Leader/Followers

A Design Pattern for Efficient Multi-threaded
Event Demultiplexing and Dispatching

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

Electrical Engineering and Computer Science Dept.

Vanderbilt University, Nashville, TN, USA

Michael Kircher and Frank Buschmann Irfan Pyarali and Carlos O’'Ryan

{Michael.Kircher,Frank.Buschmah@mchp.siemens.de
Siemens Corporate Technology

1 Intent

{irfan,coryar} @cs.wustl.edu
Department of Computer Science, Washington University
Munich, Germany St. Louis, MO 63130, USA

After a transaction commits, the database server returns its

results to the associated communication server, which then
The Leader/Followers architectural pattern provides an eftirwards the results back to the originating remote client.

cient concurrency model where multiple threads take turmisis multi-tier architecture is used to improve overall system
sharing a set of event sources in order to detect, demulroughput and reliability via load balancing and redundancy,

plex, dispatch, and process service requests that occur on thessectively.
event sources.

A common strategy for improving OLTP server perfor-

mance is to use a multi-threaded concurrency model that pro-
cesses requests and results simultaneously [1]. One way to
2 Example multi-thread a OLTP server is to create a thread pool based

) . o) on the “half-sync/half-reactive” variant of the Half-Sync/Half-
Consider the design of a multi-tier, high-volume, on-line trangsync pattern [2]. In this design, an OLTP server can be

action processing (OLTP) system shown in the following figresigned with a dedicatesetwork 1/Othread that uses the

ure. In this design, front-end communication servers royglect

[3] event demultiplexer to wait for events to occur

FRONT-END BACK-END on a set of socket handles, as shown in the following figure.

COMM. SERVERS DATABASE SERVERS

WORKER
QUEUEING | THREAD
LAYER POOL

LAYER

NETWORK

o PR

REQUEST
QUEUE

REACTIVE | 1/O THREAD —»E

INTERFACE |==CTBU_JET

REMOTE CLIENTS
OVER WAN LINKS

When activity occurs on handles in the satlect
control to the network I/O thread and indicates which socket
handle(s) in the set have events pending. This I/O thread then

returns

. ¢ i h | reads the transaction request from the designated socket han-
transactlon rquests rom remotg clients, suc as travel ag ;' stores it into a dynamically allocated request, and inserts
claims processing centers, or point-of-sales terminals, to b

end database servers that process the requests transactiong]-

S request into a synchronized message queue implemented
% the Monitor Object pattern [2]. This message queue is

“This work was supported in part by Boeing, NSF grant NCR-9628218€rViced by a pool oivorker threads When a worker thread

DARPA contract 9701516, SAIC, Siemens, and Sprint.

in the pool is available, it removes the request from the queue,

performs the designated transaction, and then returns a re~ For our OLTP server applications, it is infeasible to as-
sponse to the front-end communication server. sociate a separate thread with each socket handle because this
Although the threading model described above is useddasign will not scale efficiently as the number of connections
many concurrent applications, it can incur excessive overhérzereasel]
when used for high-volume servers, such as those in our multi- o
tier OLTP example. For instance, even with a light worle- Minimize concurrency-related overhead. To maximize
load, the half-sync/half-reactive thread pool design will inc@€rformance, key sources of concurrency-related overhead,
a dynamic memory allocation, multiple synchronization opeftch as context switching, synchronization, and cache co-
ations, and a context switch to pass a request message bethgE#NCY management, must be minimized. In particular, con-
the network I/O thread and a worker thread, which makes eafirency models that require dynamic memory allocations for
the best-case latency unnecessarily high [4]. Moreover, if #@€h request passed between multiple threads will incur sig-
OLTP server is run on a multi-processor, significant overhe@iicant overhead on conventional multi-processor operating
can occur from processor cache coherency protocols requif¥éeiems [6].
to transfer command objects between threads [5]. — For instance, the “half-sync/half-reactive” thread pool
If the OLTP servers run on an operating system platfoif@fiant [2] employed by our example OLTP servers requires
that supports asynchronous 1/O efficiently, the half-sync/hdfemory to be allocated dynamically in the network I/O thread
reactive thread pool can be replaced with a purely asy®- that incoming transaction requests can be inserted into
chronous thread pool based on the Proactor pattern [2]. THR message queue. This design incurs numerous synchro-
alternative will reduce some of the overhead outlined abd¥gations and context switches to insert/remove the request
by eliminating the network I/O thread. Many operating sy#to/from the message queue.

tems do not support asynchronous I/O, however, and tho . .
that do often support it inefficiently. Yet, it is essential that .Si!-?revent race conditions on handle sets. Multiple threads

high-volume OLTP servers demultiplex requests efficiently Eﬁ?t tdetmuIrtlpzlleﬁgventsnzg[ianshs red se;giftihar\lndlez mustr(?]? or-
threads that can process the results concurrently. ate 1o preverace co onskace co ons can occu

multiple threads try to access or modify certain types of han-

dles simultaneously. This problem often can be prevented by
protecting the handles with a synchronizer, such as a mutex,

3 Context semaphore, or condition variable.

— For instance, a pool of threads cannot aeect [3]

An application where events occurring on set of handles must . .
PP 9 tq_demultiplex a set of socket handles because the operating

be demultiplexed and processed efficiently by multiple threads : :)
that share the handles. system will erroneously notify more than one thread calling
select when I/O events are pending on the same subset of
socket handles [3]. Moreover, for bytestream-oriented proto-
4 Problem cols, such as TCP, having multiple threads invokiegd or

write on the same socket handle will corrupt or lose data.

Multi-threading is a common technique to implement applica-
tions that process multiple events concurrently. Implementing Soluti
high-performancenulti-threaded applications is hard, ho olution

ever. To address this problem effectively, the followfogces o
must be addressed: Structure a pool of threads to share a set of handles efficiently

by taking turns demultiplexing events to event handlers that
o Efficient demultiplexing of handles and threads. High- process the events.
performance, multi-threaded applications concurrently pro-in detail Allow one thread at a time — tHeader— to wait
cess numerous types of events, suct@SNECT, READ, and for an event to occur on a set of handles. Meanwhile, other
WRITE events. These events often occur on handles, sucht@gads — thdollowers— can queue up waiting their turn to
TCP/IP sockets [3], that are allocated for each connected clipstome the leader. After the current leader thread detects an
or server. A key design force, therefore, is determining &fvent from the handle set, it first promotes a follower thread
ficient demultiplexing associatiortsetween threads and hanto become the new leader and then it plays the role mba
dles. cessinghread, which demultiplexes the event to its designated

LFor instance, many UNIX operating systems support asynchronous j%ent handler and perform application-specific event process-

by spawning a thread for each asynchronous operation, thereby defeatindifle Multiple processing thre'ads can run concurrently while
potential performance benefits of asynchrony. the current leader thread waits for new events on the handle

set shared by the threads. After handling its event, a procdmstheleader, which waits for an event to occur on any han-

ing thread reverts to a follower that waits for its turn to becondée in its handle set. When an event occurs, the current leader

the leader thread again. thread promotes #ollower thread to become the new leader.
The original leader then concurrently plays the role qira-
cessing threadwvhich demultiplexes the event from the handle

6 Structure set to its associated event handler and dispatches the handler’s
hook method to handle the event. After a processing thread

The participants in the Leader/Followers pattern include tRefinished handling an event, it returns to playing the role of

following: a follower thread and waits on the synchronizer for its turn to

Handles and handle sets. Handlesidentify resources, suchbecOme the leader thread again.])
as socket connections or open files, which are often imple=~ FOr example, each OLTP server designed using the

mented and managed by an operating systerhardle sets Leader/Followers pattern can have a pool of threads waiting

a collection of handles that can be used to wait for eventsl@Pr0Cess transaction requests. Atany pointin time, multiple

occur on handles in the set. A handle set returns to its caff¥¢ads in the pool can be processing transaction requests and
when it is possible to initiate an operation on a handle in tRgNdINg results back to their clients. Up to one thread in the
set without the operation blocking. pool is the currenteader, which waits on the handle set for

—» For example, OLTP servers are interested in two typeg 5} CONNECTandREAD events to arrive. When this occurs,
events -CONNECTevents angEAD events — which represent€ leader thread will then play the role of a processing thread,
incoming connections and transaction requests, respectiifyich demultiplexes the event from its handle to its associ-
Both front-end and back-end servers maintain a separate @id €vent handler and dispatches the handler’s hook method
nection for each client. Each connection is represented ifProcess the event. Any remaining threads in the pool are
server by a separate socket handle. Our OLTP servers uséREP!lowers which wait on a synchronizer for their tur to be
select [3] event demultiplexer, which identifies handles th&0moted to become the leader thread. N
have events pending, so that applications can invoke 1/O Oper]’he following figure illustrates the structure of participants
ations on these handlesithout blocking the calling threads.in the Leader/Followers pattern.
|

- . CONCRETE HANDLE SET
Event handler. An event handler specifies an interface con-
EvVENT HANDLER

sisting of one or more hook methods [7, 8]. These methods handle_events()

represent the set of operations available to process application- select()
suspend_handler()

or service-specific events that occur on handle(s) associated 0.* | resume handler()
with an event handler. HANDLE)
Concrete event handler. Concrete event handlers specialize -

from the event handler and implement a specific service that P Y‘\fv% THREAD PoOL
the application offers. Each concrete event handler is associ- Ny

. .) - . X EvENT HANDLER
ated with a handle in the handle set that identifies this service N

within the application. In addition, concrete event handlers im- handle_event() < e eldoin O
plement the hook method(s) responsible for processing events | &-1andiec0 CHILES bromote_new_leader()
received through their associated handle.
— For example, concrete event handlers in front-end OLTP
servers receive and validate remote client requests and for-
ward valid requests to back-end database servers. Likewise,
concrete event handlers in back-end database servers recgive Dynamics
transaction requests from front-end servers, read/write the ap-

propriate database records to perform the transactions, and re- _ _)
turn the results to the front-end servers. The following collaborations occur in the Leader/Followers

pattern.
Thread pool. At the heart of the the Leader/Followers pat-

tern is a pool of threads, which take turns playing variowsLeader thread demultiplexing. The leader thread waits
roles. One or moréollower threadsqueue up on a synchro-for an event to occur on any handle in the handle set. If there
nizer, such as a semaphore or condition variable, waitingigano current leader thread,g, due to events arriving faster
become the leader thread. One of these threads is selectdlan the available threads can service them, the underlying op-

synchronizer(s)

erating system can queue events internally until a leader threstler state immediately if there is no current leader thread
is available. when it finishes its processing.

¢ Follower thread promotion. After the leader thread has e Follower. A thread in this state waits as a follower in
detected an new event, it chooses a follower thread to becantethread pool. A follower thread can transition to the leader
the new leader by using one of the promotion protocols dgate when promoted by the current leader.

scribed inimplementation activity. . . . i
The figure below illustrates the states and the valid transi-

e Event handler demultiplexing and event processing. tions in the Leader/Followers pattern.
After promoting a follower to become the new leader, the for-
mer leader plays the role of a processing thread, which con-
currently demultiplexes the event it detected to its associated

event handler and then dispatches the handler’'s hook method e
to handle the event.

PROCESSING

PROCESSING
COMPLETED;
NO LEADER
AVAILABLE

LEADING

PROCESSING
COMPLETED;
LEADER
AVAILABLE

FOLLOWING

¢ Rejoining the thread pool. To demultiplex handles in a
handle set, a processing thread must first rejoin the thread pool
after it is complete and can process another event. A process-
ing thread can become the leader immediately if there is no
current leader thread. Otherwise, the processing thread returns
to playing the role of a follower and waits until it is promoted
by a leader thread.

NEW LEADER

The following figure illustrates the collaborations among
participants in the Leader/Followers pattern for a pool of tw |mp|ementation
threads.
The following activities can be used to implement the
: THREAD] : THREAD # THREAD F HANDLE sconerete || eader/Followers pattern.

POOL SET EVENT HANDLER

il join0 ! ' !

1. Choose the handle and handle set mechanismsA han-

dle set is a collection of handles that can be used to wait for
events to occur. Developers often choose the handles and han-
dle set mechanisms provided by an operating system, rather
than implementing them from scratch. The following sub-
activities can be performed to choose the handle and handle
set mechanisms.

BECOME NEW LEADER THREAD ﬂ
T

handle_events() |

~ join() <1 select()

BECOME

FOLLOWER
THREAD

EVENT ARRIVES
T

promote_new_leader() M |

BECOME NEW LEADER THREAD |

| .
< select() types of handles:

handle_events() I
1

joinQ e Concurrent handles. This type of handle allows multi-
ple threads to access the handle concurrently without incur-
ring race conditions that can corrupt, lose, or scramble the
data [3]. For instance, the Socket API for record-oriented pro-
tocols, such as UDP, allows multiple threads to invodad

At any point in t'mel a thread part;upatmg n th%rwrite operations on the same handle concurrently.
Leader/Followers pattern is in one of following three states:

BECOME

< FOLLOWER

THREAD

|
|
|
|
|
|
|
|
|
|
handle_event() BECOME PROCESSING THREAD D 1.1. Determine the type of handles. There are two general
|
|
|
|

r® Iterative handles. This type of handle requires multi-
q'l1e threads to access the handle iteratively because concurrent
ess will cause race conditions. For instance, the Socket

API for bytestream-oriented protocols, such as TCP, does not
guarantee thatad orwrite operations are atomic. Thus,

e Processing. A thread in this state can execute concugorrupted or lost data can result if I/O operations on the socket
rently with the leader thread and any other threads that arewg not serialized properly.
the processing state. A thread in the processing state typicall
transitions to the follower state, though it can transition to t

e Leader. A thread in this state is currently the leade
waiting for an event to occur on the handle set. A thread
the leader state can transition into the processing state wh
detects a new event.

. Determine the type of handle set. There are two gen-
eral types of handle sets:

4

e Concurrent handle set. This type of handle set can berocess the events. The following are two strategies for imple-
called concurrentlye.g, by a pool of threads. When it ismenting this mechanism:
possible to initiate an operation @mehandle without block-
ing the operation, a concurrent handle set returns that ha
dle to one of its calling threads. For example, the Win
WaitForMultipleObjects function [9] supports con-
current handle sets by allowing a pool of threads to wait
the same set of handles simultaneously.

e Implement a demultiplexing table. In this strategy, the

ndle set demultiplexing mechanisms provided by the oper-
ating system are used directly. Thus, a Leader/Followerimple-
gHentation must maintain a demultiplexing table that is a man-
ager [PLoPD3] containing a set efhandle, event handler,
event registration types tuples. Each handle is a “key” used

o Iterative handle set. This type of handle set returns tao associate handles with event handlers in its demultiplexing

its caller when it is possible to initiate an operationame table, which also stores the type of indication event(s), such as
or morehandles in the set without the operation(s) blockingonNECcTandREAD, that each event handler is registered for
Although an iterative handle set can return multiple handigs its handle. The contents of this table are converted into han-
in a single call, it cannot be called simultaneously by mulfe sets passed to the native event demultiplexing mechanism,
tiple threads of control. For example, tBelect [3] and such aselect or WaitForMultipleObjects ,

poll [10] functions only support iterative handle sets. Thus, —, |mplementation activit.3 of the Reactor pattern [2]

a pool of threads cannot uselect orpoll to demultiplex jllustrates how to implement a demultiplexing talie.
events on the same handle set concurrently because multiple

threads can be notified that the same 1/0 events are pending,APPlY & higher-level event demultiplexing pattern. In
which elicits erroneous behavior. this strategy, developers leverage higher-level patterns, such

]) _as Reactor [2], Proactor [2], and Wrapper Facade [2]. These
1.3. Determine the consequences of selecting certaifyatterns help to simplify the Leader/Followers implementa-
handle and handle set mechanisms.In general, the tion and reduce the effort needed to address the “accidental
Leader/FoIonvers pattern is used to prevent multiplg thre?&ﬁnplexities" of programming to native operating system han-
from corrupting or losing data erroneously, such as invokiags set demultiplexing mechanisms directly. Moreover, apply-
read s on a shared TCP bytestream socket handle cong higher-level patterns makes it easier to decouple the 1/0
rently or invokingselect on a shared handle set concuing demultiplexing aspects of a system from its concurrency
rently. However, some application use cases need not guaglel, thereby reducing code duplication and maintenance ef-
against these problems. In particular, if the handle and hangjg.
set mechanisms are both concurrent, many implementation ac-, g, example, in our OLTP server example, an event must

tivities can be skipped. _ be demultiplexed to the concrete event handler associated with
For instance, certain network programming APIs, such @3 socket handle that received the event. The Reactor pat-

UDP support in Sockets, support concurrent multiple /O oy [2] supports this activity, thereby simplifying the imple-
erations on a shared handle. Thus, a complete message igahtation of the Leader/Followers pattern. In the context of
ways read or written by one thread or another, without the rigfe | eader/Followers pattern, however, a reactor only demul-

of a partialread or of data corruption from an interleavedipjexesonehandle to its concrete event handler, regardless of
write . Likewise, certain handle set mechanisms, such as 3y many handles have events pending on tham.

Win32 WaitForMultipleObjects function [9], return a
single handle per call, which allows them to be called conc@:- Implement a protocol for temporarily (de)activating
rently by a pool of threads. handles in a handle set. When an event arrives, the leader

In these situations, it may be possible to implement tHiead deactivates the handle from consideration in the han-
Leader/Followers pattern by simply using the operating syie set temporarily, promotes a follower thread to become the
tem’s thread scheduler to (de)multiplex threads, handle s&gy leader, and continues to process the event. Temporarily
and handles robustly, in which cas@plementation activities deactivating the handle from the handle set avoids race condi-
2 through 6 can be skipped. tions that could otherwise occur between the time when a new

, . leader is selected and the event is processed. If the new leader
1.4. Implement an event handler demultiplexing mech- it on the handle set during this interval, it could falsely dis-
anism. In addition to calling an event demultiplexer 1Q,5(ch the event a second time. After the event s processed, the
wait for indication events to occur on its handle set, e is reactivated in the handle set, which allows the leader

Leader/Followers pattern implementation must demultiplg e, 1o wait for events to occur on it and any other activated
events to event handlers and dispatch their hook methodﬁéﬂmes in the set

2However,WaitForMultipleObjects does not by itself address the — N our QLTP example,.this handle (de.)aCtivation p!‘OtOCOl
problem of notifying a particular thread when an event is available. can be provided by extending tieactor interface defined

in implementation activitg of the Reactor pattern [2], as folple threads that take turns callirsglect

lows:

class Reactor {

public:
/I Temporarily deactivate the <HANDLE>
/I from the internal handle set.
int deactivate_handle (HANDLE, Event_Type et);
/I Reactivate a previously deactivated
/I <Event_Handler> to the internal handle set.
int reactivate_handle (HANDLE, Event_Type et);
..

O

3. Implement the thread pool. To promote a follower

on the reactor’s
handle set.

Application threads invoke thin method to wait on a
handle set and demultiplex new events to their associated event
handlers. As shown itmplementation activity, this method
does not return to its caller until the application terminates or
a timeout occurs. Thpromote _new_leader method pro-
motes one of the follower threads in the set to become the new
leader, as shown ilmplementation activit{.2.

The deactivate _handle and reactive _handle
methods temporarily deactivate and activate handles within a
reactor's handle set. The implementations of these methods
simply forward to the same methods defined onRleactor

thread to the leader role, as well as to determine whitierface shown inmplementation activit@.
thread is the current leader, an implementation of theNote that a single condition variable synchronizer is shared

Leader/Followers pattern must manage a pool of threads.

Bl all threads in this set. As shown implementation ac-

follower threads in the set can simply wait on a single sytivities 4 and 5, the implementation af_Thread _Pool is
chronizer, such as a semaphore or condition variable. In tésigned using the Monitor Object pattern [2].

design, it does not matter which thread processes an eve
long as multiple threads sharing a handle set are serialize

— For example, th&F_Thread _Pool class shown below
can be used for the back-end database servers in our O
example:

class LF_Thread_Pool {
public:
/I By default, use a singleton reactor.
LF_Thread_Pool (Reactor *reactor
Reactor::instance ()):
reactor_ (reactor) {}

/I Wait on handle set and demultiplex events
/I to their event handlers.
int join (Time_Value *timeout = 0);

/I Promote a follower thread to become the
/I leader thread.
int promote_new_leader (void);

/I Support the <HANDLE> (de)activation protocol.
int deactivate_handle (HANDLE, Event Type et);
int reactivate_handle (HANDLE, Event_Type et);

private:
/I Pointer to the event demultiplexer/dispatcher.
Reactor *reactor_;

/I The thread id of the leader thread, which is
/I set to NO_CURRENT_LEADER if there is no leader.
Thread_Id leader_thread_;

/I Follower threads wait on this condition
/I variable until they are promoted to leader.
Thread_Condition followers_condition_;

/I Serialize access to our internal state.
Thread_Mutex mutex_;

The constructor oLF_Bound _Thread caches the reac-

tor passed to it. By default, this reactor implementation uses
, which only supports iterative handle sets. There-

select
fore, LF_Thread _Pool is responsible for serializing multi-

nt, a C
dﬁl. Fmplement a protocol to allow threads to initially join

(and rejoin) the thread pool. This protocol is used when
E¥E’nt processing completes and a thread is available to pro-
cess another event. If no leader thread is available, a follower
thread can become the leader immediately. If a leader thread
is already available, a thread can become a follower by wait-
ing on the thread pool’s synchronizer. The following two sub-
activities can be used to implement this protocol.

— For example, our back-end database servers can imple-
ment the followingjoin method of theLF_Thread _Pool
to wait on a handle set and demultiplex new events to their
associated event handlers:

int LF_Thread_Pool::join (Time_Value *timeout)

/I Use Scoped Locking idiom to acquire mutex
/I automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

for (;}) {
while (leader_thread_ != NO_CURRENT_LEADER)
/I Sleep and release <mutex> atomically.

if (followers_condition_.wait (timeout) == -1
&& errno == ETIME)
return -1,

/I Assume the leader role.
leader_thread_ = Thread::self ();

/I Leave monitor temporarily to allow other
/I follower threads to join the pool.
guard.release ();

/I After becoming the leader, the thread uses
/I the reactor to wait for an 1/O event.
if (reactor_->handle_events () 1)

return;

/I Reenter monitor to serialize the test
/I for <leader_thread_> in the while loop.
guard.acquire ();

}

Within thefor loop, the calling thread alternates between (this->get_handle (), et);
its role as deader, processingandfollowerthread. In the first ,. }
part of this loop, the thread waits until it it can be a leader, at
which point it uses the reactor to wait for an I/O event on ti& shown above, an application can implement concrete event
shared handle set. When the reactor detects an event on al@ndlers and the Leader/Followers implementation can use the
dle, it will demultiplex the event to its associated event haRecorator pattern to promote a new leader transparently.

dler and dispatch itdandle _event method to process thes 2. Determine the promotion protocol ordering. The

event. After the reactor demultiplexes one event, the threadffiowing ordering can be used to determine which follower
assumes its follower role. These steps continue looping Ufi§lead to promote.

theDappI|cat|on terminates or a timeout oceurs. e LIFO order. In many applications, it does not matter
which of the follower threads is promoted next because all
5. Implement the follower promotion protocol. Immedi- threads are “equivalent peers.” In this case, the leader thread
ately after aleader thread detects an event, but before it deralh promote follower threads iast-in, first-out(LIFO) order.
tiplexes the event to its event handler and processes the eveig, LIFO protocol maximizes CPU cache affinity by ensuring
it must promote a follower thread to become the new leadgyat the thread waiting thshortesttime is promoted first [9],
The following two sub-activities can be used to implement thighich is an example of the “Fresh Work Before Stale” pat-
protocol. tern [11]. Implementing a LIFO promotion protocol requires
5.1. Implement the handle set synchronization protocol. an additional data structure, however, such as a stack of wait-

If the handle set is iterative and we blindly promote a neidd threads, rather than just using a native operating system
leader thread, it is possible that the new leader thread will 8¥nchronization object, such as a semaphore.
tempt to handle the same event. To avoid this race conditions Priority order. In some applications, particularly real-
we must remove the handle from consideration in the hangiae applications [12], threads may run at different priorities.
set before promoting a new follower and dispatching the evé@mithis case, therefore, it may be necessary to promote follower
to its concrete event handler. The handle must be restored QRegads according to their priority. This protocol can be imple-
the event has been dispatched. mented using some type of priority queue, such as a heap [13].
— The Decorator pattern [7] can be applied to allow th&though this protocol is more complex than the LIFO proto-
Leader/Followers pattern implementation to promote a newl, it may be necessary to promote follower threads according
leaderbeforeinvoking thehandle _event hook, as follows: to their priorities in order to minimize priority inversion [12].

cla/s/s hF_Event_fHandler : pubdlilc Evelnt_Har;‘\dIer ¢ Implementation-defined order. This ordering is most
This use of <Event_Handler> plays the ; ; ; ; _
/I <Component> role in the Decorafor pattern. common whep implementing handle sets using qperatlng sys
{ tem synchronizers, such as semaphores or condition variables,
/I This use of <Event_Handler> plays the ; ; it ; ; PR
/I <ConcreteComponent role in the Decorator whl_ch often dispatch waiting threads in an |mplementat|on
/I pattern, which is used to implement defined order. The advantage of this protocol is that it maps
/I the application-specific functionality. i i i ioi
Event_Handler *concrete_event handler - onto native operating system synchronizers efficiently.
— For example, back-end database servers could use the
/I Instance of an <LF_Thread_Pool>. following simple protocol to promote follower thread in what-
LF_Thread_Pool *thread_pool_; . , ..
public: ever order they are queued by an operating system’s condition
LF_Event_Handler (Event_Handler *eh, variable:
LF_Thread_Pool *tp)
. concrete_event_handler_ (eh), int LF_Thread_Pool::promote_new_leader (void)
thread_pool_ (tp) {} {
/I Use Scoped Locking idiom to acquire mutex
virtual int handle_event (HANDLE, Event Type et) { /I automatically in the constructor.
/I Temporarily deactivate the handler in the Guard<Thread_Mutex> guard (mutex_);
/I reactor to prevent race conditions.
thread_pool_->deactivate_handle if (leader_thread_ != Thread::self ())
(this->get_handle (), et); /I Error, only the leader thread can call this.
return -1;
/I Promote a follower thread to become leader.
thread_pool_->promote_new_leader (); /I Indicate that we’re no longer the leader
/I and notify a <join> method to promote
/I Dispatch application-specific OLTP event /I the next follower.
/I processing code. leader_thread_ = NO_CURRENT_LEADER,;
concrete_event_handler_->handle_event (h, et); followers_condition_.notify ();
/I Reactivate the handle in the reactor. /I Release mutex automatically in destructor.

thread_pool_->reactivate_handle }

As shown in implementation activity 5.1, the network /O thread by calling theF_Thread _Pool::join
promote _new_leader method is invoked by amethod, as follows:
LF_Event Handler decorator before it forwards to

void *worker_thread (void *arg) {
the concrete event handler to process a reqest. LF_Thread_Pool *thread_pool =

L reinterpret_cast <LF_Thread_Pool *> (arg);
6. Implement the concrete event handlers. Application

developers must decide what actions to perform when the hs?ol@fead—p°°">j°‘” 0:
method of concrete event handler is invoked by a processing

thread in the Leader/Followers pattern implementatiople- As shown inimplementation activityt, thejoin method
mentation activitys in the Reactor pattern [2] describes varg|lows only the leader thread to use fReactor singleton to
ous issues associated with implementing concrete event haflect on a shared handle set of sockets connected to OLTP
dlers. front-end servers. If requests arrive when all threads are busy,
they will be queued in socket handles until a thread in the pool
is available to execute the requests.

When a request event arrives, the leader thread temporarily

. . . deactivates the socket handle from consideratiaelact 's
In this section, we illustrate how the Leader/Followers pattel’iandle set, promotes a follower thread to become the new

Zﬁg Zzgiﬂfedégflgrglc‘;—s bggl;]znE::éz?/?:ﬁse?ra;w;teleatder, and continues to handle the request event as a process-
v u Wers Patteffl th read. This processing thread then reads the request into

implement a thread pool that demultiplexes 1/O events froeg%uffer that resides in the run-time stack or is allocated us-

socket handles to their event handlers efficiently. As |IIu the Thread-Specific Storage pattern{2}ll OLTP activi-
trated in the following figure, there is no designated netwo

s occur in the processing thread. Thus, no further context
I/O thread. Instead, a pool of threads is pre-allocated durIr b 9

'&ﬁnchlng, synchronization, or data movement is necessary.
When it finishes handling a request, the processing thread re-
turns to playing the role of a follower and waits in the thread
pool. Moreover, the socket handle it was processing is reacti-
vated in the handle set so thellect can wait for /O events

iﬁ) to occur on it, along with other sockets in the handle set.
*i

9 Example Resolved

—p> PROCESSING
) i THREADS

10 Variants

10.1 Bound Handle/Thread Associations

database server initialization, as shown in the followirain Earlier sections in this pattern descrimbound handle/thread
function: associations where there is no fixed association between
threads and handles. Thus, any thread can process any event
that occurs on any handle in a handle set. Unbound associa-
void *worker_thread (void *); tions are often used when a pool of threads take turns demul-
int main (void) { tiplexing a shared handle set.
LF_Thread_Pool thread_pool (Reactor:instance ()); — For example, our OLTP back-end database server exam-

ple illustrates an unbound association between threads in the

o _ _ pool and handles in the handle set managestgct . Con-
for_(int ! d_:Mgﬁa{g;r::'\iﬂnAséTuTch()EésD;i o) crete event handlers that process request events in a database

(worker_thread, &thread_pool); server can runin any thread. Thus, there is no need to maintain
bound associations between handles and threads. In this case,
maintaining an unbound thread/handle association simplifies
g back-end server programmirig.

However, an important variant of this pattern ubesind

These threads are not bound to any particular socket handl, jje/thread associationsin this use case, each thread is
Thus, all threads in this pool take turns playing the role of the

const int MAX_THREADS = ..;

/I Code to set up a passive-mode Acceptor omitted.

thread_pool.join ();

4In contrast, the “half-sync/half-reactive” thread pool described irEthe
3The Variants section describes how this pattern can be applied to camplesection must allocate each request dynamically from a shared heap be-
OLTP front-end communication servers. cause the request is passed between threads.

bound to its own handle, which it uses to process particutietermine which thread is responsible for processing it. If
events. Bound associations are often used when a clientthp-leader thread discovers that it is responsible for the event,
plication thread waits on a socket handle for a response tid promotes a follower thread to become the new leader us-
two-way request it sent to a server. In this case, the client &gy the same protocols describedimplementation activitp
plication thread expects to process the response event ondbisve. Conversely, if the event is intended for another thread,
handle in a specific threate., the thread that sent the originathe leader must hand-off the event to the designated follower
request. thread. This follower thread then unregisters itself from the

— For example, threads in our OLTP front-end communictiread pool and processes the incoming event concurrently.
tion server forward incoming client requests to a specific badkeanwhile, the current leader thread continues to wait for an-
end server chosen to process the request. To reduce the atiter event to occur on the handle set.

sumption of operating system resources in large-scale muoltiEvent handler demultiplexing and event processing. Ei-

tier OLTP systems, .worker threads in front-enq SEIVET Plifyer the processing thread continues to handle the event it de-
cesses can communicate to back-end servers nsittgplexed

. . L tected or a follower thread processes the event that the leader
connectiong12], as shown in the following figure. After 8hread handed off to it

FRONT-END BACK-END
COMMUNICATION DATABASE
Implementation
WORKER THREADS WORKER THREADS . 3 . .)
2 2 2 2 2 2 2 2 The first twoimplementation activitiein the earlierimple-
«—ONETCP mentatiorsection require no changes. However, the following
= CONNECTION changes are required to support bound handle/thread associa-

request is sent, the worker thread waits for a result to retdi's in subsequeimnplementation activities

on a multiplexed connection to the back-end server. In ti3s Implement the thread pool. In the bound handle/thread
case, maintaining a bound thread/handle association simgdisign a leader thread can hand-off new events to specific fol-
fies front-end server programming and minimizes unnecesdatyer threads. For example, a reply received over a multi-
context management overhead for transaction processing [fp#xed connection by the leader thread in a front-end OLTP
O communication server may belong to one of the follower
As described below, supporting bound thread/handle #seads. This scenario is particularly relevant in high-volume,
sociations requires changes to the following sections of tnelti-tier distributed systems, where results often arrive in a

Leader/Followers pattern. different order than requests were initiated.
In addition, a bound handle/thread association may be nec-
Structure essary if an application multiplexes connections among two

or more threads, in which case the thread pool can serialize
Thread pool. Inthe bound handle/thread association modelcess to the multiplexed connection. This multiplexed de-
the leader thread may need to hand-off an event to a followgjn minimizes the number of network connections used by
thread if the leader does not have the necessary contexthtofront-end server. However, front-end server threads must
process the event. Thus, the follower threads wait to eithgjv serialize access to the connection when sending and re-
become the leader thread or to receive event hand-offs fr@@f\/ing over a multiplexed connection to avoid corrupting the
the current leader thread. The leader/follower thread pool gaguest and reply data, respectively.
be maintainedmplicitly, for example, using a synchronizer, —, For example, below we illustrate how a bound han-
such as a semaphore or condition variablesxglicitly, using dle/thread association implementation of the Leader/Followers
a collection class. The choice depends largely on whether fagtern can be used for the front-end communication servers in
leader thread must notify a specific follower thread explicityur OLTP example. We focus on how a server can demultiplex

to perform event hand-offs. events on a singleerative handlewhich threads in front-end
communication servers use to wait for responses from back-
Dynamics end data servers. This example complements the implemen-

tation shown in the thread pool in the earllerplementation

The bound handle/thread association model variant of §&-tion, where we illustrated how to use the Leader/Followers
Leader/Followers pattern requires changes to the followiggitern to demultiplex an iterativeandle set

two collaboration: We first define &hread _Context class:

e Follower thread promotion. After the leader detects a..cc Thread Context {
new event, it checks the handle associated with the evenpuulic: B

void new_request (Bound LF Thread Pool *tp
... I* request args */)

/I The response we are waiting for.
int request_id (void) const;

/I Returns true when response is received. {
bool response_received (void);

‘ ! ; /I Create a new context, with a new unique
void response_received (bool);

/I request id

/I The condition the thread waits on. Thread_Context *context = new Thread_Context;

Thread_Condition *condition (void);

private: tp->expecting_response (context);
/... data members omitted for brevity ... send_request (context->request_id (),
b /* request args */);

A Thread _Context provides a separate condition variabcl}e tp->join- (context);

synchronizer for each waiting thread, which allows a leader

thread to notify the appropriate follower thread when its rehis registration must be performégforethe thread sends

sponse s rece|.ved. the request. Otherwise, the response could arrive before the
Next, we define th&ound LF_Thread _Pool class: bound thread pool is informed which threads are waiting for

it.
class Bound_LF_Thread_Pool {

public:
Bound_LF_Thread_Pool (Reactor *reactor)
. reactor_ (reactor),
leader_thread_ (NO_CURRENT_LEADER) {}

/I Register <context> into the thread pool.

/I It stays there until its response is

/I received.

int expecting_response (Thread_Context *context);

/I Wait on handle set and demultiplex events
/I to their event handlers.
int join (Thread_Context *context);

/I Handle the event by parsing its header
/I to determine the request id.
virtual int handle_event (HANDLE h, Event_Type et);

/I Read the message in handle <h>, parse the header
/I of that message and return the response id
virtual int parse_header (HANDLE h);

/I Read the body of the message, using the
/I information obtained in <parse_header>
virtual int read_response_body (HANDLE h);

private:
/I Wrapper facade for the the multiplexed
/I connection stream.
Reactor *reactor_;

/I The thread id of the leader thread.

/I Set to NO_CURRENT_LEADER if there
/I is no current leader.

Thread_Id leader_thread_;

/I The pool of follower threads indexed by

/I the response id.

typedef std::map<int, Thread_Context *>
Follower_Threads;

Follower_Threads follower_threads;

/I Serialize access to our internal state.
Thread_Mutex mutex_;

A thread that wants to send a request uses t
expecting _response method to register its associate
Thread _Context with the bound thread set to inform th

set that it expects a response:

After the request is sent, the client thread invokegdire
method defined in th®ound _LF_Thread _Pool class to
wait for the response. This method performs the following
three steps:

e Step (a)- wait as a follower or become a leader
e Step (b)- dispatch event to bound thread
e Step (c)- promote new leader

The definition of steps (a), (b) and (c) in ti@n method
of Bound _LF_Thread _Pool are illustrated in the updated
implementation activitied, 5, and 6, respectively, which are
shown below.

It is instructive to compare the data members in the
Bound LF_Thread _Pool class shown above with those in
the LF_Thread _Pool defined inimplementation activitys.

The primary differences are that the pool of threads in the
LF_Thread _Pool is implicit, namely, the queue of wait-
ing threads blocked on its condition variable synchronizer. In
contrast, theBound _LF_Thread _Pool contains arexplicit

pool of threads, represented by tlkhread _Context ob-
jects, and a multiplexe8OCKStream wrapper facade ob-
ject. Thus, each follower thread can wait on a separate con-
dition variable until they are promoted to become the leader
thread or receive an event hand-off from the current leader.

4. Implement a protocol to allow threads to initially join
(and rejoin) the thread pool. For bound thread/handle as-
sociations, the follower must first add its condition variable to
the map in the thread pool and then cadlit on it. This al-
lows the leader to use the Specific Notification pattern [15, 16]
to hand-off an event to a specific follower thread.

— For example, our front-end communication servers must
Bintain a bound pool of follower threads. This set is updated
when a new leader is promoted, as follows:

e

int

10

Bound_LF_Thread_Pool::join (Thread_Context *context)
/I Step (a): wait as a follower or become a leader.

/I Use Scoped Locking idiom to acquire mutex
/I automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

while (leader_thread_ != NO_CURRENT_LEADER
&& !context->response_received ()) {
/I There is a leader, wait as a follower...
/I Insert the context into the thread pool.
int id = context->response_id ();
follower_threads_[id] = context;

/I Go to sleep and release <mutex> atomically.
context->condition ()->wait ();

/I The response has been received, so return.
if (context->response_received ())
return O;

/I No leader, become the leader.
for (leader_thread = Thread::self ();
Icontext->response_received ();

) A

/I Leave monitor temporarily to allow other
/I follower threads to join the set.
guard.release ();
if (reactor_->handle_events () == -1)
return -1,
/I Reenter monitor.
guard.acquire ();
/I ... more below ...

/I Parse the response header and
/I get the response id.
int response_id = parse_header (handle);

/I Find the correct thread.
Follower::iterator i =

follower_threads_.find (response_id);
/I We are only interested in the value of
/I the <key, value> pair of the STL map.
Thread_Context *destination_context

= (*i).second;
follower_threads_.erase (i);

/I Leave monitor temporarily to allow other

/I follower threads to join the set.

guard.release ();

/I Read response into an application buffer
destination_context->read_response_body (handle);
/I Reenter monitor.

guard.acquire ();

/I Notify the condition variable to

/I wake up the waiting thread.
destination_context->response_received (true);
destination_context->condition ()->notify ();

}

Application developers are responsible for implementing
theparse _header andread _response _body methods,
which apply the Template Method pattern [7].

6. Implement the follower promotion protocol. The fol-
lowing two protocols may be useful for bound handle/thread
associations:

After the thread is promoted to the leader role, the thread must

erform all its 1/O operations, waiting until its own event i PR ;
P P g o the follower threads ifirst-in, first-out(FIFO) order. This

received. In this case tHevent _Handler forwards the I/

event to the thread pool:

class Bound_LF_Event Handler : public Event_Handler
private:
/I Instance of a <Bound_LF_Thread_Pool>.
Bound_LF_Thread_Pool *thread_pool_;
public:
Bound_LF_Event_Handler (Bound_LF_Thread_Pool *tp)
thread_pool_ (tp) {}

int handle_event (HANDLE h, Event_Type et) {
thread_pool_->handle_event (h, et);
}
}

S

e FIFO order. A straightforward protocol is to promote
protocol can be implemented using a native operating system
synchronization object, such as a semaphore, if it queues wait-
ing threads in FIFO order. The benefits of the FIFO protocol
for bound thread/handle associations are most apparent when
the order of client requests matches the order of server re-
sponses. In this case, no unnecessary event hand-offs need
be performed because the response will be handled by the
leader, thereby minimizing context switching and synchro-
nization overhead.

One drawback with the FIFO promotion protocol, however,
is that the thread that is promoted next is the thread that has
been waiting théongest thereby minimizing CPU cache affin-

Unlike the unbound case we cannot apply the Decorator pgf-[5, 17]. Thus, it is likely that state information, such as

tern to augment any user defined event handler to participgé@slation lookaside buffers, register windows, instructions,

in the Leader/Follower pattern. The thread pool needs to pags@ data, residing within the CPU cache for this thread will
the request to extract the response id and match it to the copigre been flushed.

spondingThread _Context . Consequently the thread pool « Specific order. This ordering is common when imple-

must perform at least part of the I/O, and it cannot be com-_ 7. L
menting a bound thread pool, where it is necessary to hand-off

pletely encapsulated by tiievent _Handler) : .
nts to a particular thread. In this case, the protocol imple-

Next, the thread pool can handle the event by parsing its headar

to determine the request id and processing the event as befrgeentatlon more complex because it must maintain a collection

of synchronizers.
int . dlor-handl (handl — For example, this protocol can be implemented as part of
Bound_LF_Event Handler::handle_event (HANDLE handle, Y T i
— - — — Event Type) theBound _LF_Thread _Pool 's join method to promote a
{ new leader, as follows:

11

int

Bound_LF_Thread_Pool::join (Thread_Context *context)

{

7.

this hand-off scheme. Each follower thread has its own syil-
chronizer, such as a semaphore or condition variable, angrI
set of these synchronizers is maintained by the thread p081

can use the following protocol to hand-off an event to the

/I ... details omitted ...

/I Step (c): Promote a new leader.
Follower_Threads::iterator i =
follower_threads_.begin ();
if (i == follower_threads_.end ())
return O; // No followers, just return.

Thread_Context *new_leader_context
= (*i).second;
leader_thread_ = NO_CURRENT_LEADER;
/I Remove this follower...
follower_threads_.erase (i);
/I ... and wake it up as newly promoted leader.
new_leader_context->condition ()->notify ();

O

Implement the event hand-off mechanism. Unbound
handle/thread associations do not require event hand-offs
tween leader and follower threads. For bound handle/thrti
associations, however, the leader thread must be preparec
hand-off an event to a designated follower thread. The S
cific Notification pattern [15, 16] can be used to implemen

When an event occurs, the leader thread can locate and usd?h
appropriate synchronizer to notify a specific follower thread.
— In our OLTP example, front-end communication servers

thread designated to process the event:

int

Bound_LF Thread_Pool::;join (Thread_Context *context)

/I ... Follower code omitted ...

/I Step (b): dispatch event to bound thread.
for (leader_thread_ = Thread::self ();
Icontext->response_received ();

) A

/I ... Leader code omitted ...

/I Parse the response header and
/I get the response id.
int response_id = parse_header (buffer);

/I Find the correct thread.
Follower::iterator i =

follower_threads_.find (response_id);
/I We are only interested in the value of
/I the <key, value> pair of the STL map.
Thread_Context *destination_context

= (*i).second;
follower_threads_.erase (i);

/I Leave monitor temporarily to allow other

/I follower threads to join the set.

guard.release ();

/I Read response into pre-allocated buffers.
destination_context->read_response_body (handle);
/I Reenter monitor.

guard.acquire ();

/I Notify the condition variable to

/I wake up the waiting thread.
destination_context->response_received (true);
destination_context->condition ()->notify ();

/I ... more below ...

}

O

Example Resolved

Our OLTP front-end communication servers can use the bound
handle/thread association version of the Leader/Follower pat-
tern to wait for both requests from remote clients and re-
sponses from back-end servers. Timain function im-
plementation can be structured much like the back-end
servers described in the maiBxample Resolvedection.
'Brég main difference is that the front-end server threads
use theBound_LF_Thread _Pool class rather than the
thhread _Pool class to bind threads to particular socket
andles once they forward a request to a back-end server.
ence, each thread can wait on a condition variable until its
response is received. After the response is received, the front-
d server uses the request id to hand-off the response by lo-
Ing the correct condition variable and notifying the desig-
n%%%d waiting thread. This thread then wakes up and processes
e fesponse.

Using the Leader/Followers pattern is more scalable than
simply blocking in aread on the socket handle because the
same socket handle can be shared between multiple front-
end threads. This connection multiplexing conserves limited
socket handle resources in the server. Moreover, if all threads
are waiting for responses, the server will not dead-lock be-
cause it can use one of the waiting threads to process new
incoming requests from remote clients. Avoiding deadlock
is particularly important in multi-tier systems where servers
callback to clients to obtain additional information, such as
security certificates.

10.2 Relaxing Serialization Constraints

There are operating system platforms where multiple leader
threads can wait simultaneously on a handle set. For exam-
ple, the Win32WaitForMultipleObjects function [9]
supports concurrent handle sets that allow a pool of threads
to wait on the same set of handles simultaneously. Thus, a
thread pool designed using this function can take advantage
of multi-processor hardware to perform useful computations
while other threads wait for events. In such cases, the con-
ventional Leader/Followers pattern implementation serializes
thread access to handle sets, which can overly restrict applica-
tion concurrency. To relax this constrain, the following vari-
ants of the Leader/Followers pattern can allow multiple leader

12

threads to be active simultaneously: arrives and the thread completes the original request it be-
comes unbound again.
In such an implementation, tiBound _LF_Thread _Pool

Ctgnnot simply demultiplex events for a single handle. As with

multiple handle sets separately. For instance, each thre S E Thread _Pool class. the unbound version must be ex-
assigned a designated handle set. This variant is particul Wded to support a full har;dle set. In particularwast()

useful in applications where multiple handle sets are availa thod in Step 4 cannot perform. the 1/O directly. Instead
However, this approach limits a thread to use a specific hanﬁ]g Event Handler performs all the 1/O, and it informs

set. theBound _LF_Thread _Pool to dispatch the message to the

Multiple leaders and multiple followers. In this variant, correctthread.

the pattern is extended to support multiple simultaneous leader

threads, where any of the Ief';\qler threads can wait on any hf@:5 Alternative Event Sources and Sinks

dle set. When a thread re-joins the leaders/followers thread

pool it checks if a leader is associated with every handle sginsider a system where events are obtained not only through
already. If there is a handle set without a leader, the re-joiniigndles but also from other sources, such as shared memory or
thread can become the leader of that handle set immediatetyessage queues. For example, in UNIX there are no event de-
multiplexing functions that can wait for I/O events, semaphore

. . events, and/or message queue events simultaneously. How-
10.3 Hybrid Thread Associations ever, a thread can either block waiting for one type of event

Some applications use hybrid designs that implement baiHhe same time. Thus, the Leader/Followers pattern can be
bound and unbound handle/thread associations simultaigended to wait for more than one type of events simultane-

ously. Likewise, some handles in an application may ha@dsly, as follows:

dedicated threads to handle certain events, whereas other han-

dles can be processed by any thread. Thus, one variant of the A leader thread is assigned to each source of events (as
Leader/Follower pattern uses its event hand-off mechanism to 0pposed to a single leader thread for the complete sys-

notify certain subsets of threads, according to the handle on tem).

which event activity occurs. 2. After the event is received, but before processing the
For example, the OLTP front-end communication server event, a leader thread can select any follower thread to

may have multiple threads using the Leader/Followers pattern \y,it on the leader’s event source.

to wait for new request events from clients. Likewise, it may

also have threads waiting for responses to requests theyaRyrawback with this variant, however, is that the number of

voked on back-end servers. In fact, threads play both rojggticipating thread must always be greater than the number

over their lifetime, starting as threads to dispatch new inCogevent sources. Therefore, it can be hard to scale it as the

ing requests, issuing requests to the back-end servers to saigiiper of event sources increases.

the client application requirements and then waiting for the re-

sponses from the back-end server.

Leader/followers per multiple handle sets. This variant

11 Known Uses

10.4 Hybrid Client/Servers
ACE Thread Pool Reactor framework [18]. The ACE

In complex systems, where peer applications play both cliérimework provides an object-oriented framework implemen-
and server roles, it is important that the communication iation of the Leader/Followers pattern called the “thread pool
frastructure process incoming requests while waiting for oreactor” ACETP_Reactor) to demultiplex events to event
or more replies. Otherwise the system can dead-lock becausedlers within a pool of threads. When using a thread
one client has all its threads blocked waiting for responses.pool reactor, an application pre-spawngixed number of

In this variant, the binding of threads and handles chandgleseads. When these threads invoX€ETP_Reactor 's
dynamically, for example, initially a thread may be unboundandle _events method, one thread will become the leader
during processing of an incoming request the application esd wait for an event. Threads are considered unbound by the
quires services provided by other peers in the distributed si&E thread pool reactor framework. Thus, once the leader
tem. In that case the unbound thread dispatches new requesider thread detects the event, it promotes an arbitrary thread
while executing application code, effectively binding itself tto become the next leader it and then demultiplexes the event
the handle used to send the request. Later when the resptmits associated event handler.

13

CORBA ORBs. Many CORBA implementations, includ- e It enhances CPU cache affinity and eliminates unbound
ing Chorus COOL ORB [12] and TAO [19] use the Leadallocation and data buffer sharing between threads by read-
ers/Followers pattern for both their client-side connectiamg the request into buffer space allocated on the stack of the
model and the server-side concurrency model. leader or by using the Thread-Specific Storage pattern [2] to

Web servers The JAWS Web server [1] uses théllocate memory.

Leader/Followers thread pool model... . e It minimizes locking overhead by not exchanging data
Transaction monitors. Popular transaction monitors, SUCRenyeen threads, thereby reducing thread synchronization. In
as Tuxedo, have traditionally operated on a per-process bagiging handle/thread associations, the leader thread demulti-
l.e, transactions are always associated with a process. Cgsyes the event to its event handler based on the value of the
temporary OLTP systems demand high-performance and sgaligje. The request event is then read from the handle by the
ability, however, and performing transactions on a per-procesigower thread processing the event. In unbound associations,

basis may fail to meet these requirements. Therefore, ngKk |eader thread itself reads the request event from the handle
generation transaction services, such as the CORBA Transagy nrocesses it.

tion Service [14], employ bound associations between threads

and transactions. The Leader/Followers pattern supports this It can minimize priority inversion because no ex-

architecture with bound associations between threads and ligghqueueing is introduced in the server. When combined
dles. with real-time /O subsystems [20], the Leader/Followers

Taxi stands The Leader/Followers pattern is used in efiread pool model can significantly reduce sources of non-
eryday life to organize many airport taxi stands. In this ca§i&terminism in server request processing.
taxi cabs are the threads, with the first taxi cab in line being, ¢ goes not require a context switch to handle each event,
the leader and the remaining taxi cabs being the followeysq,cing the event dispatching latency. Note that promoting a
Likewise, passengers arriving at the taxi stand constitute {3 wer thread to fulfill the leader roldoesrequire a context
‘events’ that must be demultiplexed to the cabs. In geneigiich. If two events arrive simultaneously this increases the
if any taxi cab can service any passenger, this is equ'Vale”&E‘patching latency for the second event, but it is no worse

the unboundhandle/thread association described in the majtyn half-sync/half-reactive thread pool implementations.
Implementatiorsection. However, if only certain cabs can

service certain passengers, this is is equivalent tdothend Programming simplicity. The Leader/Follower pattern

handle/thread association described in the variamggemen- simplifies the programming of concurrency models where

tation section. multiple threads can receive requests, process responses, and
demultiplex connections using a shared handle set.

However, the Leader/Followers pattern has the following
12 See Also abilities:

lementation complexity. The advanced variants of the

. |
The Proactor patter [2] can be used as an alternative to Erﬁgder/Followers pattern are harder to implement than half-

Leader/Followers pattern when an operating system SUppgg}ﬁc/half—reactive thread pools. In particular, when used as a

asynchronous I/O eficiently.]] multi-threaded connection multiplexer, the Leader/Followers
The Half-Sync/Half-Async [2] and Active Object [2] patpaitern must maintain a pool of follower threads waiting to

terns are alternatives to the Leader/Followers pattern Wrﬁagcess requests. This set must be updated when a fol-

there are additional synchronization or ordering constraif§§,er thread is promoted to a leader and when a thread

that must be addressed before requests can be processgdibiis the pool of follower threads. All these operations

threads in the pool. can happen concurrently, in an unpredictable order. Thus,
the Leader/Follower pattern implementation must be efficient,
while ensuring operation atomicity.

13 Consequences Lack of flexibility. Thread pool models based on the “half-

)] sync/half-reactive” variant of the Half-Sync/Half-Async pat-
The Leader/Followers pattern provides the followremefits o [2] allow events in the queueing layer to be discarded
or re-prioritized. Similarly, the system can maintain multi-
Performance enhancements. Compared with the half- ple separate queues serviced by threads at different priorities
sync/half-reactive thread pool approach described inBke to reduce contention and priority inversion between events at

amplesection, the Leader/Followers pattern can improve pgffferent priorities. In the Leader/Followers model, however,
formance as follows:

14

it is harder to discard or reorder events because there is Nno[E%-D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
i~i ; ; ; it i Architectures for Reducing Priority Inversion and Non-determinism in

p!lCIt queue. One Way, to pro"'o_'e this fgnctlonallty is to offer Real-time Object Request Brokergpurnal of Real-time Systems, spe-

different levels of service by using multiple Leader/Followers cial issue on Real-time Computing in the Age of the Web and the Inter-

groups in the application, each one serviced by threads at dif- et vol- 21, no. 2, 2001.
ioriti [13] R. E. Barkley and T. P. Lee, “A Heap-based Callout Implementation to
ferent priorities. Meet Real-time Needs,” iRroceedings of the USENIX Summer Confer-

Network 1/0 bottlenecks. The Leader/Followers pattern ©ncepp. 213-222, USENIX Association, June 1988.

i i i i iali indl4] Object Management Groufransaction Services Specificaio@MG
descrlbgd in thdmplgmentaﬂorsecﬂon_senahze; processindt Dotument formal/a7-12-17 ed. . Dec. 1097
by allowing only a single thread at a time to wait on the hap-

- . . 5& T. Cargill, “Specific Notification for Java Thread Synchronization,” in
dle set. In some enV|r0nmentS, this deS|gn could becom Pattern Languages of Programming Conference (PL.&®pt. 1996.

bottleneck because only one thread at a time can demultiglex p. Lea, Concurrent Programming in Java: Design Principles and Pat-
I/O events. In practice, however, this may not be a problem terns, Second EditiorBoston: Addison-Wesley, 2000.

because most of I/O-intensive processing is performed by th@ l»l- ?f Mogul and rPA- Bor%,' “The fEfrf]tht}f Iof Context ?V(v:itcr}es on Cache
. . erformance,” inProcee! ings of t nternational Conference on
operating system kernel. Thus, the I/O operations can be per- Architectural Support for Programming Languages and Operating Sys-

formed rapidly. tems (ASPLOSJSanta Clara, CA), ACM, Apr. 1991.

[18] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” itandbook of Program-

ACkﬂOWledgementS ming LanguagegP. Salus, ed.), MacMillan Computer Publishing, 1997.
[19] P.Jainand D. C. Schmidt, “Service Configurator: A Pattern for Dynamic

. L. Configuration of Services,” ifProceedings of th&”¢ Conference on
Thanks to Hans Rohnert for providing insightful comments oObject-Oriented Technologies and SystetBENIX, June 1997.

that helped to improve this paper significantly. [20] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and Perfor-
mance of RIO — A Real-time I/O Subsystem for ORB Endsystems,” in
Proceedings of the International Symposium on Distributed Objects and

References Applications (DOA'99) (Edinburgh, Scotland), OMG, Sept. 1999.

[1] J. Hu, I. Pyarali, and D. C. Schmidt, “The Object-Oriented Design and
Performance of JAWS: A High-performance Web Server Optimized for
High-speed Networks,Parallel and Distributed Computing Practices
Journal, special issue on Distributed Object-Oriented Systewls 3,
Mar. 2000.

[2] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmamattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume.2New York: Wiley & Sons, 2000.

[3] W. R. StevensUNIX Network Programming, Volume 1: Networking
APIs: Sockets and XTI, 2nd EditiorEnglewood Cliffs, NJ: Prentice
Hall, 1998.

[4] 1. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of Real-
time ORBs,” inProceedings of th&t" Conference on Object-Oriented
Technologies and Systen(&an Diego, CA), pp. 145-159, USENIX,
May 1999.

[5] J. D. Salehi, J. F. Kurose, and D. Towsley, “The Effectiveness of
Affinity-Based Scheduling in Multiprocessor Networking,” iBEE IN-
FOCOM (San Francisco, USA), IEEE Computer Society Press, Mar.
1996.

[6] D. C. Schmidt and T. Suda, “Measuring the Performance of Parallel
Message-based Process Architectures,Piaceedings of the Confer-
ence on Computer Communications (INFOCQNBoston), pp. 624—
633, IEEE, Apr. 1995.

[7] E.Gamma, R. Helm, R. Johnson, and J. Vlissidgssign Patterns: El-
ements of Reusable Object-Oriented Softw&eading, MA: Addison-
Wesley, 1995.

[8] W. Pree,Design Patterns for Object-oriented Software Development
Reading, MA: Addison-Wesley, 1995.

[9] D. A. Solomon,Inside Windows NT, 2nd EditiorRedmond, WA: Mi-
crosoft Press, 1998.

[10] S. Rago, UNIX System V Network Programming Reading, MA:
Addison-Wesley, 1993.

[11] G. Meszaros, “A Pattern Language for Improving the Capacity of Reac-
tive Systems,” ifPattern Languages of Program Desi¢h O. Coplien,
J. Vlissides, and N. Kerth, eds.), Reading, Massachusetts: Addison-
Wesley, 1996.

15

