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Motivation for Concurrency

� Concurrent programming is increasing rele-
vant to:

{ Leverage hardware/software advances

. e.g., multi-processors and OS thread support

{ Increase performance

. e.g., overlap computation and communication

{ Improve response-time

. e.g., GUIs and network servers

{ Simplify program structure

. e.g., synchronous vs. asynchronous network IPC
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De�nitions

� Concurrency

{ \Logically" simultaneous processing

{ Does not imply multiple processing elements

� Parallelism

{ \Physically" simultaneous processing

{ Involves multiple processing elements and/or inde-

pendent device operations

� Both concurrency and parallelism require con-
trolled access to shared resources

{ e.g., I/O devices, �les, database records, in-core

data structures, consoles, etc.
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Concurrency vs. Parallelism
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Concurrency Overview

� A thread of control is a single sequence of
execution steps performed in one or more
programs

{ One program ! standalone systems

{ More than one program ! distributed systems

� Traditional OS processes contain a single
thread of control

{ This simpli�es programming since a sequence of

execution steps is protected from unwanted inter-

ference by other execution sequences: : :
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Traditional Approaches to OS

Concurrency

1. Device drivers and programs with signal han-
dlers utilize a limited form of concurrency

� e.g., asynchronous I/O

� Note that concurrency encompasses more than

multi-threading: : :

2. Many existing programs utilize OS processes
to provide \coarse-grained" concurrency

� e.g.,

{ Client/server database applications

{ Standard network daemons like UNIX inetd

� Multiple OS processes may share memory via mem-

ory mapping or shared memory and use semaphores

to coordinate execution

� The OS kernel scheduler dictates process behavior
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Evaluating Traditional OS

Process-based Concurrency

� Advantages

{ Easy to keep processes from interfering

. A process combines security, protection, and ro-

bustness

� Disadvantages

1. Complicated to program, e.g.,

{ Signal handling may be tricky

{ Shared memory may be inconvenient

2. Ine�cient

{ The OS kernel is involved in synchronization and

process management

{ Di�cult to exert �ne-grained control over schedul-

ing and priorities
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Modern OS Concurrency

� Modern OS platforms typically provide a
standard set of APIs that handle

1. Process/thread creation and destruction

2. Various types of process/thread synchronization

and mutual exclusion

3. Asynchronous facilities for interrupting long-running

processes/threads to report errors and control pro-

gram behavior

� Once the underlying concepts are mastered,
it's relatively easy to learn di�erent concur-
rency APIs

{ e.g., traditional UNIX process operations, Solaris

threads, POSIX pthreads, WIN32 threads, etc.
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Lightweight Concurrency

� Modern OSs provide lightweight mechanisms
that manage and synchronize multiple threads
within a process

{ Some systems also allow threads to synchronize

across multiple processes

� Bene�ts of threads

1. Relatively simple and e�cient to create, control,

synchronize, and collaborate

{ Threads share many process resources by default

2. Improve performance by overlapping computation

and communication

{ Threads may also consume less resources than

processes

3. Improve program structure

{ e.g., compared with using asynchronous I/O
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Single-threaded vs.

Multi-threaded RPC
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Hardware and OS Concurrency

Support
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� Modern OS platforms like Solaris provide

kernel support for multi-threading
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Kernel Abstractions

� Kernel threads

{ The \fundamental scheduling entities" executed

by the PE(s)

{ Operate in kernel space

{ Kernel-resident subsystems use kernel threads di-

rectly

� Lightweight processes (LWP)

{ Every LWP is associated with one kernel thread

. i.e., 1-to�1 mapping between kernel thread and

LWP per-process

{ Not every kernel thread has an LWP

. \System threads" (e.g., pagedaemon, NFS dae-

mon, and the callout thread) have only a kernel

thread
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Application Abstractions

� Application threads

{ LWP(s) can be thought of as \virtual CPUs" on

which application threads are scheduled and mul-

tiplexed

{ Each application thread has it's own stack

. However, it shares its process address space with

other threads

{ Application threads are \logically" independent

{ Multiple application threads running on separate

LWPs can execute simultaneously (even system

calls and page faults: : : )

. Assuming a multi-CPU system or async I/O
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Kernel-level vs. User-level

Threads

� Application and system characteristics in
u-

ence the choice of kernel-level vs. user-level

threading

� e.g.,

{ High degree of \virtual" application concurrency

implies user-level threads (i.e., unbound threads)

. e.g., desktop windowing system

{ High degree of \real" application parallelism im-

plies lightweight processes (LWPs) (i.e., bound

threads)

� In addition, LWPs must be used for:

{ Real-time scheduling class

{ Give thread alternative signal stack

{ Give thread a unique alarm or timer
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Performance Considerations

� Performance of di�erent combinations of
application-level vs. kernel-level threads is
in
uenced various factors, e.g.,

{ Number of PEs

{ Inter-thread communication

{ Inter-thread synchronization

{ Amount of context switching

� It is important to consider the \process ar-

chitecture" of a multi-threaded application
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Scheduling Classes in SunOS 5.x

� There are three classes of process (LWP)
scheduling in SunOS 5.x

{ Real-time

. Highest priority, the scheduler always dispatches

the highest priority real-time LWP

{ System

. Middle priority

. Cannot be applied to a user process

{ Timesharing (default)

. Lowest priority, provides fair distribution of pro-

cess resources

� A new process inherits the scheduling class

and priority of its parent
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Application Thread Overview

� A multi-threaded process contains one or

more threads of control

� Each thread may be executed independently
and asynchronously

{ Di�erent threads may have di�erent priorities

{ System calls may be made independently, page

faults handled separately, etc.

{ Some system calls a�ect the process

. e.g., exit

{ Other system calls a�ect only the calling thread

. e.g., read/write

� Threads in a process are generally invisible

to other processes
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Thread Resources

� Most process resources are equally accessi-
ble to all threads in the process, e.g.,

* Virtual memory

* User permissions and access control privileges

* Open �les

* Signal handlers

� In addition, each thread contains unique in-
formation, e.g.,

* Identi�er

* Register set (including PC and SP)

* Stack

* Signal mask

* Priority

* Thread-speci�c data (e.g., errno)

� Note, there is no MMU protection for sep-

arate threads within a single process: : :
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LWP Characteristics

� The threads library uses execution resources
called LWPs

{ LWPs are scheduled on top of kernel threads (and

PEs) by the OS

{ Likewise, the threads library schedules \unbound"

runnable threads on the LWP execution resources

. This typically does not involve the kernel

� In order to expedite thread operations, LWPs
contain certain information that application
threads do not have, e.g.,

{ Scheduling class

. e.g., Real-time vs. system vs. timesharing

{ Alarms

{ Interval timers

{ Pro�ling bu�ers
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Programming LWPs

� The threads library ensures that there are
enough LWPs to enable a program to make
progress

{ i.e., LWPs may be allocated/deallocated as needed

via SIGWAIT signal sent by kernel

� The thr setconcurrency library function pro-
vides additional control

{ Note, it is only a hint: : :

� Note, there is also a low-level interface to
the LWP facilities

{ Application programmers typically do not use this

interface directly
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Thread Creation

� Thread creation is handled via the thr create
function:

{ int thr create (void *stack base, size t stack size,

void *(*start routine)(void *), void *arg, long


ags, thread t *new thread);

{ thr create creates and starts a new thread using

the start routine function speci�ed in the call

. Returns 0 on success and non�0 on failure

{ The identify of the thread is returned to the caller

. A thread id is only valid within a single process

. There is no thread 0: : :

{ The caller may supply a stack or if a NULL is used

the library allocates a default stack
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Thread Creation (cont'd)

� thr create (cont'd)

{ Each application thread gets its own stack

{ You may specify a size for the stack or use the

default

. The default is 1 Megabyte of virtual memory,

with no reserved stack space

{ size t thr min stack (void)

. The size of any stack must be larger than the

value of this function call

{ Each stack area is protected with unallocated mem-

ory

. Thus, if your process over
ows the stack a

bus error (SIGBUS) will occur
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Thread Creation (cont'd)

� thr create 
ags include

{ THR SUSPENDED

. The new thread is created suspended and will

not execute the start routine function until

it is started by thr continue

{ THR DETACHED

. The new thread is created detached and thread

ID and other resources may be reused as soon

as the thread terminates

{ THR BOUND

. The new thread is created permanently bound

to an LWP
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Thread Creation (cont'd)

� thr create 
ags include

{ THR NEW LWP

. The desired concurrency level for unbound threads

is increased by one, typically by adding a new

LWP to the pool of LWPs running unbound threads

{ THR DAEMON

. The thread is marked as a daemon and the pro-

cess will exit when all non-daemon threads exit

� i.e., daemon threads are not counted in the

process exit criteria
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Di�erences Between fork and

thr create

� thr create normally allocates a thread stack
out of the cache, initializes some �elds, and
places the thread on the per-process run
queue

{ Typically this is not very many instructions, none

of them in the kernel

{ The thread will then be run by a CPU when a

kernel LWP next checks that queue

� fork is quite a bit more heavy weight

{ It creates more new kernel resources than just a

new address space
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Thread Exit

� The thr exit function terminates the invok-
ing thread and sets the exit status to the
speci�ed value

{ void thr exit (void *status);

{ If the thread was not detached, its identi�er and

status are retained until thr join is called via an-

other thread

{ If there are no remaining threads, the process is

exited with a 0 exit status: : :

� The thr self function returns the thread
identi�er structure of the caller

{ thread t thr self (void);
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Thread Join

� The thr join function blocks until the spec-
i�ed thread exits

{ int thr join (thread t wait for, thread t *departed,

void **status);

{ If wait for is 0, the functions waits for any un-

detached thread in the process to terminate, else

it waits for that wait for thread id to terminate

{ If departed is non-NULL it points to location

storing the ID of the terminated thread

{ If status is non-NULL it points to a location stor-

ing the exits status of the terminated thread

{ thr join cannot wait for detached threads, threads
in other processes, or the current thread
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Thread Suspend and Resume

� The thr suspend function immediately sus-
pends the speci�ed thread until it is explic-
itly resumed

{ int thr suspend (thread t target thread);

. Note, a suspended thread does not receive signals: : :

� The thr continue function resumes execu-
tion of a suspended thread

{ int thr continue (thread t target thread);
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Thread Scheduling

� The scheduling of threads by the threads
library is non-preemptive, in the traditional
time-slicing sense: : :

{ However, the scheduling of LWPs by the OS is

preemptive

{ Moreover, LWPs use \priority aging," whereas threads

do not: : :
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Thread Scheduling (cont'd)

� int thr setprio (thread t target thread, int
priority);

{ The priority must be >= 0, with greater values

indicating increased priority

� int thr getprio (thread t target thread)

{ This function gets the thread priority of the spec-

i�ed thread

� int thr yield (void);

{ Yields the caller's executing status to any thread

with same or higher priority
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Thread Concurrency

� The scheduling of threads is in
uenced by
the following library routines

{ int thr setconcurrency (int new level);

. Indicates the desired level of concurrency that

application threads require

� i.e., number of threads that can be active si-

multaneously

� i.e., the number of LWPs associated with the

threads library

. Only a hint, actual number of LWPs may be

more or less than number requested

{ int thr getconcurrency (void);

. Returns current number of LWPs
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Synchronization Mechanisms

� Threads share resources in a process ad-

dress space

� Therefore, they must use synchronization

mechanisms to coordinate their access to

shared data

� Traditional OS synchronization mechanisms

are very low-level, tedious to program, error-

prone, and non-portable

� ACE encapsulates these mechanisms with

higher-level patterns and classes
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Common OS Synchronization

Mechanisms

1. Mutual exclusion locks

� Serialize access to a shared resource

2. Counting semaphores

� Synchronize execution

3. Readers/writer locks

� Serialize access to resources whose contents are

searched more than changed

4. Condition variables

� Used to block until shared data changes state

5. File locks

� System-wide readers/write locks access by �le-

name
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Additional ACE Synchronization

Mechanism

1. Guards

� An exception-safe scoped locking mechanism

2. Barriers

� Allows threads to synchronize their completion

3. Token

� Provides absolute scheduling order and simpli�es

multi-threaded event loop integration

4. Task

� Provides higher-level \active object" semantics for

concurrent applications

5. Thread-speci�c storage

� Low-overhead, contention-free storage
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Concurrency Mechanisms in ACE
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Solaris Synchronization Primitives

� Each synchronization facility has a set of
routines that operate on instances called
synchronization variables

{ These variables may be allocated statically or dy-

namically

{ Variables must be allocated in memory that is

globally accessible, e.g.,

. Allocated in global process memory and shared by multiple t

. Placed into shared memory or mapped �les and

accessed via separate processes

{ Depending on 
ags, di�erent behavior may be se-

lected during variable initialization
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Solaris Synchronization Primitives

(cont'd)

� All synchronization variables may be placed
in shared memory and shared between threads
running in multiple processes

{ Intra-process behavior vs. inter-process behav-

ior is selected by using the USYNC THREAD vs.

USYNC PROCESS 
ags at initialization time: : :

{ Note that memory-mapped �les may be used to

provide persistent locks that are shared between

processes

{ If a variable is initialized to 0, the \default behav-

ior" is selected

. Default is local to one process (i.e., USYNC THREAD)

� Three methods for implementing locks are

spin locks, sleep locks, and adaptive locks
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Mutex Synchronization

� The simplest type of synchronization vari-

able is the \mutex" (mutual exclusion) lock

� Only one thread at a time may \own" a
mutex lock

{ i.e., used to implement \critical sections": : :

� Implemented to be highly e�cient, but lim-
ited in functionality

{ e.g., lock/unlock operations must be \fully-bracketed"
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The Mutex API

� int mutex init (mutex t *mp, int type, void

*arg);

� int mutex destroy (mutex t *mp);

� int mutex lock (mutex t *mp);

{ Acquire lock ownership (wait on priority queue if

necessary)

� int mutex trylock (mutex t *mp);

{ Conditionally acquire lock (i.e., don't wait on queue)

� int mutex unlock (mutex t *mp);

{ Release lock and unblock thread at head of priority

queue, if necessary

{ Only the owner of a mutex may unlock it
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Programming with Mutexes

� Simple resource example

static mutex t count mutex; // Initialized to 0

static int count;

int increment count (void) f
mutex lock (&count mutex);

count = count + 1; /* atomic update */

mutex unlock (&count mutex);

g

int get count (void) f
int c;

mutex lock (&count mutex);

c = count; /* ensure memory synchronization: : : */

mutex unlock (&count mutex);

return c;

g
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Condition Variables

� Used to \sleep/wait" until a particular con-
dition involving shared data occurs

{ Conditions may be arbitrarily complex

� Allows more complex scheduling decisions,
compared with simple mutex

{ i.e., a mutex makes other threads wait, whereas

a condition variable allows a thread to make it-

self wait for a particular condition involving shared

data

{ Usually more e�cient/correct than busy waiting: : :

� Are always used in conjunction with a mutex

lock
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Condition Variable API

� int cond init (cond t *cvp, int type, int

arg);

� int cond destroy (cond t *cvp);

� int cond wait (cond t *cvp, mutex t *mp);

{ Typically used in conjunction with a \condition

expression"

{ Block until condition is signaled

{ Atomically release lock before blocking

{ Atomically reacquire lock before returning

. Necessitates retesting condition: : :
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Condition Variable API

� int cond timedwait (cond t *cvp, mutex t
*mp, timestruc t *abstime);

{ Block on condition, or until absolute time-of-day

has passed

� int cond signal (cond t *cvp);

{ Signal one thread blocked in cond wait

{ If no thread is waiting, signal is ignored: : :

� int cond broadcast (cond t *cvp);

{ Signal all threads blocked in cond wait

{ Use with care due to avoid the \thundering herd"

problem: : :

{ Useful for allowing threads to contend for variable

amounts of resources when resources are freed dy-

namically
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Condition Variable Patterns

� A particular idiom is typically associated with
condition variables

// Global variables

static mutex t m; // Initialized to 0

static cond t c; // Initialized to 0

void some function (void)

f

mutex lock (&m);

while (condition expression is not true)

cond wait (&c, &m);

/* Atomically modify shared information */

mutex unlock (&m);

/* : : :*/

g

� Warning!!!! Always make sure to invoke
condition variable functions while holding
the associated mutex lock!!!

{ Otherwise, \lost wakeup bugs" occur: : :
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Condition Variable Patterns

(cont'd)

� Another idiom is associated with releasing
resources via condition variables

void release resources (void)

f
// Automatically acquire the lock.

mutex lock (&m);

// Atomically modify shared information here: : :

cond signal (&c);

// Could also use cond broadcast().

mutex unlock (&m);

g
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Programming with Condition

Variables

� Implement general P and V using mutex and
condition vars

static mutex t count lock; // Initialized to 0

static cond t count nonzero; // Initialized to 0

static unsigned int count; // Initialized to 0

void P (void) f

mutex lock (&count lock);

while (count == 0)

cond wait (&count nonzero, &count lock);

count = count � 1;

mutex unlock (&count lock);

g

void V (void) f
mutex lock (&count lock);

// Order of the following lines doesn't matter

if (count == 0)

cond signal (&count nonzero);

count = count + 1;

mutex unlock (&count lock);

g
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Programming with Condition

Variables (cont'd)

� Timed wait with a condition variable

const int TIMEOUT = 10;

static timestruc t tm;

static mutex t m;

static cond t c;

// : : :

tm.tv sec = time (0) + timeout;

tm.tv nsec = 0;

mutex lock (&m);

while (/* cond == FALSE */) f

int err = cond timedwait (&c, &m, &tm);

if (err == etime) f
/* handle timeout */

break;

g
g
/* do work */

mutex unlock (&m);
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Programming with Condition

Variables (cont'd)

� Illustration of cond broadcast()

static mutex t rsrc lock; // Initialized to 0

static cond t rsrc add; // Initialized to 0

static unsigned int resources, waiting;

int obtain resources (int amount) f
mutex lock (&rsrc lock);

while (resources < amount) f
waiting++;

cond wait (&rsrc add, &rsrc lock);

g
resources -= amount;

mutex unlock (&rsrc lock);

g

int release resources (int amount) f
mutex lock (&rsrc lock);

resources += amount;

if (waiting > 0) f
waiting = 0;

cond broadcast (&rsrc add);

g
mutex unlock (&rsrc lock);

g
49



Semaphores

� Semaphores are conceptually non-negative

integers that may be incremented and decre-

mented atomically

� They are less e�cient than mutexes, but
more general

{ e.g., they need not be acquired and released by

the same thread

. i.e., they may be used in signal handlers or other

asynchronous event noti�cation contexts

� It is not necessary to acquire a mutex lock

to use a semaphore
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Semaphore API

� int sema init (sema t *sp, unsigned int count,
int type, void *arg);

{ count gives initial value of semaphore

� int sema destroy (sema t *sp);

� int sema wait (sema t *sp);

{ Block the thread until the semaphore count be-

comes greater than 0, then decrement it

� int sema trywait (sema t *sp);

{ Decrement the semaphore if count is greater than

0, otherwise, return an error

� int sema post (sema t *sp);

{ Increment the semaphore, potentially unblocking

a waiting thread
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Programming with Semaphores

� Simple producer/consumer semaphore ex-
ample

static int rd ptr = 0;

static int wr ptr = 0;

static data t buf[BUFSIZ];

static sema t empty, full; // Initialized to 0

// : : :

sema init (&empty, 1, 0, 0);

/* Producer thread 1 */

while (work to do) f
buf[wr ptr] = produce ();

sema wait (&empty);

wr ptr = (wr ptr + 1) % BUFSIZ;

sema post (&full);

g

/* Consumer thread 2 */

while (work to do) f
sema wait (&full);

consume (buf[rd ptr]);

sema post (&empty);

rd ptr = (rd ptr + 1) % BUFSIZ;

g
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Readers/writer Locks

� Allow many threads simultaneous read-only
access to a protected object

{ However, only a single thread may have write ac-

cess to the object while excluding any readers or

other writers

� Used to protect data that is read more often

than written

� Must be fully bracketed (as with mutex)

� Preference is given to writers: : :
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Readers/writer Lock API

� int rwlock init (rwlock t *rwlp, int type,

void * arg);

� int rwlock destroy (rwlock t *rwlp);

� int rw wrlock (rwlock t *rwlp);

{ Acquires a write lock, but block if any readers or

a writer hold the lock

� int rw rdlock (rwlock t *rwlp);

{ Acquire a read lock, but block if a writer holds the

lock
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Readers/writer API (cont'd)

� int rw unlock (rwlock t *rwlp);

{ Unlock a read/write lock

� int rw tryrdlock (rwlock t *rwlp);

{ Conditionally acquire read lock

� int rw trywrlock (rwlock t *rwlp);

{ Conditionally acquire write lock

55

Programming with Readers/writer

Locks

� Concurrent bank account program, supports
multiple readers, but only 1 writer: : :

static rwlock t account lock; // Initialized to 0

static 
oat checking balance = 100.0;

static 
oat saving balance = 100.0;


oat get balance (void) f

oat bal;

rw rdlock (&account lock);

bal = checking balance + saving balance;

rw unlock (&account lock);

return val;

g

void transfer checking to savings (
oat amount) f
rw wrlock (&account lock);

checking balance = checking balance � amount;

savings balance = savings balance + amount;

rw unlock (&account lock);

g
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Comparison of Synchronization

Primitives

� Mutex locks are the most basic and most
e�cient in terms of time and space

{ Based on adaptive spin-locks

� Condition variables provide a di�erent 
avor

of locking than mutexes and semaphores

. i.e., blocking themselves rather than blocking other
{ They are much less e�cient than mutexes since

they use sleep locks
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Comparison of Synchronization

Primitives (cont'd)

� Semaphores use more memory than mutexes
and condition variables

{ Unlike mutexes, they do not require that the origi-

nal thread is also the thread to release the semaphore

. They also allow more general \counting" behav-

ior, as opposed to binary behavior

{ Unlike condition variables they function only on

count state, rather than complex condition state

� Readers/writer locks are the most complex
synchronization mechanism

{ Use at a fairly coarse-grained level
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Multi-threaded Signal Handling

� Signal handling in a single-threaded process

is di�erent than in a multi-threaded process

� For example, in a single-threaded process

there is never any question as to which \thread"

handles a signal

� Likewise, the use of reliable signal mech-

anisms enable critical sections without ex-

plicit locking

� These issues become problematic with in

multi-threaded processes: : :
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Two Categories of Signals

1. Traps (e.g., SIGSEGV, SIGPIPE)

� Result from execution of a speci�c thread and are

handled only by the thread that caused them

� May be generated and handled simultaneously

2. Interrupts (e.g., SIGINT, SIGIO)

� Are asynchronous to any thread, resulting from

some external action

� May be handled by any thread whose signal mask

is enabled

� Only one thread is chosen if several are capable of

handling the signal

� If all threads mask the signal it remains pending

until some thread enables it
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Advanced Topics

� The scope of setjmp and longjmp is limited
to one thread

{ In particular, this means that a thread that han-

dles a signal can only perform a longjmp if the

corresponding setjmp was performed in the same

thread

� The following thread-related functions are
async-safe, and may be called in the context
of a signal handler

1. sema post

2. thr sigsetmask

3. thr kill
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Signal Masks

� Each thread has its own signal mask

{ Therefore, a thread may block signals selectively

{ Note that all threads in a process share the same

set of signal handlers: : :

. Per-thread signal handlers must be programmed

explicitly by developers

� Threads can send signals to other threads
in their process via thr kill

{ This signal behaves as a trap: : :

{ Note, there is no direct way to send a signal to

speci�c thread in a di�erent process
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Programming with Signal Masks

� The thr sigsetmask function sets the thread's
signal mask (which is initially inherited from
the parent thread)

{ int thr sigsetmask (int how, const sigset t *set,

sigset t *oset);

� This example shows how to create a default
thread with a new signal mask

thread t tid;

sigset t new mask, orig mask;

int error;

sig�llset (&new mask);

sigdelset (&new mask, SIGINT);

thr sigsetmask (SIG SETMASK, &new mask, &orig mask):

error = thr create (0, 0, do func, 0, 0, &tid);

thr sigsetmask (SIG SETMASK, &orig mask, 0);
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Waiting and Signaling Threads

� The thr kill function sends the speci�ed
signal to a speci�c thread

{ int thr kill (thread t target thread, int sig);

� The sigwait function waits for a pending
signal from the set speci�ed by its argument
(regardless of the process signal mask)

{ int sigwait (sigset t *set);

{ sigwait returns the number of the pending signal

{ This function is typically used to wait for signals

in a separate thread, rather than using a signal

handler

64

Programming with sigwait()

� Example illustrating the use of sigwait

static mutex t m; // Initialized to default
static int hup = 0;

int main (void) f
thread t t;
int �nishup = 0;
sigset t set;
: : :

sig�llset (&set); /* block all signals */
thr sigsetmask (SIG BLOCK, &set, 0);
thr create (0, 0, wait hup, 0, THR DETACHED, &t);
do f

/* do processing */
mutex lock (&m);
if (hup)

�nishup = 1;
mutex unlock (&m);

g while (�nishup == 0);
g

void *wait hup (void *) f
sigset t set;
sigemptyset (&set);
sigaddset (&set, SIGHUP);
sigwait (&set);
mutex lock (&m);
hup = 1;
mutex unlock (&m);

g
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Process Creation and Destruction

� When a process containing multiple threads
forks, it creates an exact duplicate

{ i.e., all threads are duplicated

. However, all interruptible system calls in other

threads return EINTR

� A new system call fork1() may be used to
duplicate the address space, but only dupli-
cate the invoking thread

{ Typically used to save time, especially if an exec
is performed immediately following the fork1
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Hazards of Using fork() and

vfork()

� There are a number of hazards associated
with using fork1 and vfork

{ If the parent process had threads holding locks

then the child process contains locks held by non-

existent threads

. This may lead to deadlock

{ Before calling exec, do not call library functions

that use a lock held by more than one thread

{ Do not create new threads between calls to vfork
and exec
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Thread-Speci�c Data

� Thread-speci�c data is maintained on a per-
thread basis

{ It is the only way to de�ne and refer to data that

is private to a thread

� Each thread-speci�c data item is associated
with a key that is global to all threads in a
process

{ Using the key, a thread can access a void * pointer

that is maintained per-thread

. This pointer generally points to data allocated

o� the global heap
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Thread-Speci�c Data API

� int thr keycreate (thread key t *, void (*)(void
*value));

{ Allocates a global key value

{ The second parameter is a pointer-to-function that

is called to cleanup the allocated memory when the

thread exits

� int thr setspeci�c (thread key t, void *value);

{ Binds a value to the key for the calling thread

� int thr getspeci�c (thread key t, void **value);

{ Retrieves the current value bound to the key for

the calling thread
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Programming with

Thread-Speci�c Data

� Example of thread-speci�c data: Trace class

class Trace

{

public:

Trace (void);

Trace (char *n, int line = 0, char *file = "");

~Trace (void);

static void start_tracing (void) { enable_tracing_ = 1; }

static void stop_tracing (void) { enable_tracing_ = 0; }

static void set_nesting_indent (int indent);

private:

static thread_key_t depth_key_; //

static thread_key_t indent_key_;

static int once_;

static Trace t_;

static void cleanup (void *);

static int *___nesting_indent();

static int *___nesting_depth();

#define nesting_indent_ (*(___nesting_indent()))

#define nesting_depth_ (*(___nesting_depth()))

static int enable_tracing_;

char *name_;

enum {DEFAULT_DEPTH = 0, DEFAULT_INDENT = 3, DEFAULT_TRACING = 0};

};
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Thread-Speci�c Data (cont'd)

� Example of thread-speci�c data: Trace class

void

Trace::set_nesting_indent (int indent)

{

nesting_indent_ = indent; // Access thread-specific data

}

Trace::Trace (char *n, int line, char *file)

{

if (Trace::enable_tracing_)

Log_Msg::log (LOG_INFO, "%*s(%t) calling %s, file `%s', line %d\n",

nesting_indent_ * nesting_depth_++, // Access TSD

"", this->name_ = n, file, line);

}

Trace::~Trace (void)

{

if (Trace::enable_tracing_)

Log_Msg::log (LOG_INFO, "%*s(%t) leaving %s\n",

nesting_indent_ * --nesting_depth_, // Access TSD

"", this->name_);

}
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Thread-Speci�c Data (cont'd)

� Example of thread-speci�c data: Trace class

Trace::Trace (void)

{

if (Trace::once_ == 0)

{

this->name_ = "static dummy";

Trace::once_ = 1;

thr_keycreate (&Trace::depth_key_, Trace::cleanup);

thr_keycreate (&Trace::indent_key_, Trace::cleanup);

}

}

void

Trace::cleanup (void *ptr)

{

Trace::stop_tracing ();

delete ptr;

}
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Thread-Speci�c Data (cont'd)

� Example of thread-speci�c data: Trace class

int *

Trace::___nesting_depth (void)

{

int *ip;

thr_getspecific (Trace::depth_key_, (void **) &ip);

if (ip == 0) // First time in

{

ip = new int (Trace::DEFAULT_DEPTH);

thr_setspecific (Trace::depth_key_, (void *) ip);

}

return ip;

}

int *

Trace::___nesting_indent (void)

{

int *ip = 0;

thr_getspecific (Trace::indent_key_, (void **) &ip);

if (ip == 0) // First time in

{

ip = new int (Trace::DEFAULT_NESTING);

thr_setspecific (Trace::indent_key_, (void *) ip);

}

return ip;

}
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Example: File Copy

� Perform simultaneous I/O on two di�erent

devices

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <synch.h>

sema_t emptybuf_sem, fullbuf_sem;

struct {

char data[BUFSIZ]; int size;

} buf[2];

void *producer (void *), *consumer (void *);

int main (int argc, char *argv[])

{

thread_t r_id, w_id, id;

if (sema_init (&emptybuf_sem, 2, 0, 0) != 0 ||

sema_init (&fullbuf_sem, 0, 0, 0) != 0)

return 1;

if (thr_create (0, 0, producer, 0, THR_NEW_LWP, &r_id) == 0

&& thr_create (0, 0, consumer, 0, THR_NEW_LWP, &w_id) == 0) {

int status;

while (thr_join (0, &id, (void **) &status) == 0)

fprintf (stderr, "waited id = %d, status = %d\n", id, status);

return 0;

}

return 1;

}
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Example: File Copy (cont'd)

� Producer thread

void *producer (void *x)

{

int i = 0;

for (;;) {

sema_wait (&emptybuf_sem);

buf[i].size = read (0, buf[i].data, sizeof buf[i].data);

sema_post (&fullbuf_sem);

if (buf[i].size <= 0)

return (void *) 0;

i = 1 - i;

}

}
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Example: File Copy (cont'd)

� Consumer thread

void *consumer (void *x)

{

int i = 0;

for (;;) {

sema_wait (&fullbuf_sem);

if (buf[i].size <= 0)

return (void *) 0;

if (write (1, buf[i].data, buf[i].size) != buf[i].size) {

fprintf (stderr, "write failed\n");

return (void *) -1;

}

sema_post (&emptybuf_sem);

i = 1 - i;

}

}
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Example: Matrix Multiplication

� This example illustrates conditional variables

and mutexes in the context of multiplication

of two-dimensional matrices

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <synch.h>

#define SZ 10

#define NCPU 4

int number_of_cpus = NCPU;

typedef int (*MATRIX_P)[SZ];

typedef int MATRIX[SZ][SZ];

static MATRIX m1 =

{

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

};
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static MATRIX m2 =

{

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

};

static MATRIX m3;

struct

{

/* Matrix data */

MATRIX_P m1;

MATRIX_P m2;

MATRIX_P m3;

int row;

int col;

/* Multi-processing control variables */

mutex_t lock;

cond_t start_cond;

cond_t done_cond;

/* More control variables */

int todo;

int notdone;

int workers;

} work;

mutex_t mul_lock;

static void

print (MATRIX m)

{

int i, j;

for (i = 0; i < SZ; i++)

{

for (j = 0; j < SZ; j++)

printf ("%4d", m[i][j]);

printf ("\n");

}

}

static void *

worker (void *)

{

MATRIX_P m1, m2, m3;

int row;

int col;

int i;

int result;

for (;;)

{

mutex_lock (&work.lock);

while (work.todo == 0)

cond_wait (&work.start_cond, &work.lock);

work.todo--;

m1 = work.m1;

m2 = work.m2;

m3 = work.m3;

row = work.row;

col = work.col;

if (++work.col == SZ)

{

work.col = 0;

if (++work.row == SZ)

work.row = 0;

}

mutex_unlock (&work.lock);

result = 0;

for (i = 0; i < SZ; i++)

result += m1[row][i] * m2[i][col];

m3[row][col] = result;

mutex_lock (&work.lock);

work.notdone--;

if (work.notdone == 0)

cond_signal (&work.done_cond);

mutex_unlock (&work.lock);

}

return 0;

}

static void

matrix_multiply (MATRIX m1, MATRIX m2, MATRIX m3)

{

int i;

mutex_lock (&mul_lock);

mutex_lock (&work.lock);

if (work.workers == 0)

{

thread_t t_id;

for (i = 0; i < number_of_cpus; i++)

thr_create (0, 0, worker, 0,

THR_NEW_LWP | THR_DETACHED, &t_id);

work.workers = number_of_cpus;

}

work.m1 = m1;

work.m2 = m2;

work.m3 = m3;

work.row = 0;

work.col = 0;

work.todo = SZ * SZ;

work.notdone = SZ * SZ;

cond_broadcast (&work.start_cond);

while (work.notdone)

cond_wait (&work.done_cond, &work.lock);

mutex_unlock (&work.lock);

mutex_unlock (&mul_lock);

}

int

main (int argc, char *argv)

{

int i;

print (m3);

for (i = 0; i < 10; i++)

matrix_multiply (m1, m2, m3);

print (m3);

}



Conclusions and Caveats

� Some applications do not bene�t directly
from threads

{ e.g., CPU-bound programs on a uni-processor

� Threads should be created for processing

that lasts at least several thousand machine

instructions

� Synchronization may be expensive

{ Therefore, choose primitives carefully

� Developer intuition is often underdeveloped: : :

� Debugging is more complicated

{ e.g., lack of tools
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