NetQoPE: A Model-driven Network QoS Provisioning Engine
for Distributed Real-time and Embedded Systems*

Jaiganesh Balasubramanian’, Sumant Tambe', Bal akrishnan Dasarathy*,
Shrirang Gadgil*, Frederick Porter, Aniruddha Gokhale', and Douglas C. Schmidt®
TDepartment of EECS, Vanderhilt University, Nashville, TN, USA
*Tel cordia Technologies, Piscataway, NJ, USA

Abstract

This paper provides two contributions to the study of
quality of service (QoS)-enabled middleware that supports
the network QoS requirements of distributed real-time and
embedded (DRE) systems. First, we describe the design
and implementation of NetQoPE, which is a model-driven
component middleware framework that shields applications
from the details of network QoS mechanisms by (1) speci-
fying per-flow network QoS requirements, (2) performing
resource allocation and validation decisions (such as ad-
mission control), and (3) enforcing per-flow network QoS
at runtime. Second, we evaluate the effort required and
flexibility of using NetQoPE to provide network QoS assur-
ance to end-to-end application flows. Our results demon-
strate that NetQoPE can provide network-level differenti-
ated performance to each application flow without modify-
ing its programming model or source code, thereby provid-
ing greater flexibility in leveraging network-layer mecha-
nisms.

1 Introduction

Emerging trends. Distributed real-time and embedded
(DRE) systems, such as shipboard computing systems, su-
pervisory control and data acquisition (SCADA) systems,
and enterprise security and hazard sensing subsystems, con-
sist of multiple communication-intensive applications with
multiple end-to-end application flows. These systems have
network quality of service (QoS) requirements, such as low
end-to-end roundtrip latency and jitter, that must be satis-
fied under varying levels of network connectivity and band-
width availability. Network QoS mechanisms, such as in-
tegrated services (IntServ) [12] and differentiated services
(DiffServ) [2], help provide diverse network service levels
for applications in DRE systems.

For example, applications can use advanced network
QoS mechanisms (e.g., a DiffServ bandwidth broker [3]) to
(1) request a network service level and (2) allocate and man-

*This work is supported in part or whole by DARPA Adaptive and Re-
flective Middleware Systems Program Contract NBCH-C-03-0132. Any
opinions, findings, conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views
of the Department of the Interior, National Business Center, Acquisition
Services Division, Southwest Branch or DARPA.

age network resources for their remote invocations. Appli-
cations invoke remote operations by adding a service level-
specific identifier (e.g., DiffServ codepoint (DSCP)) to the
IP packets. DiffServ-enabled network routers parse the IP
packets and provide the appropriate service level-specific
packet forwarding behavior.

Limitations with current approaches. Although ad-
vanced network QoS mechanisms are powerful, it is te-
dious and error-prone to develop applications that interact
directly with low-level network QoS mechanism APIs writ-
ten imperatively in third-generation languages, such as C++
or Java. To overcome this problem, middleware-based so-
lutions [22, 18, 16, 4] have been developed that allow ap-
plications to specify their coordinates (source and destina-
tion IP and port addresses) and per-flow network QoS re-
quirements via higher-level frameworks. The middleware
frameworks—rather than the applications—are responsible
for converting the higher-level QoS specifications into the
lower-level network QoS mechanism APIs.

Although middleware frameworks alleviate many acci-
dental complexities of low-level network QoS mechanism
APIs, they can still be hard to evolve and extend. In par-
ticular, application source code changes may be necessary
whenever changes occur to the deployment contexts (source
and destination nodes of the applications), per-flow require-
ments, IP packet identifiers, or the middleware APls. What
is needed, therefore, are middleware-guided network QoS
provisioning solutions that (1) are not tied to a particular
network QoS mechanism and (2) do not modify applica-
tion source code to specify and enforce network QoS re-
quirements. These solutions should ideally operate on well-
defined system abstractions (e.qg., per-flow requirements and
source/destination nodes) that do not require programmat-
ically modifying application source code, thereby facilitat-
ing application reuse across a wide range of deployment and
network QoS contexts.

Solution approach — A model-driven component
middleware network QoS provisioning framework that
uses declarative domain-specific techniques [1] to raise the
level of abstraction of DRE system design higher than us-
ing imperative third-generation programming languages. A
model-driven framework allows system engineers and soft-
ware developers to perform deployment-time analysis (such
as schedulability analysis [10]) of non-functional system

properties (such as network QoS assurances for end-to-
end application flows). Such an analysis helps provide
deployment-time assurance that application QoS require-
ments will be satisfied.

This paper describes the Network QoS Provisioning En-
gine (NetQoPE), which is a model-driven component mid-
dleware framework that deploys and configures applications
in DRE systems and enforces their network QoS require-
ments using the four-stage (i.e., design-, pre-deployment-
, deployment-, and runtime) approach shown in Figure 1.
The innovative elements of NetQoPE’s four-stage architec-

Design-time

Deployment .
solutions

| ™\ Plan
[\ {)
\ Application | NetRAF Pre-deployment-

| networkQoS time solutions
/ requirements,
/ Deployment-time
Allocates solutions
network Runtime
resources - solutions

= Software
= Component

e i2ge] Stage2

Deployment
Plan
DePIuys and P //Sxtagenér\\
configures DRE /
system (" NetcON
Add network QoS . _d
settings

Figure 1: NetQoPE’s Four-stage Architecture

ture include the following:

e The Network QoS Specification Language
(NetQoS), which is a domain-specific modeling lan-
guage (DSML) that supports design-time specification of
per-flow network QoS requirements, such as bandwidth
and delay across a flow. By allowing application devel-
opers to focus on functionality—rather than the different
deployment contexts (e.g., different bandwidth and delay
requirements) where they will be used—NetQoS simplifies
the deployment of applications in contexts that have
different network QoS needs, e.g., different bandwidth
requirements.

e The Network Resource Allocation Framework (Ne-
tRAF), which is a middleware-based resource allocator
framework that uses the network QoS requirements cap-
tured by NetQoS as input at pre-deployment time to help
guide QoS provisioning requests on the underlying net-
work QoS mechanism at deployment time. By providing
application-transparent, per-flow resource allocation capa-
bilities at pre-deployment-time, NetRAF minimizes runtime
overhead and simplifies validation decisions, such as admis-
sion control.

e The Network QoS Configurator (NetCON), which
is a middleware-based network QoS configurator that pro-
vides deployment-time configuration of component mid-
dleware containers. NetCON adds flow-specific identifiers
(e.g., DSCPs) to IP packets at runtime when applications in-
voke remote operations. By providing container-mediated

and application-transparent capabilities to enforce runtime
network QoS, NetCON allows DRE systems to leverage the
QoS services of configured routers without modifying ap-
plication source code.

As shown in the Figure 1, the output of each stage in
NetQoPE serves as input for the next stage, which helps
automate the deployment and configuration of DRE appli-
cations with network QoS support.

Paper organization. The remainder of the paper is or-
ganized as follows: Section 2 describes a case study that
motivates common requirements associated with provision-
ing network QoS for DRE systems; Section 3 explains how
NetQoPE addresses those requirements via its model-driven
component middleware framework; Section 4 evaluates the
capabilities provided by NetQoPE; Section 5 compares our
work on NetQoPE with related research; and Section 6
presents concluding remarks and lessons learned.

2 Motivating NetQoPE’s Network QoS Pro-
visioning Capabilities
Figure 2 shows a representative DRE system in an of-
fice enterprise security and hazard sensing environment,
which we use as a case study to demonstrate and evaluate
NetQoPE’s model-driven, middleware-guided network QoS
provisioning capabilities. Enterprises often transport net-

Business [j Software

activities Wl

Network
routers

Video

3 Physical
conference

Monitors
S ~ Office Enterprise TS

— -

P Network e

Surveillance™
& sensor s/w
controllers

Office Data

Center
(databases)
&

Figure 2: Network Configuration in an Enterprise Security
and Hazard Sensing Environment

work traffic using an IP network over high-speed Ethernet.
Network traffic in an enterprise can be grouped into sev-
eral classes, including (1) e-mail, videoconferencing, and
normal business traffic, and (2) sensory and imagery traf-
fic of the safety/security hardware (such as fire/smoke sen-
sors) installed on office premises. Our case study makes
the common assumption that safety/security traffic is more
critical than other traffic, and thus focuses on model-driven,
middleware-guided mechanisms to assure the specified QoS
for this type of traffic in the presence of other traffic that
shares the same network.

As shown in Figure 2, our case study uses software
controllers to manage hardware devices, such as sensors
and monitors. Each sensor/camera software controller fil-
ters the sensory/imagery information and relays them to the
monitor software controllers that display the information.
An office enterprise could have lot of sensors and mon-
itors deployed, and each of these communications could
have a variety of network QoS requirements. These soft-
ware controllers were developed using Lightweight CCM
(LWCCM) [14] and the traffic between these software con-
trollers uses a bandwidth broker [3] to manage network
resources via DiffServ network QoS mechanisms. Al-
though the case study in this paper focuses on DiffServ
and LwWCCM, NetQoPE is designed for use with other net-
work QoS mechanisms (e.g., IntServ) and component mid-
dleware technologies (e.g., J2EE).

Component-based applications in our case study use
bandwidth broker services via the following middleware-
guided steps: (1) network QoS requirements are specified
on each application flow, along with information on the
source and destination IP and port addresses, (2) the band-
width broker is invoked to reserve network resources along
the network paths for each application flow, configure the
corresponding network routers, and obtain per-flow DSCP
values to help enforce network QoS, and (3) remote oper-
ations are invoked with appropriate DSCP values added to
the IP packets so that configured routers can provide per-
flow differentiated performance. Section 3 describes the
challenges we encountered when implementing these steps
in the context of our case study and shows how NetQoPE’s
four-stage architecture shown in Figure 1 resolves these
challenges.

3 NetQoPE’'sMultistage Networ k QoS Provi-
sioning Architecture

As discussed in Section 1, conventional techniques for
providing network QoS to applications incur several key
limitations, including modifying application source code to
(1) specify deployment context-specific network QoS re-
quirements, and (2) integrate functionality from network
QoS mechanisms at runtime. This section describes how
NetQoPE addresses these limitations via its model-driven,
middleware-guided network QoS provisioning architecture.

3.1 Challenge 1: Alleviating Complexities in QoS Re-
guirements Specification

Context. Each application flow in a DRE system can
specify a required level of service (e.g., high priority vs. low
priority), the source and destination IP and port addresses,
and bandwidth and delay requirements. This information is
used to allocate and configure network resources to provide
the required QoS.

Problem. Network QoS requirements (such as the band-

width and delay requirements mentioned above) can change
depending on a deployed context. For example, in our case
study from Section 2, multiple fire sensors are deployed at
different importance levels and each sensor sends its sen-
sory information to its corresponding monitors. Fire sen-
sors deployed in the parking lot have a lower importance
than those in the server room. The sensor-monitor flows
thus have different network QoS requirements, even though
the reusable software controllers managing the fire sensor
and the monitor have the same functionality.

Conventional techniques, such as hard-coded API ap-
proaches [4], require application source code modifications
for each context. Writing this code manually to specify net-
work QoS requirements is tedious, error-prone, and non-
scalable. In particular, it is hard to envision at development
time all the contexts in which the source code will be de-
ployed.

Sidebar 1: Overview of Lightweight
CORBA Component Model (LWCCM)

Application functionality in LWCCM is provided through
components which collaborate with other components via
ports to create component assemblies. Assemblies in
LWCCM are described using XML descriptors (mainly the
deployment plan descriptor) defined by the OMG D&C [15]
specification. The deployment plan includes details about
the components, their implementations, and their connec-
tions with other components. The deployment plan also
has a placeholder configProperty that is associated with ele-
ments (e.g., components, connections) to specify their prop-
erties (e.g., priorities) and resource requirements. Compo-
nents are hosted in containers, which provide the appropri-
ate runtime operating environment (e.g., transactions sup-
port) for components to invoke remote operations.

Solution approach — Model-driven visual network re-
quirements specification. NetQoPE provides a DSML
called the Network QoS Specification Language (NetQoS).
DRE system developers can use NetQoS to (1) model com-
ponent assemblies, (2) assign components to target nodes,
and (3) declaratively specify the following deployment
context-specific network QoS requirements on the modeled
application flows: (a) network QoS classes, such as HIGH
PRIORITY (HP), HIGH RELIABILITY (HR), MULTIMEDIA
(MM), and BEST EFFORT (BE), (b) bi-directional bandwidth
and delay requirements, and (c) selection of transport pro-
tocol.

In the context of our case study, NetQoS’s network QoS
classes correspond to the DiffServ levels of service provided
by our Bandwidth Broker [3].1 For example, the Hp class

INetQoS’s DSML capabilities can be extended to provide requirements
specification conforming to a different network QoS mechanism, such as
IntServ.

represents the highest importance and lowest latency traf-
fic (e.g., fire detection reporting in the server room). The
HR class represents traffic with low drop rate (e.g., surveil-
lance data). NetQoS also supports the mm class for sending
multimedia data and the BE class for sending traffic with no
QoS requirements.

After a model has been created, NetQoS’s model in-
terpreter traverses the modeled application structure and
generates a deployment plan (described in Sidebar 1).
NetQoS’s model interpreter also traverses each modeled ap-
plication flow and augments the deployment plan config-
Property tags (also described in Sidebar 1) to express net-
work QoS requirement annotations on the component con-
nections. Section 3.2 describes how NetQoS allocates net-
work resources based on requirements specified in the de-
ployment plan descriptor.

Our case study has certain application flows (e.g., a
monitor requesting location coordinates from a fire sen-
sor) where the client needs to control the network priori-
ties at which the requests and replies are sent. If a network
QoS provisioning engine provides this capability for appli-
cations, real-time actions can be controlled irrespective of
network congestion. There are other examples (e.g., a tem-
perature sensor sends temperature sensory information to
the monitors), where the servers (in this case the monitors)
could control how to receive and act on client requests.

To support these two models, NetQoS can assign
the following priority attributes to connections: (1) the
CLIENT_PROPAGATED network priority model that allows
the clients to dictate the bi-directional priorities, and (2) the
SERVER_DECLARED network priority model that allows
servers to dictate the bi-directional priorities. NetQoS’s
model interpreter updates the deployment plan with these
priority models for each flow. Section 3.3 explains how
NetQoPE’s runtime mechanisms honor these priority mod-
els when applications invoke remote operations.
Application to the case study. Figure 3 shows a NetQoS
model that highlights many of its key capabilities. Multiple

JSUICE CoWorkEaComponentimplementations/SUGE)| ==1e3

JHEVS A u S EETOEESD ?

Corponethsenth Aect[iss] Bass VA Zoom [10%_=]

HIGH_RELIABILITY
w0
Track N 9
HR_500
MULTIMEDIA

1000 KBPS
MonitorController3 MonitorController2 Traffic

Reserved
n".
5000 KBPS
—
@ —
VIDEO_5000
CameraServer

~

LRV

HR_1000

FireSensorParking

" 1

Track
HP_1000 CameraParking ; MonitorController1
Same application code — MULTIMEDIA Traffic

different 'n_etw_ork QoS VIDEO_1000 1000 KBPS Reserved
specifications

N‘

=
&

Ready EDIT [100% (CQML 09:23 P

Figure 3: NetQoS Capabilities

instances of the same reusable application components (e.g.,
FireSensorParking and FireSensorServer components) can
be annotated with different QoS attributes using an intu-
itive drag and drop technique. This method of specify-
ing QoS requirements is thus much simpler than modifying
application code for each deployment context, as demon-
strated in Section 4.2. Moreover, the same QoS attribute
(e.g., HR_1000 in Figure 3) can be reused across multiple
connections. NetQoS thus increases the scalability of ex-
pressing requirements for large numbers of connections that
are prevalent in large-scale DRE systems, such as our case
study.

3.2 Challenge 2: Alleviating Complexities in Network
Resource Allocation and Configuration

Context. DRE systems must allocate and configure net-
work resources based on the QoS requirements specified on
their application flows so that network QoS assurance can
be provided at runtime.

Problem. In our case study, the temperature sensory in-
formation from the server room is more important than the
information from a conference room. It is undesirable, how-
ever, to modify the temperature sensor software controller
code to directly interact with a middleware APl or net-
work QoS mechanism API since certain deployment con-
texts (such as the deployment in a conference room) might
not require network QoS assurances. Moreover, if applica-
tion source code is modified to provide resource allocations,
decisions on whether to allocate resources or not cannot be
determined until the applications are deployed and opera-
tional. This approach forces DRE system deployers to stop
application components and deploy them on different nodes
if required resources cannot be allocated across source and
destination nodes.

Solution approach — Middleware-based Resource Al-
locator Framework. NetQoPE’s Network Resource Allo-
cator Framework (NetRAF) is a resource allocator engine
that allocates network resources for DRE systems using a
variety of network QoS mechanisms, such as DiffServ and
IntServ. As shown in Figure 4, the NetQoS DSML de-
scribed in Section 3.1 captures the modeled per-flow net-
work QoS requirements in the form of a deployment plan
that is input to NetRAF.

The modeled deployment context could have many in-
stances of the same reusable source code, e.g., the temper-
ature sensor software controller could be instantiated two
times: one for the server room and one for the conference
room. When using NetQoS, however, application develop-
ers annotate only the connection between the instance at
the server room and the monitor software controller. Since
NetRAF operates on the deployment plan that captures
this modeling effort, network QoS mechanisms are used
only for the connection on which QoS attributes are added.

System © A "NetRAF
Designer /A —
DRE System Network
model Deployer XML Resource
D&C concerns | Parsers Allocator
(PD&(.? ‘ Manager
EEmm———— rofile
7 per-flow QoS <
NetQoS // requirements Foreilam
create D&C o DiffServ DSCI:’/,
profile . network QoS Allocator 4
— /' mechanism API 5
— Bandwidth] DSCP- n
MDE with NetQoS Broker (/‘ g
configure r S
routers/_ ¢ e
- DiffServ ., r ,:“ttse“;(‘g 1
L _Network ¢ ‘\wgf‘fj’if;/

-

e g

Figure 4: NetRAF’s Network Resource Allocation Capabil-
ities

NetRAF thus improves conventional approaches [18] that
modify application source code to work with network QoS
mechanisms, which can become complex when source code
is reused in a wide range of deployment contexts.

NetRAF’s Network Resource Allocator Manager accepts
application QoS requests at pre-deployment-time and de-
termines the network QoS mechanism (e.g., DiffServ or
IntServ) to use to serve the requests. As shown in Figure 4,
NetRAF’s Network Resource Allocator Manager works
with QoS mechanism-specific allocators (e.g., DiffServ Al-
locator), which shields it from interacting directly with
complex APIs for network QoS mechanisms (e.g., DiffServ
Bandwidth Broker), thereby enhancing NetQoPE’s flexibil-
ity.

Multiple allocators (e.g., IntServ Allocator and DiffServ
Allocator) can be used by NetRAF’s Network Resource
Allocator Manager to serve the needs of small-scale de-
ployments (where IntServ and DiffServ are both suitable)
and large-scale deployments (where DiffServ often pro-
vides better scalability). For example, the shaded cloud
connected to the Network Resource Allocator Manager in
Figure 4 shows how NetRAF can be extended to work with
other network QoS mechanisms, such as IntServ.
Application to the case study. Since our case study is
based on DiffServ, NetRAF uses the DiffServ Allocator
to allocate network resources. This allocator invokes the
Bandwidth Broker’s admission control capabilities [3] by
feeding it one application flow at a time. If all flows cannot
be admitted, NetRAF allows developers an option to mod-
ify the deployment context since applications have not yet
been deployed. Example modifications include changing
component implementations to consume fewer resources or
change the source and destination nodes. As demonstrated
in Section 4.2, this capability helps NetRAF incur lower
overhead than conventional approaches [22, 18] that per-
form validation decisions when applications are deployed
and operated at runtime.

NetRAF’s DiffServ Allocator instructs the Bandwidth

Broker to reserve bi-directional resources in the specified
network QoS classes as described in Section 3.1. The Band-
width Broker determines the bi-directional DSCPs and Ne-
tRAF encodes those values as connection attributes in the
deployment plan. In addition, the Bandwidth Broker uses
its Flow Provisioner [3] to configure the routers to provide
appropriate per-hop behavior when they receive IP pack-
ets with the specified DSCP values. Section 3.3 describes
how component containers are auto-configured to add these
DSCPs when applications invoke remote operations.

3.3 Challenge 3: Alleviating Complexities in Network
QoS Settings Configuration

Context. After network resources are allocated and net-
work routers are configured, applications in DRE systems
need to invoke remote operations using the chosen network
QoS settings (e.g., DSCP markings) so that the network
layer can differentiate application traffic and provision ap-
propriate QoS to each flow.

Problem. Application developers have historically written
code that instructs the middleware to provide the appro-
priate runtime services, e.g., DSCP markings in IP pack-
ets [16]. For example, fire sensors in our case study from
Section 2 can be deployed in different QoS contexts that
are managed by reusable software controllers. Modifying
application code to instruct the middleware to add network
QoS settings is tedious, error-prone, and non-scalable be-
cause (1) the same application code could be used in differ-
ent contexts requiring different network QoS settings and
(2) application developers might not (and ideally should
not) know the different QoS contexts in which the applica-
tions are used during the development process. Application-
transparent mechanisms are therefore needed to configure
the middleware to add these network QoS settings depend-
ing on the application deployment context.

Solution approach — Deployment and runtime com-
ponent middleware mechanisms. Sidebar 1 describes
how LwCCM containers provide a runtime environment
for components. NetQoPE’s Network QoS Configurator
(NetCON) can auto-configure these containers by adding
DSCPs to IP packets when applications invoke remote op-
erations. As shown in Figure 5, NetRAF performs network
resource allocations, determines the bi-directional DSCP
values to use for each application flow and encodes those
DSCP values in the deployment plan.

During deployment, NetCON parses the deployment
plan and its connection tags to determine (1) source and
destination components, (2) the network priority model to
use for their communication, (3) the bi-directional DSCP
values, and (4) the target nodes on which the components
are deployed. NetCON deploys the components on their
respective containers and creates the associated object ref-
erences for use by clients in a remote invocation. When a

Component Server
P i ‘ NetRAF
i
=
Specific | <lp.|Communication DSCP values
Context Policy N for all flows
i CCMContext \
S R
Srvant DSCP values for

components in NetCON
this container

Requests
Middleware Bus

IP packets with DSCP
markings

Remote Host m
Requests [LWCCM

LApplication

Figure 5: NetCON’s Container Auto-configurations

component invokes a remote operation in LWCCM, its con-
tainer’s context information provides the object reference of
the destination component. Other component middleware
provides similar capabilities via containers, e.g., EJB appli-
cations interact with containers to obtain the right runtime
operating environment.

NetCON’s container programming model can trans-
parently add DSCPs and enforce the network prior-
ity models described in Section 3.1. To support the
SERVER_DECLARED network priority model, NetCON en-
codes a SERVER_DECLARED policy and the associated
request/reply DSCPs on the server’s object reference. When
a client invokes a remote operation with this object refer-
ence, the client-side middleware checks the policy on the
object reference, decodes the request DSCP, and includes it
in the request IP packets. In the server-side middleware, be-
fore sending the reply, the policy is checked again, and the
reply DSCP is added on the IP packets.

To support the CLIENT_PROPAGATED network prior-

ity model, NetCON configures the containers to apply
a CLIENT_PROPAGATED policy at the point of bind-
ing an object reference with the client. In contrast to
the SERVER_DECLARED policy, the CLIENT_PROPAGATED
policy can be changed at runtime and different clients can
access the servers with different network priorities. When
the source component invokes a remote operation using the
policy-applied object reference, NetCON adds the associ-
ated forward and reverse DSCP markings on the IP packets,
thereby providing network QoS to the application flow. A
container can therefore transparently add both forward and
reverse DSCP values when components invoke remote op-
erations using the container services.
Application to the case study. NetCON allows DRE sys-
tem developers to focus on their application business logic,
rather than wrestling with low-level mechanisms for provi-
sioning network QoS. Moreover, NetCON provides these
capabilities without modifying application code, thereby
simplifying development and avoiding runtime overhead.

4 Evaluating NetQoPE

This section evaluates the flexibility of using NetQoPE
to provide network QoS assurance to end-to-end application

flows and demonstrates how NetQoPE’s network QoS pro-
visioning capabilities significantly reduce application de-
velopment effort incurred by conventional approaches.

4.1 Evaluation Scenario

Figure 6 shows key component interactions in the mod-
ern office enterprise case study shown in Figure 2 that mo-
tivated the design of these evaluations using NetQoPE. Our
scenario consists of software components (e.g., a fire sensor
controller, monitor controller) developed using the CIAO
middleware, which is an open-source LwWCCM implemen-
tation developed on top of TAO real-time CORBA Object
Request Broker (ORB). Figure 6 also shows the underly-
ing network topology with Diffserv enabled routers (e.g.,
P, Q), which we configure using an associated Bandwidth
Broker [3] software hosted on C.

- Routers

CS - Camera pr—— W !
controller| oF° 0 TS, (]
§ =l

Component
Server

. Fire sensor
controller

Temperature
sensor

Bandwidth | \ (- controller

[aBroker T * .. Monitor
)

- controller

Figure 6: Experimental Setup

In our evaluation scenario, a number of sensory and im-
agery software controllers sent their monitored informa-
tion to monitor controllers so that appropriate control ac-
tions could be performed by enterprise supervisors moni-
toring abnormal events. For example, Figure 6 shows two
fire sensor controller components deployed on hosts A and
B. These components sent their monitored information to
monitor controller components deployed on hosts D and
F. Communication between these software controllers used
one of the traffic classes (e.g., HIGH PRIORITY (HP)) de-
fined in Section 3.1 with the following capacities on all
links: HP = 20 Mbps, HR = 30 Mbps, and MM = 30 Mbps.
The BE class used the remaining available bandwidth in the
network. The goal of our experiments was to evaluate the
flexibility of using NetQoPE to provide network QoS assur-
ance to end-to-end application flows, such as the application
flow between the fire sensor controller component on host
A and the monitor controller component on host D.

4.2 Evaluating NetQoPE’s Model-driven QoS Provi-
sioning Capabilities

Rationale. As discussed in Section 3, NetQoPE is designed
to provide network QoS to applications in an extensible
manner. This experiment evaluates NetQoPE’s application-

transparent network QoS provisioning capabilities.

Methodology. We first identified four flows from Figure 6
whose network QoS requirements are described as follows:
(1) a fire sensor controller component on host A uses the
high reliability (HR) class to send potential fire alarms in
the parking lot to the monitor controller component on host
D, (2) a fire sensor controller component on host B uses the
high priority (HP) class to send potential fire alarms in the
server room to the monitor controller component on host
F, (3) a camera controller component on host E uses the
multimedia (Mm) class and sends imagery information of
the break room to the monitor controller component on host
G, and (4) a temperature sensor controller component on
host A uses the best effort (BE) class and sends tempera-
ture readings to the monitor controller component on host
F. The clients dictated the network priority for the requests
and replies in all flows except for the temperature sensor
and monitor controller component flow, where the server
dictated the priority. We used TCP as the transport pro-
tocol and 20 Mbps of forward and reverse bandwidth was
requested for each type of network QoS traffic.

To compare NetQoPE’s methodology of provisioning
network QoS for these flows with other existing solutions,
we also define a taxonomy for evaluating technologies that
provide network QoS assurances to end-to-end DRE ap-
plication flows. Conventional approaches can be classi-
fied as being (1) object-oriented [8, 18, 22, 16], (2) aspect-
oriented [7], and (3) component middleware-based [4, 19].
We now describe how each approach provides the following
functionality needed to leverage network QoS mechanism
capabilities:

e Requirements specification. In conventional ap-
proaches applications use (1) middleware-based APIs [8,
22], (2) contract definition languages [18, 16], (3) run-
time aspects [7], or (4) specialized component middle-
ware container interfaces [4] to specify network QoS re-
quirements. Whenever the deployment context and the as-
sociated QoS requirements change, however, application
source code must also change, thereby limiting reusabil-
ity. In contrast, as described in Section 3.1, NetQoS pro-
vides domain-specific, declarative techniques that increase
reusability across different deployment contexts and allevi-
ate the need to programmatically specify QoS requirements.

e Network resource allocation. Conventional ap-
proaches require the deployment of applications before their
per-flow network resource requirements can be provisioned
by network QoS mechanisms. If the required resources can-
not be allocated for those applications they must be stopped,
their source code must be modified to specify new resource
requirements, and the resource reservation process must be
restarted. This approach is tedious since it involves de-
ploying and re-deploying applications multiple times (po-
tentially on different nodes). In contrast, NetRAF handles

deployment changes through NetQoS models, as described
in Section 3.2. This process occurs during pre-deployment
before applications have been deployed, which reduces the
effort needed to change deployment topology or application
QoS requirements.

e Network QoS enforcement. Conventional approaches
modify application source code [16] or programming
model [4] to instruct the middleware to enforce runtime
QoS for their remote invocations. Applications must there-
fore be designed to handle two different usecases—to en-
force QoS and when no QoS is required—thereby limiting
application reusability. In contrast, as described in Sec-
tion 3.3, NetCON uses a container programming model that
transparently enforces runtime QoS for applications without
changing their source code or programming model.

Using the conventional approaches and the NetQoPE ap-
proach, we now compare the manual effort required to pro-
vide network QoS to the 4 end-to-end application flows de-
scribed above. We decompose the manual effort across the
following general steps: (1) implementation, where soft-
ware developers write code, (2) deployment, where system
deployers map (or stop) application components on their
target nodes, and (3) modeling tool use, where applica-
tion developers use NetQoPE to model a DRE application
structure and specify per-flow QoS requirements. In our
evaluation, a complete QoS provisioning lifecycle consists
of specifying requirements, allocating resources, deploying
applications, and stopping applications when they are fin-
ished.

To compare NetQoPE with manual efforts, we devised
a realistic scenario for the 4 end-to-end application flows
described above. In this scenario, three sets of experiments
were conducted with the following deployment variants:

e In the first variant, all 4 end-to-end application flows
were configured with the network QoS requirements as de-
scribed above.

e In the second variant, to demonstrate the effect of
changes in QoS requirements on manual efforts we modi-
fied the bandwidth requirements from 20 Mbps to 12 Mbps
for each end-to-end flow.

e In the third variant, we demonstrate the effect of
changes in QoS requirements and resource (re)reservations
taken together on manual efforts. We modified bandwidth
requirements of all flows from 12 Mbps to 16 Mbps. We
also changed temperature sensor controller component to
use the high reliability (HR) class instead of the best effort
BE class. Finally, we increased the background HR class
traffic across the hosts so that the resource reservation re-
quest for the flow between temperature sensor and monitor
controller components fails. In response, deployment con-
texts (e.g., bandwidth requirements, source and destination
nodes) were changed and resource re-reservation was per-
formed.

For the first deployment, the manual effort required us-
ing conventional approaches involved 10 steps: (1) mod-
ify source code for each of the 4 components to specify
their QoS requirements (8 implementation steps), (2) de-
ploy all components (1 deployment step), and (3) shutdown
all components (1 deployment step). Conversely, the effort
required using NetQoPE involved the following 4 steps: (1)
model the DRE application structure of all 4 end-to-end ap-
plication flows using NetQoS (1 modeling step), (2) anno-
tate QoS specifications on each end-to-end application flow
(1 modeling step), (3) deploy all components (1 deploy-
ment step), and (4) shutdown all components (1 deployment
step).

For the second deployment, the effort required using
a conventional approach is also 10 steps since source
code modifications are needed as the deployment contexts
changed (in this case, the bandwidth requirements changed
across 4 different deployment contexts). In contrast, the ef-
fort required using NetQoPE involves 3 steps: (1) anno-
tate QoS specifications on each end-to-end application flow
(1 modeling step), (2) deploy all components (1 deploy-
ment step), and (3) shutdown all components (1 deployment
step). Application developers also reused NetQoS’s appli-
cation structure model created for the initial deployment,
which helped reduce the required efforts by a step.

For the third deployment, the effort required using a con-
ventional approach is 13 steps: (1) modify source code of
each of the 8 components to specify their QoS requirements
(8 implementation steps), (2) deploy all components (1 de-
ployment step), (3) shutdown the temperature sensor com-
ponent (1 deployment step — resource allocation failed for
the component), (4) modify source code of temperature sen-
sor component back to use BE network QoS class (deploy-
ment context change) (1 implementation step), (5) redeploy
the temperature sensor component (1 deployment step), and
(6) shutdown all components (1 deployment step).

In contrast, the effort required using NetQoPE for the
third deployment is 4 steps: (1) annotate QoS specifications
on each end-to-end application flow (1 modeling step), (2)
begin deployment of all the components, but NetRAF’s pre-
deployment-time allocation capabilities determined the re-
source allocation failure and prompted the NetQoPE appli-
cation developer to change the QoS requirements (1 pre-
deployment step), (3) re-annotate QoS requirements for the
temperature sensor component flow (1 modeling step) (4)
deploy all components (1 deployment step), and (5) shut-
down all components (1 deployment step).

Table 1 summarizes the step-by-step analysis described
above. These results show that conventional approaches
incur roughly an order of magnitude more effort than
NetQoPE to provide network QoS assurance for end-to-
end application flows. Closer examination shows that in
conventional approaches, application developers spend sub-

stantially more effort developing software that can work
across different deployment contexts. Moreover, this pro-
cess must be repeated when deployment contexts and their
associated QoS requirements change. Additionally, imple-
mentations are complex since the requirements are speci-
fied using middleware [22] and/or network QoS mechanism
APIs [12].

Further, application (re)deployments are required when-
ever reservation requests fail. In this experiment, only one
flow required re-reservation and that incurred additional ef-
fort of 3 steps. If there are large number of flows—and en-
terprise DRE systems like our case study often have dozens
or hundreds of flows—the amount of effort required is sig-
nificantly more than for conventional approaches.

Approaches | # Steps in Experiment Variants
First | Second | Third
NetQoPE 4 3 5
Conventional | 10 10 13

Table 1: Comparison of Manual Efforts Incurred in Con-

ventional and NetQoPE Approaches
In contrast, NetQoPE’s “write once, deploy multiple

times for different QoS” capabilities increase deployment
flexibility and extensibility for environments where many
reusable software components are deployed. To provide this
flexibility, NetQoS generates XML-based deployment de-
scriptors that capture context-specific QoS requirements of
applications. For our experiment, communication between
fire sensor and monitor controllers was deployed in multi-
ple deployment contexts, i.e., with bandwidth reservations
of 20 Mbps, 12 Mbps, and 16 Mbps. In DRE systems like
our case study, however, the same communication patterns
between components could occur in many deployment con-
texts.

For example, the same communication patterns could
use any of the four network QoS classes (HP, HR, MM, and
BE). The communication patterns that use the same network
QoS class could make different forward and reverse band-
width reservations (e.g., 4, 8, or 10 Mbps). As shown in
Table 2, NetQoS auto-generates as much as 1,325 lines of
XML code for these scenarios, which would otherwise be
handcrafted by application developers.

Number of communications Deployment contexts

2 [5 [10] 20

1 23 | 50 | 95 | 185

5 47 | 110 | 215 | 425
10 77 | 185 | 365 | 725
20 137 | 335 | 665 | 1325

Table 2: Generated Lines of XML Code

These results demonstrate that NetQoPE’s network QoS
provisioning capabilities significantly reduce application

development effort incurred by conventional approaches
and provides increased flexibility in deploying and provi-
sioning multiple application end-to-end flows under multi-
ple deployment and network QoS contexts.

5 Related Work

This section compares our R&D activities on NetQoPE
with related work on middleware-based QoS management
and model-based design tools.

Network QoS management in middleware. Prior
work on integrating network QoS mechanisms with mid-
dleware [22, 18, 16, 8] focused on providing middle-
ware APIs to shield applications from directly interacting
with complex network QoS mechanism APIs. Middleware
frameworks transparently converted the specified applica-
tion QoS requirements into lower-level network QoS mech-
anism APIs and provided network QoS assurances. These
approaches, however, modified applications to dictate QoS
behavior for the various flows. NetQoPE differs from these
approaches by providing application-transparent and au-
tomated solutions to leverage network QoS mechanisms,
thereby significantly reducing manual design and develop-
ment effort to obtain network QoS.

QoS management in middleware. Prior research has
focused on adding various types of QoS capabilities to mid-
dleware. For example, [11] describes J2EE container re-
source management mechanisms that provide CPU avail-
ability assurances to applications. Likewise, 2K [24] pro-
vides QoS to applications from varied domains using a
component-based runtime middleware. In addition, [4] ex-
tends EJB containers to integrate QoS features by provid-
ing negotiation interfaces which the application developers
need to implement to receive desired QoS support. Syn-
ergy [17] describes a distributed stream processing middle-
ware that provides QoS to data streams in real time by ef-
ficient reuse of data streams and processing components.
These approaches are restricted to CPU QoS assurances or
application-level adaptations to resource-constrained sce-
narios. NetQoPE differs by providing network QoS assur-
ances in a application-agnostic fashion.

Deployment-time resource allocation. Prior work has
focused on deploying applications at appropriate nodes so
that their QoS requirements can be met. For example, prior
work [13, 21] has studied and analyzed application commu-
nication and access patterns to determine collocated place-
ments of heavily communicating components. Other re-
search [6, 9] has focused on intelligent component place-
ment algorithms that maps components to nodes while satis-
fying their CPU requirements. NetQoPE differs from these
approaches by leveraging network QoS mechanisms to allo-
cate network resources at pre-deployment-time and enforc-
ing network QoS at runtime.

Model-based design tools. Prior work has been
done on model-based design tools. PICML [1] enables

DRE system developers to define component interfaces,
their implementations, and assemblies, facilitating deploy-
ment of LwCCM-based applications. VEST [20] and
AIRES [10] analyze domain-specific models of embedded
real-time systems to perform schedulability analysis and
provides automated allocation of components to processors.
SysWeaver [5] supports design-time timing behavior ver-
ification of real-time systems and automatic code genera-
tion and weaving for multiple target platforms. In contrast,
NetQoPE provides model-driven capabilities to specify net-
work QoS requirements on DRE system application flows,
and subsequently allocate network resources automatically
using network QoS mechanisms. NetQoPE thus helps as-
sure that application network QoS requirements are met at
deployment-time, rather than design-time or runtime.

6 Concluding Remarks

This paper describes the design and evaluation of
NetQoPE, which is a model-driven component middleware
framework that manages network QoS for applications in
DRE systems. The lessons we learned developing NetQoPE
and applying it to a representative DRE system case study
thus far include:

e NetQoPE’s domain-specific modeling languages help
capture per-deployment network QoS requirements of ap-
plications so that network resources can be allocated ap-
propriately. Application business logic consequently need
not be modified to specify deployment-specific QoS re-
quirements, thereby increasing software reuse and flexibil-
ity across a range of deployment contexts.

e Programming network QoS mechanisms directly in ap-
plication code requires the deployment and running of ap-
plications before they can determine if the required net-
work resources are available to meet QoS needs. Con-
versely, providing these capabilities via NetQoPE’s model-
driven, middleware framework helps guide resource alloca-
tion strategies before application deployment, thereby sim-
plifying validation and adaptation decisions.

e NetQoPE’s model-driven deployment and configura-
tion tools help transparently configure the underlying com-
ponent middleware on behalf of applications to add context-
specific network QoS settings. These settings can be en-
forced by NetQoPE’s runtime middleware framework with-
out modifying the programming model used by applica-
tions. Applications therefore need not change how they
communicate at runtime since network QoS settings can be
added transparently.

o NetQoPE’s strategy of allocating network resources to
applications before they are deployed may be too limiting
for certain types of DRE systems. In particular, applica-
tions in open DRE systems [23] might not consume their re-
source allotment at runtime, which may underutilize system
resources. We are therefore extending NetQoPE to overpro-

vision resources for applications on the assumption that not
all applications will use their allotment. If runtime resource
contentions occur, we are also developing dynamic resource
management strategies that can provide predictable network
performance for mission-critical applications.

NetQoPE’s model-driven middleware platforms and
tools, except the Bandwidth Broker used in the experi-
ments, are available in open-source format from waw. dr e.
vanderbi | t. edu/ cosmi ¢, and along with the CIAO com-
ponent middleware available at www. dre. vanderbilt.
edu.

References

[1] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A Platform-Independent
Component Modeling Language for Distributed Real-time
and Embedded Systems. Journal of Computer Systems Sci-
ence, 73(2):171-185, 2007.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. In-
ternet Society, Network Working Group RFC 2475, pages
1-36, Dec. 1998.

[3] B. Dasarathy, S. Gadgil, R. Vaidhyanathan,
K. Parmeswaran, B. Coan, M. Conarty, and V. Bhanot. Net-
work QoS Assurance in a Multi-Layer Adaptive Resource
Management Scheme for Mission-Critical Applications
using the CORBA Middleware Framework. In RTAS 2005,
San Francisco, CA, Mar. 2005. IEEE.

[4] M. A. de Miguel. Integration of QoS Facilities into Compo-
nent Container Architectures. In Proceedings of the Fifth
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2002), 2002.

[5] D. de Niz, G. Bhatia, and R. Rajkumar. Model-Based
Development of Embedded Systems: The SysWeaver Ap-
proach. In Proc. of RTAS’06, pages 231-242, Washington,
DC, USA, August 2006.

[6] D. de Niz and R. Rajkumar. Partitioning Bin-Packing Al-
gorithms for Distributed Real-time Systems. International
Journal of Embedded Systems, 2005.

[7] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky.
Building Adaptive Distributed Applications with Middle-
ware and Aspects. In Proc. of AOSD ’04, pages 66—73, New
York, NY, USA, 2004.

[8] M. A.EI-Gendy, A. Bose, S.-T. Park, and K. G. Shin. Paving
the First Mile for QoS-dependent Applications and Appli-
ances. In Proc. of IWQOS’04, Montreal, Canada, June 2004.

[9] S. Gopalakrishnan and M. Caccamo. Task Partitioning with
Replication upon Heterogeneous Multiprocessor Systems.
In RTAS ’06, pages 199-207, San Jose, CA, USA, 2006.

[10] Z. Gu, S. Kodase, S. Wang, and K. G. Shin. A Model-
Based Approach to System-Level Dependency and Real-
time Analysis of Embedded Software. In RTAS’03, pages
78-85, Washington, DC, May 2003. IEEE.

[11] M. Jordan, G. Czajkowski, K. Kouklinski, and G. Skin-
ner. Extending a J2EE Server with Dynamic and Flex-
ible Resource Management. In Proceedings of the
ACM/IFIP/USENIX International Middleware Conference,
Toronto, Canada, 2004.

10

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Zhang and S. Berson and S. Herzog and S. Jamin. Re-
source ReSerVation Protocol (RSVP) Version 1 Functional
Specification. Network Working Group RFC 2205, pages
1-112, Sept. 1997.

D. Llambiri, A. Totok, and V. Karamcheti. Efficiently Dis-
tributing Component-Based Applications Across Wide-Area
Environments. In Proc. of ICDCS’03, 2003.

Object Management Group. Light Weight CORBA
Component Model Revised Submission, OMG Document
realtime/03-05-05 edition, May 2003.

OMG. Deployment and Configuration of Component-based
Distributed Applications, v4.0, Document formal/2006-04-
02 edition, Apr. 2006.

R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues
and Y. Krishnamurthy and I. Pyarali. Flexible and Adaptive
QoS Control for Distributed Real-time and Embedded Mid-
dleware. In Proc. of Middleware’03, Rio de Janeiro, Brazil,
June 2003. IFIP/ACM/USENIX.

T. Repantis, X. Gu, and V. Kalogeraki. Synergy: Sharing-
Aware Component Composition for Distributed Stream Pro-
cessing Systems. In Proc. of Middleware 2006.

R. Schantz, J. Zinky, D. Karr, D. Bakken, J. Megquier, and
J. Loyall. An Object-level Gateway Supporting Integrated-
Property Quality of Service. ISORC, 00:223, 1999.

P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro,
and G. Duzan. Component-Based Dynamic QoS Adapta-
tions in Distributed Real-time and Embedded Systems. In
Proceedings of the International Symposium on Distributed
Objects and Applications (DOA), Agia Napa, Cyprus, Oct.
2004.

J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. Vest: An aspect-based com-
position tool for real-time systems. In Proc. of RTAS’03,
page 58, Washington, DC, USA, 2003.

C. Stewart and K. Shen. Performance Modeling and System
Management for Multi-component Online Services. In Proc.
of NSDI’05, Boston, MA, pages 71-84, May 2005.

P. Wang, Y. Yemini, D. Florissi, and J. Zinky. A Distributed
Resource Controller for QoS Applications. In Proceedings
of the Network Operations and Management Symposium
(NOMS 2000). IEEE/IFIP, Apr. 2000.

X. Wang, D. Jia, C. Lu, and X. Koutsoukos. DEUCON: De-
centralized End-to-End Utilization Control for Distributed
Real-Time Systems. Parallel and Distributed Systems, IEEE
Transactions on, 18(7):996-1009, 2007.

D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu. 2K: An In-
tegrated Approach of QoS Compilation and Reconfigurable,
Component-Based Run-Time Middleware for the Unified
QoS Management Framework. In Proc. of Middleware’01,
2001.

