
C++ Class Libraries for Interprocess Communication

Introduction

The demand for efficient, portable, and easy to program interprocess communication (IPC)
mechanisms has increased as more developers attempt to build distributed applications. Common
IPC tasks include:

• Connection establishment and termination, addressing and access to services in the network;

• Communication between processes that may reside on different hardware platforms (e.g.,

Intel or PowerPC) , operating systems, (e.g., UNIX, OS/2, or Win32), and networks (e.g.,

Ethernet or ATM);

• Flexible access to various IPC mechanisms (e.g., Sockets, Named Pipes, RPC, shared

memory, etc.).

One way to meet these requirements is to use high-level communication toolkits such as Sun RPC

[Sun:94], OSF DCE [OSF:95], OMG CORBA [OMB:95], or Microsoft’s Network OLE

[Brockschmidt:95]. However, these solutions are often inefficient, non-portable, complex, or

expensive.

A common way to workaround the drawbacks of higher-level communication toolkits is to

program applications using lower-level mechanisms such as Sockets and System V TLI. These

mechanisms are widely available under a variety of operating systems. Programming at this level

provides the benefit of flexibility and performance, while shielding developers from the details of

network and transport layer protocols such as TCP, UDP, or IPX/SPX. Sockets are particularly

appealing since they are available under most Unix derivatives and also on many PC platforms,

including the operating systems in the Windows family and OS/2.

Unfortunately, there are still some portability limitations with using Sockets since different

implementations are subtly incompatible. Often the header files, error codes, and initialization

strategies differ across operating systems. For instance, the Socket library must be explicitly

initialized on Win32 platforms, whereas it’s implicitly initialized on Unix. Likewise, under Unix,

Socket endpoints are represented by integral file descriptors, so that read() or write() are legal

calls, which is not the case under Win32, where Socket endpoints are represented as pointer

handles.

Portability aside, it’s still difficult to program conventional IPC mechanisms due to the inherent

non-type safety of the low-level C APIs. As mentioned above, Socket descriptors on Unix are

implemented as integral types and as void pointers on Win32. Therefore, at compilation time the

compiler cannot assist the programmer in checking the correctness of the application code by

identifying invalid operations on Socket endpoints. This makes it all too easy to use the wrong

operation at the wrong time (e.g., trying to “accept” a connection on a Datagram Socket).

A time honored way [Schmidt:92] of solving these programming problems is to create class

libraries that encapsulate low level IPC APIs with C++ wrappers. This approach offers the

following advantages:

• Portability and heterogeneity: The inconsistencies between different IPC implementations

remain hidden from the developer. Depending on the sophistication of the C++ wrappers,

different mechanisms such as System V TLI and Sockets can be integrated to form a consi-

stent interface.

• Ease of programming: The high level of abstraction and additional functionality provided

by C++ wrappers can make developing network applications easier by hiding low-level

details of the C-level IPC APIs.

• Reuse: Routine tasks and repetitive procedures can be handled by the library. This abstrac-

tion makes the application code shorter, more readable, and easier to maintain.

• Type-safety and robustness: C++ wrappers can eliminate entire categories of common

errors. One example is the use of Internet Socket addresses. The C-level sock API requires

the developer to initialize the allocated memory - e.g., using the memset() call - after

defining a variable of type sockaddr_in. If the programmer forgets to perform this initializa-

tion, the program behavior is unpredictable. Unfortunately, these types of errors occur at

runtime and are hard to diagnose without tedious debugging sessions. In contrast, a C++

class library can eliminate these common errors. For instance the initialization of the

sockaddr_in structures can be hidden in the constructor of a network address class.

Although C++ wrappers solve many problems for application programmers, it is time consuming

to develop these types of class libraries from scratch. Developers of network programming

wrappers must have a deep understanding of many topics including networking, object-oriented

design, and C++. Therefore, most organizations can’t afford to devote the resources necessary to

reinvent, debug, document, and maintain these wrappers internally.

Fortunately, there are now several options available to developers. For instance, two C++ IPC

class libraries (Socket++ and the Adaptive Communications Environment (ACE)) can be freely

obtained via anonymous ftp or the WWW. There are also several commercially supported C++

IPC class libraries from vendors such as Rogue Wave’s (Net.h++) and ObjectSpace’s

(Systems<Toolkit>). This article compares the functionality and performance of three of these

C++ IPC class libraries (Socket++, ACE, and Net.h++). Our test environment consisted of Sun

SPARCstations running Solaris 2.4, using Sun CC 4.0.1 to compile Net.h++ and ACE, and GNU

gcc 2.7.0 to compile Socket++.

Net.h++

In the C++ community, RogueWave has established itself as a world leader in class libraries, all of

which end with .h++. The flagship product of Rogue Wave is Tools.h++. This widely used

component library consists of collection classes and reusable data structures and algorithms

designed for general-purpose applications. Quite logically, Rogue Wave used this library to

implement Net.h++, making the installation of Tools.h++ (version 6.1) a precondition for working

with this library.

RogueWave designed Net.h++ to allow independence from several operating systems and

networking protocols. The present version 1.0 supports the software platforms Unix (Solaris,

SunOS, HP-UX), Windows (Winsocks by Microsoft, NetManage Chameleon, Trumpet and

Wollongong), and Windows NT. AIX, SGI, OS/2 and Windows95 have been planned for the

future. The library is available in source code form for an additional cost.

System Architecture

The architecture of Net.h++ is subdivided into four layers shown in Figure 1 (the modules not

contained in Version 1.0 are marked in grey). The lowest layer of Net.h++ provides the basic

services of Tools.h++. The next layer is the Communication Adapters Layer. It contains an

encapsulation of Sockets and TCP/IP addresses that provides a thin veneer atop the existing C-

APIs. Unfortunately, this short list contains all the communication mechanisms supported by the

current version. For future releases, RogueWave plans to include extensions for TLI, (Named)

Pipes, RPC, CORBA, and FTP.

One layer up is the Portal Layer. This layer provides a more abstract C++ programming API than

the Communication Adapters Layer. The Portal Layer presents a uniform, transport independent

view of the different underlying communication mechanisms to applications. In addition, it

provides functionality not found in the underlying layer, such as sending or receiving a specific

amount of data.

The highest level of abstraction in the Net.h++ architecture is the Communication Services Layer.

At this level programmers can treat communication channels as C++ IOStreams. By using the

overloaded functions operator<<() and operator>>(), programmers can send complex objects

without changing their morphology (i.e., their internal structure). This illustrates the strong

integration with Tools.h++, which provides a mechanism known as “Virtual Streams” that send

objects in binary, ASCII or XDR encoded formats. As a possible extension to the Communication

Services Layer, RogueWave proposes an implementation of the Acceptor pattern [Schmidt:95]

that could simplify the development of servers for different purposes.

One of the tutorials, called “The Receptionist,” outlines how such an Acceptor could work. The

basic idea is to separate (1) the communication semantics of server applications from (2) the

handling of connection requests. While the former cannot be done in a general way (since this

depends on the application’s communication protocol), the latter can be generic. Just like an office

receptionist handles the phone traffic without knowing the topics of conversation, the

Receptionist classes implement strategies for answering connection requests and dispatching

them. The tutorial describes classes that can implement sequential, concurrent, and event driven

receptionist strategies.

Installation and Documentation

The installation procedure for Net.h++ is well documented in the Installation Guide. I was able to

install it without much difficulty, though the manual did contain a minor mistake. Instead of using

the command "cd C:\rogue", which clearly does not make any sense under Unix, you have to

change into the directory above (!) the Tools.h++ home directory. Then the library is written onto

the disk using tar and uncompress. Unfortunately, the manual does not indicate that afterwards the

tar file can be deleted again. The second installation step consists in compiling the source code.

The necessary adjustments to Makefile are performed by the script config_make - with exemplary

convenience. Afterwards, the compilation of the library and the accompanying example programs

proceeded smoothly in the test.

The examples chosen are easily understood and provide a good survey of the essential features of

Net.h++. For instance, the 'hostinfo' example provides information on an Internet machine, 'greet'

sends a message to an Internet address and outputs the answer, 'wwwget' loads a URL-specified

HTTP page.

The Net.h++ manual contains about 130 pages (without appendices) covering the user's guide,

tutorials and the class reference. The user's guide provides a good survey of the essential concepts

and allows the user to become familiar with how to program applications using Net.h++. Users

who are not familiar with OOD, however, must learn the OMT style diagrams since the syntax is

not fully explained. The tutorial supplements the examples with an extensive sample program that

also explains some general difficulties encountered in interprocess communication.

Sample Program

Listing 1 shows the code for “netfinger,” illustrating a use-case example of Net.h++. The program

implements a simplified “finger” client, which is a standard Internet service that provides

information about a user. Unlike the finger program found on Unix machines, this version does

not directly retrieve any information itself, but gets the whole report from a finger daemon. The

same example will be used for Socket++ and ACE to show how the various approaches differ.

In line (1), the Winsock DLL is initialized, if the program is compiled under Windows. Although

Unix does not require such an initialization, this statement is necessary for portability reasons. For

our Solaris Unix tests this call is conditionally compiled to nothing. The object 'info' is generated

on the stack as an automatic variable; the destructor of the class RWWinSockInfo performs the

necessary cleanup when leaving the main() function.

Under (2) the command line arguments are checked. The program should be called using

netfinger user@host.

Under (3) we see Net.h++’s usage of C++ Exception Handling for errors. The benefit of this

approach is that the application’s handling of errors is kept separate from the usage of the library.

This improves the readability of the code and can increase the programs ability to react to errors.

For instance C++ Exceptions allow applications to react to exceptions raised in constructors -

which will create problems with traditional methods of error treatment.

(4) demonstrates the use of RWInetAddr. This class contains the host IP address, a port number,

the Socket type (Stream, Datagram or raw), and the transport protocol to use. As always, our C++

solution is more robust and easier to program than a C solution due to the use of constructors and

default parameters . In this example, the port is identified by the service name 'finger', the host

name is indicated by the user in the program request, the default protocol is TCP, and the Socket

type is SOCK_STREAM.

Specifying the port number and host by strings results in a call to the constructors of RWInetPort

and RWInetHost that take string parameters. These classes internally call the C-API functions

getservbyname() and gethostbyname() to initialize their private data structures. (This is, however,

not done in the class constructors, but when the information is actually needed.)

At (5) the connection is set up. In case of an extension of Net.h++, the variable fingerd of the

RWPortal type could incorporate also a (fictitious) RWTLIPortal (another subclass of RWPortal

using the communication channel System V TLI) instead of an RWSocketPortal. This change can

be made without requiring any code modifications. In the line marked (6) the inquiry is addressed

to the finger server. This inquiry simply consists of the name of the user, on which the information

shall be obtained, and is completed with a carriage return and a line feed. The member function

RWPortal::sendAtLeast() guarantees that the complete inquiry will be sent, even if this requires

several calls of the lower C-API to be made.

The finger server’s reply is received in line (7). For illustration purposes, an object from the C++

IOStream category is used. The characters are read individually with get() to prevent the

suppression of blanks, tabs and line feeds. The code used is not too inefficient since the

RWPortalIStream, like any IOStream, performs its own buffering. Ostream cout, however, is also

buffered, so that we synchronize its output to screen with the flush manipulator.

An alternative to using an IOStream is shown at line (8). This time the element function

RWPortal::recv() is used. The output is closed as before under (7) after the finger server has

completed its answer with EOF and closed down the connection.

Overall, the performace of Net.h++ was satisfactory although the current version of the library

does not cover many issues related to developing distributed applications (such as event loop

integration, naming and location services, etc.). However, the basic tools provided worked

smoothly and without error.

Socket++

Unlike Net.h++ the Socket++ library by author Gnanasekaran Swaminathan can be obtained free

of charge from the Internet. At the time of our test, the version of Socket++ was 1.10. The basic

idea behind Gnanasekaran’s library is to provide access to Socket communication channels using

the C++ IOStream interface. Although this approach is similar to Net.h++’s usage of IOStreams,

Socket++ is more closely tied to the use of IOStream interfaces. This reduces the learning curve

for programmers who are already familiar with IOStreams and Sockets. Another advantage of

Socket++ is the elegant and type-secure access to Sockets through operator<<() and operator>>(),

which allow applications to send and receive objects while maintaining morphology.

System Architecture

Figure 2 illustrates the Socket++ class hierarchy. The class sockbuf has been derived from

streambuf (which is not part of the illustration since it belongs to the IOStream library) and is

used to buffer Socket I/O. The actual reading from and writing to the Socket takes place in this

class. The sockunixbuf and sockinetbuf subclasses offer specializations of the Unix or Inet

communication domains, respectively. The iosockstream class has been derived from iostream

and provides SOCK STREAM semantics. The classes isockstream or osockstream cover the read-

only or write-only access. For Sockets and Unix Pipes the respective subclasses are available. The

descendants of the abstract class sockAddr provide the encapsulation of network addresses. In

addition, there are classes that implement standard Internet protocols like Echo, FTP and SMTP.

Fork implements the fork() system request.

Installation and Documentation

Not surprisingly, a free library is rarely as comprehensive as a commercial product. For Socket++

this applies to the number of compilers and operating systems the library has been ported to and

tested with. Unfortunately, a port to Windows is not included. Moreover, due to the peculiarities

of the available Winsock implementations (e.g., Sockets endpoints are pointer handles rather than

integers), major changes would be required to port the available source code to Windows.

The easiest way to compile Socket++ is to use the GNU gcc (version 2.4.0 and higher), which is

available on a variety of operating systems. Though I did not attempt to use the Sun CC 4.0.1,

with a little effort, this compiler could also be used.

Socket++ is not a "library for the poor". Quite on the contrary, it offers a surprisingly rich number

of features. This can already be seen at the installation, which uses the autoconf GNU mechanism

and consequently, could hardly be easier. Even an automatic selftest is performed. The utility

classes for the Echo, FTP and SMTP protocols have already been mentioned. Thus, for example,

it is possible to implement an Echo server with less than ten lines of code. Although this is not

very practical (since the Echo server is already a standard Internet service), it serves as a good

example for your own implementations.

The manual is available in Postscript format and contains about 50 pages. Unfortunately it

belongs to version 1.6 and is thus not quite up to date. You will need some time to get used to the

combined reference section/user's guide that is interspersed with many examples. Supports of the

GNU project will be pleased to hear that the manual is available in Texinfo format, too.

Sample Program

Listing 2 demonstrates the netfinger example applied to Socket++. Part (1) shows the treatment of

the call arguments (the same as for Listing 1). In (2) a Socket from the Internet domain with

IOStream encapsulation is provided for reading and writing (class iosockinet). Evidently, in

contrast to Net.h++, error treatment is performed internally in the library and not with Exception

Handling procedures. However, this is quite sufficient for our simple example. Anyone who

nevertheless insists on Exception Handling should use the older version 1.8 containing this

mechanism - it has been dropped afterwards because several compilers do not yet support it.

Rather than omitting this feature altogether, a better alternative would have been to use different

mechanisms via conditional compilation.

The connection is set up with a connect() call (4) that implicitly uses a sockinetaddr. The port to

be addressed is identified by the service description 'finger'. (5) illustrates the use of operator<<()

to send an inquiry to the server. Under (6) the answer is read out (as in Listing 1).

The assessment regarding runtime behavior and stability given for Net.h++ also applies to

Socket++. I didn’t find any serious problems.

ACE (ADAPTIVE Communication Environment)

As with Socket++, ACE can be freely obtained via anonymous FTP or the WWW. Douglas C.

Schmidt from Washington University is the author of most parts of ACE. ACE was originally

designed as a framework to simplify Doug’s research on design patterns and performance

bottlenecks in parallel communication software. Over time, the library has matured and is now

used in many commercial projects at companies like Bellcore, Ericsson, Motorola, Kodak and

Siemens.

Like the two other libraries, ACE is designed as a toolkit for object-oriented network

programming. The primary difference between ACE and the other libraries I evaluated is its

scope, which goes far beyond that of Socket++ and Net.h++. This scope becomes evident when

downloading the program from the FTP server. The overall release occupies around 1.4

megabytes of source code, tests, and example applications (not including the documentation,

which is available separately). After compilation, the entire release occupies over 90 megabytes,

due largely to the aggressive use of C++ templates and method inlining in ACE (most of the

inlining can be conditionally compiled out).

System Architecture

Figure 3 outlines the ACE system architecture. The encapsulation of Unix and Winsock Sockets

is called SOCK_SAP. A common interface with the System V TLI encapsulation (TLI_SAP)

enables programs to be written independently of the communication channel used. Furthermore

ACE contains C++ wrappers for many other Unix IPC mechanisms including System V Unix

STREAM Pipes and Named Pipes, Threads, memory-mapped files, and System V IPC

mechanisms such as Shared Memory, Semaphore and Message Queues.

The encapsulation of IPC mechanisms represents only one of ACE's many features. As shown in

Figure 3, ACE also includes C++ components for event demultiplexing (Reactor), dynamic

linking and service configuration (Service Configurator), multi-threading and concurrency control

(Synch wrappers and Thread Manager), shared memory management (Shared Malloc),

connection management (Connector and Acceptor), CORBA integration (CORBA Handler),

layered service management (ASX), and distributed services like naming, locking, logging, and

routing (which are not shown in the figure). Although it is beyond the scope of this article to cover

these components you can find out more about them by examining the technical papers and

documentation distributed with ACE.

Installation and Documentation

Although ACE is farther away from being a finished product than Socket++ and Net.h++, its

installation runs smoothly if you use one of the compilers supported. For the ACE 3.3 version

tested in our study these include Sun C++ 3.x and 4.x under SunOS 4.1.x and Solaris 2.x. More

recent versions of ACE have now been ported to other OS platforms such as SCO Unix, HP-UX,

SGI, OSF/1, AIX, Linux, Windows 95 and Windows NT.

Documentation is the biggest problem with ACE. The documention available consists mainly of

articles in Postscript format that have been prepared by the author for technical journals and

conferences. Each paper addresses certain aspects of ACE, but there is no comprehensive

programmers guide. Although, ACE provides manual pages in nroff and HTML formats that are

generated from the classes' header files, reading this material is insufficient to familiarise yourself

with the complex relations between the different frameworks and components in ACE. Users

have to dive into the source code and examples to figure it all out. This can be hard since the

interaction between the ACE framework and application code uses callbacks and other forms of

decoupled component integration. Application developers will need to have a good understanding

of the structure and behavior of the framework tp use it effectively. The payoff can be

considerable, but so is the effort required to understand the entire framework. Fortunately, ACE is

designed in modular fashion, so it’s possible to use subsets of its functionality quite easily without

getting mired in the swamp of complexity.

Sample Program

Listing 3 shows the implementation of our netfinger example under ACE. From the multitude of

functions available only the SOCK_SAP component will be used, which more or less corresponds

to Net.h++ and Socket++, although it doesn’t provide the higher-level C++ IOStream integration

available with the other libraries.

Part (1) stays the same, under (2) a Socket object of the SOCK_STREAM type is generated. This

example shows that ACE provides individual subclasses for each type of Socket, whereas

Net.h++ and Socket++ provide a member variable that represents the Socket type. ACE's

approach offers more type security, but potentially leads to code that is harder to change. (3) also

illustrates that ACE spreads its functionality among more classes than the other two libraries. For

instance, the ACE_SOCK_Stream class does not set up the connection itself but uses the service

of the ACE_SOCK_Connector class. (4) shows ACE error treatment by way of checking return

values and by using preprocessor macros. In (5) and (6) the lack of the familiar IOStream

interface under ACE becomes apparent. The function send_n(), however, guarantees that the

desired number of bytes will be sent. Finally in (7) the explicit closing of the Socket connection is

shown.

Assessing the runtime efficiency of ACE is as difficult as with the other two C++ IPC libraries

we’ve reviewed. However, ACE provides some potential performance advantages due to its

extensive use of inlining and templates. A disadvantage of these optimizations, of course, is that

the size of the object code can be quite large, depending on how the compiler implements

templates and how ACE is conditionally compiled.

Assessment

Any application developer who is primarily interested in a stable Socket encapsulation in

conjunction with a comfortable interface and professional support will appreciate Net.h++. I hope

that RogueWave increases the number of communications channels supported and also offers

frameworks for programming clients and servers at a higher abstraction level.

Socket++ may be an alternative solution, if you are willing to accept the limitations of a

noncommercial product. Moreover, many developers have found that programmers of free

software react very cooperatively to the "customer's requests."

Managing ACE requires the willingness on the part of developers to deal intensively with the

program package. However, it offers quite a lot of functionality and has an active user community

to provide support. Therefore, ACE is the right choice if you’re looking for more than just

interprocess communication support and if you can afford the effort needed to familiarise yourself

with the framework.

References

[Brockschmidt:95] Kraig Brockschmidt, “Inside OLE, 2nd Edition“, Microsoft Press, 1995.

[OMG:95] “The Common Object Request Broker Architecture and Specification,” version 2,
Object Management Group, July 1995

[OSF:95] OSF (Ed.), “Introduction to OSF DCE“, Prentice Hall, 1995.

[Schmidt:92] Douglas C. Schmidt, “IPC_SAP: An Object-Oriented Interface to Interprocess
Communication Services,” C++ Report, Volume 4, Number 9, 1992.

[Schmidt:95] Douglas C. Schmidt, “Design Patterns for Establishing Network Connections,” C++
Report, Volumn 7, Number 9, 1995

[Sun:94] “Network Interface Programmer‘s Guide“, Sun Microsystems Inc., 1994.

About the authors

Prof. Dr.-Ing. habil. Wilhelm Dangelmaier is Professor for Computer Integrated Manufacturing at

the Heinz Nixdorf Institute of Paderborn University, Germany. His research interests include

modeling of distributed manufacturing systems and tools to plan, schedule, monitor, and control

these systems.

Dipl. Ing. Sören Henkel (soeren@hni.uni-paderborn.de) is a PhD student and scientific employee

at the Heinz Nixdorf Institute of Paderborn University, Germany. His research focuses on a

program system for model-based distributed production control.

Listings

Listing 1: netfinger with Net.h++
// netfinger: request to a finger daemon

#include <stdlib.h>
#include <string.h>
#include „rw/net/inetaddr.h“ // Internet addresses
#include „rw/net/sockport.h“ // sockets
#include „rw/net/portstrm.h“ // socket IOStreams
#include „rw/net/winsock.h“ // for portability
#include „rw/net/neterr.h“ // exception handling

void usage(char* prog)
{

cerr << „Usage: „ << prog << „ [user]@[host]“ << endl;
exit(1);

}

main(int argc, char **argv)
{

// (1) for portability: initialize Winsock DLL
RWWinSockInfo info;

// (2) simple argument parsing
if (argc!=2)

usage(argv[0]);
char* user=argv[1];
char* host=strrchr(user,‘@‘);
if (!host)

usage(argv[0]);
*host++=‘\0‘;

// (3) exception handling
try
{

// (4) addressing
RWInetAddr addr(„finger“, host);

// (5) connection establishment
RWPortal fingerd=RWSocketPortal(addr);

// (6) request

fingerd.sendAtLeast(RWCString(user)+“\r\n“);

// (7) answer
RWPortalIStream answer(fingerd);
char c;
while(answer.get(c))

cout << c;
cout << flush;

// (8) alternative:
// RWCString packet;
// while (!(packet=fingerd.recv()).isNull())
// cout << packet;
}
catch (const RWxmsg& x)
{

cerr << „Error: „ << x.why() << endl;
}

return 0;
}

Listing 2: netfinger with Socket++
// netfinger: request to a finger daemon

#include <stdlib.h>
#include <string.h>
#include „sockinet.h“// socket stream in Internet domain

void usage(char* prog)
{

cerr << „Usage: „ << prog << „ [user]@[host]“ << endl;
exit(1);

}

main(int argc, char **argv)
{

// (1) simple argument parsing
if (argc!=2)

usage(argv[0]);
char* user=argv[1];
char* host=strrchr(user,‘@‘);
if (!host)

usage(argv[0]);
*host++=‘\0‘;

// (2) iosockinet encapsulates a socket with IOStream semantics
// (3) error handling: internally
iosockinet fingerd(sockbuf::sock_stream);

// (4) connection establishment
fingerd->connect(host,“finger“);

// (5) request
fingerd << user << „\r\n“ << flush;

// (6) answer
char c;
while(fingerd.get(c))

cout << c;
cout << flush;

return 0;
}

Listing 3: netfinger with ACE
// netfinger: request to a finger daemon

#include <stdlib.h>
#include <string.h>
#include „ace/SOCK_Stream.h“// socket of type SOCK_STREAM
#include „ace/INET_Addr.h“// address in Internet domain
#include „ace/SOCK_Connector.h“// active connection establishmnt

void usage(char* prog)
{

cerr << „Usage: „ << prog << „ [user]@[host]“ << endl;
exit(1);

}

main(int argc, char **argv)
{

// (1) simple argument parsing
if (argc!=2)

usage(argv[0]);
char* user=argv[1];
char* host=strrchr(user,‘@‘);
if (!host)

usage(argv[0]);
*host++=‘\0‘;

// (2) ACE_SOCK_Stream encapsulates a socket of type SOCK_STREAM
ACE_SOCK_Stream fingerd;

// (3) connection establishment using an ACE_SOCK_Connector
ACE_SOCK_Connector connector(fingerd,

ACE_INET_Addr(„finger“,host));
// (4) Fehlerbehandlung: Rueckgabewerte und Makros
if (fingerd.get_handle()==-1)

LM_ERROR_RETURN((LOG_ERROR,
„connection to host \“%s\“ failed%p\n“,host,“„),1);

// (5) request
char buf[1024];
sprintf(buf,“%s%s“,user,“\r\n“);
if (fingerd.send_n(buf,strlen(buf))==-1)

LM_ERROR_RETURN((LOG_ERROR,“%p\n“,“send_n“),1);

// (6) answer
while(fingerd.recv(buf,1024)>0)

cout << buf;
cout << flush;

// (7) explicitly close the connection
if (fingerd.close()==-1)

LM_ERROR_RETURN((LOG_ERROR,“%p\n“,“close“),1);

return 0;
}

Figures

Figure 1: Net.h++ layered architecture

Figure 2: Socket++ class hierarchy

Communication
Services

Layer
IOStreams Module Communication Server Module

Portal
Layer Portal

Communication
Adapters

Layer
Socket Adapter Address Adapter TLI Adapter

Pipe / FIFO
Adapter

Tunnel
Adapter

Foundation
Layer Tools.h++

Figure 3: Components of ACE

Acceptor Connector
Higher Level Class
Categories and
FrameworksAdaptive Service Executve (ASX)

THR
Manager

Log
Msg

Reactor Service
Configura-

tor

Shared
Malloc C++

Wrappers
SYNCH
Wrappers

SPIPE
SAP

SOCK/
TLI SAP

FIFO
SAP

Mem
Map

System V
Wrappers

Thread
Library

Stream
Pipes

Sockets/
TLI

Named
Pipes

select/
poll

dlopen
Family

mmap
Family

System V
IPC

C APIs

Process
Subsystem

Streams
Subsystem

Virtual Memory
Subsystem

OS
Services

Boxes

Box 1: Abstract

- Net.h++, Socket++, and ACE are object-oriented encapsulations of interprocess communication

channels like Sockets, System V TLI, or Unix Pipes.

- Net.h++ is a commercial product, Socket++ and ACE are freely available software.

- Common to the three tools is comfortable support of Sockets and Socket addresses

- The tools differ in their basic philosophy and in their power. ACE offers the widest range of

functionality, but also has the highest learning curve.

Box 2: What is important?

Platforms supported: The number of operating systems the product is offered or tested for

should be as large as possible. This is, however, not the only criterion for assessing the possible

range of applications. The number of communication channels supported, e.g. Sockets, System V

TLI or the different Pipe mechanisms, is of almost equal importance. Their support should be

extensive, since the implementations offered by the different suppliers (e.g. for Winsocks) can

differ. Furthermore the number of compilers tested plays a certain role, because not every

compiler supports all C++ features. If the library is not available in source code, incompatible

object codes may also give rise to problems. The ideal class library should allow the development

of a code which is independent from the biggest possible number of operating systems,

communication channels, implementations of different manufacturers and compilers. The

minimum requirement results from the application planned for the near future and from your own

system environment.

Layered Architecture: The library should permit a relatively free selection of the degree of

abstraction and aggregation during programming. This aim is backed by an appropriate

inheritance hierarchy: the more abstract classes implement common features, the leaves of the

inheritance tree realize the differences between differing communication concepts. In order to

guarantee the highest possible degree of flexibility, access to the lower layers which are closer to

the system must not be blocked. The syntax of this lower level should be largely based on the

original C-API in order to make use of the programmer's empirical knowledge. At a high

abstraction level complex program sequences should be formulated as simple as possible. In this

context a comfortable handling is required which can be provided by an appropriate combination

of single operations. It would be desirable to have access to communication channels using the

C++IOStream interface. Heterogeneity can be improved using the transparent support granted by

Sun XDR. Useful utility classes, e.g. for a presentation of addresses and services, round off the

picture. Wherever possible the interface should offer useful default parameters - e.g. the local

machine for describing a host or SOCK_STREAM for specifying a Socket type.

Extension Capacity: The library's class hierarchy should perform clear categorisations. This will

make it easier for the programmer to integrate his own additions and at the same time increases

the probability of reuse. If, for example, a communication mechanism is to be used, which has not

been supported so far, the structure of the class hierarchy should give clear indications on how to

integrate the addition in such a way that the new classes interact smoothly with the old ones.

Individual extensions to the library are particularly easy when using C++ Templates.

Efficiency: With a view to interprocess communication the runtime behavior is of central

importance. However, this behavior is difficult to measure, because the implementation of the

library is only one of many variables. Other parameters include the specific application, the

degree of network utilisation and the respective hardware or software platforms. For that reason,

we have not focused on the run-time efficiency of the libraries in this article.

Error Treatment : Today Exception Handling provides the most flexible mechanism for treating

errors or exceptions under C++. Exception Handling is particularly suitable for use in libraries,

because it allows to separate error detection from error treatment. Unfortunately not all compilers

support this mechanism - this will be different in the near future, however. As the minimum

standard the user should be informed on the current error status by way of returned values or

global variables, and the library should offer an appropriate default behavior for unanticipated

conditions.

Other (general) requirements may include the documentation, the support offered or the

compatibility with other existing libraries. The investment protection, which the manufacturer is

able to offer, may be another assessment criterion.

Box 3: Abbreviations used

ACE Adaptive Communication Environment

API Application Programmatic Interface

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

FAQ Frequently Answered Questions

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IPC Interprocess Communication

IPX/SPX Internetwork Packet Exchange / Sequenced Packet Exchange

OSF Open Software Foundation

OLE Object Linking and Embedding

OMG Object Management Group

OMT Object Modeling Technique

OOD Object-oriented Design

RPC Remote Procedure Call

SAP Service Access Point

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TLI Transport Layer Interface

UDP User Datagram Protocol

URL Uniform Resource Locator

XDR eXternal Data Representation

WWW World Wide Web

Box 4: +/- Net.h++

+: good architecture, intelligible interface

+: integration with Tools.h++

+: Exception Handling

+: good portability, many platforms

-: currently supports Sockets only

-: commercial product, expensive

Box 5: +/- Socket++

+: Free software

+: consistent implementation of C++ IOStream philosophy

+: supported by Unix Pipes, utility classes for fork(), Echo, FTP and SMTP

-: little support for several compilers

-: Unix only, no Winsocks

Box 6: +/- ACE

+: Free software

+: vast scope of components and functionality, many types of communication channels are sup-

ported

+: supports CORBA and Sun RPC

-: for many platforms only partially tested

-: little documentation for programmer, much experience required

Box 7: Summary

Library:

Number of classes

Net.h++: 50, of which API: 19/internal: 13/Exceptions: 18

Socket++: 32

ACE: IPC_SAP: approx. 50, total: more than 300 (including examples)

Multiple inheritance

Net.h++: yes

Socket++: no

ACE: yes

Scope of functions

Net.h++: comfortable

Socket++: good, some additional utilities

ACE: vast

Communication channels supported

Net.h++: Sockets (version 1.0)

Socket++: Sockets, Unix (Named) Pipes

ACE: Sockets, TLI, Pipes, Named Pipes, RPC, CORBA, Shared Memory

Ease of use

Net.h++: very good

Socket++: good

ACE: should be improved, much experience required

Inlining

Net.h++: no

Socket++: no

ACE: intensive (can be controlled by conditional compilation)

Support of XDR

Net.h++: yes, via Tools.h++ Virtual Streams

Socket++: no

ACE: limited

Error treatment

Net.h++: Exception Handling

Socket++: returned values, internal

ACE: returned values, macros

Documentation:

Programming Manual

Net.h++: printed, approx. 140 p.

Socket++: Postscript file, approx. 50 p.

ACE: no

Tutorial:

Net.h++: yes

Socket++: no

ACE: no

Test and example programs

Net.h++: yes

Socket++: yes

ACE: yes

Man pages

Net.h++: no

Socket++: no

ACE: yes

GNU Texinfo files

Net.h++: no

Socket++: yes

ACE: no

Distribution:

Version

Net.h++: 1.0

Socket++: 1.10

ACE: 3.3

Source

Net.h++: RogueWave Software, Inc.

P.O. Box 2328

Corvallis, OR 97339

(503) 754-3010, (800) 487-3217

Socket++: ftp://ftp.virginia.edu/pub/socket++-1.x.tar.gz,

ftp://ftp.th-darmstadt.de/pub/programming/languages/C++/

class-libraries/networking/socket++-1.x.tar.gz

ACE: http://www.cs.wustl.edu/~schmidt/ACE.html,

ftp://ftp.th-darmstadt.de/pub/programming/languages/C++/

class-libraries/ACE

Price

Net.h++: Object Code $594, Source Code $1794, additionally $474

for Tools.h++ (if not yet purchased)

Socket++: Freeware

ACE: Freeware

Platforms/compilers

Net.h++: Unix (Solaris, SunOS, HP-Unix), Windows (Winsocks by

Microsoft, NetManage Chameleon, Trumpet and Wollongong),

Windows NT. Planned: AIX, SGI, OS/2, Windows95

Socket++: Unix, gcc 2.4 and higher or cfont 3.0 and higher

ACE: SunOS 4.1.x or Solaris 2.x. with Sun CC 3.x or 4.x,

SCO, HP-UX, SGI, OSF/1, AIX, Linux, Windows95 and NT

Source Code

Net.h++: yes, for extra charge

Socket++: yes

ACE: yes

