CoSMIC: An MDA Generative Tool for Distributed Real-time and
Embedded Applications

Aniruddha Gokhale, Douglas Schmidt Nanbor Wang
Tao Lu, Balachandran Natarajan
ISIS Computer Science
Vanderbilt University Washington University
Box 1829, Station B Box 1045, One Brookings Drive
Nashville, TN 37235 St. Louis, MO 63130
{gokhale,schmidt,lut,bajg@dre.vanderbilt.edu nanbor@cse.wustl.edu
Abstract 1 Introduction

, Commercial-off-the-shelf (COTS) distribution middle-
The Object Management Group (OMG) has adopted th‘?/vare technologies, such as OMG CORBA, Sun's

Model Driven Architecture (MDA) to standardize the joer/E3R and Microsoft's COM+/SOAPLNET, have
|n.tegra't|on of the modeling and simulation paradigm matured considerably in recent years. They are in-
V.V'th mlddlewa_re technology platforms. The MDA de- creasingly used to reduce the time and effort required
fines platform-independent models (PIMs) and platform- develop applications in a broad range of domains.

specific models (PSMs) that streamline platform integraThese middleware technologies, however, have histori-
tion issues and protect investments against the uncer(-:a”y been applied to enterprise applications

tainty of changing platform technology. This technology
has been most successful to date notably for enterprisg/lore recently, middleware has been applied to dis-
and business applications, where modeling techniquegip, ;teq real-time and embedded (DRE) applications
using the Unified Modeling Language (UML) have been, iy syringent quality of service (QoS) requirements for
integrated with component middleware technologies, o gictapility, latency, efficiency, scalability, depend-
such as Enterprise Java Beans (EJB), Microsoft's .NETppjjiv and security. DRE application developers face

and the CORBA Component Model (CCM). similar challenges as enterprise applications developers
when dealing with heterogeneity arising out of differ-

The MDA technology is yet to make its impact in the do-g e i hardware, operating systems, programming lan-

main of.dlstrlbuted real—nmelan(_j embedded appl_lcat_|onsguages, and middleware. In addition, they also need to
(DRE) in areas such as avionics, telecommunications

ensure that applications obtain the levels of QoS they re-
industrial process control and defense. Recent efforts PP Q y

B guire while also keeping total ownership costs low and
notably within OMG a_md some_DARPA DoD programs, .\, ~intain a long shelf life.
have started addressing these issues.

) . _— . As is the case with enterprise applications, a promising
This paper provides three contrlbut|ons_ to .the R&P M way to address the DRE software development and inte-
applying MDA technology to DRE applications. First, gration challenges is to combine OMG’s Model Driven
we delineate seven points of integration of model drivemy , \itacture (MDA) with QoS-enabled component mid-

techniques with DRE co_mponent middlewa_re frame'dleware, such as CIAO [1] which is a CORBA Compo-
works. Second, we describe our MDA tool suite, callednent Model (CCM) implementation tailored to the re-

CoSMIC (Component Synthesis using Model Imegrate(auirements of DRE applications.
Computing). Finally, we describe the modeling and gen-
erative programming approach of CoSMIC used to stati-|, iha context of DRE applications, MDA-based tools
cally configure and fine tune component middleware tai-can be applied to

lored to provide the quality of service (QoS) require-

ments of DRE applications.)]
1. Analyzedifferent — but interdependent — character-

istics of system behavior, such as scalability, pre-

*Work supported by DARPA PCES grant number F33615-00-C- _diCtab”itY- safety, and SeCU_ritY- Too!-specific_model
1695 interpreters translate the information specified by

models into the input format expected by analysis
tools. These tools can check whether the requested
behavior and properties are feasible given the spec-
ified application and resource constraints.

2. Synthesize platform-specific code that is cus-
tomized for particular component middleware and
DRE application properties, such as end-to-end
timing deadlines, recovery strategies to handle vari-
ous runtime failures in real-time, and authentication
and authorization strategies modeled at a higher
level of abstraction.

Combining MDA and QoS-enabled component middle-
ware effectively is essential to resolve the static and dy-
namic QoS provisioning challenges of complex DRE
systems. This paper provides the following three contri-
butions to the successful integration of MDA and QoS-
enabled component middleware that is essential to ad-
dress these challenges: First, we illustrate seven points
of integration of MDA with DRE component middle-

e Combining component middleware with MDA

helps to make middleware more flexible and ro-
bust by automating the configuration of many QoS-
critical aspects, such as concurrency, distribution,
resource reservation, security, and dependability.
Moreover, MDA-synthesized code can help bridge
the interoperability and portability problems be-
tween different middleware for which standard so-
lutions do not yet exist.

Combining component middleware with MDA
helps to model the interfaces among various com-
ponents in terms of standard middleware, rather
than language-specific features or proprietary APIs.
Changes to the underlying middleware or language
mapping for one or many of the components mod-
eled can be handled easily as long as they interop-
erate with other components. Interfacing with other
components can be modeled as constraints that can
be validated by model checkers.

ware frameworks, such as CIAO; Second, we describgq e 1 jjlustrates seven points at which OMG MDA

our MDA tool suite, called CoSMIC (Component Syn-

can be integrated into component middleware architec-

thesis using Model Integrated Computing); Third, we o5 anqd applied to DRE applications. We describe each

describe the modeling and generative programming ap-
proach of CoSMIC used to statically configure and fine

tune component middleware tailored to provide the QoS
requirements of DRE applications.

2 Integrating MDA with QoS-enabled
Component Middleware

Section 1 outlined the key challenges associated with
developing DRE applications with multidimensional
QoS requirements. Integrating OMG MDA with QoS-
enabled component middleware is a promising approach
to address these challenges. This integration can provide
the following benefits:

e Combining MDA with component middleware
helps to overcome problems [2] with earlier-
generation CASE tools since it does not require the
modeling tools to generate all the code. Instead,
large portions of applications can hmmposed
from reusable, prevalidated middleware compo-
nents.

e Combining MDA and component middleware
helps address environments where control logic an
procedures change at rapid pace, by synthesizing
and assembling newer extended components that
implement the new procedures and processes.

Flight Field Radar
Cr[‘)':agu SChegu\mg Control Real-time
Systems Flight
Status
Bulletin
Board

Center

Component
Repository

e

2 Deploy
nt

ompose
i Componel
Assembly

System Development

Airport

Approach
Control

I ——
Business
_{ Logic |.__

Deployment
&

Configuration
Metadata

Web
Gateway
Component

Containers e

Middleware H
‘[Configuration Meladala@ MlddleWare FrameWOrk‘
Component Server

D

1t
& [
P

Mechanism

Containers

o Configuring and deploying an application services end-to-end
e Composing components into application server components
e Configuring application component containers

o Synthesizing application component implementations

e Synthesizing dynamic QoS provisioning and adaptation logic
o Synthesizing middleware-specific configurations

o Synthesizing middleware implementations

igure 1:Integrating MDA with Component Middle-

of these seven integration points below:

1. Configuring and deploying application services service priority level, security, and other quality of ser-
end-to-end. Developing complex DRE applications vice properties. Since DRE applications consist of many
requires application developers to handle a variety ofnteracting components, their containers must be config-
configuration and deployment challenges, such as ured with consistent and compatible QoS policies.

e Locating the appropriate existing services Due to the number of policies and the intricate inter-

e Partitioning and distributing application processesctions among them, it is tedious and error-prone for
among component servers using the same middle? DRE application developer tmanually specify and
ware technologies and maintain component policies and semantic compatibility

o Provisioning the QoS required for each service thatVith Policies of other components. MDA tools can help
comprises an application end-to-end. automate the validation and configuration of these con-

tainer policies by allowing system designers to specify

Itis ad . K to identi d denl Ilth the required system properties as a set of models. Other
g.:{s_a fauntlng t];ars. to identify an dep oly SI t eze €apa1pA tools can then analyze the models and generate the
llities Into an efficient, correct, and scalable end-to-en ecessary policies and ensure their consistency.

application configuration. For example, to maintain cor-
rectness and efficiency, services may change or migratg . I .
when the DRE application requirements change. Care-" Synthesizing _appllcatlon component |_mp!emen-
ful analysis is therefore required to partition coIIaborat-tat'or.]S' Developing co'mplex DRE applications to-
ing services on distributed nodes so the information car‘?Iay involves programming new components that add

be processed efficiently, dependably, and securely. application-specific functionality. leeW|se, new com-
ponents must be programmed to interact with external

Integrating MDA and component middleware to deploy systems and sensors, such as a machine vision .mod-
ule controller, that are not internal to the application.

DRE application services end-to-end can help develops. th s invol bstantial k led
ers configure the right set of services into the right part ince these components Involve substantial Knowledge

of an application in the right way. MDA analysis tools of application domain concepts, such as mechanical de-

can help determine the appropriate partitioning of func->19NS: manufacturing process, workflow planning, and

tionality that should be deployed into various Componentg"’lrdw"jlre char.acter|§t|cs,. I WO.UId be |dea! if they .COUId
servers throughout a network. e developed in conjunction with mechanical engineers

or domain experts, rather than programmed manually in

: . isolation by software developers.
2. Composing components into component servers.

Integrating MDA with component middleware provides The shift toward high-level design languages and mod-

capabilities that help application developers to compose . : ; . .
. o eling tools is creating an opportunity for increased au-
components into application servers by

tomation in generating and integrating application com-
))) _ponents. The goal is to bridge the gap between spec-
e Selecting a set of suitable, seman_tlcally compatiblefication and implementation via sophisticated aspect
components from reuse repositories. weavers [3] and generator tools [4] that can synthesize
e Specifying the functionality required by new com- pjatform-specific code customized for specific applica-
ponents to isolate the details of DRE systems thatjon properties, such as resilience to equipment failure,

(1) operate in environments where DRE processeyioritized scheduling, and bounded worst-case execu-
change periodically and/or (2) interface with third- tion under overload conditions.

party software associated with external systems.

e Determining the intergonnections and interactionsSI Synthesizing dynamic QoS provisioning and adap-
between components in metadata. tation logic. Based on the overall system model and
* Packaging the selected components and metadaig,nsraints, MDA tools may decide to plug in exist-
into an assembly that can be deployed into the comsn g §vnamic QoS provisioning and adaptation modules,
ponent server. such as QuO [], using appropriate parameters. When
none is readily available, the MDA tools can assist in
3. Configuring application component containers. creating the new behavior by synthesizing the logic us-
Application components use containers to interact withing the languages provided by the adaptation modules.
the component servers in which they are configuredThe generated dynamic QoS behavior can then be used
Containers manage many policies that distributed appliin system simulation dynamically to verify its validity.
cations can use to fine-tune underlying component midit can then be composed into the system as described
dleware behavior, such as its priority model, requiredabove.

6. Synthesizing middleware-specific configurations. e |t is carefully fine-tuned to the characteristics of
The infrastructure middleware technologies used by particular programming languages, operating sys-
component middleware provide a wide range of policies tems, and networks.

and options to configure and tune their behavior. For ex-

ample, CORBA ORBs often provide the following op-

tions and tuning parameters:

Various types of transports and protocols

Various levels of fault tolerance

Middleware initialization options

Efficiency of (de)marshaling event parameters
Efficiency of demultiplexing incoming method
calls

Threading models and thread priority settings and
o Buffer sizes, flow control, and buffer overflow han-
dling

2.1 CoSMIC: Component Synthesis using
Model Integrated Computing

The Component Synthesis using Model Integrated Com-
Certain combinations of the options provided by theputing (CoSMIC) project is a MDA toolset being de-
middleware may be semantically incompatible whenyeloped by the Institute for Software Integrated Sys-
used to achieve multiple QoS properties. tems (ISIS) at Vanderbilt University to (Ihodel and
analyzedistributed real-time and embedded application
For example, a component middleware implementatiorfunctionality and QoS requirements and nthesize
could offer a range of security levels to the application.CCM-specific deployment metadata required to deliver
In the lowest security level, the middleware exchangesnd-to-end QoS to DRE applications.
all the messages over an unsecure channel. The highest
security level, in contrast, encrypts and decrypts mesThe CoSMIC toolsuite provides modeling of DRE sys-
sages exchanged through the channel using a set of dyems, their QoS requirements, and QoS adaptation poli-
namic keys. The same middleware could also provide agies used for DRE application QoS management. The
option to use zero-copy optimizations to minimize la- component behavior, their interactions, and QoS re-
tency. A modeling tool could automatically detect the quirements are modeled using a language similar to the
incompatibility of trying to compose the zero-copy op- Embedded Systems Modeling Language (ESML) [9].
timization with the highest security level (which makes Whereas ESML enables modeling a proprietary avion-
another copy of the data during encryption and decrypics component middleware, CoSMIC enables modeling
tion). the standards-based CCM components. Moreover, CoS-
MIC provides modeling languages to model the adaptive
Advanced meta-programming techniques, such as adajgoS behavior supported by QuO/Qoskets.
tive and reflective middleware [5, 6, 7, 8] and aspect-
oriented programming [3], are being developed to con-The CoSMIC project is developing synthesis tools tar-
figure middleware options so they can be tailored forgeted at the CIAO [1] component middleware, which is

particular DRE application use cases. a real-time, QoS-enabled enhancement to CCM. CIAO
o _ . _ abstracts component QoS requirements into metadata
7. Synthesizing middleware implementations. that can be specified in a component assembly after a

MDA can also be integrated with component middle- component has been implemented. Decoupling QoS

ware by using generative tools to synthesize customequirements from component implementations greatly

middleware implementations. This integration is a moresimplifies the conversion and validation of an applica-

aggressive use of modeling and synthesis than integraion model with multiple QoS requirements into CCM

tion point 5 described above since it affects middlewaredeployment of DRE applications.

implementationsrather than their configurations. Ap-

plication integrators could use these capabilities to genThe remainder of this section describes how we are com-

erate highly customized implementations of componenbining the CoSMIC modeling and generative tools with

middleware so that the CIAO component middleware platform to address

key challenges faced by the developers of DRE applica-
e It only includes the features actually needed for ations. Figure 2 illustrates the interface between CoSMIC
particular application and and CIAO.

Integrated System QoS issues. In particular, it does not address the inte-
Model Constraints gration of static and dynamic QoS provisioning mech-
anisms, such as priority propagation, resource alloca-
ntegrate & | Executable tions, dependability, predictability, and adaptation that

Generate | Specifications are crucial to DRE applications.

CoSMIC
Model Interpreter
& Code
Synthesizer

The tools we are developing in CoSMIC are therefore
designed to model and analyze both the application
functionality and its end-to-end QoS requirements. With
CIAQ’s support for QoS-enabled, reusable CCM com-
ponents, it is possible to

CoSMIC

Select Component
Components | Assembly/Code
Generator

CIAO Component
Repository

Synthesize &
Assemble

e Model the QoS requirements of applications using
ccm . UML
Assembly CIAO Plug-ins)]])
e Associate the model with different static and dy-

namic QoS profiles

e Simulate and analyze dynamic behaviors and

e Synthesize the QoS-enabled application functional-
ity in component assemblies.

Deploy

Deployment
Tools

CIAO
Component
Server

Figure 2:Interaction between CoSMIC and CIAO Figures 3, 4 and 5 , respectively, illustrate CoSMIC
meta models for describing CCM container POA poli-

cies, QoS parameters and ORB configuration options.

Challenge 1: Satisfying Multiple Quality of Service

. . FOA
(QoS) Requirements Simultaneously aeProns | <<Modeles
» 1 ldAgsignmentPalicy enum
IdUniguenessPaolicy : enum
i . i Imp\icitActivatinmPnlicy' Enum
Problem. DRE applications demand stringent QoS HresanPoliey. enum
. A questPrUce_SS|ng|_:'Uhcy. enum
support from their middleware. For example, DRE POAanager SenariRetenfionPolizy: enur
o . <<Model=> .
applications such as controller for high-speed surface v Roat: ool
mount component pick-and-place machines require real- ‘#‘
time predictability and performance guarantees. Due | e
to (1) the complexity of these QoS requirements, (2) RootPOA ChildPoA

==hodel== ==Model==

the heterogeneity of the environments in which they
are deployed, and (3) the existing legacy systems and
data, it is infeasible to develop a single-vendor, end-rigyre 3: CoSMIC Meta Model for Container POA
to-end solution that can address all these challengegjicies

Instead, integrating highly configurable, flexible, and

optimized COTS components from several different

providers based on standard component middleware erf*Pplication developers can use these meta models to
ables developers to assemble and deploy these systeffidel their application requirements. CoSMIC genera-
rapidly and robustly. Ensuring application QoS require-tiVe tools are then used to synthesize and assemble QoS-
ments end-to-end, however, can be complicated. enabled, CCM middleware for DRE applications. This
synthesis uses the following iterative process to assem-
ble and deploy QoS-enabled distributed applications:

Solution. A benefit of MDA is its ability to employ
complex modeling tools that can check for certain prop-
erties of the implementatior,g, check the correctness 1. Model the overall application using CoSMIC vi-
of an algorithm or ensure that a series of constraints are sual modeling tools and specify the application’s
enforced. QoS requirements as constraints. This step de-
fines and partitions the functionality and QoS re-
Although the OMG MDA standard has adopted the guirements demanded by each application module
UML-based PIM and PSM for CORBA, it does not yet based on the overall model of the application, as
adequately address a broad spectrum of DRE application described by integration point 1 of Figure 1

OptionGet |2 - - Q0L fmpieation [&
==Model== L ---ne------ e =sConnections= .7 ==
= | T
— |/ A\
[S| |t —
FP_Diractional PFP_B
==Connechon== ==Cof
b - —
SimpleCption he - ﬂ’"—‘ ik a2
=<hiodel== nz.]—H .-:.\nm.'er:’a'auw
— : [—l}.;:. =A==
T | [
£ A
PO I.’)'J_(!J.I:'a-'ll'.-n |—|—'TIT—‘
5 ==Connaclion== Enum It ‘ sting ntRangestan
= AfOFT = <sAtom== || ==Alom== =eflomss
J\ Malue : field | SValue :field | | Starl field
0P__8~Df|ut'1iu'al OP_ |I1!IL|_ Ex FO_Directional FO_lmpl_IEx
=<Conneciion== | <aonnection== wsConnections= «aConnections=
["oF Directionar | [P0 BiDirectiona |
Figure 5:CoSMIC Meta Model for ORB Configuration
QoSParam modeling tool. CoSMIC’s component implementa-
<= Ao == tion synthesizer will generate the actual implemen-
QoSParams DataType - el tathns ba_sed on the models, as indicated by inte-
==Folder>> ImplType field gration point 4 of Figure 1.
ReadMethod : field 4. Validate and simulate applicationsvia CoSMIC
Type el tools that check whether an application composi-
iriteMethod © fleld tion implements its model definitions correctly.

5. Deploy the resulting system for testing and tun-
ing via tools that fine-tune CIAO’s QoS require-
ments for assemblies. Later iterations of this pro-
cess can use these adjustments as feedback to im-

Observable Controllable prove the overall system model.
==Atoms=>
==Atomz=>
Challenge 2: Addressing Accidental Complexities in
Figure 4:CoSMIC Meta Model for QoS Integrating Software Systems

Problem. QoS-enabled component middleware, such
2. Compose component serversusing CoSMIC as CIAO, provides libraries of reusable, configurable
component server composition tools to combinecomponents that can be used to assemble and deploy
component assemblies by mixing and matching ex-QoS-aware DRE applications. However, a naive ap-
isting off-the-shelf components and partitioning or proach to assemble and configure these components can
defining the functionality of new components, as yield components with incompatible, non-interoperable
needed, as shown in Point 2 of Figure 1. The meta-QoS requirements, thereby increasing accidental com-
data in a component assembly also contain QoS replexities. Manual assembling components and configur-
quirements for each components that the composiing their QoS requirements are tedious and error-prone,
tion tools derived from the model. which adversely affects application lifecycle costs and
3. Model and synthesize components-If new com- time-to-market. Moreover, to ensure these requirements
ponent implementations are needed from the previare met end-to-end across a DRE application, compo-
ous step, each can be modeled by using CoSMIC'sx\ent servers often explicitly require complex policies

and customized middleware plugins. Manually speci-with adaptive and reflective middleware.

fying and configuring these policies makes the develop-
ment process even more vexing.

Solution. The iterative process described in the solu-References

tion for Challenge 1 above helps DRE application devel-

opers manage the accidental complexity of assembling[1] Nanbor Wang, Douglas C. Schmidt, Aniruddha

components by providing rich semantics in models and

automatically propagating these semantics into assem-
blies through metadata. There is, however, a need to
ensure that the component servers and the underlying
middleware are configured properly to satisfy the QoS

requirements demanded by the installed components.

The CCM specification does not yet address how to as-[s]

sociate component QoS requirements with a component
deployment. Our CCM implementation (CIAO) there-
fore supports the configuration of certain component

QoS properties via the component deployment metadata[4]

shown by integration point 2 of Figure 1. Since we pro-
vide component QoS management services through con-
tainers in our CCM implementation [10], the synthesiz-

ing tools will also generate container configurations in a [5]

component assembly, as depicted in Point 3 of Figure 1.

To support QoS requirements that were not foreseen by
the component middleware implementation, CoSMIC
can also synthesize middleware modules that CIAO uses
to customize its behavior to support non-native QoS sup-
ports required by other systems. CIAQO’s deployment
framework then uses these customized modules to con-
figure component servers before deploying the compo-
nents, as shown by integration point 6 of Figure 1. The

automation of semantic propagation described here en-8]

sures that all component servers consisting an integrated
DRE application perform their work as specified in the
overall model, without undue programmer intervention.

(9]

3 Concluding Remarks

This paper describes our R&D on a MDA tool calle
CoSMIC suitable for DRE applications. The paper
describes our approach in using CoSMIC for a QoS-
enabled CCM implementation, called CIAO. Currently,
CoSMIC only provides CCM/CORBA platform specific
metamodels to describe ORB configuration and POA
policies. In future CoSMIC will provide platform inde-
pendent metamodels to describe DRE application QoS
requirements. Moreover, currently CoSMIC addresses
static QoS provisioning. Later versions of CoSMIC will
enable dynamic QoS provisioning so that it can be used

[6]

[7]

d [10]

Gokhale, Christopher D. Gill, Balachandran Natarajan,
Craig Rodrigues, Joseph P. Loyall, and Richard E.
Schantz. Total Quality of Service Provisioning in
Middleware and ApplicationsThe Journal of
Microprocessors and Microsysten®¥(2):45-54, mar
2003.

2] Paul Allen. Model Driven ArchitectureComponent

Development Strategie$2(1), January 2002.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented
Programming. IrProceedings of the 11th European
Conference on Object-Oriented Programmidgne
1997.

Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter
Volgysei, Greg Nordstrom, Jonathan Sprinkle, and
Gabor Karsai. Composing Domain-Specific Design
EnvironmentslEEE ComputerNovember 2001.

Fabio Kon, Fabio Costa, Gordon Blair, and Roy H.
Campbell. The Case for Reflective Middleware.
Communications of the ACM5(6):33-38, June 2002.

Gordon S. Blair and G. Coulson and P. Robin and M.
Papathomas. An Architecture for Next Generation
Middleware. InProceedings of the IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processingpages 191-206, London, 1998.
Springer-Verlag.

Fabio M. Costa and Gordon S. Blair. A Reflective
Architecture for Middleware: Design and
Implementation. IECOOP’99, Workshop for PhD
Students in Object Oriented Systehsne 1999.

Joseph K. Cross and Douglas C. Schmidt. Applying the
Quality Connector Pattern to Optimize Distributed
Real-time and Embedded Middleware. In Fethi Rabhi
and Sergei Gorlatch, editorBatterns and Skeletons for
Distributed and Parallel ComputingSpringer Verlag,
2002.

Gabor Karsai, Sandeep Neema, Arpad Bakay, Akos
Ledeczi, Feng Shi, and Aniruddha Gokhale. A
Model-based Front-end to ACE/TAO: The Embedded
System Modeling Language. Froceedings of the
Second Annual TAO Workshofrlington, VA, July
2002.

Nanbor Wang, Douglas C. Schmidt, Michael Kircher,
and Kirthika Parameswaran. Towards a Reflective
Middleware Framework for QoS-enabled CORBA
Component Model ApplicationdEEE Distributed
Systems Onlin&(5), July 2001.

