Object-Oriented Design and

Programming

Overview of Object-Oriented

Design Principles and Techniques

Douglas C. Schmidt

www.cs.wustl.edu/~schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

Deja Vu?

In the past: Structured = Good

Today: Object-Oriented = Good

e.g.,

Object-oriented languages are good
Ada is an object-oriented language

Therefore, Ada is good

Note, thereis even an object-oriented COBOL!

Goals

Demystify the hype surrounding OOD and
OOP

Focus on OOD/OQOP principles, meth-
ods, notations, and tools

Relate OOD/OOP to traditional develop-
ment methods

Overview

e What are object-oriented (OO) methods?

— OO methods provide a set of techniques for
analyzing, decomposing, and modularizing soft-
ware system architectures

— In general, OO methods are characterized by
structuring the system architecture on the ba-
sis of its objects (and classes of objects) rather
than the actions it performs

e What are the benefits of OO?7

— OO enhances key software quality factors of a
system and its constituent components

e What is the rationale for using OO?

— In general, systems evolve and functionality changes,
but objects and classes tend to remain stable
over time




Software Quality Factors

e Object-oriented techniques enhance key ex-
ternal and internal software quality fac-
tors, e.g.,

1. External (visible to end-users)

(a) Correctness
(b) Robustness and reliability
(c) Performance

2. Internal (visible to developers)

(a) Modularity
(b) Flexibility/Extensibility
(c) Reusability

(d) Compatibility (via standard/uniform interfaces)

OOA, OOD, and OOP

e Object-oriented methods may be applied
to different phases in the software life-
cycle

— e.g., analysis, design, implementation, etc.

e OO analysis (OOA) is a process of dis-
covery

— Where a development team models and under-
stands the requirements of the system

e OO design (OOD) is a process of inven-
tion and adaptation

— Where the development team creates the ab-
stractions and mechanisms necessary to meet
the system’s behavioral requirements determined
during analysis

OOA, OOD, and OOP (cont’'d)

e Is it also useful to distinguish between object-
oriented design (OOD) and object-oriented

programming (OOP)

— OOD is relatively independent of the program-
ming language used

— OORP is primarily concerned with programming
language and software implementation issues

e Obviously, the more consistent the OOD
and OOP techniques, the easier they are
to apply successfully in real-life. ..

OOA, OOD, and OOP (cont’'d)

e Basic Definitions
1. Object-Oriented Design

— A method for decomposing software archi-
tectures based on the objects every system
or subsystem manipulates

* Rather than “the” function it is meant to
ensure

2. Object-Oriented Programming

— The construction of software systems as struc-
tured collections of Abstract Data Type (ADT)
implementations, plus inheritance and dy-
namic binding




Object-Oriented Design Topics

e Object-oriented design concepts include:

Decomposition/Composition

Abstraction

* Modularity

* Information Hiding

* Virtual Machine Hierarchies

Separating Policy and Mechanism

Subset Identification and Program Families

Reusability

e Main purpose of these design concepts is
to manage software system complexity by
improving software quality factors

Object-Oriented Programming
Topics

e Object-oriented programming features and
techniques include

Data abstraction and information hiding
Active (rather than passive) types
Genericity
Inheritance and dynamic binding
Programming by contract
Assertions and exception handling

e Throughout the course we'll discuss how

these OOP features and techniques im-
prove software quality

— e.g., correctness, reusability, extensibility, reli-
ability, etc.

Review: Goals of the Design

Phase

e Decompose System into Modules

— |.e., identify the software architecture via “clus-
tering”

* In general, clusters should maximize cohe-
sion and minimize coupling

e Determine Relations Between Modules
— Identify and specify module dependencies
* e.d., inheritance, composition, uses, etc.

— Determine the form of intermodule communi-
cation, e.g.,

* global variables
parameterized function calls
shared memory

RPC or message passing

Review: Goals of the Design
Phase (cont’d)

e Specify Module Interfaces
— Interfaces should be well-defined

* facilitate independent module testing

* improve group communication

e Describe Module Functionality
— Informally

* e.d., comments or documentation

— Formally

* e.d., via module interface specification lan-
guages




Decomposition/Composition

Decomposition and composition are con-
cepts common to all software life-cycle
and design techniques

e The basic concepts are very simple:

1. Select a portion of the problem (initially, the
whole problem)

. Decompose the selected portion into one or
more constitutent components using the de-
sigh method of choice

— e.g., functional vs. data structured vs. object-
oriented

. Determine and depict how the components in-
teract (i.e., composition)

. Repeat steps 1 through 3 until some termina-
tion criteria is met (e.g., customer is satisfied,
run out of money, etc. ;-))

Decomposition/Composition
(cont’'d)

e A major challenge of the design phase for
a system is to determine what the primary
units of decomposition and composition
ought to be

e Another way of looking at this is to ask
“at what level of abstraction should the
modules be specified?”

e Typical units of decomposition and com-
position include:

Subsystems
Virtual machine levels
Classes

Functions

Decomposition/Composition
(cont’d)
e Some principles for guiding the decompo-
sition and composition process
Since design decisions transcend execution time,

modules often do not correspond to execution
steps...

Decompose so as to limit the effect of any one
design decision on the rest of the system

Remember, anything that permeates the sys-
tem will be expensive to change

Modules should be specified by all information
needed to use the module and nothing more

Try to compose the system by reusing existing
components if possible

Abstraction

e Motivation

— Abstraction provides a way to manage com-
plexity by emphasizing essential characteristics
and suppressing implementation details

e Traditional abstraction mechanisms

Name abstraction
Expression abstraction

Procedural abstraction

* e.d., closed subroutines

Data abstraction

* e.d., ADTs

Control abstraction

% iterators, loops, multitasking, etc.




Modularity

e Motivation

— Modularity is an essential characteristic of good
designs since it:

Enables developers to reduce overall system
complexity via decentralized software archi-
tectures

- i.e., divide and conquer

Enhances scalability by supporting indepen-
dent and concurrent development by multi-
ple personnel

- i.e., Separation of concerns

e To be both useful and reusable, modules
should possess

1. Well-specified abstract interfaces

2. High cohesion and low coupling

Criteria for Evaluating Design
Methods

e Modular Decomposability

— Does the method aid decomposing a new prob-
lem into several separate subproblems?

* e.d., top-down functional design

e Modular Composability

— Does the method aid constructing new systems
from existing software components?

* e.d., bottom-up design

e Modular Understandability

— Are modules separately understandable by a
human reader

* e.d., how tightly coupled are they?

Criteria for Evaluating Design
Methods (cont’d)

e Modular Continuity

— Do small changes to the specification affect a
localized and limited number of modules?

e Modular Protection

— Are the effects of run-time abnormalities con-
fined to a small number of related modules?

e Modular Compatibility

— Do the modules have well-defined, standard
and/or uniform interfaces?

* e.d., “principle of least surprise”

Principles for Ensuring Modular

Designs

e Language Support for Modular Units

— Modules must correspond to syntactic units in
the language used

e Few Interfaces

— Every module should communicate with as few
others as possible

e Small Interfaces (Weak Coupling)

— If any two modules communicate at all, they
should exchange as little information as possi-
ble




Principles for Ensuring Modular

Designs (cont’d)

e Explicit Interfaces

— Whenever two modules A and B communicate,
this must be obvious from the text of A or B
or both

e Information Hiding

— All information about a module should be pri-
vate to the module unless it is specifically de-
clared public

Information Hiding

e Motivation

— Details of design decisions that are subject to
change should be hidden behind abstract inter-
faces

* i.e., modules
— Information hiding is one means to enhance

abstraction

e Typical information to hide includes:

Data representations
Algorithms

Input and Output Formats
Policies and/or mechanisms

Lower-level module interfaces

Virtual Machines

e Motivation

— To reduce overall complexity, software system
architectures may be decomposed into, more
manageable “virtual machine” units

e A virtual machine provides an extended
“software instruction set”

— Provides additional data types and associated
“software instructions” that extend the under-
lying hardware instruction set

— Virtual machines allow incremental extensions
to existing “application programmatic interfaces”
(APIs)

Virtual Machine (cont’d)

e Common examples of virtual machines in-
clude

— Computer Architectures

* e.g., compiler — assembler — object code
— microcode — gates, transistors, signals,
etc.

— Communication protocol stacks

* e.d., ISO OSI reference model, Internet ref-
erence model




Virtual Machine (cont’d)

e Several challenges must be overcome to
effectively use virtual machines as an ar-
chitectural structuring technique:

— Ensuring Adequate Performance:

* It is difficult to obtain good performance at
level N, if below N are not implemented ef-
ficiently

* T his often requires implementing the virtual
machine differently than the design may dictate...

— Alleviating Inter-level Dependencies

* TO maximize reuse, it is essential to elimi-
nate/reduce dependencies “between” virtual
machine levels...

Therefore, virtual machines are often orga-
nized into hierarchical layers or levels of ab-
straction

Virtual Machine (cont’d)

e A ‘“hierarchy” may be defined to reduce
module interactions by restricting the topol-
ogy of relationships between virtual ma-
chines

e A relation defines a hierarchy if it parti-
tions units into levels

— Level 0 is the set of all units that use no other
units

— Level i is the set of all units that use at least
one unit at level <7 and no unit at level >

e Advantages of hierarchical structuring

— Facilitates independent development of levels
or layers

— Isolates ramifications of change

— Enables rapid prototyping

Virtual Machine (cont’d)

e Relations that define hierarchies:

Uses
Is-Composed-Of
Is-A

Has-A

e The first two are general to all design
methods, the latter two are more particu-
lar to object-oriented design and program-
ming

Virtual Machine (cont’d)

e The Uses Relation

— X Uses Y if the correct functioning of X de-
pends on the availability of a correct imple-
mentation of Y

— Note, uses is not necessarily the same as in-
VOKes:

* Some invocations are not uses relations

- e.g., error logging

* Some uses relations don't involve direct in-
vocations

- e.g., message passing, interrupts, shared
memory access

— A simple, but effect design heuristic is to design
uses relations that yield a hierarchy

% [.e., avoid cycles in the “uses graph”




Virtual Machine (cont’d)

e The Uses Relation (cont'd)
— Allow X to use Y when:
* X is simpler because it uses Y

- e.g., standard C library routines, OSI layers

* Y is not substantially more complex because
it is not allowed to use X

- i.e., hierarchies should be designed to be

useful, and not just to blindly satisfy soft-
ware engineering principles

* There is a useful subset containing Y and
not X

- i.e., allows sharing and reuse of Y

* There is no conceivably useful subset con-
taining X but not Y

- i.e., Y is necessary for X to function cor-
rectly

Virtual Machine (cont’d)

e The Uses Relation (cont'd)
— How should recursion be handled?

* Group X and Y as a single entity in the uses
relation

— A hierarchy in the uses relation is essential for
designing non-trivial reusable software systems

— Note that certain software systems require some
form of controlled violation of a uses hierarchy

* €e.d., asynchronous communication protocols,
call-back schemes, signal handling, etc.

* Upcalls are one way to control these non-
hierarchical dependencies

Virtual Machine (cont’d)

e The Is-Composed-Of Relation

— The is-composed-of relationship illustrates how
the system is statically decomposed into its
constituent components

X is-composed-of {z;} if X is a group of units
z; that share some common purpose

A graphical description of a system's architec-
ture may be specified by the is-composed-of
relation such that:

* Non-terminal are “virtual” code

* Terminals are the only units represented by
“actual” code

Virtual Machine (cont’d)

e The Is-Composed-Of Relation (cont'd)

— Many programming languages support the is-
composed-of relation via some higher-level module
or record structuring technique

— Note: the following are not equivalent:

1. Level (virtual machine)

2. Module (an entity that hides a secret)
3. A subprogram (a code unit)

4. A record (a passive data structure)

— Modules and levels need not be identical, as a
module may have several components on sev-
eral levels of a uses hierarchy

* Likewise, a level may be implemented via
several modules...




Virtual Machine (cont’d)

e The Is-A and Has-A Relations

— These two relationships are associated with
object-oriented design and programming lan-
guages that possess inheritance and class fea-
tures

— Is-A (descendant or inheritance) relationship

* class X possesses Is-A relationship with class
Y if instances of class X are specialization of
class Y

* €.g., a square is a specialization of a rectan-
gle, which is a specialization of a shape...

— Has-A (client or composition) relationship

* Class X possesses a Has-A relationship with
class Y if instances of class X contain an
instance(s) of class Y

% e.d., a car has an engine and four tires...

Separate Policies and Mechanisms

e Motivation

— Separate concerns between the what/when and
the how at both the design and implementa-
tion phases

e Multiple policies may be implemented via
a set of shared mechanisms

— e.g., OS scheduling and virtual memory paging

e Same policy can be implemented by mul-
tiple mechanisms

— e.g., reliable, non-duplicated, bytestream ser-
vice can be provided by multiple communica-
tion protocols

e What is a policy and what is a mechanism
is a matter of perspective...

Program Families and Subsets

e Program families are a collection of re-
lated modules or subsystems that form a
reusable application framework, e.g.,

— UNIX System V STREAMS I/O subsystem

— Graphical user interface frameworks such as In-
terViews, MFC, and Fresco

e The components in a program family are
similar enough that it makes sense to em-
phasize their similarities before discussing
their differences

e Motivation

— Program families are useful for implementing
subsets

— Reasons for providing subsets include cost, time,
personnel resources, etc.

Program Families and Subsets
(cont’'d)

e Identifying subsets:

— Analyze requirements to identify minimally use-
ful subsets

— Also identify minimal increments to subsets

e Advantages of subsetting:

— Facilitates software system extension and con-
traction

— Promotes reusability

— Anticipates potential changes




Program Families and Subsets
(cont’'d)

e Program families support:
— Different services for different markets

* e.g., different alphabets, different vertical
applications, different I/O formats

Different hardware or software platforms
* e.d., compilers or OSs

Different resource trade-offs

* e.g., speed vs. space

Different internal resources

* e.dg., shared data structures and library rou-
tines

Different external events
* e.d., UNIX I/O device interface
Backward compatibility

* e.g., sometimes it is important to retain bugs!

37




