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Design Alternatives

Deep Thought

� According to C.A.R. Hoare, there are two methods of constructing a
software system:

1. One way is to make it so simple that there are obviously no
deficiencies

2. The other way is to make it so complicated that there are no
obvious deficiencies
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Introduction

� A key question facing software architects and designers is:

– Should software systems be structured by actions or by data?
– This decision cannot be postponed indefinitely

� Eventually, a designer must settle on one or the other

� Note, the source code reveals the final decision...

� Observation:

– The tasks and functions performed by a software system are
often highly volatile and subject to change

� Conclusion:

– Structuring systems around classes and objects increases
continuity and improves maintainability over time for large-scale
systems

– Therefore, “ask not what the system does: ask what it does it to!”
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Outline
� This set of slides examines several alternative design methodologies

– Primarily algorithmic/functional design vs. object/component-
oriented design

� These alternatives differ in terms of aspects such as

1. Decomposition and composition criteria
– e.g., algorithms/functions vs. objects/components

2. Support for reuse and extensibility, e.g.,
– Special-purpose vs. general-purpose solutions
– Tightly-coupled vs. loosely-coupled architectures

3. Scalability
– e.g., programming-in-the-small vs. programming-in-the-large
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Overview of Algorithmic Design

� Top-down design based on the functions performed by the system

� Generally follows a “divide and conquer” strategy based on functions

– i.e., more general functions are iteratively/recursively decomposed
into more specific ones

� The primary design components correspond to processing steps in
the execution sequence

– Similar to a recipe for cooking a meal

� Consider the objects and recipes used in cooking...
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Overview of Object-oriented Design

� Design based on modeling classes and objects in the application
domain

– Which may or may not reflect the “real world”

� Generally follows a “hierarchical data abstraction” strategy where the
design components are based on classes, objects, modules, and
processes

� Operations are related to specific objects and/or classes of objects

� Groups of classes and objects are often combined into frameworks
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Structured Design

� Design is based on data structures input and output during system
operation

� Generally follows a decomposition strategy based on data flow
between processing components

� Primary design components correspond to flow of data

– Program structure is derived from data structure
– Data structure charts show decomposition of input/output streams

� Often used as the basis for designing data processing systems

� Design tends to be overly dependent upon temporal ordering of
processing phases, e.g., initialize, process, cleanup

� Changes in data representations ripple through entire structure due
to lack of information hiding
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Transformational Systems
� Design is based on specifying the problem, rather than specifying

the solution

– The solution is automatically derived from the high-level
specification

– Note, each transformation component may be implemented via
other design alternatives

� Limited today to well-understood domains

– e.g., parser-generators, GUI builders, signal processing
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Criteria for Evaluating Design Methods

� Component Decomposability

– Does the method aid decomposing a new problem into several
separate subproblems?

� e.g., top-down algorithmic design

� Component Composability

– Does the method aid constructing new systems from existing
software components?

� e.g., bottom-up design

� Component Understandability

– Are components separately understandable by a human reader

� e.g., how tightly coupled are they?
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Criteria for Evaluating Design Methods (cont’d)

� Component Continuity

– Do small changes to the specification affect a localized and limited
number of components?

� Component Protection

– Are the effects of run-time abnormalities confined to a small
number of related components?

� Component Compatibility

– Do the components have well-defined, standard and/or uniform
interfaces?

� e.g., “principle of least surprise”
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Case Study: Spell Checker Example

� System Description

– ‘Collect words from the named document, and look them up in a
main dictionary or a private, user-defined dictionary composed of
words. Display words on the standard output if they do not appear
in either dictionary, or cannot be derived from those that do appear
by applying certain inflections, prefixes, or suffixes‘

� We first examine the algorithmic approach, then the object-oriented
approach

– Note carefully how changes to the specification affect the design
alternatives in different ways...
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High-level Application Description
� Pseudo-code algorithmic description

1. Get document file name
2. Splits document into words
3. Look up each word in the main dictionary and a private dictionary
(a) If the word appears in either dictionary, or is derivable via

various rules, it is deemed to be spelled correctly and ignored
(b) Otherwise, the “misspelled” word is output

� Note, avoid the temptation to directly refine the algorithmic
description into the software architecture...
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Program Requirements

� Initial program requirements and goals:

1. Must handle ASCII text files
2. Document must fit completely into main memory
3. Must run “quickly”

– Note, document is processed in batch” mode
4. Must be smart about what constitutes misspelled words (that’s why

we need prefix/suffix rules and a private dictionary)

� Two common mistakes:

1. Failure to flag misspelled words
2. Incorrectly flag correctly spelled words
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Data Flow Diagram
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� While this diagram is useful for “describing” high-level flow of data
and control, avoid the temptation to refine it into system design and
implementation...
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Algorithmic Design (1/2)

� Spell checker program is organized according to activities carried out
during program execution

– i.e., system is completely specified by the functions that it performs

� Function refinement precedes and guides data refinement

� Important questions:

1. How is design affected by subsequent changes to the specification
and/or implementation?

2. How reusable are the algorithmic components developed via the
approach?
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Algorithmic Design (2/2)
� Top-down, iterative “step-wise” refinement of functionality:

1. Break the overall “top” system function into subfunctions
2. Determine data flow between these functions, then determine data

structures
3. Iterate recursively over subfunctions until implementation is

immediate and “obvious”

� Structure chart shows function hierarchy and data flow

– Hierarchical organization is a tree with one functional activity per
node
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Algorithm Design Structure
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Advantages of Algorithmic Design

� Reasonably well-suited for small-scale, algorithmic-intensive programs

– e.g., Eight-Queens problem, Towers of Hanoi, 8-tiles problem, sort,
and searching, etc.

� Easy to understand for small problems

– Since system structure matches verbal, algorithmic description

� “Intuitive” to many designers and programmers

– Due to emphasis in early training...
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Disadvantages of Algorithmic Design
� Fails to account for long-term system evolution

– i.e., changes in algorithms and data structures ripple through
entire program structure (and the documentation...)

– Implementation often typified by lack of information hiding,
combined with an over-abundance of global variables

� These characteristics are not inherent, but are often related...

� Does not promote reusability

– The design is specifically tailored for the requirements and
specifications of a particular application

� Data structure aspects are often underemphasized

– They are postponed until activities have been defined and ordered
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Object-Oriented Design (1/2)

� Development begins with extensive domain analysis on the problem
space

– i.e., OOD is not a “cookbook” solution

� Decompose the spell checker by classes and objects, not by overall
processing activities

� Organize the program to hide implementation details of information
that is likely to change

– i.e., use abstract data types and information hiding

� The order of overall system activities are not considered until later in
the design phase

– However, activities are not ignored!

20

Design Alternatives

Object-Oriented Design (2/2)

� At first glance, our object-oriented design appears to be incomplete
since it does not seem to address the overall system actions...

� This is intentional, however, and supports the software design
principle of “underspecification”

– The goal is to develop reusable components that support a
“program family” of potential solutions to this and other related
problems

� In fact, the main processing algorithm may be quite similar in both
algorithmic and object-oriented solutions...
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Key Challenges of Object-Oriented Design

� A common challenge facing developers is finding the objects and
classes

– One approach: ‘Use parts of speech in requirements specification
statements to‘:

1. Identify the objects
2. Identify the operations and attributes
3. Establish the interactions and visibility

– This methodology is not perfect, but it is a good place to start...

� i.e., apply it at various levels of abstraction during development

� Another challenge is to ensure that the design can be mapped to an
implementation that meets end-to-end QoS requirements
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Classifying Parts of Speech
� Example: Spell Checker

– Collect words from the named document , and look them up in
a main dictionary or a private user-defined dictionary
composed of words . Display words on the standard output if
they do not appear in either dictionary , or cannot be derived from
those that do appear by applying certain inflections , prefixes , or
suffixes

� Relevant parts of speech:

– Common nouns ! classes
– Proper nouns ! objects
– Verbs ! actions on objects
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Identifying Classes and Objects for the Spell Checker

� Common noun ! class

– e.g., spell checker , dictionary , document , words , output

� Proper noun or direct reference ! object

– named document , main dictionary , private dictionary ,
standard output

� Describe using UML notation, CRC cards (“class, responsibility,
collaborators”), C++ classes, etc.
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Identifying Operations and Attributes for the Spell
Checker

� Verb ! operations performed on a class or by an object of a class

– e.g., collect (document), look up (dictionary), display
(word)

� Adverb ! constraint on an operation

– e.g., insert_quickly (i.e., no range checking)

� Adjective ! attribute of an object

– e.g., “large” dictionary ! size field

� Object of verb ! object dependencies

– e.g., “A dictionary composed of words”
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Applying the Object-Oriented Method

� Visibility should satisfy dependencies and no more

– In general, reduce global visibility, de-emphasize coupling,
emphasize cohesion

– In particular, Document and Dictionary shouldn’t be visible
outside context of Spell_Checker ...

� Develop a set of diagrams that graphically illustrate class, object,
module, and process relationships from various perspectives
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High-level Class Diagram
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Detailed Class Diagram
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Package Diagram
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State Machine Diagram for Dictionary class

CONSTRUCTOR/
open()

UNINITIALIZED DESTRUCTOR/
close()

ADD  WORD/
insert()

INITIALIZED
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Object Diagram
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General Class Descriptions

� Building block classes (abstract notation for
class interface description)

NAME Word
ACCESS Exported
CARDINALITY Unlimited
MEMBERS construct/destruct

insert/remove characters
clone
concatenate
compare
...

NAME Document
ACCESS Exported
CARDINALITY Unlimited
MEMBERS construct/destruct

next word iterator
sort
...

NAME Spell_Checker
ACCESS Exported
CARDINALITY Unlimited
MEMBERS construct/destruct

spell_check
...
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General Class Descriptions (cont’d)

� Building block classes (cont’d)

NAME Dictionary
QUALIFICATIONS Abstract class
ACCESS Exported
CARDINALITY Unlimited
MEMBERS construct/destruct

open/close
insert word
find word
remove word
next word iterator
...

NAME Dynamic Dictionary
ACCESS Exported
CARDINALITY Unlimited
SUPERCLASS Dictionary
MEMBERS construct/destruct

...

NAME Static Dictionary
ACCESS Exported
CARDINALITY Unlimited
SUPERCLASS Dictionary
MEMBERS construct/destruct

...
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Concrete Class Descriptions

� Building block classes (C++ notation for class
interface description)

class Word {
public:

Word (void);
Word (const string &);
int insert (int index, char c);
int clone (Word &);
int concat (const Word &);
int compare (const Word &);
// ...

};

class Document {
public:

Document (void);
˜Document (void);
virtual int open (const string &filename);
int sort (int options);
// ...

};

class Document_Iterator {
public:

Document_Iterator (const Document &);
int next_item (Word &);
// ...

};
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Concrete Class Descriptions (cont’d)

� Building block classes (C++ notation for class interface description)
#include "Document.h"
#include "Static_Dictionary.h"
#include "Dynamic_Dictionary.h"

using namespace Dictionary;
typedef Static_Dictionary<Word, Word> Main_Dictionary;
typedef Dynamic_Dictionary<Word, Word> Private_Dictionary;

class Spell_Checker {
public:

˜Spell_Checker (void);
int open (const string &doc_name,

const string &main_dict_name,
const string &private_dict_name);

int spell_check (ostream &standard_output);
private:

Document named_document;
Main_Dictionary main_dictionary;
Private_Dictionary private_dictionary;

};
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Spell checker Implementation

� Main class

Spell_Checker::Spell_Checker (const string &doc_name,
const string &main_dict_name,
const string &private_dict_name)

{
if (named_document.open (doc_name) == -1

|| main_dictionary.open (main_dict_name) == -1
|| private_dictionary.open (private_dict_name) == -1) {

cerr << "intialization problem";
throw Invalid_Name ();

}
}
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Spell checker Implementation
� Main class (cont’d)

int Spell_Checker::spell_check (ostream &standard_output)
{

int result = 0;
Word word;
named_document.sort (REMOVE_DUPS);
for (Document_Iterator doc_iter (named_document);

doc_iter.next_item (word) != -1; )
if (main_dictionary.find (word) != -1

|| private_dictionary.find (word) != -1)
continue; // found word

else {
standard_output.write (word);
// erroneous word
result = -1;

}
// ...
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Advantages of Object-Oriented Design

� Increased modularity:

1. Easier to understand the components in isolation, since data
coupling and visibility have been reduced
– e.g., modules and classes are composed of related activities

2. More adaptive to specification and implementation changes, since
changes are localized
– e.g., most changes occur in representations, rather than

interfaces
– By hiding objects’ representational details, changes will not

ripple through design (unless class specification changes)
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Advantages of Object-Oriented Design

� Class data and member functions are equally emphasized

– However, higher-level structuring of activities is postponed

� Object behavior is independent of temporal ordering

– i.e., the shopping list approach
– Easier to reuse and extend classes in other systems, since

emphasis is on stable interfaces

� e.g., reuse sort from system sort application
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Disadvantages of Object-Oriented Design
� Certain problem domains do not necessarily benefit from an object-

oriented approach

– e.g., mathematical routines for numerical analysis, where there is
no need for shared state...

� Requires more work in the upstream activities

1. e.g., analysis, modeling, and architectural design to determine
architectural components, relations, and interfaces

2. Often not as intuitive to determine the objects (without training and
practice)

� Requires an object-oriented language for best results
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Potential Modifications

� Make the program run interactively, rather than in “batch” mode

– e.g., integrate with a text editor and make the program work on
user-selected regions of the document (e.g., GNU emacs):

1. Query the user to check if an unrecognized word is misspelled
2. If it is misspelled then
3. Replace the word in the document
4. Potentially add the word to the private dictionary, if user specifies

this action
5. Produce an updated private dictionary

� Remove arbitrary limits on input document size

– i.e., does not need to fit into memory
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Potential Modifications

� Make the program handle multiple input files

� Make the program handle multiple dictionaries

� Modify the program to perform other text oriented tasks, e.g.,

– Build a document index or cross-referencer
– Build an interactive thesaurus

� Make the program work on other types of files, e.g.,

– LaTeX or TeX files
– nroff files
– MS Word files
– postscript or dvi files
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Parting Thought

� Sometimes the “best” design is the least elaborate one:

% cat tex-spell-check
dextex $1 | \ # strip tex formatting commands
tr A-Z a-z | \ # map upper case to lower case
tr -cs a-z ’\012’ | \ # remove all non-words
sort -u >! /tmp/words # remove duplicates

# omit lines only in filename 2
comm -2 /tmp/words /usr/dict/words

� Advantage:

– Easy to get right (once you understand UNIX tools ;-)), since it is
very decoupled...

� Disadvantages

– Doesn’t work very well for prefixes/suffixes
– Slow... (many processes, many stages)
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Concluding Remarks
� Object-oriented design differs from algorithmic design in several

respects:

– Structure of the system is organized around classes/objects
rather than functions

– Objects are typically more “complete” abstractions than are
functions (e.g., they include data emphasis as well as control flow
emphasis)

– Algorithmically decomposed components have verb names, while
object-oriented components have noun names

� Advantages of object-oriented design are most evident in

1. Large-scale systems
2. Evolving systems
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