
Applying Model Intelligence Frameworks for

Deployment Problem in Real-Time and

Embedded Systems

Andrey Nechypurenko1, Egon Wuchner1, Jules White2, and Douglas C.
Schmidt2

1 Siemens AG, Corporate Technology (SE 2), Otto-Hahn-Ring 6, 81739 Munich,
Germany {andrey.nechypurenko, egon.wuchner}@siemens.com

2 Vanderbilt University, Department of Electrical Engineering and Computer
Science, Box 1679 Station B, Nashville, TN, 37235, USA {jules,

schmidt}@dre.vanderbilt.edu

Abstract. There are many application domains, such as distributed
real-time and embedded (DRE) systems, where the domain constraints
are so restrictive and the solution spaces so large that it is infeasible
for modelers to produce correct solution manually using a conventional
graphical model-based approach. In DRE systems the available resources,
such as memory, CPU, and bandwidth, must be managed carefully to
ensure a certain level of quality of service. This paper provides three
contributions to simplify modeling of complex application domains: (1)
we present our approach of combining model intelligence and domain-
specific solvers with model-driven engineering (MDE) environments, (2)
we show techniques for automatically guiding modelers to correct solu-
tions and how to support the specification of large and complex systems
using intelligent mechanisms to complete partially specified models, and
(3) we present the results of applying an MDE tool that maps software
components to Electronic Control Units (ECUs) using the AUTOSAR
automotive modeling and middleware standard.

1 Introduction

Graphical modeling languages, such as UML, can help to visualise certain aspects
of the system and automate particular development steps via code-generation.
Model-driven engineering (MDE) tools and domain-specific modeling languages
(DSMLs) [2] are graphical modeling technologies that combine high-level visual
abstractions that are specific to a domain with constraint checking and code-
generation to simplify the development of certain types of systems. In many
application domains, however, the domain constraints are so restrictive and the
solution spaces so large that it is infeasible for modelers to produce correct so-
lutions manually. In these domains, MDE tools that simply provide solution
correctness checking via constraints provide few benefits over conventional ap-
proaches that use third-generation languages.

Regardless of the modeling language and notation used, the inherent com-
plexity in many application domains is the combinatorial nature of the con-
straints, and not the code construction per se. For example, specifying the
deployment of software components to hardware units in a car in the face of
configuration and resource constraints can easily generate solution spaces with
millions or more possible deployments and few correct ones, even when only
scores of model entities are present. For these combinatorially complex model-
ing problems, it is impractical, if not impossible, to create a complete and valid
model manually. Even connecting hundreds of components to scores of nodes
by pointing and clicking via a GUI is tedious and error-prone. As the number
of modeling elements increases into the thousands, manual approaches become
infeasible.

To address the challenges of modeling combinatorially complex domains,
therefore, we need techniques to reduce the cost of integrating a graphical mod-
eling environment with Model Intelligence Guides (MIGs), which are automated
MDE tools that help guide users from partially specified models, such as a model
that specifies components and the nodes they need to be deployed to but not
how they are deployed, to complete and correct ones, such as a model that not
only specifies the components to be deployed but what node hosts each one.
This paper describes techniques for creating and maintaining a Domain Intelli-
gence Generator (DIG), which is an MDE that helps modelers solve combinato-
rially challenging modeling problems, such as resource assignment, configuration
matching, and path finding.

The rest of the paper is organised as follows: Section 2 discusses challenges of
creating deployment models in the context of the AUTOSAR[1] middleware and
modeling standard, which we use as a motivating example; Section 3 describes
key concepts used to create and customize MIGs; Section 4 shows the results of
applying MIGs to AUTOSAR component deployments; and Section 5 presents
concluding remarks and outlines future work.

2 Motivating Example

AUTOSAR is a new standard for automotive middleware and software develop-
ment modeling [1]. The goal of AUTOSAR is to standardize solutions to many
problems that arise when developing large-scale, distributed real-time and em-
bedded (DRE) systems for the automotive domain. For instance, concert efforts
is required to relocate components between Electronic Control Units (ECUs),
i.e., computers and micro-controllers running software components within a car.
Key complexities of relocation include: (1) components often have a many con-
straints that need to be met by the target ECU and (2) there are many possible
deployments of components to ECUs in a car and it is hard to find the optimal
one.

For example, it is hard to manually find a set of interconnected nodes able to
run a group of components that communicate via a bus. Modelers must deter-
mine whether the available communication channels between the target ECUs

meet the bandwidth, latency, and framing constraints of the components that
communicate through them. In the automotive domain—as with other embed-
ded systems domains— it is also important to reduce the overall cost of the
solution, which necessitates optimizations, such as finding deployments that use
as few ECUs as possible or minimize bandwidth to allow cheaper buses. It is
infeasible to find these solutions manually for a production systems.

To illustrate the practical benefits of generating and integrating MIGs with a
DSML, we describe an MDE tool we developed to solve AUTOSAR constraints
for validly deploying software components to ECUs. There are two primary ar-
chitectural views in AUTOSAR systems:

– The logical collaboration structure that specifies which components that
should communicate with each other via which interfaces, and

– The physical deployment structure that captures the capabilities of each
ECU, their interconnecting buses, and their available resources.

Historically, AUTOSAR developers have manually specified the mapping from
components in the logical view to ECUs in the physical view via MDE deploy-
ment tools, as shown in Figure 1. This approach worked relatively well when
there were a small number of components and ECU. Modern cars, however, can

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

RTE

AUTOSAR
SW Component1

RTE

Basic Software

RTE

Basic Software Basic Software

ECU1 ECU2 ECU3

Gateway

...

Virtual Function Bus

Tool Supporting Deployment of Software Components

Mapping

logical
structure

physical structure

Fig. 1. Mapping from the logical collaboration to the physical deployment structure

be equipped with 80 or more ECUs and several hundred or more software com-
ponents. Simply drawing arrows from 160 components to 80 ECUs is tedious.

Moreover, many requirements constrain which ECUs that can host certain com-
ponents, including the amount of memory required to run, CPU power, pro-
gramming language, operating system type and version, etc. These constraints
must be considered carefully when deciding where to deploy a particular compo-
nent. The problem is further exacerbated when developers consider the physical
communication paths and aspects, such as available bandwidth in conjunction
with periodical real-time messaging.

The remainder of this paper shows how the AUTOSAR MDE tool we de-
veloped helps automate the mapping of software components to ECUs in AU-
TOSAR models without violating the known constraints. The following sections
describe our approach and show how MIGs can significantly reduce the com-
plexity of creating AUTOSAR deployment models.

3 Domain-Specific Model Intelligence

Based on the challenges related to the AUTOSAR example presented in Sec-
tion 2, the goals of our work on MIGs are to (1) specify an approach for guiding
modelers from partially specified models to complete and coorrect ones and
(2) automate the completion of partially specified models using information ex-
tracted from domain constraints.

In previous work [4, 3], we showed how MDE tools and DSMLs can improve
the modeling experience and bridge the gap between the problem and solution
domain by introducing domain-specific abstractions. At the heart of these efforts
is the Generic Eclipse Modeling System (GEMS), which provides a convenient
way to define the metamodel, i.e., the visual syntax of the DSML. Given a
metamodel, GEMS automatically generates a graphical editor that enforces the
grammar specified in the DSML. GEMS provides convenient infrastructure (such
as built-in support for the Visitor pattern) to simplify model traversal and code
generation. We used GEMS as the basis for our MIGs AUTOSAR deployment
modeling tool and our work on domain-specific model intelligence.

3.1 Domain Constraints as the Basis for Automatic Suggestions

A key research challenge was determining how to specify the set of model con-
straints so they could be used by MIGs not only to check the correctness of the
model, but also to guide users through a series of model modifications to bring it
to a state that satisfies the domain constraints. We considered various approaches
for constraint specification language, including Java, the Object Constraint Lan-
guage (OCL), and Prolog. To evaluate the pros and cons of each approach, we
implemented our AUTOSAR deployment constraints in each of the three lan-
guages.

As a result of this evaluation, we selected Prolog since it provided both con-
straint checking and model suggestions. In particular, Prolog can return the set
of possible facts from a knowledge base that indicate why a rule evaluated to
“true.” The declarative nature of Prolog significantly reduced the number of lines

of code written to transform an instance of a DSML into a knowledge base and
to create constraints (its roughly comparable to OCL for writing constraints).
Moreover, Prolog enables MIGs to derive sequences of modeling actions that
converts the model from an incomplete or invalid state to a valid one. As shown
in Section 1, this capability is crucial for domains, such as deployment in com-
plex DRE systems, where manual model specification is infeasible or extremely
tedious and error-prone.

The remainder of this section describes how Domain Intelligence Generation
(DIG) uses Prolog and GEMS to support the creation of customizable and exten-
sible domain-specific constraint solver and optimization frameworks for MIGs.
Our research focuses on providing modeling guidance and automatic model com-
pletion, as described below.

3.2 Modeling Guidance on-the-fly

To provide domain-specific model intelligence, an MDE tool must capture the
current state of a model and reason about how to assist and guide modelers.
To support this functionality, MIGs use a Prolog knowledge base format that
can be parameterized by a metamodel to create a domain-specific knowledge
base. GEMS metamodels represent a set of model entities and the role-based
relationships between them. For each model, DIG populates a Prolog knowledge
base using these metamodel-specified entities and roles. For each entity, DIG
generates a unique id and a predicate statement specifying the type associated
with it.

In the context of our AUTOSAR example, a model is transformed into the
predicate statement component(id), where id is the unique id for the component.
For each instance of a role-based relationship in the model, a predicate statement
is generated that takes the id of the entity it is relating and the value it is relating
it to. For example, if a component with id 23 has a TargetHost relationship to
a node with id 25 the predicate statement targethost(23,25) is generated. This
predicate statement specifies that the entity with id 25 is a TargetHost of the
entity with id 23. Each knowledge base generated by DIG provides a domain-
specific set of predicate statements.

The domain-specific interface to the knowledge base provides several ad-
vantages over a generic format, such as the format used by a general-purpose
constraint solver like CLIPS. First, the knowledge base maintains the domain-
specific notations from the DSML, making the format more intuitive and read-
able to domain experts. Second, maintaining the domain-specific notations allows
the specification of constraints using domain notations, thereby enabling devel-
opers to understand how requirements map to constraints. Third, in experiments
that we conducted, writing constraints using the domain-specific predicates pro-
duced rules that had fewer levels of indirection and thus outperformed rules
written using a generic format. In general, the size of the performance advantage
depended on the generality of the knowledge base format. To access properties
of the model entities, the predicate syntax presents the most specific knowledge

base format. Given an entity id and role name, the value can be accessed with
the statement role(id,Value), which has exactly zero or one facts that match it.

Based on this domain-specific knowledge base, modelers can specify user-
defined constraints in form of Prolog rules for each type of metamodel relation-
ship. These constraints semantically enrich the model to indicate the require-
ments of a correct model. They are also used to automatically deduce the sets
of valid model changes to create a correct model.

For example, consider the following constraint to check whether a node
(ECU) is a valid host of a component:
is a valid component targethost(Comp,Node). It can be used to both check a
Component to Node combination (e.g.,
is a valid component targethost(23,[25]).) and to find valid Nodes that can play
the TargetHost role for a particular component (e.g.,
is a valid component targethost(23,Nodes).). This latter example uses Prolog’s
ability to deduce the correct solution, i.e., the Nodes variable will be assigned
the list of all constraint-valid nodes for the TargetHost role of the specified com-
ponent. This example illustrates how constraints can be used to check and to
generate the solution, if one exists.

Figure 2 shows how dynamic suggestions from Prolog are presented to mod-
elers. The upper part of the figure shows the fragment of the metamodel that de-

Fig. 2. Highlighting valid target host

scribes the “Deployment” relationship between “Component” and “Node” model
entities. The lower part of the picture shows how the generated editor displays
the corresponding entity instances. This screenshot was made at the moment a
modeler had begun dragging a connection begining from the “ABS” component.
The rectangle around “Host10” labelled “Valid TargetHost” is drawn automati-
cally as a result of triggering the corresponding solver rule and receiving a valid
solution as feeback. GEMS also can also trigger arbitrary Prolog rules from the
modeling tool and incorporate their results back into a model. This mechanism
can be used to solve for complete component to ECU deployments and auto-
matically add deployment relationships based on a (partially) complete model.

To enable modeling assistance, different subsystems must collaborate within
the modeling environment. It is the responsibility of the modeler (or MDE tool
creator) to provide the set of constraints and supply solvers for new constraint
types. The GEMS metamodel editor updates the knowledge base and incorpo-
rates the new rules into the generated MIG. User-defined solver(s) can be based
on existing Prolog algorithms, the reusable rules generated by GEMS, or a hy-
brid of both. Solvers form the core of the basic MIG generated by GEMS. Below
we describe the solver we developed for completing partially specified models in
our AUTOSAR deployment tool.

3.3 Model Completion Solvers

Using a global deployment (completion) solver, it is possible to ask for the com-
pletion of partially specified models constrained by user-defined rules. For ex-
ample, in the AUTOSAR modeling tool, the user can specify the components,
their requirements, the nodes (ECUs), and their resources and ask the tool to
find a valid deployment of components to nodes. After deploying the most crit-
ical components to some nodes by using MIGs step-wise guidance, modelers
can trigger a MIG global deployment solver to complete the deployment. This
solver attempts to calculate an allocation of components to nodes that observes
the deployment constraints and update the connections between components
and nodes accordingly. This global solver can aim for an optimal deployment
structure by using constraint-based Prolog programs or it could integrate some
domain-specific heuristics, such as attempting to find a placement for the com-
ponents that use the most resources first.

In some cases, however, the modeled constraints cannot be satisfied by the
available resources. For example, in a large AUTOSAR model, a valid bin-
packing of the CPU requirements for the components into EPUs may not exist.
In these cases the complexity of the rules and entity relationships could make it
extremely hard to deduce why there is no solution and how to change the model
to overcome the problem. For such situations, we developed a solver that can
identify failing constraints and provide suggestions on how to change the model
to make the deployment possible.

4 Case Study: Solving AUTOSAR Deployment Problem

To validate our DIG MDE tool, we created a DSML for modeling AUTOSAR
deployment problems. This DSML enables developers to specify partial solutions
as sets of components, requirements, nodes (ECUs), and resources. A further
requirement was that the MIGs should produce both valid assignments for a
single component’s TargetHost role and global assignments for the TargetHost
role of all components. In the automotive domain certain software components
often cannot be moved between ECUs from one model car to the next due
to manufacturing costs, quality assurance, or other safety concerns. In these
situations, developers must fix the TargetHost role of certain components and

allow MIGs to solve for valid assignments of the remaining unassigned component
TargetHost roles.

For the first step, we created a deployment DSML metamodel that allows
users to model components with arbitrary configuration and resource require-
ments and nodes (ECUs) with arbitrary sets of provided resources. Each com-
ponent configuration requirement is specified as an assertion on the value of a
resource of the assigned TargetHost. For example, OSVersion > 3.2 would be a
valid configuration constraint. Resource constraints were created by specifying
a resource name and the amount of that resource consumed by the component.
Each Node could only have as many components deployed to it as its resources
could support. Typical resource requirements were the RAM usage and CPU
usage.

Each host can provide an arbitrary number of resources. Constraints com-
parisons on resources were specified using the <, >, -, and = relational operators
to denote that the value of the resource with the same name and type (e.g., OS
version) must be less, greater, or equal to the value specified in requirement.
The “-” relationship indicates a summation constraint, i.e., the total value of
the demands on a resource by the components deployed to the providing node
must not exceed the amount present on the node. After defining the metamodel
and generating the graphical editor for the deployment DSML using GEMS,
we added a set of Prolog constraints to enforce the configuration and resource
constraint semantics of our models.

4.1 Defining Constraints and Solvers

Our constraint rules specified that for each child requirement element of a com-
ponent, a corresponding resource child of the TargetHost must satisfy the re-
quirement. The core part of the configuration constraint rule is as following.

is_a_valid_component_targethost(Owner, Value) :-

(self_targethost(Owner, [Value]), ! %deployed

;

(is_a(Value,node),

self_requires(Owner, Requirements),

forall(member(Req,Requirements),

(requirement_to_resource(Req, Value, Res),

requirement_resource_constraint(Req, Res))

))).

These lines of code are providing not only configuration constraint checking for
an arbitrary set of requirements and resources but also enabling domain-specific
GEMS editors to provide valid suggestions for deploying a component. Moreover,
this solution was intended as a proof-of-concept to validate the approach and
thus could be implemented with even fewer lines of code. The rest of the required
predicates to implement the solver were generated by GEMS.

In our experiments with global solvers, Prolog solved a valid global deploy-
ment of 900 components to 300 nodes in approximately 0.08 seconds. This solu-
tion met all configuration constraints.

The rules required for solving for valid assignments using resource constraints
were significantly more complicated since resource constraints are a form of bin-
packing (an NP-Hard problem). We were able to devise heuristic rules in Prolog,
however, that could solve a 160 component and 80 ECU model deployment in ap-
proximately 1.5 seconds and an entire 300 component and 80 ECU deployment,
a typical AUTOSAR sized problem, in about 3.5 seconds. These solution times
are directly tied to the difficulty of the problem instance. For certain instances,
times could be much higher, which would make the suggestive solver from Sec-
tion 3 discussed in the previous section applicable. In cases where the solver ran
too long, the suggestive solver could be used to suggest ways of expanding the
underlying resources and making the problem more tractable.

5 Concluding Remarks

The work presented in this paper addresses scalability problems of conventional
manual modeling approaches. These scalability issues are particularly problem-
atic for domains that have large solutions spaces and few correct solutions. In
such domains, it is often infeasible to create correct models manually, so con-
straint solvers are therefore needed.

Turning a DSML instance into a format that can be used by a constraint
solver is a time-consuming task. Our DIG MDE tool generates a domain-specific
constraint solver that leverages a semantically rich knowledge base in Prolog
format. It also allows users to specify constraints in declarative format that can
be used to derive modeling suggestions.

GEMS and the MIGs generation framework is an open-source project avail-
able from: http://www.sf.net/projects/gems.

References

1. Automotive open system architecture - http://www.autosar.org/find02 ns6.php.
2006.

2. J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4):110–
111, 1997.

3. J. White and D. C. Schmidt. Simplifying the development of product-line customiza-
tion tools via mdd. In Workshop: MDD for Software Product Lines, ACM/IEEE
8th International Conference on Model Driven Engineering Languages and Systems,
October 2005.

4. J. White and D. C. Schmidt. Reducing enterprise product line architecture de-
ployment costs via model-driven deployment and configuration testing. In 13th
Annual IEEE International Conference and Workshop on the Engineering of Com-
puter Based Systems, 2006.

