The Design and Performance of a CORBA
Audio/Video Streaming Service

Sumedh Mungee, Nagarajan Surendran, Douglas C. Schmidt

{sumedh,naga,schmid®cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

Abstract transfer of continuous media data streams. For instance, pop-
ular Internet-based streaming mechanisms, such as Realvideo

Recent advances in network bandwidth and processing poﬁ?rand Vxtreme [2], allow suppliers to transmit continuous

of CPUs has led to the emergence of multimedia stréaifroams of audio and video packets to consumers. Likewise,
ing frameworks, such as NetShow, Realvideo and Vxtreme, «ontinuous media applications, such as medical imag-
These frameworks typically rely on proprietary stream estaikﬁ-g servers [3] and network management agents [4], employ

lishment and control mechanisms to access multimedia Cg_ﬂéaming to transfer bulk data efficiently from suppliers to

text. To facilitate the development of standards-based ddﬁ'nsumers.

tributed multimedia streaming applications, the OMG has de-_, . . .
. A ' .Stringent performance requirements for streaming data of-
fined a CORBA-based specification that stipulates the key,in- : .
X ten preclude DOC middleware from being used as the trans-
terfaces and semantics needed to control and manage au- . . . L :
dio/video streams port .m.echanlsm for multimedia applications [5]. For instance,
Thi k. W tributi to the stud fCORBmemCIem CORBA Internet Inter-ORB Protocol (110OP) [6]
base::is 32‘:???: de; Itpmcgt?; sltjrcle(;r::'no frea?ni):)(r)ks Fir é plementations often perform excessive data-copying and
it d ll) 'tl;] d Uit dl ; ng ¢ WL I. ! nt*lemory allocationper-request which increases packet la-
Itioneosfc trrl1ee(S5M é afjilg/r:/iggo (F,)Ae/(/())rsrtnrzggein% mag Jg?%:;‘azqt&icy [7]. Likewise, inefficient marshaling/demarshaling in
TAO, which is a real-time CORBA ORB. Second, it describesl,fcr:n |d:Ieware dzcreafses streaml?gDogl? th.r;ljjlghput (8-
the design and performance of a distributed application that"" the 63'92 an perhormance 0 bl hml ewecljre can |
uses TAO’s A/V streaming framework to establish and 0(9?- Improved, fgwe\./; r, t de stlrgamdg sta I'.S ”.‘e”t an bcont;o
trol MPEG video streams. Our experience with TAO's A/gPMPonents of distributed multimedia applications can benefit

streaming framework indicates that CORBA defines a erxiQIrgatly from the portab iIit.y and ﬂexibility_ provided by middle-
and efficient model for developing standards-based multi wre. To addregs these ISSUes, t.he Object Management Group
dia streaming applications. MG) has defined a specification for the control and man-

agement of A/V streams [9], based on the CORBA reference
Keywords: CORBA-based Multimedia Streaming, QoSmodel [10].

enabled OO Middleware, Performance Measurements The CORBA A/V streaming specification defines a model

for implementing an open distributed multimedia streaming

framework. This model integrates (1) well-defined modules,

1 Introduction interfaces, and semantics for stream establishment and control
with (2) efficient transport-level mechanisms for data trans-
1.1 Motivation mission. In addition to defining standard stream establish-

ment and control mechanisms, the OMG specification allows

Traditional distributed object computing (DOC) middlegjstributed multimedia applications to leverage the portability
ware such as CORBA, DCOM, and Java RMI support rgpq flexibility provided by DOC middleware.

guest/response semantics for distributed applications. HOWbur prior research on CORBA middleware has explored
ever, an increasingly important class of applications requ'gr

&veral dimensions of real-time ORB endsystem design in-

*This work was supported in part by Boeing, GDIS/CDI,DARPAcontra&mdir.'g static [11] and dynamic [12] real'time scheduling,
9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and Sprifeal-time request demultiplexing [13], real-time event pro-

cessing [14], real-time 1/O subsystem integration [15], aad sockets and TLI, and multiple protocols, such as TCP, UDP,
the real-time performance of various commercial and reseaoctATM.

ORBs [16] over ATM networks. This paper focuses on a previ- Another design challenge, therefore, is to define stream es-
ously unexamined point in the real-time ORB endsystem dablishment components that can work with a variety of trans-
sign space:ithe design and performance of the CORBA Afobrt endpoints. To resolve this challenge, we appliedbtinat-
streaming service specification egypattern [17], as explained in Section 2.2.5.

Flexibility in stream control interfaces: An A/V stream-
1.2 Design Challenges ing framework must provide flexible mechanisms that allow

developers to define and use different operations for different

We have developed the first freely available implementatigﬂ ; : o :
;) L eams. For instance, a video application typically supports
of the OMG A/V streaming model using TAO [11], which is q variety ofoperations such asplay , stop andrewind .

real-ime COR.BTA ORB that has peen ported to most OS P's?}' nversely, a stream in a stock quote application might sup-
forms. In addltlon o |_mplemer,1t|ng the components defin é)rtoperationslikstart andstop . Because the operations
by the OMG specification, TAQ's A/V streammg SEIVICE USER\ided by the stream are application-defined, it is useful for
patterns [17] to resolve the following key design challeng e control logic component in a streaming service to be very
that arise when developing distributed multimedia Streamiﬁ@xible.

frameworks: Therefore, another design challenge facing designers of

Flexibility in stream endpoint creation strategies: The streaming services is to allow applications the flexibility to de-
OMG specification defines the interfaces and roles of strefine their own stream control interfaces.
components. Many performance-sensitive multimedia ap

cations require fine-grained control over the strategies govel-ars: The transport component of a streaming application
ing the creation of stream components. For instance, our AR needs to change behavior depending on the ¢
studies of Web server performance [18, 3] motivate the ne he system. For instance, invoking thiay operation on

o Zupp(I)rElldapttlveco.ncurrer;.c y itrategles to develop efﬂme%e stream control interface of a video supplier may cause it to
and scajable streaming applications. . ._enter into @PLAYING state. Likewise, subsequently sending it
In the context of our A/V streaming service, we determm?ﬁ‘estop operation may cause it to transition to ieoPPED

that j[he suppligr-side of our MPEG application described thte. More complex state machines can result due to addi-
Section 3 required a process-based concurrency strategy to.| operations, such aswind andfast _forward op-
maximize stream throughput by allowing parallel processi%‘;;fations '

i .

of separate streams. Other types of applications required Thus, an important design challenge for developers is de-

fg(;ent flmplehwggtéltlonsl,'hot\'/vevgr. F(;rtega;mplet,r]the cor1§un]5(? ining flexible applications whose states can be extended.
side ot our application benetited trom the creation pf-o 4ition, the behavior of supplier/consumer applications,

reactive [19] suppliers that contain all related endpoints Withé?]d the A/V streaming framework itself, in each state must be

asingle process. ell-defined, To address this issue we applied3tete Pattern
To achieve a high degree of flexibility, therefore, our A/\I\qﬂ as Idesc’ribed in Sectiolnl?, 1u We appi

streaming service design decouples Behaviorof stream
components from the strategies governing tleedation We o
achieved this decoupling via tifactory MethodandAbstract 1.3 Paper Organization
Factorypatterns [17], as described in Section 2.2.1.

Fl’ﬂéxibility in managing states of stream supplier and con-

The remainder of this paper is organized as follows: Sec-
Flexibility in transport protocol: A streaming service maytion 2 describes our implementation of the OMG A/V stream-
need to select from a variety of transport protocols. For img service specification using TAO [11], which is a real-time
stance, an Internet-based streaming application like Realvi®®RBA ORB; Section 3 outlines the design of an MPEG
[1] may use the UDP protocol, whereas a local intranet videsireaming application that uses TAO’s A/V streaming service;
conferencing tool [20] might prefer the QoS features offer&kction 4 analyzes the performance results of TAO's A/V
by native high-speed ATM protocols. Thus, it is essential thetteaming service over a high-speed ATM network; Section 5
a streaming service support a range of transport protocols.summarizes related work; and Section 6 presents concluding

The OMG streaming service makes no assumptions abarmarks. For completeness, Appendix A outlines the OMG
the transport protocol used for data streaming. Consequer@@dRBA reference model and Appendix B presents a brief
the stream establishment components in our A/V streamimgerview of the CORBA Property Service, which is used to
service framework provide flexible mechanisms that allow apansfer QoS information between consumers and suppliers in
plications to define and use multiple transport endpoints, subb A/V streaming service.

2 The Design of TAO’s Audio/Video In contrast, the data stream useg-of-bandstream(s), which
; ; can be implemented using protocols that are more suitable for
Streammg Service multimedia streaming than IIOP. Maintaining this separation

This section presents an overview of the key architectuPdiconcernsis crucial to achieve high performance.

components in the OMG A/V streaming model. It also de- Each stream endpoint consists of three logical entities: (1) a

scribes the design challenges facing developers of A/V streaiieam interface control objedhat exports an IDL interface,

ing frameworks and explains how TAO's A/V streaming sef¢) @data source or sinkand (3) astream adaptothat is re-
vice resolves these challenges. sponsible for sending and receiving frames over a network.

Control and Management objedse responsible for the es-
. o tablishment and control of streams. The OMG A/V specifica-
2.1 Overview of the OMG Audio/Video i gefines the interfaces and interactions of Eteeam In-
Streaming Specification terface Control Objectand the Control and Management ob-
g_cts. Section 2.2 describes the various components in Figure 1

The OMG A/V streams specification [9] presents an architd Jetail

tural model and OMG IDL interfaces for building distributed’
multimedia streaming frameworks. The goals of the OMG . .
A/V streaming model are the following: 2.2 OMG A/V Streaming Service Components

Standardized stream establishment and control mecha- The OMG A/V streaming specification defines a set of stan-
nisms: Using these mechanisms, consumers and suppligs#d IDL interfaces that can be implemented to provide a
can be developed independently, while still being able to @gstributed multimedia streaming framework. Figure 2 illus-

tablish streams with one another. trates the key components of the CORBA streaming frame-
Support mu|t|p|e transport protoco|s: To avoid unneces- work. This subsection describes the TAO’s implementation of

sary overhead, the A/V streaming model separates control sig-
naling from the data transfer protocol, such as TCP, UDP, 7
ATM.

Support various types of sources and sinks: Common
stream sources include a video-on-demand server, a vid
camera attached to the network, or a stock quote server. Com-
mon sinks include a video-on-demand client, a display device\

Stream MMDevice

Controller

MMDevice

attached to a network, or a stock quote client. T Multimedia
. \=f=] Stream .
Figure 1 shows anultimedia streamwhich is represented Supplier
as a flow between twilow data endpointsOne endpoint acts -~ 1 One per device
Consumer D One per stream
Flow data Stream
End-point Interface

Control

(Sink)

Stream :
| Flow data

ginge 3 Figure 2:A/V Streaming Service Components
| (Source)

Object

Control } : the A/V streaming service framework components shown in
ggjde(';{'sa“agemm‘ | Figure 2. The corresponding OMG interface name for each
Sream —— § role is provided in brackets. In addition, we discuss how TAO
Adaptor provides solutions to the design challenges outlined in Sec-
‘ tion 1.2. Readers who are already familiar with the OMG A/V
— streaming specification may want to skip to Section 3, which
ORB CORE . . .
describes how we developed an MPEG player application us-
MOLTIMEDIA ing TAO's implementation of this service.
STREAM

. . 2.2.1 Multimedia Device Factory MMDevice
Figure 1:0MG Streams Architecture yu)

The MMDevice component abstracts the behavior of a mul-
as a source of the data and the other endpoint acts as a simledia device. The actual device caniieysical such as a
Note that the control and signaling operations pass through#eo microphone or speaker. Likewise, a device caloge
GIOP/IIOP-path of the ORB, demarcated by the dashed bal, such as a program that reads video clips from a file or a

database that contains information about stock prices. Theretream the audio and video data to the consumer concur-
is typically oneMMDevice per physical or logical device. rently.

¢ ThefMMDelzlnce dgn(ijaps_ulates thhe devyce;pemﬁg plirarﬁséactive strategy: In this strategy, endpoint objects for each
ers of a mulimedia device, as shown In FIgure 5. For ife,y stream are created in the same process as the factory, as
shown in Figure 5. This means that a single process handles

Name (String) | Value (CORBA "Any" type)
"Video_Format"|"MPEG", "JPEG", "AVI" PropertySet .
"Movies" "Gandhi", "Star wars" Connection

"Connections" |4 requested

A |

creates

MMDevice

G (VDev) (MediaCtrl)
define_property (); Properties Server (S Fndoo:)
get_property_value () . tream n oin t
delete_property (); MMDevice Process 9)

Figure 3:Multimedia Device Factory Figure 5:MMDevice Reactive Concurrency Strategy
all the simultaneous connectioreactively[19]. This strategy

;S)trzr;(s:(iz na (f erEI;U\l/Zru?j?c\)/ |E;2ez]m Igshltjsr? ppl ara nE((est_elrE;]r ec ct)(r;;n eia useful for applications that dedicate one process to control
: ultiple streams. For instance, the consumer of the MPEG

“properties” of theMMDevice. Properties can be associate V plaver aoplication described in Section 3.2 creates the
with theMMDevice using the CORBA Property Service [23], . play pplication descri : ' - :
Video and audio endpoints in the same process using this strat-

which is described in Appendix B. {0 minimiz nchronization overhead
The MMDevice is an endpoint factony,e., it is responsi- egyto € synchronization overhead.

ble for creating new endpoints for new stream connectionsWe are enhancing TAO's A/V streaming framework to

Each endpoint consists of a pair of objects: (1) a virtual devisgpport otheMMDevice concurrency strategies, such as a

(VDev), which encapsulates the device-specific parameterstobad-based strategy that creates new stream endpoints to run

the connection and (2) th8treamEndpoint , which en- in separate threads within the same process.

capsulates the transport-specific parameters of the connectiom TAO'’s A/V streaming service, th#MMDevice uses the

The roles ofvDev andStreamEndpoint are described in Abstract Factorypattern [17] to decouple (1) the creation strat-

Section 2.2.2 and Section 2.2.5, respectively. egy of the stream endpoint and virtual device from (2) the
The MMDevice component also encapsulates the impleencrete classes that define it. Thus, applications that use the

mentation ofstrategiesthat govern the creation of théDev MMDevice can subclass both the strategies described above,

andStreamEndpoint objects. For instance, the implemenas well as thé&treamEndpoint and thevVDev that are cre-

tation of MMDevice in TAO’s A/V streaming service frame-ated.

work provides the following two concurrency strategies: Subclassing allows applications to customize the concur-

Process-based strategy: The process-based concurrencgncy strategies to suit their needs. For instance, by default,
t

strategy creates new virtual devices and stream endpointd'f r'eacltllve strategy crea:]es new stream gncjcp0|ntiu3|lng dy-
a new process, as shown in Figure 4. This strategy is us&fginic allocatione.g, via thenew operator in C++. Appli-

cations can override this behavior via subclassing so they can
MMDevice

allocate stream endpoints using other allocation techniques,
Server Process

Connection creates

such as thread-specific storage [24] or special framebuffers.

requested
2.2.2 Virtual Device (VDev)

VD : The virtual device YDev) component is created by the
Child (eV) (MedlaCtrD MMDevice factory in response to a request for a new stream
Process (StreamEndpoint) connection. There is orDev per stream. Th&Dev is used

by the application to define its responsectmfigure re-

Figure 4:MMDevice Process-based Concurrency Strategy quests. For instance, if a consumer of a stream wants to use
the MPEG video format, it can invoke tltenfigure oper-

for applications that create a separate process to handle edicim on the supplievDev, as shown in Figure 6.

new endpoint. For instance, the supplier in our MPEG playerStream establishmerg a mechanism defined by the OMG

application described in Section 3.1 creates separate proce&féstreaming specification to permit the negotiation of QoS

configure (string name, Any value)
{
if (name == "video_format")
switch (value)
case "MPEG": use_mpeg ();
default: return Exception;

as audio and video, as well as non-multimedia streams, such
as a stream of stock quotes.

The VDev object represented device-specific parameters,
such as compression format or frame rate. Likewise, the
MediaCtrl interface is device-specific since different de-
vices support different control interfaces. Therefore, the

VDev
configure ()

i MediaCtrl is associated with th&Dev object using the
con gure » | configure (); . Property Service [23].
.(.n‘n'gjggz;?mat ’ Video_VDev There is typically onéMediaCtrl per stream. In some

cases, however, application developers may choose to control
multiple streams using the sarvediaCtrl . For instance,
the video and audio streams for a movie might have a common

parameters vigroperties Properties armame-valuepairs, MediaCtrl to enable a single CORBA operation, such as
ie., they have gstring name and a Corresponding Va|ué)_|ay , to start both audio and video pIayback S|multaneously.
The properties used by the A/V streaming framework are im-

plemented using the CORBA Property Service, described in
Appendix B. 2.2.4 Stream Controller (StreamCtrl)

The OMG A/V streaming specification specifies the NAMRe Stream ControllerStreamCtrl) interface abstracts a

0{ the C(t)r:nmon properftles u:“,ed .by fﬁ?ev ?EJ(?’[CtS' tFpr "t1h continuous media transfer between virtual deviaé43€vs). It
stance, the pr(_)pert;urr orm? IS E,‘,S fing that contains esupports operations to bind twdMDevice objects together
current encoding format.g, “MPEG.” During the stream es-

. using a stream. Thus, tl&reamCtrl componentbinds the
tablishment, eackDev can use thget _property _value

supplier and consumer of a streagrg, a video-camera and a

operation on its peevDev to ensure that the peer uses th(‘iw‘klsplay. It is the key participant in th®&tream Establishment
same encoding format.

: . protocol described in Section 2.3.1.
When a new pair o¥/Dev objects are created, eavtDev oo . .
. . : TheStreamCtrl objectis generally instantiated by an ap-
uses theconfigure operation on its peer to set the streamI

configuration parameters. If the negotiation fails the streé’rﬁcaﬂon developer. There is orgtreamCtrl per stream,

can be torn down and resources released immediately. l.€, per consumer/supplier pair.
Section 2.3.1 describes the OMG A/V streaming service

stream establishment mechanism in detail. 2.2.5 Stream Endpoint GtreamEndpoint)

Figure 6:Virtual Device

2.2.3 Media Controller (MediaCtrl) TheStreamEndpoint object is created by thidMDevice

in response to a request for a new stream. There is one
The Media ControllerfediaCtrl) is an IDL interface that StreamEndpoint ~ per stream. AStreamEndpoint en-
defines operations for controlling a stream. ThediaCtrl capsulates the transport-specific parameters of a stream. For
interface isnot defined by the OMG A/V streaming servicénstance, a stream that uses UDP as the transport proto-
specification. Instead, it is defined by application developersigl will use a host name and a port number to identify its
support operations for a specific stream, such as the followg@eamEndpoint

OMG IDL for a video service: TAO’s A/V streaming service implementation of the
interface video media control StreamEndpoint uses patterns, such as I_Dou.ble Dispatph—
{ - - ing and Template Method [17], to allow applications to define
void select_video (string name_of_movie); and exchange transport-level parameters flexibly. This inter-
void play (); action is shown in Figure 7 and occurs as follows:
void rewind (short num_frames);
void pause (); Step 1: An A/V streaming application can inherit from
void stop ();

the StreamEndpoint class and override the operation
handle _connection _requested in the new subclass

The OMG A/V streaming service provides developers with-P-StreéamEndpoint
the flexibility to associate an application-defiridddiaCtrl _ o)
interface with a stream. Thus, the A/V streaming service cafeP 2 While binding twoMMDevices, theStreamCtrl

be used with an infinitely extensible variety of streams, sulflyokesconnect on oneStreamEndpoint with the peer
TCP.StreamEndpoint as a parameter.

MMDevice can be configured to use one of several concur-

handle_connection_requested (..) |

{ rency strategies to create stream endpoints. Thus, at each stage
create transport endpoint; of the stream establishment process, individual components
return "TCP=tango:8455"; - can be configured to implement the desired policies.

} TCP_StreamEndpoint The OMG A/V specification identifies the two peers in

connection_requested (..) stream establishment as tAeparty and theB party. These

Connection | { terms define complimentary relationships., a stream al-
Requested handle_connection_requested (); ways has ai\ party at one end andBparty at the other. The
<cturn | retun flowspec; - A party may be theink i.e., the consumer, of a video stream,
"TCP=tango:8455" |} StreamEndpoint whereas th® party may be theource i.e, the supplier, of a
Figure 7:Interaction Between StreamEndpoint ~ and the Video stream and vice versa.
Application Note that the OMG A/V streaming specification defines two

distinctIDL interfaces for theA andB type endpoint. Hence,

for a given stream, there will be two distinct types for the
Step 3: The StreamEndpoint then requests thesupplier and the consumer. Thus, the OMG A/V streaming
TCP.StreamEndpoint to establish the connection for thispecification ensures that the complimentary relationship be-
stream using the transport addresses it is listening on. tween suppliers and consumers is typesafe. An exception will
Step 4: The virtualhandle _connection _requested be raised if a supplier accidentally tries to establish a stream

operation of theTCP.StreamEndpoint is invoked and With another supplier.

connects with the listening transport address on the peer side>'€aM establishment in TAO’s A/V streaming service oc-
curs in several steps, as illustrated in Figure 8. This fig-

Thus, theStreamEndpoint design uses patterns that al-

low each application to configure its own transport protocol, 1 bind_dws(gmmgg-)_

in TAO’s A/V streaming service framework. - _ 295 2 €8 pMMDev
N — ’ X - ndpoint' B
§ ~VDey

2.3 Interaction Between Components in the
OMG Audio/Video Streams Model

Section 2.2 described the structure of components that consti-

5) request_connection
A_EndPoint B_EndPoint

tute the OMG A/V streaming model. The remainder of this - 3) configure

section describes how these componéntisract to provide avDev -~ " bVDev

two key A/V streaming service features: stream establishment

and flexible stream controls. Figure 8: Stream Establishment Steps in the A/V Stream-
ing Service

2.3.1 Stream Establishment o
ure shows a stream controlleaStreamCtrl) binding the

An important feature provided by the OMG A/V streaming party together with thé party of a stream. The stream
specification is a standard mechanism to establish a bindig@itroller need not be collocated with either end of a stream.
between streams. Stream establishment is the process of bigdsimplify the example, however, we assume that the con-
ing two peers who need to communicate viat@am Stan- roller is collocated with theA party, and is called the

dardizing this binding mechanism is important because it glstreamCtrl . Each step shown in Figure 8 is explained
lows suppliers and consumers to be developed independegiygy:

yet still be able to establish streams with one another via a
common protocol 1. The aStreamCtrl binds two Multimedia Device

Several components are involved in the stream establifMDevice) objects together: Application developers in-
ment. A key motivation for providing an elaborate strea?ﬁ’ke, thebind _devs operatlon onaStreamCtrI . They
establishment protocol is to allow components to be confi _owde.the cpntroller with thg object refergnces of two
ured independently of one another. This allows the stream KeiDevice objects. These objects are factories that create
tablishment mechanism to remain standard, and yet prov'i gtwoStreamEndpomt s of the new stream.
sufficient hooks for framework developers to customize thes Stream Endpoint creation: In this stepaStreamCitrl
process for a specific set of requirements. For instance, thguests theMMDevice objects, i.e, aMMDevice and

bMMDevice, to create thestreamEndpoint s andVDev CORBA::Environment &env)

objects. TheaStreamCtrl invokes create A and { § _ o

create _B operations on the twoMMDevice objects. Z aN‘:‘n”e?j"i‘; g;itr%fefiﬁ:?ﬁée%ﬁ d’;‘;'”;f:e;?;o

These operations request them to cre&tendpoint and this->video control = '

B_Endpoint endpoints, respectively. Video_Control::_narrow (media_ctrl);

3. VDev configuration: After the two peeiVDev objects '

have been cre.ated, they can useqbaflgure operathn ' The video control interface can be used to control the stream,
exchange device-level configuration parameters. For instanGesoows:
these parameters can be used to designate the video format ang

compression technique used for subsequent stream transferSaiect te video to watch.

4. Stream setup: In this stepaStreamCtrl invokes the this->video_control ->select_video (*gandhi”);
connect operation on theA Endpoint . This operation ;; it playing the video stream.
instructs theA Endpoint to initiate a connection with its this->video_control_->play ();

peer. TheA_Endpoint initializes its transport endpoints in _

response to this operation. In TAO’s A/V streaming framﬁj—is_i‘\jis;eghio;]’l?;o'_ ostop 0

work, applications can customize this behavior usindiba- - - '

ble Dispatchpattern described in Section 2.2.5. /I Rewind the video 100 frames.

. . . this->vid trol_->rewind (100);
5. Stream Establishment: In this step, theA_Endpoint 's->video_control_->rewind (100)

invokes therequest _connection operation on its peer
endpoint. TheA_Endpoint passes its transport endpoi ; ;
parameters,e.qg, hosthname and port number, as pararr?g- DeS_Ign) and lmpler_nentatlo_n O_f an

ters to this operation. When ti&Endpoint receives the Audio/Video Streaming Application
request _connection operation, it initializes its end of

the transport layer connection. It subsequently connects to\iie have developed a CORBA-based A/V streaming applica-
transport endpoint passed to it by thé&eEndpoint . tion that uses the components and interfaces described in Sec-
After these five steps are complete, a transport-level stretion 2.2. This application is an enhanced version of a non-

; ' : ORBA MPEG player developed at the Oregon Graduate In-
has been established between the two endpoints of LT [25]. Our application plays movies using MEEG-1
stream. Section 2.3.2 describes how Media Controller .) : .

video format [21] and the SudLAWaudio format [22]. Fig-

(MecﬁaCtrI) can control an established streamg, by ure 9 shows the architecture of our A/V streaming application.
starting or stopping the stream.

2.3.2 Stream Control

Each MMDevice endpoint factory can be configured with

an application-definemlediaCtrl interface, as described in - Media

Section 2.2.3. Each stream has dvediaCtrl and every (UDP) 1 =
MediaCtrl controls one stream. Thus, if a particular movie Control Cwov | e

has two streams, one for audio and the other for video, it will| (&> > & +—{Vedia > =

Movies

have twoMediaCtrl s. Controller) | MMDevice
After a stream has been established by the stream con-]

troller, applications can obtain object references to their Resolvueglster

MediaCtrl s from theirVDev. These object references con- .

trol the flow of data through the stream. For instance, a vidgggyre 9:Architecture of the A/V Streaming Application
stream might support operations ligay , rewind , and

stop and be used as shown below: N .
P The MPEG player application uses a supplier/consumer de-

/I The Audio/Video streaming service invokes this sign implemented using TAO. The consumer locates the sup-
/I application-defined operation to give the plier using the CORBA Naming Service [26]. Future versions
Z ?Oprp't'ﬁg“gt”rezrffere”ce to the media controller of our MPEG application will use the Trading Service [26] to
Video Client VDev::set media ctrl find suppliers that match the consumer’s requirements. For in-
(CORBA::Object_ptr media_ctrl, stance, a consumer might want to locate a supplier that has a

particular movie or a supplier with the least number of cote the consumer. The files can be stored in a filesystem ac-
sumers currently connected to it. cessible to the supplier process. Alternately, the video frames
Once the consumer obtains the suppliéf®Device ob- and the audio packets can be sent by live source, such as a
ject reference it requests the supplier to establish two streamdeo camera. Our experience with the supplier indicates that
i.e,, avideo stream and an audio stream, for a particular moviean support-10 concurrent consumers simultaneously on a
The streams are established as described in Section 2.3.1.9ureUltrasparc-Il with 256 MB of RAM over a 155 mbps ATM
consumer then uses tMediaCtrl to control the stream, asnetwork.
described in Section 2.2.3. The role of the supplier is to read audio and video frames
The supplier is responsible for sending A/V packets vieom a file, encode them, and transmit them to the consumer
UDP to the consumer. For each consumer, the supplier seat®ss the network. Figure 11 depicts the key components in
two streams, one each for the MPEG video packets and tiwe supplier architecture.
Sun ULAW audio packets. The consumer decodes these

Etrr:?r.?s and plays these packets in a viewer, as shown in VIDEO AUDIO SERVER
' (ContrOL| | (CoNTROL) PROCESS

TA kg Py C) C > -_ i
Gode mesk bs ocazy = Movies

Figure 11:TAO Audio/Video Supplier Architecture

The main supplier process contains tk®Device end-
point factory described in Section 2.2.1. TM#Device cre-
ates connection handlers in response to consumer connections,
using process-based concurrency strateggach connection
triggers the creation of one audio process and one video pro-

Bat| ‘o] Pere| Proa| Fie sl @l ol 50 B pll| cess. These processes respond to multiple events. For in-
|5¢ I l ‘ln | [y i | J _EJ _i 2 J stance, the video supplier process responds to CORBA oper-

- f = | | == — ations, such aplay andrewind , and sends video frames
e el - IR, St | L periodically in response to timer events.
- y:]} e Each componentin the supplier architecture is described be-
low.

Figure 10:The TAO Audio/Video player

This section describes the various components of the c8nt-1 The Media Controller Component

sumer and supplier in detail. The following table illustrates
the number of lines of C++ source required to develop tﬁ&ns component in the supplier process is a servant that im-

system and application. plements the Media Controller interfack®lédiaCtrl) de-
. scribed in Section 2.2.3. The Media Controller responds to
Component Lines of code CORBA operations from the consumer. The interface ex-
1?8 i%R%SRiAN) : i : 6;’252 ported by theMediaCtrl component represents the various
uaio/viaeo streaming serviceg , ration r h lier I rewin
TAO MPEG video application 47,782 operations supported by the supplier, sucplag , rewind ,

andstop .

Using the ORB and the A/V streaming service greatly re-At any point in time, the supplier can be in several states,
duced the amount of software that otherwise would have b&igh asPLAYING, REWINDING, or STOPPED Depending on
written from scratch. the supplier’s state, its behavior may change in response to
consumer operations. For instance, the supplier ignores a
consumer'splay operation when the supplier is already in
the PLAYING state. Conversely, when the supplier is in the
The supplier in the A/V streaming application is responsibésOPPEDstate, a consumeewind operation transitions the
for streaminglPEG-1video frames antILAWaudio samples supplier to theREWINDING state.

3.1 Supplier Architecture

The key design forces that must be resolved while impleames if necessary. The current implementation of the data
mentingMediaCtrl s for A/V streaming are (1) allowing thecomponent uses the UDP protocol to send A/V frames.
same object to respond differently, based on its current stated key design challenge related to data transfer is to have the
(2) providing hooks to add new states, and (3) providing expplication respond to CORBA operations for the stream con-
tensible operations to change the current state. trol objects,e.g theMediaCtrl , as well as the data transfer
To provide a flexible design that meet these requiremerdgentsge.g, video frame timer events. An effective way to do
the control component is implemented using ®atepat- this is to use th®eactorpattern, as shown in Figure 13.
tern [17]. This implementation is shown in Figure 12. The

: Periodic

Media Controller & Media State C:)lr:/::odlili . Video frame
play () = "1 play () = 0; transmitter
rewind () | rewind () = 0;
stop () [stop () = 0; !
' —| l ORB i Data (UDP
state->play (); | |_Playing State || Stopped State Descriptor Timer ata (UDP)
play () play () : Reactor
rewind () rewind ()
StOp () StOp () | OS EVENT DEMULTIPLEXING INTERFACE |
Figure 12:State pattern implementation of the Media Con-
troller
MediaCtrl has astate object pointer. The object be- Figure 13:Reactive Architecture of the Video Supplier

ing pointed to by the Media Controllergate pointer rep- . _ . _
resents the current state. For simplicity, the figure showsThe video supplier registers two event handlers with TAO’s
thep|ay|ng State and th@topped State ,WhiCh are ORB Reactor . Oneis a Signal handler for the video frame

subclasses of theledia State abstract base class. Additimer events. The other is a UDP socket event handler for
tional states, such as tiRewinding State , can be added feedback events coming from the consumer. The frames sent

by subclassing fronMledia State by the data component correspond to the current state of the
The diagram lists three operationplay , rewind and MediaCtrl object, as outlined above. Thus, in theayING
stop . When the consumer invokes an operation on tREte, the data component plays the audio and video frames in
Media Controller , this class delegates the operation @hronological order.
the state object A state object implements the response to Future implementations of the data transfer component in
each operation in a particular state. For instancerghend ~ our MPEG player application will support multiple encoding
operation in thePlaying State contains the response ofrotocols via the simple flow protocol (SFP) [9]. SFP encod-
the media controller to thewind operation when itis in the ing encapsulates frames of various protocols within an SFP
PLAYING state. State transitions can be made by changing tr@me. It provides standard framing and sequence numbering
object being pointed to by thetate pointer of theMedia mechanisms. SFP uses the CORBA CDR encoding mecha-
Controller nism to encode frame headers and uses a sioptfit-based
In response to consumer operations, the custte ob- flow control mechanism described in [9].
ject instructs the data transfer component discussed in Sec-
tion 3.1.2 to modify the stream flow. For instance, wh
the consumer invokes thewind operation on theéMedia

Controller while in thesTopPEDstate, theewind Oper- T role of the consumer is to read audio and video frames off
ation in theStopped State object instructs the data cOMyng petwork, decode them, and play them synchronously. The
ponent to play frames in reverse chronological order. audio and video servers stream the frames separately. A/V
frame synchronization is performed on consumer. Figure 14
depicts the key components in the consumer architecture:

The data component is responsible for transferring data to thd "€ ©riginal non-CORBA MPEG consumer [25] used a
consumer. Our MPEG supplier application reads video franf§@cess-based concurrency architecture. Our CORBA-based
trom aMPEG-1file and audio frames from a SWLAWaudio CONSUmer maintain this architecture to minimize changes to

file. It sends these frames to the consumer, fragmenting I8 cOde- Separate processes are used to do the buffering, de-
coding, and playback, as explained below:

eé‘.z Consumer Architecture

3.1.2 The Data Transfer Component

DECODEDMPEG | GUI/VIDEO the supplier uses the ULAW format. Therefore, the data

Vippo M- -5 > received can be directly written to the sound port, which
DECODE

CONTROL/AUDIO is/dev/audio on Solaris.
"RAW" @g
% é ,) D)

P
ACKETS 4 Performance Results
VIDEO Aupio Video Control
BUFFER | | BUFFER This section describes the design and results of three perfor-
Audio Control | ,_{ommands mance experiments we conducted using TAO'’s A/V streaming
service.

Fi 14:TAO Audio/Video C Architect
igure udio/Vvideo Consumer Architecture 41 CORBA/ATM Testbed

1. Video Buffer: The video buffering process is responsil '€ experiments in this section were conducted using a
ble for reading UDP packets from the network and enqueueff@RE systems ASX-1000 ATM switch connected to two
them in shared memory. The Video Decoder process dequeih@l-processor UltraSPARC-2s running Solaris 2.5.1. The

these packets and performs MPEG decoding operations”oi<-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
them. UltraSPARC-2 contains a 300 MHz Super SPARC CPUs with

) o)] a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP proto-
2. Audio Buffer: Similarly, the audio buffering process,q| stack is implemented using the STREAMS communication
is responsible for reading UDP packets of the network apdmework [28].
enqueueing them in shared memory. The ControI/AudioEaCh UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
PIayback process dequeues these packets and sends thﬂ@s@-MF ATM adaptor card, which supports 155 Megabits
/deviaudio per-sec (Mbps) SONET multimode fiber. The Maximum
3. Video Decoder: The video decoding process reads thiEansmission Unit (MTU) on the ENI ATM adaptor is 9,180
raw packets sent to it by the Video Buffer process and decobtigtes. Each ENI card has 512 Khytes of on-board memory.
them according to the MPEG-1 video specification. These demaximum of 32 Khytes is allotted per ATM virtual circuit
coded packets are sent to the GUI/Video process, which disnnection for receiving and transmitting frames (for a total of
plays them. 64 Kb). This allows up to eight switched virtual connections

4. GUIVideo process: The GUI/Video process is responsiP€r card. The CORBA/ATM hardware platform is shown in
ble for the following two tasks: Figure 15.

e GUI — It provides a GUI to the user, where the user can -
select operations likplay , stop , andrewind . These
operations are sent to the Control/Audio process via a [E 2
UNIX domain socket [27].

¢ Video — This component is responsible for displaying
video frames to the user. The decoded video frames are

stored in a shared memory queue. FORE SYSTEMS
x ASX 200Bx
5. Control/Audio Playback process: The Control/Audio [5] ATM SWITCH
; : ; . — (16 porT, OC3
process is responsible for the following tasks:
155MBPS/PORT,
e Control — This component receives control messages ULTRA 9,180 MTU)
from the GUI process and sends the appropriate CORBA SPARC 2
operation to théMediaCtrl servant in the supplier pro- (FORE ATM = ‘
cess. ADAPTORS =

e Audio playback- The audio playback component is re- AND ETHERNET)
sponsible for dequeueing audio packets from the Audio
Buffer process and playing them back using the multime- Figure 15: Hardware for the CORBA/ATM Testbed
dia sound hardware. Decoding is unnecessary because

10

4.2 CPU Usage of the MPEG decoder service. The producer in this application establishes a stream

The aim of thi . . d ine the CPU h with the consumer, using the stream establishment mechanism
€ alm of this experiment is to determine the Overnegtcussed in Section 2.3.1. Once the stream is established, it

associated with decoding and playing MPEG-1 framesin s feams data via TCP to the consumer
ware. To measure this, we used the MPEG/ULAW A/V pIayerWe measured the throughpiie., the number of bytes per

application described in Section 3. .second sent by the supplier to the consumer, obtained by this

We “S‘?d the application to vigw two movie_s, one of s'%"i"reaming application. We then compared this throughput with
128x96 pixels and the other of size 352x240 pixels. We mggs following two configurations:

sured the percentage CPU usage for diffefemhe rates The
frame rate is the number of video frames displayed by the, TCP transferi.e., by a pair of application processes that
viewer per second. do not use the OMG stream establishment mechanism. In
The results are shown in Figure 16. These results indicate thjs case, sockets and TCP were the transport mechanism.
This is the “ideal” case since there is no additional ORB-
related or presentation layer overhead.

¢ ORB transfer-i.e., the throughput obtained by a stream
100 that used aroctet streanpassed through the TAO [11]
90 / ~-128x96 frame size | | CORBA ORSB. In this case, the IIOP data path was the
/ -=- 352x240 frame size transport mechanism.
80 / We measured the throughput obtained by varying the buffer
= 70 size of the sender.g., the number of bytes written by the sup-
§ / plier in onewrite system call. In each stream, the supplier
2 60 sent 64 megabytes of data to the consumer.
) The results shown in Figure 17 indicate that, as expected,
% 50 the A/V streaming service does not introduce any apprecia-
< 40 ble overhead to streaming the data. In the case of using the
o / IIOP path through the ORB as the transport layer can incur
o 30 more performance overhead. This overhead could arise from
// the dynamic memory allocation, data-copying, and marshal-
20 ing/demarshaling performed by the ORB’s IIOP protocol en-
10 .'/ gine [8].But TAO could achieve almost the socket performance
at higher buffer sizes due to its optimizations, in particular for
0 ‘ ‘ ‘ ‘ ‘ octet data [6]
6 9 12 15 18 24 30 The largest disparity occurred for smaller buffer sizes,
Frames per second where the performance of the ORB was approximately half

that of the TCP and A/V streaming implementations. As

the buffer size increases, however, the ORB performance im-
Figure 16:CPU Usage of the MPEG Decoder proves considerably and attains nearly the same throughput as

TCP and A/V streaming. Clearly, there is a fixed amount of

that for large frame sizes (352x240), MPEG decoding in sofiverhead in the ORB that is amortized and minimized as the

ware becomes expensive, and the CPU usage becomes 1§@8twf the data payload increases.

while playing 12 frames per second, or higher. However, for

smaller frame sizes (128x96), MPEG decoding in softwa&e4

does not cause heavy CPU utilization. At 30 frames per sec- Stream Establishment Latency

ond, CPU utilization is~38%. This experiment measures the time required to establish a
stream using TAO'’s implementation of the OMG CORBA A/V
4.3 AJV Stream Throughput stream establishment protocol described in Section 2.3.1. We

measured the stream establishment latency for the two concur-
The aim of this experiment is to illustrate that TAO’s A/Mency strategies, process-based strategy and reactive strategy,
streaming service does not introduce appreciable overheadeascribed in Section 2.2.1.
transporting data. To demonstrate this, we wrote a TCP-basetihe timer starts when the consumer gets the object refer-
data streaming component and integrated it with TAO’s Afehce for the supplierMMDevice servant from the Naming

11

140 25
D TCP “ideal” case -+ Process-based concurrency strategy
W A/V Stream (via TCP) -= Reactive concurrency strategy Y
[0 Octet Stream (via ORB)
120
n 2
e]
c
3
§ 100 _| g
2 £
< 215
S .
2 80 H =
= £
2 5
gn 60 M % 1
2 7
'.E (]
40 11 H 5
o
? 05
7 7 é\/
0+ 1 0 T T T T T T T T T
1 2 4 8 16 32 128 1 2 3 4 5 6 7 8 9 10
Sender buffer size in Kbytes Number of concurrent bind operations
Figure 17:Throughput Results Figure 18:Stream Establishment Latency Results

5 Related Work

Service. The timer stops when the stream has been established,
i.e, when a transport-layer TCP connection has been estistributed multimedia streaming frameworks have received
lished between the consumer and the supplier. increasing focus in the R&D community. A popular Internet-
based streaming mechanism is Realvideo [1], from Real Net-
rks. Like the MPEG application described in Section 3, the
Ivideo system uses the UDP protocol to send A/V packets

We measured the stream establishment time as the n
ber of concurrent consumers establishs connections with

sgppller increased from 1 t.o 10. Thg re;ults are Shownfrlem the supplier to the consumer. However, the Realvideo
Figure 18. When the supplierldMDevice is configured to

.) lication uses proprietary stream establishment and control
use the process-based concurrency strategy (described in %%)fbcols as well as a proprietary audio and video format. Mi-
tion 2.2.1), the time taken to establish the stream is high '

&losoft's Vxtreme [2] is another popular streaming mechanism
due to the overhead of process creation. For instance, whe%(?is similar to R[ea]llvideo pop g
concurrent consumers establish a stream with the producer SIONA Inc. has developeﬁ)rbix MX [29], which is an im-

multaneously, the average latency observed is about 2.25 s G entation of the CORBA A/V streaming specification. The

i : e
onds with the process-based concurrency strategy. With Ege features of Orbix MX are similar to TAO’s implementation

reactive concurrency strategy, the latency is only about 0.4 set- . . .
onds Y oy Y y of the A/V Streaming service.e., support for multiple trans-

port protocols, flexible stream controls, and support for multi-
The process-based strategy is well-suited for supplier ¢ée concurrency strategies while creating stream endpoints.
vices that have multiple streams,g, a video camera that The NEC C&C Laboratories have implemented a pre-
broadcasts a live feed to many clients. In contrast, the relivinary prototype of the A/V streaming specification [30].
tive concurrency strategy is well-suited for consumer devicekeir prototype has been implemented with Orbix2.2 and Or-
that have few streams,g, a display device that has only ondixWeb2.0.1. ThdlowAdapters in their implementation
or two streams. are similar to theStreamEndpoint of the A/V specifica-

12

tion,i.e. they deal with the network specific aspects i~ streaming.
within a streamFlows are a forthcoming extensionto TAO’s Enhancing an existing A/V streaming application to use
A/V implementation. CORBA was a key design challenge. By applying patterns,
The Distributed Multimedia Research Group at the Univesuch as thétate Strategy [17] andReactor[19], we found
sity of Lancaster is working on standardization of Open Dig-was much easier to address these design issues. Thus, the
tributed Systems using CORBA middleware. Towards thisse of patterns helped us rework the architecture of an existing
goal, they propose thexplicit open bindingsoncept [31], MPEG A/V player and make it more amenable to a distributed
which is a mechanism using which application developers dachnology such as CORBA.
explicitly set up an additional transport connection betweenBuilding the CORBA A/V streaming service also helped us
two CORBA objects. This connection can then be used fanrprove TAO, the CORBA ORB used to implement the ser-
streaming data. vice. An important feature added to TAO was support for
The H.323 standards specified BjU ensures interoper-nested upcallsThis feature allows a CORBA-enabled appli-
ability between heterogeneous multimedia devices over hetion to respond to incoming CORBA operations, while it is
erogeneous networks. The H.323 document defines stamaking a CORBA operation on a remote object. During the
dards for video/audio coding/decoding, signalling and cotlevelopment of the A/V streaming service, we also applied
trol and also provides facilities for network and bandwidtimany optimization to TAO and its IDL compiler, particularly
management. The A/V streaming service can interopé@r sequences ajctet s and theCORBA::Any type.
ate with H.323 clients/servers using &h323-Adapter . All the C++ source code, documentation, and bench-
The H.323-Adapter is a CORBA object that convertsmarks for TAO and its A/V streaming service is available at
the H.323 control messages into appropriate Audio/Videavw.cs.wustl.edu/ ~schmidt/TAO.html
CORBA control messages.

_ Acknowledgments
6 Concluding Remarks
We would like to thank Alexander Arulanthu for implementing
The demand for high quality multimedia streaming is grothe CORBA Property Service using TAO. Also, we would like
ing, both over the Internet and for intranets. Distributed objgot thank Marina Spivak and Sergio Flores for implementing
computing is also maturing at a rapid rate due to middlewahe CORBA Naming service. Finally, we would like to thank
technologies like CORBA. The flexibility and adaptability ofbr. Aniruddha Gokhale and Irfan Pyarali for their extensive
fered by CORBA makes it very attractive for use in streamenstructive comments on this paper.
ing technologies, as long as the requirements of performance-
sensitive multimedia applications can be met.
This paper illustrates an approach to building standan!:\s)-eferenceS
based, flexible, adaptive, multimedia streaming applicgt] RealNetworks, “Realvideo player.” www.real.com, 1998.
tions using CORBA. While designing and implementing they] vxtreme, “vxtreme player.” www.microsoft.com/netshow/vxtreme/,
CORBA A/V streaming service, we learned a number of 1998.
lessons. First, we found that CORBA simplifies a numbgg] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Developing and
of common network programming tasks, such as parsing un- Measuring High-performance Web Servers over ATM," in
- . Proceeedings of INFOCOM "98/arch/April 1998.
typed data and performing byte-order conversions. Second,

; : ; 4] D. C. Schmidt and T. Suda, “An Object-Oriented Framework for
we found that using CORBA to define the operations Sué Dynamically Configuring Extensible Distributed Communication

ported by a supplier m an IDL interfac_e m_ade it much .eaSielr Systems, 1EE/BCS Distributed Systems Engineering Journal (Special
to express the capabilities of the application, as described in Issue on Configurable Distributed Systeyws). 2, pp. 280-293,
Section 2.2.3 December 1994.

However, our measurements described in Section 4 revealéy ! Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and Performance
that while CORBA id It ¢ . b of an Object-Oriented Framework for High-Performance Electronic

atwhile provides solutions to many recurring prob- yedical Imaging,"'USENIX Computing Systemal. 9,
lems in network programming, using CORBA for data transfer November/December 1996.
in bandwidth-intensive applications is not as efficient as using A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol
lower-level protocols like TCP, UDP, or ATM directly. Thus, Enlgine Lor Minimal Footprint Multimedia lelstemSIbumal on o

; : ; el Selected Areas in Communications special issue on Service Enabling

an |n_1portant_ bepeflt of the TAO AV Strea_‘mmg Service IS t9 Platforms for Networked Multimedia Systemsl. 17, Sept. 1999.
provide applications the advantages of using CORBA IIOP in o _ o
heir st tablishment and control modules. while a||O\XI7-] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing CORBA
F eir stream es o) Latency and Scalability Over High-speed NetworkEAnsactions on
ing the use of more efficient transport-layer protocols for data Computingvol. 47, no. 4, 1998.

13

[8] A.Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,Pioceedings
of SIGCOMM '96 (Stanford, CA), pp. 306-317, ACM, August 1996.

Object Management Grougontrol and Management of A/V Streams
specification OMG Document telecom/97-05-07 ed., October 1997.

El

[29] IONA, “IONA Orbix MX.” www.iona.com, 1998.

[10] Object Management Groufgshe Common Object Request Broker:) o)) .

Architecture and Specificatio®.2 ed., Feb. 1998. [30] J.-P. Redlich, “A Distributed Object Architecture for QoS-sensitive
)]) Networking,” in OpenArch98April 1998.

[11] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and .) . . .
Performance of Real-Time Object Request BrokeEsmputer [31] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin,
Communicationsvol. 21, pp. 294—324, Apr. 1998. “Supporting Adaptive Multimedia Applications through Open

. . _) Bindings,” inInternational Conference on Configurable Distributed

[12] C.D.Gill, D. L. Levine, a_nd D. C. Schmidt, The DeS|g_n and Systems (ICCDS '98May 1998.

Performance of a Real-Time CORBA Scheduling Servitag)])]

International Journal of Time-Critical Computing Systems, special [32] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A

issue on Real-Time Middlewar2000, to appear. Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
. . '97 Conference on Programming Language Design and

[13] A. Gokhale and D. C. Schmidt, “Evaluating the Performance of :

Demultiplexing Strategies for Real-time CORBA,” Rroceedings of Implementation (PLDI)(Las Vegas, NV), ACM, June 1997.
GLOBECOM '97 (Phoenix, AZ), IEEE, November 1997.

[14] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and .

Performance of a Real-time CORBA Event Service Pinceedings of A Overview of the CORBA Reference
OOPSLA '97 (Atlanta, GA), ACM, October 1997. Model

[15] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of a Real-time 1/0 Subsystem,Pioceedings of thst") . .
IEEE Real-Time Technology and Applications Symposiiancouver, CORBA Object Request Brokers (ORBs) allow clients to in-
British Columbia, Canada), pp. 154-168HE, June 1999. voke operations on distributed objects without concern for ob-

[16] DA-”C. _Sc_hmigtZ S. Mlungee_, S. FEES-G;itan, and A-_ngh?le, ject location, programming language, OS platform, communi-
“Alleviating Priority Inversion and Non-determinism in Real-time ; ; ;
CORBA ORB Core Architectures.” iifoceedings of that" IEEE patlon protocols and mterconngcts, and hardware. Figure 19
Real-Time Technology and Applications Symposiienver, CO), illustrates the key components in the CORBA reference model
IEEE, June 1998. that collaborate to provide this degree of portability, interop-

[17] E.Gamma, R. Helm, R. Johnson, and J. Vlissidssign Patterns: erability, and transparendyEach component in the CORBA
Elements of Reusable Object-Oriented Softw&eading, MA:

Addison-Wesley, 1995. in args

[18] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact of Event CLIENT operation() OBJECT
Dispatching and Concurrency Models on Web Server Performance out args + return value (SERVANT)

Over High-speed Networks,” iRroceedings of the™? Global Internet T
ConferencelEEE, November 1997.
IDL IDL Y
[19] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrentf DL [< ~~] COMPILER T T T SKELETON

. f - . OBJECT
Event Demultiplexing and Event Handler Dispatching,Pattern STUBS ADATIIIR
Languages of Program Desidd. O. Coplien and D. C. Schmidt, eds.)
pp. 529-545, Reading, MA: Addison-Wesley, 1995.

. . . . GIOP/TIOP

[20] D.D. et al., “Vaudeville: A High Performance, Voice Activated
Teleconferencing Application,” Department of Computer Science, STANDARD INTERFACE QSTANDARD LANGUAGE MAPPING
Technical Report WUCS-96-18, Washington University, St. Louis, June
1996. Q ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL

[21] International Organisation for Standardisati@uding Of Moving
Pictures And Audio For Digital Storage Media At Up To About 1.5 Figure 19: Key Components in the CORBA 2.x Reference
Mbit/s, 1993.

Model

[22] Sun Microsystems, IncSun Audio File Format1992.

[23] Object Management Grouproperty Service Specificatipi.O ed., reference model is outlined below:
July 1996.

[24] T. Harrison and D. C. Schmidt, “Thread-Specific Storage: A Pattern ferli€nt: A client is a role that obtains references to objects
Reducing Locking Overhead in Concurrent Programs@®PSLA and invokes operations on them to perform application tasks.
Workshop on Design Patterns for Concurrent, Parallel, and Dlstrlbuteé)bjects can be remote or collocated relative to the client. Ide-
SystemsACM, October 1995.

[25] S. Chen, C. Pu, R. Staehii, C. C 4 3. Walbole. “A Distribut dally, a client can access a remote object just like a local object,

. Chen, C. Pu, R. Staehli, C. Cowan, and J. Walpole, istributed
Real-Time MPEG Video Audio Player,” ififth International i.e., object . —operation(args) : F'Qure 19 shows hOW
Workshop on Network and Operating System Support of Digital Audithe underlying ORB components described below transmit re-
and Videg Apr. 1995. mote operation requests transparently from client to object.

[26] Object Management Groug,ORBAServices: Common Object 1This overview only focuses on the CORBA components relevant to this

Services Specification, Revised Editi6i-12-02 ed., Nov. 1997.

[27]

(28]

W. R. StevensUNIX Network Programming, Second Edition
Englewood Cliffs, NJ: Prentice Hall, 1997.

D. Ritchie, “A Stream Input—Output SystenAT&T Bell Labs
Technical Journalvol. 63, pp. 311-324, Oct. 1984.

paper. For a complete synopsis of CORBA's components see [10].

14

Object: In CORBA, an object is an instance of an OMG@vide range of object granularities, lifetimes, policies, imple-
Interface Definition Language (IDL) interface. Each objeatentation styles, and other properties.

is identified by anobject referencewhich associates one or

more paths through which a client can access an object on a)

server. AnObject Idassociates an object with its implemerB Overview of the CORBA Property
tation, called a servant, and is unique within the scope of an Service

Object Adapter. Over its lifetime, an object has one or more

servants associated with it that implement its interface. B.1 Motivation

Servant: This component implements the operations de- , . , . .
fined by an OMG IDL interface. In languages like C++ and CORBA object consists of (1) an identify.e, an object

Java that support object-oriented (O0) programming, servdfi€rence, (2) an interfacee., defined in IDL and consisting
are implemented using one or more class instances. In ndr2Perations and attributes, and (3) an implementation of the

00 languages, like C, servants are typically implemented {f4€rface,i.e, one or more servants. The operations and at-
tributes in an IDL interface arstatic, i.e., they are defined

ing functions andstruct s. A client never interacts with ser-" ">~ k i

vants directly, but always through objects identified by objddieri- In general, statically-typed IDL interfaces enhance ap-

references. plication robustness by preventing accidental violations of the
o . typesystem.

ORB Core: When a client invokes an operation on an ob- \when building frameworks like the A/V streaming service

ject, the ORB Core is responsible for delivering the requestd@scribed in this paper, however, certain attributes cannot be

the object and returning a response, if any, to the client. ABfined statically because the names, types, and values of these

ORB Core is implemented as a run-time library linked int@ytributes will vary depending on how the application uses the

client and server applications. For objects executing remotehmework. For example, when a video output device is repre-

a CORBA-compliant ORB Core communicates via a versi@anted as aMMDevice, the typical attributes afIMDevice

of the General Inter-ORB Protocol (GIOP), most commonkjight bevideo encoding formaindframe rate In contrast, if

the Internet Inter-ORB Protocol (IIOP) that runs atop the TGPs an audio output device, thdMDevice attributes might

transport protocol. In addition, custom Environment-Specifig audio formatandsample rateas shown in Figure 20.
Inter-ORB protocols (ESIOPSs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons Video Out Video Out
serve as a “glue” between the client and servants, respecti
and .the ORB. Stubs imple_m_ent tiﬁhr.oxy.pattern [17] and Encoding : MPEG1 Encoding : MPEG1
provide a strongly-typedstatic invocation interfacéSll) that | prame Rate 26 e Rate ¢ 26
marshals application parameters into a common data-level
resentation. Conversely, skeletons implementttapterpat-
tern [17] and demarshal the data-level representation back into
typed parameters that are meaningful to an application.

IDL Compiler: An IDL compiler transforms OMG IDL MM Device
definitions into stubs and skeletons that are generated auto-
matically in an application programming language like C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated Figure 20:Properties for AV Streams
compiler optimizations [32].

Object Adapter: An Object Adapter associates servan}s To ma>|i|m|ze. flexib 'I.':)y’ therr]efore, ;he A/.V streamgg
with objects, creates object references, demultiplexes incomaTCWOrK requires attributes that (.:OHt yna mlctyp €s anc
ing requests to servants, and collaborates with the IDL ske\fglues' The C.:ORBA Property Service provides this flexibility
ton to dispatch the appropriate operation upcall on a servé’r'ﬁ.the following features:

CORBA 2.2 portability enhancements [10] define the Portalidgynamic property association: The Property Service pro-
Object Adapter (POA), which supports multiple nested POAsles the ability to dynamically associate named values with
per ORB. Object Adapters enable ORBs to support varioalgiects more flexibly than the statically defined IDL-type sys-
types of servants that possess similar requirements. Thistéea. Thus, they allow applications to associdy@mamic at-
sign results in a smaller and simpler ORB that can suppotributeswith object. By using the Property Service, applica-

15

tions can create and delete new properties, change the valokeritance: The application IDL interface can inherit
of properties, and associate properties with modes, suchdasctly from the PropertySet or PropertySetDef

readonly mode. interfaces, as shown in Figure 22. In this approach,
Dynamically typed values: The Property Service defines Property Set /
operations to create and manipulate setsare-valueand PropertySetDef
name-value-modtuples. Names are OMG IDL strings and|gefine property (format, MPEG)\ _
values are OMG IDlany s. The use ofiny s allows a Prop- [set mode (‘format’, read_only) pMBeycs
erty Service implementation to handle any value that can be :
represented in the OMG IDL-type system. C Properties)
Figure 3 shows how thigMDevice interface uses the Prop o /
erty Service to store properties related to the multimedia ¢ Name (..zr:,? Type) Mode
vice that it represents.
Movie "Gandhi" fixed_normal
Format MPEG read_only

B.2 Design Overview _ _ o _
Figure 22:Using the Property Service Via Inheritance

The UML diagram in Figure 21 shows the components in the
Property Service. These components are described below.interface MMDevice inherits from PropertySet or
PropertySetDef interface. If it is a public inheritance,

Property Set clients of MMDevice will also have access to the Propert
perty V\ y
define_property 0 PropertyNameslterator| Service operations. ' For example, a client may dgfine a new
P gelt_fmpeﬂv_r;/a'ug 0 : Any reset () property and associate that with a servant that implements
elete_property . Property N .
P Ve next_one () roperty Name| MMDeV|Ce.
Pr‘;‘;ifgrys o Properties Iterator | Factory interfaces: As an alternative to inheritancéac-
PropertySetDef reset o - Proerty tory methodg17] can be lused to cree}t%ropertySet o sor
¥ome sropery vt mode 0 = ' PropertySetDef s. This approach is shown in Figure 23.
7 fetmoe In this approach, the objegV_Server obtains one or more
get_mode () : Property Mode Type
PropertySetDef
ropertySetDe AV_Server
ry Property Set /
Figure 21:UML for the Property Service Property Set Def

A
|

PropertySet: This interface supports a set of properties. |

A property s a tuple consisting ofproperty _name, Property Set Factory /

property _value> . Theproperty _name is astring Property Set Def Factory

that names the property. Theoperty _value is a type
any that contains the value assigned to the property.

Figure 23:Using The Property Service Via Factory Meth-

PropertySetDef: This interface is a subclass of theOds

PropertySet interface that exposes characteristics of eag')op ertySet
property,e.g, readonly or read/write access. There are t
factory interfaces: one for theropertySet interface and
the other for thePropertySetDef interface. lterators are
defined to iterate over the property names and properties. Objects should use the inheritance approach, if they want to
allow the clients to access the properties with the servants. For
Lo . . example MMDevice interface of A/V streams inherits from
B.3 Associating Properties with CORBA Ob- thepropertySet interface and hence the clients can invoke
jects property service operations on the servants. Factory approach

) ofthe property service should be used when the objects want
Properties can be associated with a CORBA object in e'the‘h?fkeep track of some properties internally. For example, as
the following ways:

or PropertySetDef objects through the
VYQctory methods. Objects can keep properties under different
PropertySet s depending on how they are related.

16

shown in Figure 23, a\V_Server object can have a se-
guence ofPropertySet s orPropertySetDef s to keep
track of the various properties of all its clients.

B.4 Advanced Features of the Property Service

As with CORBA attributes, clients can read and write prop-
erty values. In addition, clients can use the Property Service
to dynamically create and delete properties associated with
a remote object. Clients can manipulate properties individu-
ally or in batched modeising a sequence of the Property data
type calledProperties For example, to define new properties,
the define _properties operation can be called with a
sequence of Properties , which are a dynamically-sized
array of name-value pairs.

If objects support theropertySetDef interface, clients
can create and manipulate properties and their character-
istics, such as the property modeg, readonly and
fixed _readonly . ThePropertySetDef interface also
provides operations for clients to retrieve constraint informa-
tion about &ropertySet , such as the list of all the property
types that are allowed in thRropertySet or the list of all
the property names that are allowed in tRi®pertySet
This constraint information can be specified using the factory
creation operations when tiRropertySet is created.

17

