
CoSMIC: An MDA Generative Tool for Distributed Real-time and
Embedded Applications∗

Aniruddha Gokhale, Douglas Schmidt Nanbor Wang
Tao Lu, Balachandran Natarajan

ISIS Computer Science
Vanderbilt University Washington University
Box 1829, Station B Box 1045, One Brookings Drive
Nashville, TN 37235 St. Louis, MO 63130

{gokhale,schmidt,lut,bala}@dre.vanderbilt.edu nanbor@cse.wustl.edu

Abstract

The Object Management Group (OMG) has adopted the
Model Driven Architecture (MDA) to standardize the
integration of the modeling and simulation paradigm
with middleware technology platforms. The MDA de-
fines platform-independent models (PIMs) and platform-
specific models (PSMs) that streamline platform integra-
tion issues and protect investments against the uncer-
tainty of changing platform technology. This technology
has been most successful to date notably for enterprise
and business applications, where modeling techniques
using the Unified Modeling Language (UML) have been
integrated with component middleware technologies,
such as Enterprise Java Beans (EJB), Microsoft’s .NET,
and the CORBA Component Model (CCM).

The MDA technology is yet to make its impact in the do-
main of distributed real-time and embedded applications
(DRE) in areas such as avionics, telecommunications,
industrial process control and defense. Recent efforts,
notably within OMG and some DARPA DoD programs,
have started addressing these issues.

This paper provides three contributions to the R&D in
applying MDA technology to DRE applications. First,
we delineate seven points of integration of model driven
techniques with DRE component middleware frame-
works. Second, we describe our MDA tool suite, called
CoSMIC (Component Synthesis using Model Integrated
Computing). Finally, we describe the modeling and gen-
erative programming approach of CoSMIC used to stati-
cally configure and fine tune component middleware tai-
lored to provide the quality of service (QoS) require-
ments of DRE applications.

∗Work supported by DARPA PCES grant number F33615-00-C-
1695

1 Introduction

Commercial-off-the-shelf (COTS) distribution middle-
ware technologies, such as OMG CORBA, Sun’s
J2EE/EJB and Microsoft’s COM+/SOAP/.NET, have
matured considerably in recent years. They are in-
creasingly used to reduce the time and effort required
to develop applications in a broad range of domains.
These middleware technologies, however, have histori-
cally been applied to enterprise applications.

More recently, middleware has been applied to dis-
tributed real-time and embedded (DRE) applications
with stringent quality of service (QoS) requirements for
predictability, latency, efficiency, scalability, depend-
ability, and security. DRE application developers face
similar challenges as enterprise applications developers
when dealing with heterogeneity arising out of differ-
ences in hardware, operating systems, programming lan-
guages, and middleware. In addition, they also need to
ensure that applications obtain the levels of QoS they re-
quire while also keeping total ownership costs low and
maintain a long shelf life.

As is the case with enterprise applications, a promising
way to address the DRE software development and inte-
gration challenges is to combine OMG’s Model Driven
Architecture (MDA) with QoS-enabled component mid-
dleware, such as CIAO [1] which is a CORBA Compo-
nent Model (CCM) implementation tailored to the re-
quirements of DRE applications.

In the context of DRE applications, MDA-based tools
can be applied to

1. Analyzedifferent – but interdependent – character-
istics of system behavior, such as scalability, pre-
dictability, safety, and security. Tool-specific model
interpreters translate the information specified by



models into the input format expected by analysis
tools. These tools can check whether the requested
behavior and properties are feasible given the spec-
ified application and resource constraints.

2. Synthesize platform-specific code that is cus-
tomized for particular component middleware and
DRE application properties, such as end-to-end
timing deadlines, recovery strategies to handle vari-
ous runtime failures in real-time, and authentication
and authorization strategies modeled at a higher
level of abstraction.

Combining MDA and QoS-enabled component middle-
ware effectively is essential to resolve the static and dy-
namic QoS provisioning challenges of complex DRE
systems. This paper provides the following three contri-
butions to the successful integration of MDA and QoS-
enabled component middleware that is essential to ad-
dress these challenges: First, we illustrate seven points
of integration of MDA with DRE component middle-
ware frameworks, such as CIAO; Second, we describe
our MDA tool suite, called CoSMIC (Component Syn-
thesis using Model Integrated Computing); Third, we
describe the modeling and generative programming ap-
proach of CoSMIC used to statically configure and fine
tune component middleware tailored to provide the QoS
requirements of DRE applications.

2 Integrating MDA with QoS-enabled
Component Middleware

Section 1 outlined the key challenges associated with
developing DRE applications with multidimensional
QoS requirements. Integrating OMG MDA with QoS-
enabled component middleware is a promising approach
to address these challenges. This integration can provide
the following benefits:

• Combining MDA with component middleware
helps to overcome problems [2] with earlier-
generation CASE tools since it does not require the
modeling tools to generate all the code. Instead,
large portions of applications can becomposed
from reusable, prevalidated middleware compo-
nents.

• Combining MDA and component middleware
helps address environments where control logic and
procedures change at rapid pace, by synthesizing
and assembling newer extended components that
implement the new procedures and processes.

• Combining component middleware with MDA
helps to make middleware more flexible and ro-
bust by automating the configuration of many QoS-
critical aspects, such as concurrency, distribution,
resource reservation, security, and dependability.
Moreover, MDA-synthesized code can help bridge
the interoperability and portability problems be-
tween different middleware for which standard so-
lutions do not yet exist.

• Combining component middleware with MDA
helps to model the interfaces among various com-
ponents in terms of standard middleware, rather
than language-specific features or proprietary APIs.

• Changes to the underlying middleware or language
mapping for one or many of the components mod-
eled can be handled easily as long as they interop-
erate with other components. Interfacing with other
components can be modeled as constraints that can
be validated by model checkers.

Figure 1 illustrates seven points at which OMG MDA
can be integrated into component middleware architec-
tures and applied to DRE applications. We describe each

Component Server

Containers Containers

Flight
Scheduling
Processing

Web
Gateway

Component
Deployment

&
Configuration
Mechanism

Middleware Framework

Deployment
&

Configuration
Metadata

Component
Repository

Compose Deploy

Middleware
Configuration Metadata 6

4

3

1

2

3

4

6

Configuring and deploying an application services end-to-end

Synthesizing application component implementations

Configuring application component containers

Composing components into application server components

Synthesizing middleware-specific configurations

Business
Logic

7

7 Synthesizing middleware implementations

Client

Middleware Bus

Central
Data
Store

1

System Development

Field Radar
Control

Systems
Real-time

Flight
Status
Bulletin
Board

Chicago
Data

Center

Component
Assembly

Flight
Scheduling

2
Airport

Approach
Control

5 Synthesizing dynamic QoS provisioning and adaptation logic

5

Figure 1:Integrating MDA with Component Middle-
ware

of these seven integration points below:



1. Configuring and deploying application services
end-to-end. Developing complex DRE applications
requires application developers to handle a variety of
configuration and deployment challenges, such as

• Locating the appropriate existing services
• Partitioning and distributing application processes

among component servers using the same middle-
ware technologies and

• Provisioning the QoS required for each service that
comprises an application end-to-end.

It is a daunting task to identify and deploy all these capa-
bilities into an efficient, correct, and scalable end-to-end
application configuration. For example, to maintain cor-
rectness and efficiency, services may change or migrate
when the DRE application requirements change. Care-
ful analysis is therefore required to partition collaborat-
ing services on distributed nodes so the information can
be processed efficiently, dependably, and securely.

Integrating MDA and component middleware to deploy
DRE application services end-to-end can help develop-
ers configure the right set of services into the right part
of an application in the right way. MDA analysis tools
can help determine the appropriate partitioning of func-
tionality that should be deployed into various component
servers throughout a network.

2. Composing components into component servers.
Integrating MDA with component middleware provides
capabilities that help application developers to compose
components into application servers by

• Selecting a set of suitable, semantically compatible
components from reuse repositories.

• Specifying the functionality required by new com-
ponents to isolate the details of DRE systems that
(1) operate in environments where DRE processes
change periodically and/or (2) interface with third-
party software associated with external systems.

• Determining the interconnections and interactions
between components in metadata.

• Packaging the selected components and metadata
into an assembly that can be deployed into the com-
ponent server.

3. Configuring application component containers.
Application components use containers to interact with
the component servers in which they are configured.
Containers manage many policies that distributed appli-
cations can use to fine-tune underlying component mid-
dleware behavior, such as its priority model, required

service priority level, security, and other quality of ser-
vice properties. Since DRE applications consist of many
interacting components, their containers must be config-
ured with consistent and compatible QoS policies.

Due to the number of policies and the intricate inter-
actions among them, it is tedious and error-prone for
a DRE application developer tomanuallyspecify and
maintain component policies and semantic compatibility
with policies of other components. MDA tools can help
automate the validation and configuration of these con-
tainer policies by allowing system designers to specify
the required system properties as a set of models. Other
MDA tools can then analyze the models and generate the
necessary policies and ensure their consistency.

4. Synthesizing application component implemen-
tations. Developing complex DRE applications to-
day involves programming new components that add
application-specific functionality. Likewise, new com-
ponents must be programmed to interact with external
systems and sensors, such as a machine vision mod-
ule controller, that are not internal to the application.
Since these components involve substantial knowledge
of application domain concepts, such as mechanical de-
signs, manufacturing process, workflow planning, and
hardware characteristics, it would be ideal if they could
be developed in conjunction with mechanical engineers
or domain experts, rather than programmed manually in
isolation by software developers.

The shift toward high-level design languages and mod-
eling tools is creating an opportunity for increased au-
tomation in generating and integrating application com-
ponents. The goal is to bridge the gap between spec-
ification and implementation via sophisticated aspect
weavers [3] and generator tools [4] that can synthesize
platform-specific code customized for specific applica-
tion properties, such as resilience to equipment failure,
prioritized scheduling, and bounded worst-case execu-
tion under overload conditions.

5. Synthesizing dynamic QoS provisioning and adap-
tation logic. Based on the overall system model and
constraints, MDA tools may decide to plug in exist-
ing dynamic QoS provisioning and adaptation modules,
such as QuO [], using appropriate parameters. When
none is readily available, the MDA tools can assist in
creating the new behavior by synthesizing the logic us-
ing the languages provided by the adaptation modules.
The generated dynamic QoS behavior can then be used
in system simulation dynamically to verify its validity.
It can then be composed into the system as described
above.



6. Synthesizing middleware-specific configurations.
The infrastructure middleware technologies used by
component middleware provide a wide range of policies
and options to configure and tune their behavior. For ex-
ample, CORBA ORBs often provide the following op-
tions and tuning parameters:

• Various types of transports and protocols
• Various levels of fault tolerance
• Middleware initialization options
• Efficiency of (de)marshaling event parameters
• Efficiency of demultiplexing incoming method

calls
• Threading models and thread priority settings and
• Buffer sizes, flow control, and buffer overflow han-

dling

Certain combinations of the options provided by the
middleware may be semantically incompatible when
used to achieve multiple QoS properties.

For example, a component middleware implementation
could offer a range of security levels to the application.
In the lowest security level, the middleware exchanges
all the messages over an unsecure channel. The highest
security level, in contrast, encrypts and decrypts mes-
sages exchanged through the channel using a set of dy-
namic keys. The same middleware could also provide an
option to use zero-copy optimizations to minimize la-
tency. A modeling tool could automatically detect the
incompatibility of trying to compose the zero-copy op-
timization with the highest security level (which makes
another copy of the data during encryption and decryp-
tion).

Advanced meta-programming techniques, such as adap-
tive and reflective middleware [5, 6, 7, 8] and aspect-
oriented programming [3], are being developed to con-
figure middleware options so they can be tailored for
particular DRE application use cases.

7. Synthesizing middleware implementations.
MDA can also be integrated with component middle-
ware by using generative tools to synthesize custom
middleware implementations. This integration is a more
aggressive use of modeling and synthesis than integra-
tion point 5 described above since it affects middleware
implementations, rather than their configurations. Ap-
plication integrators could use these capabilities to gen-
erate highly customized implementations of component
middleware so that

• It only includes the features actually needed for a
particular application and

• It is carefully fine-tuned to the characteristics of
particular programming languages, operating sys-
tems, and networks.

2.1 CoSMIC: Component Synthesis using
Model Integrated Computing

The Component Synthesis using Model Integrated Com-
puting (CoSMIC) project is a MDA toolset being de-
veloped by the Institute for Software Integrated Sys-
tems (ISIS) at Vanderbilt University to (1)model and
analyzedistributed real-time and embedded application
functionality and QoS requirements and (2)synthesize
CCM-specific deployment metadata required to deliver
end-to-end QoS to DRE applications.

The CoSMIC toolsuite provides modeling of DRE sys-
tems, their QoS requirements, and QoS adaptation poli-
cies used for DRE application QoS management. The
component behavior, their interactions, and QoS re-
quirements are modeled using a language similar to the
Embedded Systems Modeling Language (ESML) [9].
Whereas ESML enables modeling a proprietary avion-
ics component middleware, CoSMIC enables modeling
the standards-based CCM components. Moreover, CoS-
MIC provides modeling languages to model the adaptive
QoS behavior supported by QuO/Qoskets.

The CoSMIC project is developing synthesis tools tar-
geted at the CIAO [1] component middleware, which is
a real-time, QoS-enabled enhancement to CCM. CIAO
abstracts component QoS requirements into metadata
that can be specified in a component assembly after a
component has been implemented. Decoupling QoS
requirements from component implementations greatly
simplifies the conversion and validation of an applica-
tion model with multiple QoS requirements into CCM
deployment of DRE applications.

The remainder of this section describes how we are com-
bining the CoSMIC modeling and generative tools with
the CIAO component middleware platform to address
key challenges faced by the developers of DRE applica-
tions. Figure 2 illustrates the interface between CoSMIC
and CIAO.



Integrated
Model

CoSMIC
Model Interpreter

& Code
Synthesizer

System
Constraints

Executable
Specifications

CIAO Component
Repository

CoSMIC
Component

Assembly/Code
Generator

CIAO Plug-ins

CIAO
CCM

 Assembly

Integrate &
Generate

Select
Components

Synthesize &
Assemble

CIAO
Component

Server

Deploy
CIAO

Package
Deployment

Tools

Figure 2:Interaction between CoSMIC and CIAO

Challenge 1: Satisfying Multiple Quality of Service
(QoS) Requirements Simultaneously

Problem. DRE applications demand stringent QoS
support from their middleware. For example, DRE
applications such as controller for high-speed surface
mount component pick-and-place machines require real-
time predictability and performance guarantees. Due
to (1) the complexity of these QoS requirements, (2)
the heterogeneity of the environments in which they
are deployed, and (3) the existing legacy systems and
data, it is infeasible to develop a single-vendor, end-
to-end solution that can address all these challenges.
Instead, integrating highly configurable, flexible, and
optimized COTS components from several different
providers based on standard component middleware en-
ables developers to assemble and deploy these systems
rapidly and robustly. Ensuring application QoS require-
ments end-to-end, however, can be complicated.

Solution. A benefit of MDA is its ability to employ
complex modeling tools that can check for certain prop-
erties of the implementation,e.g., check the correctness
of an algorithm or ensure that a series of constraints are
enforced.

Although the OMG MDA standard has adopted the
UML-based PIM and PSM for CORBA, it does not yet
adequately address a broad spectrum of DRE application

QoS issues. In particular, it does not address the inte-
gration of static and dynamic QoS provisioning mech-
anisms, such as priority propagation, resource alloca-
tions, dependability, predictability, and adaptation that
are crucial to DRE applications.

The tools we are developing in CoSMIC are therefore
designed to model and analyze both the application
functionality and its end-to-end QoS requirements. With
CIAO’s support for QoS-enabled, reusable CCM com-
ponents, it is possible to

• Model the QoS requirements of applications using
UML

• Associate the model with different static and dy-
namic QoS profiles

• Simulate and analyze dynamic behaviors and
• Synthesize the QoS-enabled application functional-

ity in component assemblies.

Figures 3, 4 and 5 , respectively, illustrate CoSMIC
meta models for describing CCM container POA poli-
cies, QoS parameters and ORB configuration options.

Figure 3: CoSMIC Meta Model for Container POA
Policies

Application developers can use these meta models to
model their application requirements. CoSMIC genera-
tive tools are then used to synthesize and assemble QoS-
enabled, CCM middleware for DRE applications. This
synthesis uses the following iterative process to assem-
ble and deploy QoS-enabled distributed applications:

1. Model the overall application using CoSMIC vi-
sual modeling tools and specify the application’s
QoS requirements as constraints. This step de-
fines and partitions the functionality and QoS re-
quirements demanded by each application module
based on the overall model of the application, as
described by integration point 1 of Figure 1



Figure 5:CoSMIC Meta Model for ORB Configuration

Figure 4:CoSMIC Meta Model for QoS

2. Compose component serversusing CoSMIC
component server composition tools to combine
component assemblies by mixing and matching ex-
isting off-the-shelf components and partitioning or
defining the functionality of new components, as
needed, as shown in Point 2 of Figure 1. The meta-
data in a component assembly also contain QoS re-
quirements for each components that the composi-
tion tools derived from the model.

3. Model and synthesize components—If new com-
ponent implementations are needed from the previ-
ous step, each can be modeled by using CoSMIC’s

modeling tool. CoSMIC’s component implementa-
tion synthesizer will generate the actual implemen-
tations based on the models, as indicated by inte-
gration point 4 of Figure 1.

4. Validate and simulate applicationsvia CoSMIC
tools that check whether an application composi-
tion implements its model definitions correctly.

5. Deploy the resulting system for testing and tun-
ing via tools that fine-tune CIAO’s QoS require-
ments for assemblies. Later iterations of this pro-
cess can use these adjustments as feedback to im-
prove the overall system model.

Challenge 2: Addressing Accidental Complexities in
Integrating Software Systems

Problem. QoS-enabled component middleware, such
as CIAO, provides libraries of reusable, configurable
components that can be used to assemble and deploy
QoS-aware DRE applications. However, a naive ap-
proach to assemble and configure these components can
yield components with incompatible, non-interoperable
QoS requirements, thereby increasing accidental com-
plexities. Manual assembling components and configur-
ing their QoS requirements are tedious and error-prone,
which adversely affects application lifecycle costs and
time-to-market. Moreover, to ensure these requirements
are met end-to-end across a DRE application, compo-
nent servers often explicitly require complex policies



and customized middleware plugins. Manually speci-
fying and configuring these policies makes the develop-
ment process even more vexing.

Solution. The iterative process described in the solu-
tion for Challenge 1 above helps DRE application devel-
opers manage the accidental complexity of assembling
components by providing rich semantics in models and
automatically propagating these semantics into assem-
blies through metadata. There is, however, a need to
ensure that the component servers and the underlying
middleware are configured properly to satisfy the QoS
requirements demanded by the installed components.

The CCM specification does not yet address how to as-
sociate component QoS requirements with a component
deployment. Our CCM implementation (CIAO) there-
fore supports the configuration of certain component
QoS properties via the component deployment metadata
shown by integration point 2 of Figure 1. Since we pro-
vide component QoS management services through con-
tainers in our CCM implementation [10], the synthesiz-
ing tools will also generate container configurations in a
component assembly, as depicted in Point 3 of Figure 1.

To support QoS requirements that were not foreseen by
the component middleware implementation, CoSMIC
can also synthesize middleware modules that CIAO uses
to customize its behavior to support non-native QoS sup-
ports required by other systems. CIAO’s deployment
framework then uses these customized modules to con-
figure component servers before deploying the compo-
nents, as shown by integration point 6 of Figure 1. The
automation of semantic propagation described here en-
sures that all component servers consisting an integrated
DRE application perform their work as specified in the
overall model, without undue programmer intervention.

3 Concluding Remarks

This paper describes our R&D on a MDA tool called
CoSMIC suitable for DRE applications. The paper
describes our approach in using CoSMIC for a QoS-
enabled CCM implementation, called CIAO. Currently,
CoSMIC only provides CCM/CORBA platform specific
metamodels to describe ORB configuration and POA
policies. In future CoSMIC will provide platform inde-
pendent metamodels to describe DRE application QoS
requirements. Moreover, currently CoSMIC addresses
static QoS provisioning. Later versions of CoSMIC will
enable dynamic QoS provisioning so that it can be used

with adaptive and reflective middleware.

References

[1] Nanbor Wang, Douglas C. Schmidt, Aniruddha
Gokhale, Christopher D. Gill, Balachandran Natarajan,
Craig Rodrigues, Joseph P. Loyall, and Richard E.
Schantz. Total Quality of Service Provisioning in
Middleware and Applications.The Journal of
Microprocessors and Microsystems, 27(2):45–54, mar
2003.

[2] Paul Allen. Model Driven Architecture.Component
Development Strategies, 12(1), January 2002.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented
Programming. InProceedings of the 11th European
Conference on Object-Oriented Programming, June
1997.

[4] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter
Volgysei, Greg Nordstrom, Jonathan Sprinkle, and
Gabor Karsai. Composing Domain-Specific Design
Environments.IEEE Computer, November 2001.

[5] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H.
Campbell. The Case for Reflective Middleware.
Communications of the ACM, 45(6):33–38, June 2002.

[6] Gordon S. Blair and G. Coulson and P. Robin and M.
Papathomas. An Architecture for Next Generation
Middleware. InProceedings of the IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing, pages 191–206, London, 1998.
Springer-Verlag.

[7] Fábio M. Costa and Gordon S. Blair. A Reflective
Architecture for Middleware: Design and
Implementation. InECOOP’99, Workshop for PhD
Students in Object Oriented Systems, June 1999.

[8] Joseph K. Cross and Douglas C. Schmidt. Applying the
Quality Connector Pattern to Optimize Distributed
Real-time and Embedded Middleware. In Fethi Rabhi
and Sergei Gorlatch, editors,Patterns and Skeletons for
Distributed and Parallel Computing. Springer Verlag,
2002.

[9] Gabor Karsai, Sandeep Neema, Arpad Bakay, Akos
Ledeczi, Feng Shi, and Aniruddha Gokhale. A
Model-based Front-end to ACE/TAO: The Embedded
System Modeling Language. InProceedings of the
Second Annual TAO Workshop, Arlington, VA, July
2002.

[10] Nanbor Wang, Douglas C. Schmidt, Michael Kircher,
and Kirthika Parameswaran. Towards a Reflective
Middleware Framework for QoS-enabled CORBA
Component Model Applications.IEEE Distributed
Systems Online, 2(5), July 2001.


