
A pool can be optionally pre-configured for a maximuravailable to process incoming requests.
buffer size or number of requests, as shown in Figure 5. If
buffering is enabled for the pool, the request will be queued
until a thread is available to process it. If no queue space
is available or request buffering was not specified the ORBL.3 Standard Synchronizers
should raise @RANSIENT exception, which indicates a tem-
porary resource shortage. When the client receives this exg&p-mentioned in Section 2.1.2, the CORBA specification [2]
tion it can reissue the request at a later point. does not define a threading model. Thus, there is no stan-
Thread pools with lanes: Many real-time and embeddedard, portable API that CORBA applications can use to ensure
systems applications statically associate global CORBA pspgmannc conS|§tency between t_helr. synchronlz.atlon mecha-
orities to pools of threads. For example, a telecommuni¢isms and the internal synchronization mechanisms used by
tions application may select three distinct priorities to ref ORB. Real-time applications, however, require this consis-
resent low-latency, high-throughput, and best-effort requ&%‘ﬂcy to enforce priority inheritance and priority ceiling proto-
classes. Alternatively, a fixed set of rate-groups with cdiols [10].
responding global CORBA priorities are a convenient modelTo ensure semantic consistency, therefore, the RT-CORBA
4Threads within a pool may have their priorities changed dynamically ?r‘PeCIflcatlpn deflnes a St.andard selooality Con.Stramednu_ .
accordance with the priority models or priority transforms described in S4€X Operations. Figure 6 illustrates the mutex interface defined
tion 2.1.1. by RT-CORBA.

Figure 4: POA Thread Pools in Real-time CORBA




Mutex 2.2 Managing Inter-ORB Communication
lock()

unlock() (SERVANT)
try_lock()

Historically, the CORBA specification and conventional ORBs
have supportelibcation transparency.e., applications cannot
detect whether components are distributed or collocated in the
same process. Moreover, the features of the underlying OS,
network, and/or bus are considered a black box. Although this

OBJECT
ADAPTER

!

>> ) encapsulation is useful for applications with best-effort QoS
(mutexz) requirements, it is inadequate for applications with more strin-
gent QoS requirements.
Figure 6: Standard Synchronizers To allow applications to control the underlying communi-

cation protocols and endsystem resources, therefore, the RT-
CORBA specification defines standard interfaces that can be
2.1.4 Global Scheduling Service used to select and configure certpimtocol propertiesin ad-
dition, client applications caexplicitly bindto server objects
The scheduling abstractions defined by real-time operathtgjng priority-bands and private connections, as described be-
systems such as VxWorks, LynxOS, and POSIX 1003.1c itaw.
plementations are relatively low-level. For instance, they re-
quire developers to map their high-level application QoS 122.1 Selecting and Configuring Protocol Properties
quirements into lower-level OS mechanisms, such as thread

priorities and virtual circuit bandwidth/latency parameterSORBA uses inter-ORB communication mechanisms to ex-

This manual mapping step is non-intuitive for many applicﬁhange requests between clients and servers. These mecha-

tion developers, who prefer to design in terms of object intdlisms are built upon lower level protocols that provide various
faces and object operations. types of QoS. Inter-ORB protocol (IOP) instances are com-

To allow applications to specify their scheduling requing’—osed of both an ORB protocol and a mapping to a specific

ments in a higher-level, more intuiive manner, the R Inderlying transport protocol. For example, the Internet Inter-

e : N RB Protocol (IIOP) is a mapping of the General Inter-ORB
CORBA specification defines a global scheduling service [érotocol (GIOP) onto TCP/IP. Thus, an IOP contains two pro-
This service is a CORBA object that is responsible for a"fécol layers —ORBandtranspc;rt— ea,ch having its own set of
cating system resources to meet the QoS needs of the app

. . éﬁgfocol properties.

:f:ftitgaetssgr?ers:llrilre] (?slzi/iigdtzyssiz]ifyﬁﬁEIIcraot:;%gssi%anrgsﬁ're-ﬁT_CORBA defines an interface that permits applications

ments of their o ergtions in termg of variouz arame?ersqsbhSpeCify ORB- and transport-specific protocol properties
P o . P .~ 7" “That control various communication protocol features, such as

as worst-case execution time or period, as shown in Figure

\TM virtual circuits or Internet RSVP traffic specification.
Each ORB/transport protocol properties tuple is defined by

3 POPULATE SgHFE)L[ﬁR a Protocol struct that ultimately resides in a sequence
REPOSITORY structs called &rotocolList , as defined by the following

FHHH | corea IDL:

RT_INFO
RerosToRY_I| interface ProtocolProperties {};
4: ASSESS

SCHEDULABILITY

struct RT_Info {
Time worstcase_exec_time_;
Period period_;
Criticality criticality_;
Importance importance_;

{5

N
NN

DEPENDS UPON =
EXECUTES AFTER

1: CONSTRUCT CALL
CHAINS OF RT_OPERATIONS

typedef struct {
siassiovosreap  |OP::Profileld protocol_type;

2: IDENTIFY THREADS

PRIORITIES AND PrOtOCol Propertles

e - o orb_protocol_properties;
Operation | | Operation | | Operation 6: SUPPLYLES RUN-TIME ORPERING P _F|)P —p p '

OBJECT ADAPTER omn | SCHEDULER SUBPRIORITIES rotocolProperties _

< Priority/ transport_protocol_properties;
[C)C)C)C)] Subprioic } Protocol;
Mode cumwet typedef sequence <Protocol> ProtocolList;
= = = MODE

SELECTOR

/0 SUBSYSTEM The order in which protocol properties appear in the

ProtocolList is significant — it allows applications to in-
dicate the order of their protocol preferences. For example,
a client may specify that IIOP is more preferable than other
protocol combinations.

Figure 7: Real-Time CORBA Global Scheduling Service



To allow applications to select and configure their desirélitee protocols, ignoring any protocols that it does not support.
ORB/transport protocol properties, RT-CORBA defines tfdis feature allows a server to enforce specific inter-ORB pro-
following pair of QoS policiesClientProtocolandServerPro- tocol requirements on clients.

tocol . . e
The particular properties for specific protocols can be de-

Server-side protocol properties: CORBA servers can Usefined via interface inheritance. For example, the standard TCP
the ServerProtocopolicy to select which protocols to conyprotocol properties are shown below:

figure into an object reference. This policy can be passed
with other POA policies when thereate _POAoperation interface TCPProtocolProperties
is invoked on thePortableServer::POA interface. Thes{t : ProtocolProperties
ServerProtocopolicy has two purposes: it (1) publishes a li _ o
qf avai'lable p.rotocols to clients and (2) defines protocol con-ZgHgﬂ:g :828 rS:cn\jj__bbulﬂzarr__ssi'lzzee;’
figuration attributes for server connections. attribute boolean keep_alive;
The POA ensures that the ordering of profiles in object ref-attribute boolean dont_route;
erences conforms to the ordering of protocols specified in theattribute boolean no_delay;
ServerProtocolpolicy. Thus, a server can export its proto:

col preferences to clients by passing them in object references ) . L
whose profiles are arranged in a particular order. When a clidfi{S Protocol property interface permits applications to set

receives the object reference, it can either accept the ser/ep@mon attributes of TCP endpoints. For example, the send
preference or use different selection criteria. and receive buffer size attributes can set the size of endpoint

] ] ] ] o socket queues. Many TCP implementations use these values
Client-side protocol properties: Client applications can i, getermine the TCP window size, which in turn affects end-
use theClientProtocolpolicy to select which protocols to usg,_ang throughput. If théeep _alive  attribute is enabled

when they connect to objects. This policy is applied whenrgp il send a probe on inactive connections to verify that
client obtains a binding to an object. ThientProtocolpol-  yhey are still valid. Finally, thewo delay attribute disables
icy indicates the protocol properties a client is interested in, s prg Nagle algorithm so that small requests can be sent even

well as the ordering of its preferences. _ if earlier requests have not yet been acknowledged.
The ClientProtocolpolicy can be set either by a client or

server, but not both for the same object reference. Servers o
can publish particular protocol requirements and preferenées2 EXplicit Binding

on a per-object basis.' In contrast, qlients can use this polgye original CORBA specification only supportéahplicit

to change protocol policies on a per-invocation basis. If Set@Rding[2]. In this model, resources along the activity path be-
the server, th€lientProtocol policy is propagated to theyyeen a client and its server object are establisiredemand
clientin the object reference, as shown in Figure 8. This figy after a client's first invocation on the server. Implicit bind-
ing helps preserve location transparency by allowing clients to
access remote objects or collocated objects using a common
programming model. In addition, it helps conserve OS and

OBJECT

v ervant)  |J  networking resources, such as socket handles and ATM vir-
4 INVOKE OPERATION 1: CREATE OBJECT . tual circuits, by (1) deferring network connections until they
3 lfl'ig'?rCOTCOL o REEERENCE A are actually used and (2) allowing multiple client threads in a
v ( omsecr aparTER ) process to be multiplexed through shared network connections
to their corresponding servers.
— % = Unfortunately, implicit binding is inadequate for real-time

applications with deterministic QoS requirements. In partic-
ular, deferring object/server activation and resource alloca-
tion until run-time can increase latency and jitter significantly.
Figure 8: Configuring and Selecting Protocol Properties Moreover, the use of connection multiplexing can yield sub-
stantial priority inversion [11] due to head-of-line blocking as-
illustrates how a server can designate the protocols availadmeiated with connection queues that are processed in FIFO
to the client. The server publishes the VME, ATM, and RTérder.
protocols, in that order, in a tagged component in the objecffo avoid these problems, the RT-CORBA specifica-
reference. The client then must abide by @lentProtocol tion defines anexplicit binding mechanism that uses
policy propagated by the server and select from one of théise validate _connection operation defined on the

NETWORK




CORBA::Object interface in the CORBA Messaging spec-  _validate_connection (out CORBA::PolicyList

ification. This mechanism enables clients to (1) pre-establish inconsistent_policies);
connections to servers and (2) control how client requests are
sent over these connections. The following two policies — >

—>,
priority-bandedandprivate connections are defined to sup- —>2 2 _)2 2 —>2

port explicit binding in RT-CORBA.

Priority-banded connections: Priority-banded connections PRIORIFY BANDEDA
allow cll_ents to (1) specify explicit pr|or|.t|es for each.network PRIVATE CONNECTIONS
connection and (2) select the appropriate connection at run- _ -
time based on the CORBA priority of the thread that invoked Figure 9: Explicit Binding
an operation. Clients are responsible for specifying policies

that define one or more priority-bands when they establish . .
connections explicitly P y y processes the servant upcall at the specified priority and sends

Priority-band information is exported to the server WithiH]e reply_across the same non-multiplexed connec.tlo.n.. e
%mblnatlon of features ensures that end-to-end priorities are

the service context of the first invocation sent across tHe oM - . .
connection. For instance, explicit binding information i@alntalned and that key sources of priority inversion are elim-
passed in a request fabind _priority  _band, which inated.
is an implicit operation® When a server receives a
_bind _priority  _band request, which includes the re
guested priority in the service context, it allocates resources

o the connection. Subsequent reqyegts on this connect|orbebrg to constraints on weight/power consumption, memory
then processed at the requested priority.

In the absence of arbind _priority  _band operation, footprint, and performance, real-time, embedded system soft-

T S I has historically | hi i
an implicit bind is performed when the first invocation is sexvare development has historically lagged behind mainstream

Concluding Remarks

o . . : S Fware development methodologies. As a result, real-time,
ver the connection. The service context of this request mus IV to evolve and maintain
contain the CORBA priority range.,e., minimum and maxi- embedded software systems are _co_sty o€ X
mum values, for the banded connection. The server thenMP_re_over, they are often so spemallzgq that they cannotl adapt
' ' rea {I to meet new market opportunities or technology inno-
locates any necessary resources to ensure subsequent reqiies! %
arriving on this connection will be processed at the desire%M . . . .
prioity. _ eeting the QoS reqqlrement_s of next-gengratlon dis-
tributed applications requires an integrated architecture that
Private connections: Many ORBs supponnultiplexedcon- can deliver end-to-end QoS support at multiple levels in real-
nections, which yield better utilization of connections artime and embedded systems. Distributed object computing
other limited OS resources [11]. However, real-time applic@OC) middleware based on the Real-time CORBA (RT-
tions often require private.e., non-multiplexedconnections, CORBA) 1.0 specification [8] offers solutions to some re-
which are well-suited for applications that possess determgource management challenges facing researchers and devel-
istic QoS requirements. In this case, a connection cannotdpers of real-time systems, particularly those systems that can
reused for another two-way request until the reply for the piige designed using fixed priority scheduling.
vious request is received. To support this feature, RT-CORBAHowever, an important class of mission-critical applica-
provides a policyPrivateConnectionthat allows clients to tions cannot meet their QoS requirements under dynamic load
select private connections that minimize the duration of asgnditions [9] just using the features standardized in the RT-
end-to-end priority inversions. Oddly, there is no API in RIEORBA 1.0 specification. Moreover, it is very hard for com-
CORBA to explicitly request a multiplexed connectiam., plex mission-critical application developers to determine the
this is considered an ORB implementation detail. priorities of various operationa priori without significantly
Figure 9 illustrates the use of priority-banded, private copnderutilizing various resources, such as the CPU. To address
nections between a client and server. In Figure 9 private ca@ffese issues, therefore, the OMG is standardizing dynamic
nections are combined with priority banding. Thus, each cligggheduling techniques, such as deadline-based [12] or value-
operation is sent to the server over a pre-allocated connectiaBed scheduling.
that is assigned to a fixed priority range. The server ORB them freely-available, open-source implementation of the
F— . , . _.Real-time CORBA specification called TAO is available at
mplicit operations are implemented by an ORB, not by an application .
object, and are typically used for internal inter-ORB communication and cofWW.CS.wustl.edu/ ~schmidt/TAO.html . TAO has
figuration. been used on a wide range of distributed real-time and em-




bedded systems, including an avionics mission computing &chmidt received B.S. and M.A. degrees in Sociology from
chitecture for Boeing [1], the SAIC next-generation Run Tinthe College of William and Mary in Williamsburg, Virginia,
Infrastructure (RTI) implementation for the Defense Modeind an M.S. and a Ph.D. in Information and Computer Sci-
ing and Simulation Organization’s (DMSO) High Level Archience from the University of California, Irvine (UCI) in 1984,
tecture (HLA), and high-energy physics experiments at SLA®86, 1990, and 1994, respectively. Dr. Schmidt is a member
and CERN

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

El

(20]

(11]

(12]

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,Pioceedings of
OOPSLA '97 (Atlanta, GA), pp. 184-199, ACM, October 1997.

Object Management Grouhe Common Object Request Broker:
Architecture and Specificatio.4 ed., Oct. 2000.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, pp. 1-20, 1997.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeZaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

K. Kim and E. Shokri, “Two CORBA Services Enabling TMO
Network Programming,” iffourth International Workshop on
Object-Oriented, Real-Time Dependable SystéERE, January 1999.

Object Management Groupinimum CORBA - Joint Revised
SubmissionOMG Document orbos/98-08-04 ed., August 1998.

Object Management Grou@ORBA Messaging SpecificatioBbject

of the IEEE, ACM, and USENIX.

Fred Kuhns is a Senior Research Associate in Department
of Computer Science at Washington University, St. Louis. He
received the M.S.E.E. from Washington University, St. Louis,
and the B.S.E.E. from the University of Memphis, Memphis
TN. His research interests focus on operating system and net-
work support for high-performance, real-time distributed ob-
ject computing systems. His recent research projects have
focused on the design and implementation of real-time 1/0O
subsystems, software support for high-performance interfaces,
and QoS support in integrated service routers.

Management Group, OMG Document orbos/98-05-05 ed., May 1998.

Object Management Groufeal-time CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling ServiBgal-Time
Systems, The International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleywask 20, March 2001.

R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchronization

Protocols for Multiprocessors,” iRroceedings of the Real-Time
Systems Symposiugiuntsville, Alabama), pp. 259-269, December
1988.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokedsyfirnal of

Real-time Systems, special issue on Real-time Computing in the Age of

the Web and the Internetol. 21, no. 2, 2001.

Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel,IlHEE
Real-Time Systems Symposipm. 246—-255, IEEE, Ecember 1999.

Biographical Sketches

Dr.

Douglas C. Schmidtis an Associate Professor in the

Electrical and Computer Engineering Department at the Uni-
versity of California, Irvine. His research focuses on de-

sign patterns, implementation, and experimental analysis of
object-oriented techniques that facilitate the development of
high-performance, real-time distributed object computing sys-
tems on parallel processing platforms running over high-speed
ATM networks and embedded system interconnects. Dr.



