
An Overview of Multi-threading

Mechanisms

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Motivation for Concurrency

� Concurrent programming is increasing rele-
vant to:

{ Leverage hardware/software advances

. e.g., multi-processors and OS thread support

{ Increase performance

. e.g., overlap computation and communication

{ Improve response-time

. e.g., GUIs and network servers

{ Simplify program structure

. e.g., synchronous vs. asynchronous network IPC

2

De�nitions

� Concurrency

{ \Logically" simultaneous processing

{ Does not imply multiple processing elements

� Parallelism

{ \Physically" simultaneous processing

{ Involves multiple processing elements and/or inde-

pendent device operations

� Both concurrency and parallelism require con-
trolled access to shared resources

{ e.g., I/O devices, �les, database records, in-core

data structures, consoles, etc.

3

Concurrency vs. Parallelism

CONCURRENT SERVER

maxfdp1

read_fds

WORK

REQUEST

SERVER

CLIENT

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST
CLIENT

CLIENT CLIENT

SERVER

CPU1 CPU2 CPU3 CPU4

WORK

REQUEST

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST

CLIENT

CLIENT

CLIENT CLIENT

PARALLEL SERVER

4

Concurrency Overview

� A thread of control is a single sequence of
execution steps performed in one or more
programs

{ One program ! standalone systems

{ More than one program ! distributed systems

� Traditional OS processes contain a single
thread of control

{ This simpli�es programming since a sequence of

execution steps is protected from unwanted inter-

ference by other execution sequences: : :

5

Traditional Approaches to OS

Concurrency

1. Device drivers and programs with signal han-
dlers utilize a limited form of concurrency

� e.g., asynchronous I/O

� Note that concurrency encompasses more than

multi-threading: : :

2. Many existing programs utilize OS processes
to provide \coarse-grained" concurrency

� e.g.,

{ Client/server database applications

{ Standard network daemons like UNIX inetd

� Multiple OS processes may share memory via mem-

ory mapping or shared memory and use semaphores

to coordinate execution

� The OS kernel scheduler dictates process behavior

6

Evaluating Traditional OS

Process-based Concurrency

� Advantages

{ Easy to keep processes from interfering

. A process combines security, protection, and ro-

bustness

� Disadvantages

1. Complicated to program, e.g.,

{ Signal handling may be tricky

{ Shared memory may be inconvenient

2. Ine�cient

{ The OS kernel is involved in synchronization and

process management

{ Di�cult to exert �ne-grained control over schedul-

ing and priorities

7

Modern OS Concurrency

� Modern OS platforms typically provide a
standard set of APIs that handle

1. Process/thread creation and destruction

2. Various types of process/thread synchronization

and mutual exclusion

3. Asynchronous facilities for interrupting long-running

processes/threads to report errors and control pro-

gram behavior

� Once the underlying concepts are mastered,
it's relatively easy to learn di�erent concur-
rency APIs

{ e.g., traditional UNIX process operations, Solaris

threads, POSIX pthreads, WIN32 threads, etc.

8

Lightweight Concurrency

� Modern OSs provide lightweight mechanisms
that manage and synchronize multiple threads
within a process

{ Some systems also allow threads to synchronize

across multiple processes

� Bene�ts of threads

1. Relatively simple and e�cient to create, control,

synchronize, and collaborate

{ Threads share many process resources by default

2. Improve performance by overlapping computation

and communication

{ Threads may also consume less resources than

processes

3. Improve program structure

{ e.g., compared with using asynchronous I/O

9

Single-threaded vs.

Multi-threaded RPC

CLIENT SERVERCLIENT

U
S
E
R

K
E
R
N
E
L

THREAD

BLOCKED

U
S
E
R

K
E
R
N
E
L

SERVICE

EXECUTES

REQUEST

RESPONSE

SERVER

CLIENT

U
S
E
R

K
E
R
N
E
L

U
S
E
R

K
E
R
N
E
L

SERVICE

EXECUTES

REQUEST

RESPONSE

SERVERU
S
E
R

K
E
R
N
E
L

SERVICE

EXECUTES

REQUEST

RESPONSE

SINGLE-
THREADED RPC

MULTI-
THREADED RPC

10

Hardware and OS Concurrency

Support

THREAD

PE

PROCESSING

ELEMENT

LIGHTWEIGHT

PROCESS

LWP
UNIX

PROCESS

PE PE PE PEPE PE PE PE

SHARED MEMORY

K
E

R
N

E
L
-
L

E
V

E
L

U
S

E
R

-
L

E
V

E
L

LWP LWP LWPLWP LWP LWP LWP

� Modern OS platforms like Solaris provide

kernel support for multi-threading

11

Kernel Abstractions

� Kernel threads

{ The \fundamental scheduling entities" executed

by the PE(s)

{ Operate in kernel space

{ Kernel-resident subsystems use kernel threads di-

rectly

� Lightweight processes (LWP)

{ Every LWP is associated with one kernel thread

. i.e., 1-to�1 mapping between kernel thread and

LWP per-process

{ Not every kernel thread has an LWP

. \System threads" (e.g., pagedaemon, NFS dae-

mon, and the callout thread) have only a kernel

thread

12

Application Abstractions

� Application threads

{ LWP(s) can be thought of as \virtual CPUs" on

which application threads are scheduled and mul-

tiplexed

{ Each application thread has it's own stack

. However, it shares its process address space with

other threads

{ Application threads are \logically" independent

{ Multiple application threads running on separate

LWPs can execute simultaneously (even system

calls and page faults: : :)

. Assuming a multi-CPU system or async I/O

13

Kernel-level vs. User-level

Threads

� Application and system characteristics in
u-

ence the choice of kernel-level vs. user-level

threading

� e.g.,

{ High degree of \virtual" application concurrency

implies user-level threads (i.e., unbound threads)

. e.g., desktop windowing system

{ High degree of \real" application parallelism im-

plies lightweight processes (LWPs) (i.e., bound

threads)

� In addition, LWPs must be used for:

{ Real-time scheduling class

{ Give thread alternative signal stack

{ Give thread a unique alarm or timer

14

Performance Considerations

� Performance of di�erent combinations of
application-level vs. kernel-level threads is
in
uenced various factors, e.g.,

{ Number of PEs

{ Inter-thread communication

{ Inter-thread synchronization

{ Amount of context switching

� It is important to consider the \process ar-

chitecture" of a multi-threaded application

15

Scheduling Classes in SunOS 5.x

� There are three classes of process (LWP)
scheduling in SunOS 5.x

{ Real-time

. Highest priority, the scheduler always dispatches

the highest priority real-time LWP

{ System

. Middle priority

. Cannot be applied to a user process

{ Timesharing (default)

. Lowest priority, provides fair distribution of pro-

cess resources

� A new process inherits the scheduling class

and priority of its parent

16

Application Thread Overview

� A multi-threaded process contains one or

more threads of control

� Each thread may be executed independently
and asynchronously

{ Di�erent threads may have di�erent priorities

{ System calls may be made independently, page

faults handled separately, etc.

{ Some system calls a�ect the process

. e.g., exit

{ Other system calls a�ect only the calling thread

. e.g., read/write

� Threads in a process are generally invisible

to other processes

17

Thread Resources

� Most process resources are equally accessi-
ble to all threads in the process, e.g.,

* Virtual memory

* User permissions and access control privileges

* Open �les

* Signal handlers

� In addition, each thread contains unique in-
formation, e.g.,

* Identi�er

* Register set (including PC and SP)

* Stack

* Signal mask

* Priority

* Thread-speci�c data (e.g., errno)

� Note, there is no MMU protection for sep-

arate threads within a single process: : :

18

LWP Characteristics

� The threads library uses execution resources
called LWPs

{ LWPs are scheduled on top of kernel threads (and

PEs) by the OS

{ Likewise, the threads library schedules \unbound"

runnable threads on the LWP execution resources

. This typically does not involve the kernel

� In order to expedite thread operations, LWPs
contain certain information that application
threads do not have, e.g.,

{ Scheduling class

. e.g., Real-time vs. system vs. timesharing

{ Alarms

{ Interval timers

{ Pro�ling bu�ers

19

Programming LWPs

� The threads library ensures that there are
enough LWPs to enable a program to make
progress

{ i.e., LWPs may be allocated/deallocated as needed

via SIGWAIT signal sent by kernel

� The thr setconcurrency library function pro-
vides additional control

{ Note, it is only a hint: : :

� Note, there is also a low-level interface to
the LWP facilities

{ Application programmers typically do not use this

interface directly

20

Thread Creation

� Thread creation is handled via the thr create
function:

{ int thr create (void *stack base, size t stack size,

void *(*start routine)(void *), void *arg, long

ags, thread t *new thread);

{ thr create creates and starts a new thread using

the start routine function speci�ed in the call

. Returns 0 on success and non�0 on failure

{ The identify of the thread is returned to the caller

. A thread id is only valid within a single process

. There is no thread 0: : :

{ The caller may supply a stack or if a NULL is used

the library allocates a default stack

21

Thread Creation (cont'd)

� thr create (cont'd)

{ Each application thread gets its own stack

{ You may specify a size for the stack or use the

default

. The default is 1 Megabyte of virtual memory,

with no reserved stack space

{ size t thr min stack (void)

. The size of any stack must be larger than the

value of this function call

{ Each stack area is protected with unallocated mem-

ory

. Thus, if your process over
ows the stack a

bus error (SIGBUS) will occur

22

Thread Creation (cont'd)

� thr create
ags include

{ THR SUSPENDED

. The new thread is created suspended and will

not execute the start routine function until

it is started by thr continue

{ THR DETACHED

. The new thread is created detached and thread

ID and other resources may be reused as soon

as the thread terminates

{ THR BOUND

. The new thread is created permanently bound

to an LWP

23

Thread Creation (cont'd)

� thr create
ags include

{ THR NEW LWP

. The desired concurrency level for unbound threads

is increased by one, typically by adding a new

LWP to the pool of LWPs running unbound threads

{ THR DAEMON

. The thread is marked as a daemon and the pro-

cess will exit when all non-daemon threads exit

� i.e., daemon threads are not counted in the

process exit criteria

24

Di�erences Between fork and

thr create

� thr create normally allocates a thread stack
out of the cache, initializes some �elds, and
places the thread on the per-process run
queue

{ Typically this is not very many instructions, none

of them in the kernel

{ The thread will then be run by a CPU when a

kernel LWP next checks that queue

� fork is quite a bit more heavy weight

{ It creates more new kernel resources than just a

new address space

25

Thread Exit

� The thr exit function terminates the invok-
ing thread and sets the exit status to the
speci�ed value

{ void thr exit (void *status);

{ If the thread was not detached, its identi�er and

status are retained until thr join is called via an-

other thread

{ If there are no remaining threads, the process is

exited with a 0 exit status: : :

� The thr self function returns the thread
identi�er structure of the caller

{ thread t thr self (void);

26

Thread Join

� The thr join function blocks until the spec-
i�ed thread exits

{ int thr join (thread t wait for, thread t *departed,

void **status);

{ If wait for is 0, the functions waits for any un-

detached thread in the process to terminate, else

it waits for that wait for thread id to terminate

{ If departed is non-NULL it points to location

storing the ID of the terminated thread

{ If status is non-NULL it points to a location stor-

ing the exits status of the terminated thread

{ thr join cannot wait for detached threads, threads
in other processes, or the current thread

27

Thread Suspend and Resume

� The thr suspend function immediately sus-
pends the speci�ed thread until it is explic-
itly resumed

{ int thr suspend (thread t target thread);

. Note, a suspended thread does not receive signals: : :

� The thr continue function resumes execu-
tion of a suspended thread

{ int thr continue (thread t target thread);

28

Thread Scheduling

� The scheduling of threads by the threads
library is non-preemptive, in the traditional
time-slicing sense: : :

{ However, the scheduling of LWPs by the OS is

preemptive

{ Moreover, LWPs use \priority aging," whereas threads

do not: : :

29

Thread Scheduling (cont'd)

� int thr setprio (thread t target thread, int
priority);

{ The priority must be >= 0, with greater values

indicating increased priority

� int thr getprio (thread t target thread)

{ This function gets the thread priority of the spec-

i�ed thread

� int thr yield (void);

{ Yields the caller's executing status to any thread

with same or higher priority

30

Thread Concurrency

� The scheduling of threads is in
uenced by
the following library routines

{ int thr setconcurrency (int new level);

. Indicates the desired level of concurrency that

application threads require

� i.e., number of threads that can be active si-

multaneously

� i.e., the number of LWPs associated with the

threads library

. Only a hint, actual number of LWPs may be

more or less than number requested

{ int thr getconcurrency (void);

. Returns current number of LWPs

31

Synchronization Mechanisms

� Threads share resources in a process ad-

dress space

� Therefore, they must use synchronization

mechanisms to coordinate their access to

shared data

� Traditional OS synchronization mechanisms

are very low-level, tedious to program, error-

prone, and non-portable

� ACE encapsulates these mechanisms with

higher-level patterns and classes

32

Common OS Synchronization

Mechanisms

1. Mutual exclusion locks

� Serialize access to a shared resource

2. Counting semaphores

� Synchronize execution

3. Readers/writer locks

� Serialize access to resources whose contents are

searched more than changed

4. Condition variables

� Used to block until shared data changes state

5. File locks

� System-wide readers/write locks access by �le-

name

33

Additional ACE Synchronization

Mechanism

1. Guards

� An exception-safe scoped locking mechanism

2. Barriers

� Allows threads to synchronize their completion

3. Token

� Provides absolute scheduling order and simpli�es

multi-threaded event loop integration

4. Task

� Provides higher-level \active object" semantics for

concurrent applications

5. Thread-speci�c storage

� Low-overhead, contention-free storage

34

Concurrency Mechanisms in ACE

AtomicAtomic
OpOp

LOCKLOCK
TYPETYPE

TSSTSS

TYPETYPE

globalglobal

ThreadThread

GuardGuard

ThreadThread
ManagerManager

MANAGERS

ProcessProcess
ManagerManager

ThreadThread
ControlControl

GUARDS

MutexMutex

ProcessProcess
MutexMutex

ThreadThread
MutexMutex

NullNull
MutexMutex

RWRW
MutexMutex

ProcessProcess
RWRW

MutexMutex

ThreadThread
RWRW

MutexMutex

SemaphoreSemaphore

ThreadThread
SemaphoreSemaphore

ProcessProcess
SemaphoreSemaphore

SYNCH WRAPPERS
ReadRead
GuardGuard

WriteWrite
GuardGuard

TaskTask

SYNCHSYNCH

ACTIVE OBJECTS

TokenToken

RecursiveRecursive
ThreadThread
MutexMutex

FileFile
LockLock

LOCKS

BarrierBarrier
ConditionCondition

MUTEXMUTEX

NullNull
ConditionCondition

CONDITIONS

35

Solaris Synchronization Primitives

� Each synchronization facility has a set of
routines that operate on instances called
synchronization variables

{ These variables may be allocated statically or dy-

namically

{ Variables must be allocated in memory that is

globally accessible, e.g.,

. Allocated in global process memory and shared by multiple t

. Placed into shared memory or mapped �les and

accessed via separate processes

{ Depending on
ags, di�erent behavior may be se-

lected during variable initialization

37

Solaris Synchronization Primitives

(cont'd)

� All synchronization variables may be placed
in shared memory and shared between threads
running in multiple processes

{ Intra-process behavior vs. inter-process behav-

ior is selected by using the USYNC THREAD vs.

USYNC PROCESS
ags at initialization time: : :

{ Note that memory-mapped �les may be used to

provide persistent locks that are shared between

processes

{ If a variable is initialized to 0, the \default behav-

ior" is selected

. Default is local to one process (i.e., USYNC THREAD)

� Three methods for implementing locks are

spin locks, sleep locks, and adaptive locks

38

Mutex Synchronization

� The simplest type of synchronization vari-

able is the \mutex" (mutual exclusion) lock

� Only one thread at a time may \own" a
mutex lock

{ i.e., used to implement \critical sections": : :

� Implemented to be highly e�cient, but lim-
ited in functionality

{ e.g., lock/unlock operations must be \fully-bracketed"

39

The Mutex API

� int mutex init (mutex t *mp, int type, void

*arg);

� int mutex destroy (mutex t *mp);

� int mutex lock (mutex t *mp);

{ Acquire lock ownership (wait on priority queue if

necessary)

� int mutex trylock (mutex t *mp);

{ Conditionally acquire lock (i.e., don't wait on queue)

� int mutex unlock (mutex t *mp);

{ Release lock and unblock thread at head of priority

queue, if necessary

{ Only the owner of a mutex may unlock it

40

Programming with Mutexes

� Simple resource example

static mutex t count mutex; // Initialized to 0

static int count;

int increment count (void) f
mutex lock (&count mutex);

count = count + 1; /* atomic update */

mutex unlock (&count mutex);

g

int get count (void) f
int c;

mutex lock (&count mutex);

c = count; /* ensure memory synchronization: : : */

mutex unlock (&count mutex);

return c;

g

41

Condition Variables

� Used to \sleep/wait" until a particular con-
dition involving shared data occurs

{ Conditions may be arbitrarily complex

� Allows more complex scheduling decisions,
compared with simple mutex

{ i.e., a mutex makes other threads wait, whereas

a condition variable allows a thread to make it-

self wait for a particular condition involving shared

data

{ Usually more e�cient/correct than busy waiting: : :

� Are always used in conjunction with a mutex

lock

42

Condition Variable API

� int cond init (cond t *cvp, int type, int

arg);

� int cond destroy (cond t *cvp);

� int cond wait (cond t *cvp, mutex t *mp);

{ Typically used in conjunction with a \condition

expression"

{ Block until condition is signaled

{ Atomically release lock before blocking

{ Atomically reacquire lock before returning

. Necessitates retesting condition: : :

43

Condition Variable API

� int cond timedwait (cond t *cvp, mutex t
*mp, timestruc t *abstime);

{ Block on condition, or until absolute time-of-day

has passed

� int cond signal (cond t *cvp);

{ Signal one thread blocked in cond wait

{ If no thread is waiting, signal is ignored: : :

� int cond broadcast (cond t *cvp);

{ Signal all threads blocked in cond wait

{ Use with care due to avoid the \thundering herd"

problem: : :

{ Useful for allowing threads to contend for variable

amounts of resources when resources are freed dy-

namically

44

Condition Variable Patterns

� A particular idiom is typically associated with
condition variables

// Global variables

static mutex t m; // Initialized to 0

static cond t c; // Initialized to 0

void some function (void)

f

mutex lock (&m);

while (condition expression is not true)

cond wait (&c, &m);

/* Atomically modify shared information */

mutex unlock (&m);

/* : : :*/

g

� Warning!!!! Always make sure to invoke
condition variable functions while holding
the associated mutex lock!!!

{ Otherwise, \lost wakeup bugs" occur: : :

45

Condition Variable Patterns

(cont'd)

� Another idiom is associated with releasing
resources via condition variables

void release resources (void)

f
// Automatically acquire the lock.

mutex lock (&m);

// Atomically modify shared information here: : :

cond signal (&c);

// Could also use cond broadcast().

mutex unlock (&m);

g

46

Programming with Condition

Variables

� Implement general P and V using mutex and
condition vars

static mutex t count lock; // Initialized to 0

static cond t count nonzero; // Initialized to 0

static unsigned int count; // Initialized to 0

void P (void) f

mutex lock (&count lock);

while (count == 0)

cond wait (&count nonzero, &count lock);

count = count � 1;

mutex unlock (&count lock);

g

void V (void) f
mutex lock (&count lock);

// Order of the following lines doesn't matter

if (count == 0)

cond signal (&count nonzero);

count = count + 1;

mutex unlock (&count lock);

g

47

Programming with Condition

Variables (cont'd)

� Timed wait with a condition variable

const int TIMEOUT = 10;

static timestruc t tm;

static mutex t m;

static cond t c;

// : : :

tm.tv sec = time (0) + timeout;

tm.tv nsec = 0;

mutex lock (&m);

while (/* cond == FALSE */) f

int err = cond timedwait (&c, &m, &tm);

if (err == etime) f
/* handle timeout */

break;

g
g
/* do work */

mutex unlock (&m);

48

Programming with Condition

Variables (cont'd)

� Illustration of cond broadcast()

static mutex t rsrc lock; // Initialized to 0

static cond t rsrc add; // Initialized to 0

static unsigned int resources, waiting;

int obtain resources (int amount) f
mutex lock (&rsrc lock);

while (resources < amount) f
waiting++;

cond wait (&rsrc add, &rsrc lock);

g
resources -= amount;

mutex unlock (&rsrc lock);

g

int release resources (int amount) f
mutex lock (&rsrc lock);

resources += amount;

if (waiting > 0) f
waiting = 0;

cond broadcast (&rsrc add);

g
mutex unlock (&rsrc lock);

g
49

Semaphores

� Semaphores are conceptually non-negative

integers that may be incremented and decre-

mented atomically

� They are less e�cient than mutexes, but
more general

{ e.g., they need not be acquired and released by

the same thread

. i.e., they may be used in signal handlers or other

asynchronous event noti�cation contexts

� It is not necessary to acquire a mutex lock

to use a semaphore

50

Semaphore API

� int sema init (sema t *sp, unsigned int count,
int type, void *arg);

{ count gives initial value of semaphore

� int sema destroy (sema t *sp);

� int sema wait (sema t *sp);

{ Block the thread until the semaphore count be-

comes greater than 0, then decrement it

� int sema trywait (sema t *sp);

{ Decrement the semaphore if count is greater than

0, otherwise, return an error

� int sema post (sema t *sp);

{ Increment the semaphore, potentially unblocking

a waiting thread

51

Programming with Semaphores

� Simple producer/consumer semaphore ex-
ample

static int rd ptr = 0;

static int wr ptr = 0;

static data t buf[BUFSIZ];

static sema t empty, full; // Initialized to 0

// : : :

sema init (&empty, 1, 0, 0);

/* Producer thread 1 */

while (work to do) f
buf[wr ptr] = produce ();

sema wait (&empty);

wr ptr = (wr ptr + 1) % BUFSIZ;

sema post (&full);

g

/* Consumer thread 2 */

while (work to do) f
sema wait (&full);

consume (buf[rd ptr]);

sema post (&empty);

rd ptr = (rd ptr + 1) % BUFSIZ;

g
52

Readers/writer Locks

� Allow many threads simultaneous read-only
access to a protected object

{ However, only a single thread may have write ac-

cess to the object while excluding any readers or

other writers

� Used to protect data that is read more often

than written

� Must be fully bracketed (as with mutex)

� Preference is given to writers: : :

53

Readers/writer Lock API

� int rwlock init (rwlock t *rwlp, int type,

void * arg);

� int rwlock destroy (rwlock t *rwlp);

� int rw wrlock (rwlock t *rwlp);

{ Acquires a write lock, but block if any readers or

a writer hold the lock

� int rw rdlock (rwlock t *rwlp);

{ Acquire a read lock, but block if a writer holds the

lock

54

Readers/writer API (cont'd)

� int rw unlock (rwlock t *rwlp);

{ Unlock a read/write lock

� int rw tryrdlock (rwlock t *rwlp);

{ Conditionally acquire read lock

� int rw trywrlock (rwlock t *rwlp);

{ Conditionally acquire write lock

55

Programming with Readers/writer

Locks

� Concurrent bank account program, supports
multiple readers, but only 1 writer: : :

static rwlock t account lock; // Initialized to 0

static
oat checking balance = 100.0;

static
oat saving balance = 100.0;

oat get balance (void) f

oat bal;

rw rdlock (&account lock);

bal = checking balance + saving balance;

rw unlock (&account lock);

return val;

g

void transfer checking to savings (
oat amount) f
rw wrlock (&account lock);

checking balance = checking balance � amount;

savings balance = savings balance + amount;

rw unlock (&account lock);

g

56

Comparison of Synchronization

Primitives

� Mutex locks are the most basic and most
e�cient in terms of time and space

{ Based on adaptive spin-locks

� Condition variables provide a di�erent
avor

of locking than mutexes and semaphores

. i.e., blocking themselves rather than blocking other
{ They are much less e�cient than mutexes since

they use sleep locks

57

Comparison of Synchronization

Primitives (cont'd)

� Semaphores use more memory than mutexes
and condition variables

{ Unlike mutexes, they do not require that the origi-

nal thread is also the thread to release the semaphore

. They also allow more general \counting" behav-

ior, as opposed to binary behavior

{ Unlike condition variables they function only on

count state, rather than complex condition state

� Readers/writer locks are the most complex
synchronization mechanism

{ Use at a fairly coarse-grained level

58

Multi-threaded Signal Handling

� Signal handling in a single-threaded process

is di�erent than in a multi-threaded process

� For example, in a single-threaded process

there is never any question as to which \thread"

handles a signal

� Likewise, the use of reliable signal mech-

anisms enable critical sections without ex-

plicit locking

� These issues become problematic with in

multi-threaded processes: : :

59

Two Categories of Signals

1. Traps (e.g., SIGSEGV, SIGPIPE)

� Result from execution of a speci�c thread and are

handled only by the thread that caused them

� May be generated and handled simultaneously

2. Interrupts (e.g., SIGINT, SIGIO)

� Are asynchronous to any thread, resulting from

some external action

� May be handled by any thread whose signal mask

is enabled

� Only one thread is chosen if several are capable of

handling the signal

� If all threads mask the signal it remains pending

until some thread enables it

60

Advanced Topics

� The scope of setjmp and longjmp is limited
to one thread

{ In particular, this means that a thread that han-

dles a signal can only perform a longjmp if the

corresponding setjmp was performed in the same

thread

� The following thread-related functions are
async-safe, and may be called in the context
of a signal handler

1. sema post

2. thr sigsetmask

3. thr kill

61

Signal Masks

� Each thread has its own signal mask

{ Therefore, a thread may block signals selectively

{ Note that all threads in a process share the same

set of signal handlers: : :

. Per-thread signal handlers must be programmed

explicitly by developers

� Threads can send signals to other threads
in their process via thr kill

{ This signal behaves as a trap: : :

{ Note, there is no direct way to send a signal to

speci�c thread in a di�erent process

62

Programming with Signal Masks

� The thr sigsetmask function sets the thread's
signal mask (which is initially inherited from
the parent thread)

{ int thr sigsetmask (int how, const sigset t *set,

sigset t *oset);

� This example shows how to create a default
thread with a new signal mask

thread t tid;

sigset t new mask, orig mask;

int error;

sig�llset (&new mask);

sigdelset (&new mask, SIGINT);

thr sigsetmask (SIG SETMASK, &new mask, &orig mask):

error = thr create (0, 0, do func, 0, 0, &tid);

thr sigsetmask (SIG SETMASK, &orig mask, 0);

63

Waiting and Signaling Threads

� The thr kill function sends the speci�ed
signal to a speci�c thread

{ int thr kill (thread t target thread, int sig);

� The sigwait function waits for a pending
signal from the set speci�ed by its argument
(regardless of the process signal mask)

{ int sigwait (sigset t *set);

{ sigwait returns the number of the pending signal

{ This function is typically used to wait for signals

in a separate thread, rather than using a signal

handler

64

Programming with sigwait()

� Example illustrating the use of sigwait

static mutex t m; // Initialized to default
static int hup = 0;

int main (void) f
thread t t;
int �nishup = 0;
sigset t set;
: : :

sig�llset (&set); /* block all signals */
thr sigsetmask (SIG BLOCK, &set, 0);
thr create (0, 0, wait hup, 0, THR DETACHED, &t);
do f

/* do processing */
mutex lock (&m);
if (hup)

�nishup = 1;
mutex unlock (&m);

g while (�nishup == 0);
g

void *wait hup (void *) f
sigset t set;
sigemptyset (&set);
sigaddset (&set, SIGHUP);
sigwait (&set);
mutex lock (&m);
hup = 1;
mutex unlock (&m);

g
65

Process Creation and Destruction

� When a process containing multiple threads
forks, it creates an exact duplicate

{ i.e., all threads are duplicated

. However, all interruptible system calls in other

threads return EINTR

� A new system call fork1() may be used to
duplicate the address space, but only dupli-
cate the invoking thread

{ Typically used to save time, especially if an exec
is performed immediately following the fork1

66

Hazards of Using fork() and

vfork()

� There are a number of hazards associated
with using fork1 and vfork

{ If the parent process had threads holding locks

then the child process contains locks held by non-

existent threads

. This may lead to deadlock

{ Before calling exec, do not call library functions

that use a lock held by more than one thread

{ Do not create new threads between calls to vfork
and exec

67

Thread-Speci�c Data

� Thread-speci�c data is maintained on a per-
thread basis

{ It is the only way to de�ne and refer to data that

is private to a thread

� Each thread-speci�c data item is associated
with a key that is global to all threads in a
process

{ Using the key, a thread can access a void * pointer

that is maintained per-thread

. This pointer generally points to data allocated

o� the global heap

68

Thread-Speci�c Data API

� int thr keycreate (thread key t *, void (*)(void
*value));

{ Allocates a global key value

{ The second parameter is a pointer-to-function that

is called to cleanup the allocated memory when the

thread exits

� int thr setspeci�c (thread key t, void *value);

{ Binds a value to the key for the calling thread

� int thr getspeci�c (thread key t, void **value);

{ Retrieves the current value bound to the key for

the calling thread

69

Programming with

Thread-Speci�c Data

� Example of thread-speci�c data: Trace class

class Trace

{

public:

Trace (void);

Trace (char *n, int line = 0, char *file = "");

~Trace (void);

static void start_tracing (void) { enable_tracing_ = 1; }

static void stop_tracing (void) { enable_tracing_ = 0; }

static void set_nesting_indent (int indent);

private:

static thread_key_t depth_key_; //

static thread_key_t indent_key_;

static int once_;

static Trace t_;

static void cleanup (void *);

static int *___nesting_indent();

static int *___nesting_depth();

#define nesting_indent_ (*(___nesting_indent()))

#define nesting_depth_ (*(___nesting_depth()))

static int enable_tracing_;

char *name_;

enum {DEFAULT_DEPTH = 0, DEFAULT_INDENT = 3, DEFAULT_TRACING = 0};

};

70

Thread-Speci�c Data (cont'd)

� Example of thread-speci�c data: Trace class

void

Trace::set_nesting_indent (int indent)

{

nesting_indent_ = indent; // Access thread-specific data

}

Trace::Trace (char *n, int line, char *file)

{

if (Trace::enable_tracing_)

Log_Msg::log (LOG_INFO, "%*s(%t) calling %s, file `%s', line %d\n",

nesting_indent_ * nesting_depth_++, // Access TSD

"", this->name_ = n, file, line);

}

Trace::~Trace (void)

{

if (Trace::enable_tracing_)

Log_Msg::log (LOG_INFO, "%*s(%t) leaving %s\n",

nesting_indent_ * --nesting_depth_, // Access TSD

"", this->name_);

}

71

Thread-Speci�c Data (cont'd)

� Example of thread-speci�c data: Trace class

Trace::Trace (void)

{

if (Trace::once_ == 0)

{

this->name_ = "static dummy";

Trace::once_ = 1;

thr_keycreate (&Trace::depth_key_, Trace::cleanup);

thr_keycreate (&Trace::indent_key_, Trace::cleanup);

}

}

void

Trace::cleanup (void *ptr)

{

Trace::stop_tracing ();

delete ptr;

}

72

Thread-Speci�c Data (cont'd)

� Example of thread-speci�c data: Trace class

int *

Trace::___nesting_depth (void)

{

int *ip;

thr_getspecific (Trace::depth_key_, (void **) &ip);

if (ip == 0) // First time in

{

ip = new int (Trace::DEFAULT_DEPTH);

thr_setspecific (Trace::depth_key_, (void *) ip);

}

return ip;

}

int *

Trace::___nesting_indent (void)

{

int *ip = 0;

thr_getspecific (Trace::indent_key_, (void **) &ip);

if (ip == 0) // First time in

{

ip = new int (Trace::DEFAULT_NESTING);

thr_setspecific (Trace::indent_key_, (void *) ip);

}

return ip;

}

73

Example: File Copy

� Perform simultaneous I/O on two di�erent

devices

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <synch.h>

sema_t emptybuf_sem, fullbuf_sem;

struct {

char data[BUFSIZ]; int size;

} buf[2];

void *producer (void *), *consumer (void *);

int main (int argc, char *argv[])

{

thread_t r_id, w_id, id;

if (sema_init (&emptybuf_sem, 2, 0, 0) != 0 ||

sema_init (&fullbuf_sem, 0, 0, 0) != 0)

return 1;

if (thr_create (0, 0, producer, 0, THR_NEW_LWP, &r_id) == 0

&& thr_create (0, 0, consumer, 0, THR_NEW_LWP, &w_id) == 0) {

int status;

while (thr_join (0, &id, (void **) &status) == 0)

fprintf (stderr, "waited id = %d, status = %d\n", id, status);

return 0;

}

return 1;

}

74

Example: File Copy (cont'd)

� Producer thread

void *producer (void *x)

{

int i = 0;

for (;;) {

sema_wait (&emptybuf_sem);

buf[i].size = read (0, buf[i].data, sizeof buf[i].data);

sema_post (&fullbuf_sem);

if (buf[i].size <= 0)

return (void *) 0;

i = 1 - i;

}

}

75

Example: File Copy (cont'd)

� Consumer thread

void *consumer (void *x)

{

int i = 0;

for (;;) {

sema_wait (&fullbuf_sem);

if (buf[i].size <= 0)

return (void *) 0;

if (write (1, buf[i].data, buf[i].size) != buf[i].size) {

fprintf (stderr, "write failed\n");

return (void *) -1;

}

sema_post (&emptybuf_sem);

i = 1 - i;

}

}

76

Example: Matrix Multiplication

� This example illustrates conditional variables

and mutexes in the context of multiplication

of two-dimensional matrices

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <synch.h>

#define SZ 10

#define NCPU 4

int number_of_cpus = NCPU;

typedef int (*MATRIX_P)[SZ];

typedef int MATRIX[SZ][SZ];

static MATRIX m1 =

{

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

};

77

static MATRIX m2 =

{

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

};

static MATRIX m3;

struct

{

/* Matrix data */

MATRIX_P m1;

MATRIX_P m2;

MATRIX_P m3;

int row;

int col;

/* Multi-processing control variables */

mutex_t lock;

cond_t start_cond;

cond_t done_cond;

/* More control variables */

int todo;

int notdone;

int workers;

} work;

mutex_t mul_lock;

static void

print (MATRIX m)

{

int i, j;

for (i = 0; i < SZ; i++)

{

for (j = 0; j < SZ; j++)

printf ("%4d", m[i][j]);

printf ("\n");

}

}

static void *

worker (void *)

{

MATRIX_P m1, m2, m3;

int row;

int col;

int i;

int result;

for (;;)

{

mutex_lock (&work.lock);

while (work.todo == 0)

cond_wait (&work.start_cond, &work.lock);

work.todo--;

m1 = work.m1;

m2 = work.m2;

m3 = work.m3;

row = work.row;

col = work.col;

if (++work.col == SZ)

{

work.col = 0;

if (++work.row == SZ)

work.row = 0;

}

mutex_unlock (&work.lock);

result = 0;

for (i = 0; i < SZ; i++)

result += m1[row][i] * m2[i][col];

m3[row][col] = result;

mutex_lock (&work.lock);

work.notdone--;

if (work.notdone == 0)

cond_signal (&work.done_cond);

mutex_unlock (&work.lock);

}

return 0;

}

static void

matrix_multiply (MATRIX m1, MATRIX m2, MATRIX m3)

{

int i;

mutex_lock (&mul_lock);

mutex_lock (&work.lock);

if (work.workers == 0)

{

thread_t t_id;

for (i = 0; i < number_of_cpus; i++)

thr_create (0, 0, worker, 0,

THR_NEW_LWP | THR_DETACHED, &t_id);

work.workers = number_of_cpus;

}

work.m1 = m1;

work.m2 = m2;

work.m3 = m3;

work.row = 0;

work.col = 0;

work.todo = SZ * SZ;

work.notdone = SZ * SZ;

cond_broadcast (&work.start_cond);

while (work.notdone)

cond_wait (&work.done_cond, &work.lock);

mutex_unlock (&work.lock);

mutex_unlock (&mul_lock);

}

int

main (int argc, char *argv)

{

int i;

print (m3);

for (i = 0; i < 10; i++)

matrix_multiply (m1, m2, m3);

print (m3);

}

Conclusions and Caveats

� Some applications do not bene�t directly
from threads

{ e.g., CPU-bound programs on a uni-processor

� Threads should be created for processing

that lasts at least several thousand machine

instructions

� Synchronization may be expensive

{ Therefore, choose primitives carefully

� Developer intuition is often underdeveloped: : :

� Debugging is more complicated

{ e.g., lack of tools

78

