
Optimizing Distributed System Performance
via Adaptive Middleware Load Balancing

Ossama Othman, and Douglas C. Schmidt
fossama, schmidtg@uci.edu

Department of Electrical and Computer Engineering
University of California, Irvine

Irvine, CA 92697-2625, USA�

Abstract

Load balancing middleware is used extensively to improve
scalability and overall system throughput in distributed sys-
tems. Many load balancing middleware services are sim-
plistic, however, since they are geared only for specific use-
cases and environments. These limitations make it hard to
use the same load balancing service for anything other than
the distributed application it was designed for originally.
This lack of generality forces continuous re-development of
application-specific load balancing services. Not only does
re-development increase deployment costs of distributed ap-
plications, but it also increases the potential of producing non-
optimal load balancing implementations since proven load
balancing service optimizations cannot be reused directly.

This paper presents a set of load balancing service features
that address many existing middleware load balancing ser-
vice inadequacies, such as lack of server-side transparency,
centralized load balancing, sole support for stateless replica-
tion, fixed load monitoring granularities, lack of fault toler-
ant load balancing, non-extensible load balancing algorithms,
and simplistic replica management. All the capabilities de-
scribed in this paper are currently under development for the
next generation of middleware-based load balancing service
distributed with our CORBA-compliant ORB (TAO).

Keywords: Middleware, patterns, scalability, CORBA,
load balancing.

1 Introduction

Motivation: As the demands of resource-intensive dis-
tributed applications have grown, the need for improved over-
all throughput and scalability has also grown. A cost-effective
way to address these application demands is to employ load
balancing services based on distributed object computingmid-
dleware, such as CORBA [1] or Java RMI [2]. These load
balancing services distribute client workload equitably among

�This work was funded in part by ATD, BBN, Cisco, DARPA contract
9701516, and Siemens MED.

various back-end servers in order obtain the best response time
possible given a particular load.

Many existing middleware load balancing services provide
just enough functionality to support simple distributed appli-
cations. For example, stateless distributed applications that
require load balancing often employ a simple load balancing
service that is integrated with a naming service [3, 4]. In this
approach, a naming service returns a reference to a differ-
ent object each time it is accessed by a client. Load balanc-
ing via a naming service only supports a static non-adaptive
form of load balancing, however, which limits its applicability
to distributed systems with more sophisticated load balancing
needs. This approach also greatly reduces the potential for
optimizing overall distributed system load since it is not pos-
sible to adapt the behavior of the load balanced applications
dynamically.

In contrast,adaptiveload balancing services can consider
dynamic load conditions when making load balancing deci-
sions, which yields the following benefits:

� Adaptive load balancing services can be used for a larger
range of distributed systems since they need not be de-
signed for any specific type of application.

� Since a single load balancing service can be used for
many types of applications, the cost of developing a load
balancing service for specific types of applications can be
avoided, thereby reducing deployment costs.

� It is possible to concentrate on the load balancing service
in general, rather than a particular aspect geared solely to
specific type of application, which can improve the qual-
ity of optimizations used in the load balancing service
over time.

However, first-generation adaptive middleware load balanc-
ing services [5, 6, 7, 8] do not provide solutions for key dimen-
sions of the problem space. In particular, they provide insuffi-
cient functionality to satisfy complex distributed applications
with higher optimization requirements. In general, as the com-
plexity of distributed applications grows, their load balancing
requirements necessitate more advanced functionality, such as

1

the ability to tolerate faults, install new load balancing algo-
rithms at run-time, and create replicas on-demand to handle
bursty clients. The lack of this advanced functionality can ad-
versely effect distributed system performance and scalability.
This paper discusses these and other types of load balancing
functionality necessary to optimize complex distributed sys-
tems more effectively.

Background: This paper assumes that readers are familiar
with basic load balancing concepts and terminology. The key
conceptual components used in this paper are outlined below:

� Load balancer: This component attempts to ensure that
loads are balanced across a group of servers. It is sometimes
referred to as a “load balancing agent,” or a “load balancing
service.” In this paper, a load balancer may consist of a single
centralized server or multipledecentralizedservers that col-
lectively form a single logical load balancer.

� Replica: This component is a duplicate instance of a
particular object on a server that is managed by a load bal-
ancer. They can either retain state (i.e., bestateful) or retain
no state at all (i.e., bestateless).

� Replica group: This component is actually a group of
replicas across which loads are balanced. Replicas in such
groups implement the same remote operations. Replica groups
are also referred to as “object groups.”

� CORBA and TAO: CORBA Object Request Brokers
(ORBs) allow clients to invoke operations on distributed ob-
jects without concern for object location, programming lan-
guage, OS platform, communication protocols and intercon-
nects, and hardware [9]. TAO is an open-source1 CORBA-
compliant ORB designed to address applications with strin-
gent quality of service (QoS) requirements.

The structure and relationship of these components is il-
lustrated in Figure 1. The TAO CORBA ORB provides the
distribution middleware for all of the components shown in
this figure. TAO facilitates location-transparent communica-
tion between:

� Clients and a load balancer;

� A load balancer and the replicas; and

� Clients and the replicas

In this case, the load balancer also keeps track of which repli-
cas belong to each replica group. For more details on load
balancing concepts and terminology see [5].

1The software, documentation, examples, and tests for TAO and its adap-
tive load balancing service are open-source can can be downloaded from
http://www.cs.wustl.edu/ �schmidt/TAO.html .

Load
Balancer

Clients

R
eq

ue
st

s

R
ep

lie
s

Replicas
Replica Groups

Figure 1: CORBA-based Load Balancing Concepts and Com-
ponents

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 summarizes a set of advanced
CORBA-based2 load balancing features designed to address
optimization and inadequacies in existing load balancing ser-
vices; Section 3 briefly describes related load balancing work;
and Section 4 presents concluding remarks.

2 Optimizing and Enhancing Load
Balancing Services

This section describes several advanced load balancing fea-
tures that address the inability of many load balancing services
to satisfy the demanding optimization and quality of service
(QoS) requirements exhibited by complex distributed systems.
Those features include the following:

1. Server transparency

2. Decentralized load balancing

3. Stateful replicas

2Although this paper concentrates primarily on CORBA-based load bal-
ancing services, the concepts outlined in this paper are applicable to load bal-
ancing services that are based on other types of middleware, such as COM+,
Java RMI, and proprietary message-oriented middleware (MOM).

2

4. Diverse load monitoring granularity

5. Fault tolerant load balancing

6. Extensible load balancing algorithms

7. On-demand replica activation

We explore each of these features below.

2.1 Server Transparency

Context: Distributed applications can suffer from poor per-
formance due to a bottleneck at a single overloaded server. To
address this performance bottleneck, anadaptiveload balanc-
ing service is used to (1) distribute client requests equitably
among a group of replicas and (2) actively monitor and con-
trol loads on replicas in that group.

Problem: An adaptive load balancing service must commu-
nicate with replicas so it can force them to either accept or
reject requests. To achieve this level of communication, ap-
plication servers must be programmed to accept load balanc-
ing requests (as well as client requests) from the adaptive load
balancing service. However, most distributed applications are
not designed with this ability, nor should they necessarily be
designed with that ability in mind since it complicates the re-
sponsibilities of application developers.

Solution ! the Component Configurator and Interceptor
patterns: If adaptive load balancing is to be used transpar-
ently on the server-side of a distributed application, there must
be some way to install feedback/control mechanisms into the
server without altering the server application software. For-
tunately, most ORB middleware–and in particular CORBA–
provide a meta-programming mechanism based on the Inter-
ceptor pattern [10]. These mechanisms can alter the behav-
ior of a client or a server when processing a given client re-
quest [11]. An interceptor can be installed at run-time to pro-
vide the functionality necessary to (1) communicate with the
load balancing service and (2) accept load control requests
from the load balancing service. Since the interceptor mech-
anism is part of the middleware implementation, server appli-
cation software need not be modified.

To provide true server-side transparency, however, there
must be some means of installing interceptors transparently
to control requests from the adaptive load balancing service.
The Component Configurator pattern [10] can be used to dy-
namically load a service into an application at run-time. In
particular, a Component Configurator can be used to transpar-
ently install a load balancing interceptor into an application’s
underlying middleware at run-time, as illustrated in Figure 2.
Using this approach, the overall throughput of a distributed ap-
plication can be improved without modifications to distributed
application server code.

: Replica

: Component Configurator

: Object

CPU Load Monitor: Request Interceptor

Request Interceptor

I/O Load Monitor : Request Interceptor

Dynamically loaded
load balancing
interceptors.

:ORB

Figure 2: Transparent Server-side Load Balancing

Applying the solution in TAO: The functionality required
to install a load balancing interceptor transparently at run-time
is available in most CORBA ORBs, such as TAO. This func-
tionality includesportable interceptorsand theCORBA Com-
ponent Model, as outlined below:

� Portable interceptors: Portable interceptors [12] can
capture client requests transparently before they are dispatched
to an object replica. For example, aserver request interceptor
could be added to the ORB where a given replica runs. Since
interceptors reside within the ORB no modification to server
application code is necessary, other than registering the inter-
ceptor with the ORB when it starts running.

� CORBA Component Model (CCM): The CCM [13]
introduces containers to decouple application component
logic from the configuration, initialization, and administra-
tion of servers. In the CCM, a container creates the POA
and interceptors required to activate and control a component.
These are the same CORBA mechanisms used to implement
the server components in TAO’s load balancing service. The
standard CCM containers can be extended to implement auto-
matic load balancinggenericallywithout changing application
component behavior.

2.2 Decentralized Load Balancing

Context: A large group of distributed replicas is being load
balanced. In addition to control requests sent from the load
balancing service to the replicas, load information is sent to
the load balancing service from each of these replicas.

3

Problem: Adaptive middleware load balancing services are
oftencentralized, i.e., a single load balancing server manages
client requests and replica loads. Specifically,one load bal-
ancer performs all load balancing tasks for each distributed
application. Although centralized load balancing services are
simpler to design and implement, their centralization intro-
duces a single point of failure, which can impede system reli-
ability and scalability.

Solution ! Federated architecture: To overcome the
problems in centralized load balancing services, afederated
load balancing architecture can be used to implement a more
scalable and reliable load balancing service. In this model,
load balancing is performed via a distributed,i.e., decentral-
ized, set of load balancers that collectively form a singlelog-
ical load balancing service. This architecture is illustrated in
Figure 3.

s1 : Server

l1: Load Balancer

Replica 1 : Object: ORB

s2 : Server

l2: Load Balancer

Replica 2 : Object: ORB

Figure 3: Federated Load Balancing

The advantages of this architecture is that (1) a single point
of failure does not exist and (2) no single bottleneck point ex-
ists either. Load balancing decisions are made cooperatively,
i.e., each load balancer can communicate with other balancers
to decide how best to balance loads across a given group of
replicas. Communication could, for example, be performed
using reliable multicast to efficiently convey load information
to other load balancers.

Decentralized load balancing schemes, such as the federated
load balancing model described above, can potentially reduce
the number of messages related to load balancing. In par-
ticular, a decentralizedhierarchical architecture can be used
to coalesce load balancing related messages as load reports
are propagated up the hierarchy of load balancers. The re-
duced number of messages lowers network resource utiliza-
tion, which in turn can improve overall performance of the
distributed application being load balanced.

Applying the solution in TAO: The techniques described in
Section 2.1 to ensure server-side load balancing transparency
can be used to implement a federated load balancing service.
In particular, the “distributed” component of a federated load
balancing service can reside in an interceptor that is installed
transparently.

TAO’s next-generation adaptive load balancer uses the
Component Configurator pattern to dynamically load a factory
object. That factory object creates an ORB initializer [12] ob-
ject that registers the load balancing interceptor with an ORB
each time an ORB is created. This design allows a portion
of a federated load balancing service to transparently reside at
multiple locations,i.e., where ever replicas reside.

2.3 Stateful Replicas

Context: A server in a distributed application retains state
that is used when servicing subsequent client requests,e.g.,
the state can influence the results of future client requests.

Problem: To enhance genericity and reuse, a load balancing
service should be able to balance loads across stateful repli-
cas. Thus, a load balancing service must ensure that state held
by each replica is consistent. In heterogeneous environments
(e.g., platforms with different binary formats) it is non-trivial
to manage distributed state. A load balancing service must
havea priori knowledge of the state contents to send or trans-
fer state to other replicas. For example, the underlying middle-
ware that actually handles state transfer must know the types of
data in the replica’s state to marshal it correctly and efficiently
for transport over a heterogeneous communication medium,
such as the Internet. These requirements make it hard to fully
automate load balancing of stateful replicas.

Solution! the Memento pattern: To load balance replicas
that retain state, some means of maintaining state consistency
between replicas is necessary. The Memento pattern [14] can
help to address this need by capturing internal state so that it
may be restored at a later time. For example, a load balanc-
ing service could invokeget state andset state opera-
tions on a pair of replicas to transfer state between the replicas.
These two methods are specified by the Memento pattern, and
the replica itself must implement them. Figure 4 illustrates the
sequence of operations that occur when forwarding a client to
a less load stateful replica. These operations are outlined be-
low:

1. A client makes a request. The request is intercepted by
the load balancer transparently.

2. To transfer load to a new replica, the load balancer ob-
tains the state from the overloaded replica using the
get state operation.

3. That state is then restored into the new underloaded
replica by invokingset state operation on that un-
derloaded replica.

4. After the state transfer occurs, the new replica can service
client requests, and the load balancer notifies it that it can
begin accepting requests.

4

: Load Balancer Replica 1 : Object Replica 2 : Object

2. get_state()

3. set_state()

: Client

1. send_request()

4. accept_requests()

5. reject_requests()

6. LOCATION_FORWARD()

7. send_request()

Figure 4: Load Balancing Stateful Replicas

5. The overloaded replica must shed some of its load, so
the load balancer notifies it that it should reject requests.
This entails making the overloaded replica redirect client
requests back to the load balancer.

6. The load balancer now redirects the client to the new un-
derloaded replica transparently by means of the GIOP
LOCATION FORWARD message.

7. The client ORB reissues the request to the new less
loaded replica.

An alternative solution is provided by the CORBA Persis-
tent State Service [15]. It extends the CORBA IDL3 so that
it becomes possible for distributed application developers to
define precisely what the internal state is,i.e., its format or
schema. Thisa priori knowledge facilitates persistence at
compile-time, and thus simplifies the automation and transfer
of state in distributed applications.

Both approaches require some modification to distributed
applications. Thus, achieving truly transparent server-side
load balancing of stateful replicas at the middleware level is
non-trivial. Moreover, due to the required state transfers, load
balancing stateful replicas incurs more overhead than stateless
replicas. Although reliable multicast can be used to optimize
state transfers, more network utilization is typically incurred
by load balancing stateful replicas. As is often the case, appli-
cation developers must settle for a trade-off between perfor-
mance and quality of service.

2.4 Diverse Load Monitoring Granularity

Context: A server has multiple objects running on it, each of
which must be load balanced. Moreover, multiple servers may

3CORBA IDL is an interface definition languagethat is used to define
interfaces supplied by servers to clients in distributed systems.

be running at a single location, and these servers must also be
load balanced. To accomplish this, a load balancer requires
a load monitoring object from which it can obtain the current
load conditions wherever one or more replicas reside.

Problem: As with any object, an instance of a load monitor-
ing object utilizes resources. Instantiating a load monitoring
object for each replica may not scale if there are many replicas
in a server. For example, allocating load monitoring resources
(such as memory, CPU, and network bandwidth) for each load
monitoring object can starve other objects or processes run-
ning on a server since the load monitoring objects themselves
impose their own resource utilization overhead.

Other problems can occur when multiple replica groups re-
side on a single server. Load balancing decisions for one
replica group may interfere with load balancing decisions for
another replica group. For example, consider the case where
two replica groups are balanced based on CPU load. The load
balancer detects low load conditions for the first replica group,
causing requests to be sent to that replica group, which causes
the CPU load to increase on the given server. Since the sec-
ond replica group is load balanced based on CPU load, the
load balancer will detect a high load on the server due to the
increased load caused by the requests sent to the first replica
group. At this point, the load balancer will cause the second
replica group to reject requests. Thus, the second replica group
is starved by the first replica group.

Solution ! shared load monitors: Rather than instantiat-
ing a load monitor for each object on the server, a single load
monitor can be associated with a group of objects that share
a common load metric. For example, despite the fact that ob-
jects may implement different interfaces, all are load balanced
based on CPU utilization. Figure 5 depicts this approach.

This design can significantly reduce the amount of resources
imposed by adding server load balancing support,i.e., load
monitors for a large number of objects residing in the same
server. However, it also complicates the load monitor imple-
mentation. For example, suppose a load balancer detects a
high load and issues a load advisory4 to the shared load moni-
tor. The load monitor must now decide which objects sharing
that load monitor should shed their load,e.g., by forcing the
client to contact the load balancer so that it can be re-bound to
another replica.

This approach can be generalized by creating a load monitor
object hierarchy to further reduce the number of messages re-
quired to communicate load information to the load balancing
service, thus reducing network bandwidth requirements. How-
ever, this approach can complicate the load balancing service
and load monitor implementations. In general, improving per-

4A load advisory is a message sent to a load monitor object that lets it
know the relative load conditions at its location.

5

s1 : Server

m : CPU Load Monitor

Replica 1 : Object

: ORB

Replica 2 : Object

s2 : Server

Replica 3 : Object: ORB

: Load
Balancer

Figure 5: Shared Load Monitor

formance increases load balancing service complexity to some
extent.

2.5 Fault Tolerant Load Balancing

Context: A distributed application hashigh availability re-
quirements. It must always be available to clients,i.e., it must
befault tolerant.

Problem: Centralized load balancing services are a single
point of failure. For example, if a centralized load balancing
service fails clients may not be able to have their requests ser-
viced. Decentralized load balancing services potentially han-
dle faults with greater ease than centralized ones. They are
also distributed applications, however, and thus are suscepti-
ble to the same types of failures as the replicas they are load
balancing.

Solution! a fault tolerance service: Since CORBA-based
load balancing services are themselves CORBA applications,
the standard CORBA Fault Tolerance service [16] can be used
to provide the means by which a load balancing service re-
mains highly available. Making a load balancing service fault
tolerant by means of Fault Tolerant CORBA can alleviate
one of the inherent problems with centralized load balanc-
ing: its single point of failure. It can also ensure that state
within replicas is consistent, in the case of stateful replicas.
This capability can simplify a load balancer implementation
since the load balancer can delegate the task of ensuring state
consistency between replicas to the Fault Tolerance service.
One implementation of the CORBA Fault Tolerance service

is DOORS [17, 18]. Since DOORS itself is a CORBA ser-
vice implemented using TAO, integrating it with TAO’s load
balancer should be straightforward, for example.

2.6 Extensible Load Balancing Algorithms

Context: The load conditions on a distributed application
will change drastically at some point during the day. The times
of day when these changes occur may not be knowablea pri-
ori. Moreover, the number of replicas servicing requests may
also vary.

Problem: Many load balancers only support a few load bal-
ancing algorithms. These load balancing algorithms may not
be adequate at all times during the lifetime of a distributed
application. Worse yet, these algorithms may be configured
statically into the load balancing service. If the client traffic
changes substantially at run-time, however, loads across repli-
cas will not be balanced effectively. Other related problems in-
clude situations where (1) several new replicas may be added
to a replica group dynamically, which cannot be predicted by
a load balancer and (2) a poorly designed load balancing strat-
egy cannot handle degenerate load balancing conditions, such
as unstable replica loads.

Solution ! the Component Configurator and Strategy
patterns: As stated in Section 2.1, the Component Config-
urator pattern defines a means by which a component can be
loaded dynamically into a running application. By taking ad-
vantage of the extensibility provided by an implementation of
this design pattern, customized load balancing algorithms can
be configured into a running load balancing service. Specifi-
cally, load balancing algorithms employed by the load balanc-
ing service can be implemented via the Strategy pattern [14].
The combination of these two patterns allows a load balancing
service to cope with degenerate load conditions, in addition
to further generalizing the applicability of the load balancing
service to other types of distributed applications. Figure 6 il-
lustrates how this solution is deployed.

For example, load balancing algorithms/strategies that per-
form the following can be configured into a running load bal-
ancing service as follows:

� Take into account past load trends when predicting future
load conditions.

� Take advantage of sophisticated algorithms [19] that are
designed specifically to restore system equilibrium when
it is perturbed by external forces. In the case of load bal-
ancing, external forces could be additional client requests
or transient loads generated by other applications running
over the network and end-systems.

� Make load balancing decisions based on multiple load
metrics, which requires the ability to send multiple loads

6

: Load Balancer

: Component Configurator

references : object(idl)

Group 1 : Object Group

Round Robin : Balancing Strategy

Balancing Strategy

Minimum Dispersion : Balancing Strategy

Dynamically loaded
load balancing

strategies.

: Load Analyzer

Figure 6: Extensible Load Balancing Algorithms

in a single load report. For example, a load balancing
strategy could receive a sequence of load metrics that
correspond to multiple load readings, each of a different
type, at a given location. The CORBA IDL for such a
sequence of loads could be the following:
module LoadBalancer {

typedef unsigned long LoadId;
struct Load {

LoadId identifier;
float value;

};

typedef sequence<Load> LoadList;
};

These approaches can improve the stability of adaptive load
balancing strategies so that they perform better under heavy
loads or under loads that change rapidly.

2.7 On-demand Replica Activation

Context: A load balanced distributed application starts out
with a given number of replicas. Depending on availability
of resources, such as CPU load and network bandwidth, the
number of replicas may need to grow or decrease over time.

Problem: The scenario presented above requires that repli-
cas be created or destroyed on-demand. However, the load bal-
ancing service must have a means to create or destroy replicas.

Solution! the Factory pattern: The Factory pattern [14]
exposes an interface through which objects can be created. A
load balancing service can use factory objects,i.e., objects that
implement the Factory design pattern, to create replicas on-
demand. The load balancing service would simply invoke re-
mote operations on the factory object at a given location when

it decides that more replicas are necessary to maintain bal-
anced loads.

For example, suppose there are only two replicas in a replica
group and that their loads are high. Without additional repli-
cas, it may not be feasible to maintain balanced loads. A load
balancing service with the ability to create and destroy replicas
on-demand may provide more flexible load balancing strate-
gies,e.g., a load balancer can create a replica at a third location
to decrease the workload on the two initial replicas, as shown
in Figure 7.

: Host

: Load Balancer

: Host

+create_object() : object(idl)
+destroy_object()

Replica Factory

Replicas created
on-demand.

: Host

Replica : Object

Figure 7: On-demand Replica Creation

On-demand creation and destruction of replicas allows re-
sources to be used more efficiently. For example, starting a
replica before it is needed may impose additional resource uti-
lization since the replica must wait for requests to be sent to
it. Depending on the replica design and the middleware imple-
mentation, this “eager” allocation design can use a significant
amount of resources, thereby reducing the amount of resources
available to other processes running on the same host the un-
used replica is running on. On-demand creation and destruc-
tion of replicas alleviates these problems.

Those familiar with fault tolerance services may recognize
a similarity between their replica management strategies and
those of load balancing services. Both types of services can
control replica lifetimes,e.g., by creating replicas on-demand.
A fault tolerance service requires sufficient replicas to provide
fault recovery, while a load balancing service requires enough
replicas to provide balanced loads. Although the underlying
functionality for each type of service is different, the interface
exposed by each service can be similar. Therefore, the IDL in-
terfaces exposed by TAO’s next-generation load balancing ser-
vice, currently under development, is based largely on the IDL
interfaces standardized by the Fault Tolerant CORBA specifi-
cation [16].

7

3 Related Work

Extensive research on load balancing algorithms [19] has been
done. This paper concentrates on mostly on load balancing
service functionality rather than the underlying load balanc-
ing algorithms. A significant amount of work has been done
on load balancing services at various system levels. This in-
cludes research on load balancing services at the network, the
operating system, and the middleware, as described below.

Network-based load balancing: Network-based load bal-
ancing services make decisions based on the frequency at
which a given site receives requests [20]. For example,
routers [21] and DNS servers often perform network-based
load balancing. Load balancing performed at the network level
has the disadvantage that load balancing decisions are based
solely on the destination of the request. The content of the re-
quest is often ignored. This form of load balancing also makes
it difficult to select the load metric to be used when making
balancing decisions.

OS-based load balancing: Load balancing at the operat-
ing system level [22, 23, 24] has the advantage of performing
the balancing at multiple levels. That balancing is essentially
transparent to a distributed application. However, it suffers
from many of the same problems that network-based load bal-
ancing suffers from, such as inflexible load metric selection
and not being able to take advantage of request content. OS-
based load balancing may also be too coarse-grained for some
distributed applications where it is the objects residing within
a server, rather than the server process itself, that must be load
balanced.

Middleware-based load balancing: Middleware-based
load balancing provides the most flexibility in terms of
influencing how a load balancing service makes decisions,
and in terms of applicability to different types of distributed
applications [25]. Load balancing at this level provides for
straightforward selection of load metrics, in addition to the
ability to make load balancing decisions based on the content
of a request. Some middleware-based implementations
integrate load balancing functionality into the ORB middle-
ware [7] itself, whereas others implement load balancing
support at the service level. The latter is the approach taken by
the TAO next-generation load balancing service upon which
the content of this paper was based.

4 Concluding Remarks

As distributed applications become increasingly complex,
broader in scope, and more dynamic in their behavior, the abil-
ity of non-adaptive middleware load balancing services to im-
prove overall performance decreases. In general, the utility

of non-adaptive middleware load balancing services decreases
because they are (1) designed for a specific application and (2)
because they cannot adapt to changing run-time load condi-
tions. Moreover, many load balancing services that do adapt to
changing load conditions cannot handle a large number of op-
erating/load conditions or require modifications to distributed
applications.

To optimize overall performance, scalability, and reliability,
middleware-based load balancing services should provide the
functionality detailed in this paper:

� Server-side transparency

� Federated load balancing architectures

� State migration

� Differents load monitoring granularity levels

� Fault tolerance

� Extensible load balancing strategy support

� Run-time control of replica life times

We believe that these features are essential to implement a gen-
eralized, highly effective and optimized adaptive CORBA load
balancing service.

TAO’s next-generation load balancer will support the func-
tionality outlined above. Transparent server-side load bal-
ancing for stateless replicas will be supported by the stan-
dard CORBA portable interceptors [12] mechanism. Feder-
ated load balancing will be implemented via reliable multi-
cast. State migration will be supported by using the CORBA
Persistent State Service [15] being developed for TAO. Dif-
ferent load monitoring granularity levels will be supported via
the CORBA portable interceptor mechanism, in addition to hi-
erarchical load monitoring. Basic fault tolerance will be sup-
ported through CORBA Fault Tolerance service implementa-
tion [17, 18] currently being developed for TAO. Extensible
load balancing strategies are already supported by TAO. Fi-
nally, TAO’s run-time control of replica life times will capital-
ize on the interface provided by the CORBA Fault Tolerance
specification.

References
[1] Object Management Group,The Common Object Request Broker:

Architecture and Specification, 2.4 ed., Oct. 2000.

[2] Sun Microsystems, Inc,Java Remote Method Invocation Specification
(RMI), Oct. 1998.

[3] S. Baker,CORBA Distributed Objects using Orbix. Addison Wesley
Longman, 1997.

[4] IONA Technologies, “Orbix 2000.”
www.iona-iportal.com/suite/orbix2000.htm.

[5] O. Othman, C. O’Ryan, and D. C. Schmidt, “An Efficient Adaptive
Load Balancing Service for CORBA,”IEEE Distributed Systems
Online, vol. 2, Mar. 2001.

8

[6] O. Othman, C. O’Ryan, and D. C. Schmidt, “The Design of an
Adaptive CORBA Load Balancing Service,”IEEE Distributed Systems
Online, vol. 2, Apr. 2001.

[7] M. Lindermeier, “Load Management for Distributed Object-Oriented
Environments,” inProceedings of the 2nd International Symposium on
Distributed Objects and Applications (DOA 2000), (Antwerp,
Belgium), OMG, Sept. 2000.

[8] I. Inprise Corporation, “VisiBroker for Java 4.0: Programmer’s Guide:
Using the POA.”
http://www.inprise.com/techpubs/books/vbj/vbj40/programmers-
guide/poa.html,
1999.

[9] M. Henning and S. Vinoski,Advanced CORBA Programming With
C++ . Addison-Wesley Longman, 1999.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[11] N. Wang, K. Parameswaran, and D. C. Schmidt, “The Design and
Performance of Meta-Programming Mechanisms for Object Request
Broker Middleware,” inProceedings of the6th Conference on
Object-Oriented Technologies and Systems, (San Antonio, TX),
USENIX, Jan/Feb 2000.

[12] Object Management Group,Interceptors FTF Final Published Draft,
OMG Document ptc/00-04-05 ed., April 2000.

[13] BEA Systems,et al., CORBA Component Model Joint Revised
Submission. Object Management Group, OMG Document
orbos/99-07-01 ed., July 1999.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[15] Object Management Group,Persistent State Service 2.0 Specification,
OMG Document orbos/99-07-07 ed., July 1999.

[16] Object Management Group,Fault Tolerant CORBA Specification,
OMG Document orbos/99-12-08 ed., December 1999.

[17] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “DOORS:
Towards High-performance Fault-Tolerant CORBA,” inProceedings of
the 2nd International Symposium on Distributed Objects and
Applications (DOA 2000), (Antwerp, Belgium), OMG, Sept. 2000.

[18] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “Applying
Patterns to Improve the Performance of Fault-Tolerant CORBA,” in
Proceedings of the 7th International Conference on High Performance
Computing (HiPC 2000), (Bangalore, India), ACM/IEEE, Dec. 2000.

[19] C.-C. Hui and S. T. Chanson, “Improved Strategies for Dynamic Load
Balancing,”IEEE Concurrency, vol. 7, July 1999.

[20] E. Johnson and ArrowPoint Communications, “A Comparative
Analysis of Web Switching Architectures.”
http://www.arrowpoint.com/solutions/whitepapers/wsarchv6.html,
1998.

[21] Cisco Systems, Inc., “High availability web services.”
http://www.cisco.com/warp/public/cc/so/neso/ibso/ibm/s390/mnibmwp.htm,
2000.

[22] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and
W. Neuhauser, “Overview of the CHORUS Distributed Operating
Systems,” Tech. Rep. CS-TR-90-25, Chorus Systems, 1990.

[23] D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: Harnessing
the Power of Parallelism in a Pile-of-PCs,” inProceedings, IEEE
Aerospace, IEEE, 1997.

[24] W. G. Krebs, “Queue Load Balancing / Distributed Batch Processecing
and Local RSH Replacement System.”
http://www.gnuqueue.org/home.html, 1998.

[25] T. Ewald, “Use Application Center or COM and MTS for Load
Balancing Your Component Servers.”
http://www.microsoft.com/msj/0100/loadbal/loadbal.asp, 2000.

9

