
Leader/Followers

A Design Pattern for Efficient Multi-threaded
Event Demultiplexing and Dispatching

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

Electrical Engineering and Computer Science Dept.
Vanderbilt University, Nashville, TN, USA�

Michael Kircher and Frank Buschmann Irfan Pyarali and Carlos O’Ryan
fMichael.Kircher,Frank.Buschmanng@mchp.siemens.de firfan,coryang@cs.wustl.edu

Siemens Corporate Technology Department of Computer Science, Washington University
Munich, Germany St. Louis, MO 63130, USA

1 Intent

The Leader/Followers architectural pattern provides an effi-
cient concurrency model where multiple threads take turns
sharing a set of event sources in order to detect, demulti-
plex, dispatch, and process service requests that occur on these
event sources.

2 Example

Consider the design of a multi-tier, high-volume, on-line trans-
action processing (OLTP) system shown in the following fig-
ure. In this design, front-end communication servers route

LANLAN

R
E

M
O

T
E

  
C

L
IE

N
T

S
R

E
M

O
T

E
  
C

L
IE

N
T

S

O
V

E
R

  
O

V
E

R
  
W

A
N

W
A

N
  
L

IN
K

S
  
L

IN
K

S

FRONTFRONT--ENDEND

COMMCOMM..  SERVERS  SERVERS

BACKBACK--ENDEND

DATABASE  SERVERSDATABASE  SERVERS

transaction requests from remote clients, such as travel agents,
claims processing centers, or point-of-sales terminals, to back-
end database servers that process the requests transactionally.

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, SAIC, Siemens, and Sprint.

After a transaction commits, the database server returns its
results to the associated communication server, which then
forwards the results back to the originating remote client.
This multi-tier architecture is used to improve overall system
throughput and reliability via load balancing and redundancy,
respectively.

A common strategy for improving OLTP server perfor-
mance is to use a multi-threaded concurrency model that pro-
cesses requests and results simultaneously [1]. One way to
multi-thread a OLTP server is to create a thread pool based
on the “half-sync/half-reactive” variant of the Half-Sync/Half-
Async pattern [2]. In this design, an OLTP server can be
designed with a dedicatednetwork I/O thread that uses the
select [3] event demultiplexer to wait for events to occur
on a set of socket handles, as shown in the following figure.

I/OI/O  THREAD  THREAD

NETWORKNETWORK

INTERFACEINTERFACE

WORKERWORKER

THREADTHREAD

POOLPOOL

REQUESTREQUEST

QUEUEQUEUE

SYNCSYNC

LAYERLAYER

REACTIVEREACTIVE

LAYERLAYER

QUEUEINGQUEUEING

LAYERLAYER

When activity occurs on handles in the set,select returns
control to the network I/O thread and indicates which socket
handle(s) in the set have events pending. This I/O thread then
reads the transaction request from the designated socket han-
dle, stores it into a dynamically allocated request, and inserts
this request into a synchronized message queue implemented
using the Monitor Object pattern [2]. This message queue is
serviced by a pool ofworker threads. When a worker thread
in the pool is available, it removes the request from the queue,

1



performs the designated transaction, and then returns a re-
sponse to the front-end communication server.

Although the threading model described above is used in
many concurrent applications, it can incur excessive overhead
when used for high-volume servers, such as those in our multi-
tier OLTP example. For instance, even with a light work-
load, the half-sync/half-reactive thread pool design will incur
a dynamic memory allocation, multiple synchronization oper-
ations, and a context switch to pass a request message between
the network I/O thread and a worker thread, which makes even
the best-case latency unnecessarily high [4]. Moreover, if the
OLTP server is run on a multi-processor, significant overhead
can occur from processor cache coherency protocols required
to transfer command objects between threads [5].

If the OLTP servers run on an operating system platform
that supports asynchronous I/O efficiently, the half-sync/half-
reactive thread pool can be replaced with a purely asyn-
chronous thread pool based on the Proactor pattern [2]. This
alternative will reduce some of the overhead outlined above
by eliminating the network I/O thread. Many operating sys-
tems do not support asynchronous I/O, however, and those
that do often support it inefficiently.1 Yet, it is essential that
high-volume OLTP servers demultiplex requests efficiently to
threads that can process the results concurrently.

3 Context

An application where events occurring on set of handles must
be demultiplexed and processed efficiently by multiple threads
that share the handles.

4 Problem

Multi-threading is a common technique to implement applica-
tions that process multiple events concurrently. Implementing
high-performancemulti-threaded applications is hard, how-
ever. To address this problem effectively, the followingforces
must be addressed:

� Efficient demultiplexing of handles and threads. High-
performance, multi-threaded applications concurrently pro-
cess numerous types of events, such asCONNECT, READ, and
WRITE events. These events often occur on handles, such as
TCP/IP sockets [3], that are allocated for each connected client
or server. A key design force, therefore, is determining ef-
ficient demultiplexing associationsbetween threads and han-
dles.

1For instance, many UNIX operating systems support asynchronous I/O
by spawning a thread for each asynchronous operation, thereby defeating the
potential performance benefits of asynchrony.

! For our OLTP server applications, it is infeasible to as-
sociate a separate thread with each socket handle because this
design will not scale efficiently as the number of connections
increase.

� Minimize concurrency-related overhead. To maximize
performance, key sources of concurrency-related overhead,
such as context switching, synchronization, and cache co-
herency management, must be minimized. In particular, con-
currency models that require dynamic memory allocations for
each request passed between multiple threads will incur sig-
nificant overhead on conventional multi-processor operating
systems [6].
! For instance, the “half-sync/half-reactive” thread pool

variant [2] employed by our example OLTP servers requires
memory to be allocated dynamically in the network I/O thread
so that incoming transaction requests can be inserted into
the message queue. This design incurs numerous synchro-
nizations and context switches to insert/remove the request
into/from the message queue.

� Prevent race conditions on handle sets. Multiple threads
that demultiplex events on a shared set of handles must coor-
dinate to preventrace conditions. Race conditions can occur if
multiple threads try to access or modify certain types of han-
dles simultaneously. This problem often can be prevented by
protecting the handles with a synchronizer, such as a mutex,
semaphore, or condition variable.
! For instance, a pool of threads cannot useselect [3]

to demultiplex a set of socket handles because the operating
system will erroneously notify more than one thread calling
select when I/O events are pending on the same subset of
socket handles [3]. Moreover, for bytestream-oriented proto-
cols, such as TCP, having multiple threads invokingread or
write on the same socket handle will corrupt or lose data.

5 Solution

Structure a pool of threads to share a set of handles efficiently
by taking turns demultiplexing events to event handlers that
process the events.

In detail: Allow one thread at a time – theleader– to wait
for an event to occur on a set of handles. Meanwhile, other
threads – thefollowers– can queue up waiting their turn to
become the leader. After the current leader thread detects an
event from the handle set, it first promotes a follower thread
to become the new leader and then it plays the role of apro-
cessingthread, which demultiplexes the event to its designated
event handler and perform application-specific event process-
ing. Multiple processing threads can run concurrently while
the current leader thread waits for new events on the handle

2



set shared by the threads. After handling its event, a process-
ing thread reverts to a follower that waits for its turn to become
the leader thread again.

6 Structure

The participants in the Leader/Followers pattern include the
following:

Handles and handle sets. Handlesidentify resources, such
as socket connections or open files, which are often imple-
mented and managed by an operating system. Ahandle setis
a collection of handles that can be used to wait for events to
occur on handles in the set. A handle set returns to its caller
when it is possible to initiate an operation on a handle in the
set without the operation blocking.
! For example, OLTP servers are interested in two types of

events –CONNECTevents andREAD events – which represent
incoming connections and transaction requests, respectively.
Both front-end and back-end servers maintain a separate con-
nection for each client. Each connection is represented in a
server by a separate socket handle. Our OLTP servers use the
select [3] event demultiplexer, which identifies handles that
have events pending, so that applications can invoke I/O oper-
ations on these handleswithout blocking the calling threads.

Event handler. An event handler specifies an interface con-
sisting of one or more hook methods [7, 8]. These methods
represent the set of operations available to process application-
or service-specific events that occur on handle(s) associated
with an event handler.

Concrete event handler. Concrete event handlers specialize
from the event handler and implement a specific service that
the application offers. Each concrete event handler is associ-
ated with a handle in the handle set that identifies this service
within the application. In addition, concrete event handlers im-
plement the hook method(s) responsible for processing events
received through their associated handle.
! For example, concrete event handlers in front-end OLTP

servers receive and validate remote client requests and for-
ward valid requests to back-end database servers. Likewise,
concrete event handlers in back-end database servers receive
transaction requests from front-end servers, read/write the ap-
propriate database records to perform the transactions, and re-
turn the results to the front-end servers.

Thread pool. At the heart of the the Leader/Followers pat-
tern is a pool of threads, which take turns playing various
roles. One or morefollower threadsqueue up on a synchro-
nizer, such as a semaphore or condition variable, waiting to
become the leader thread. One of these threads is selected to

be theleader, which waits for an event to occur on any han-
dle in its handle set. When an event occurs, the current leader
thread promotes afollower thread to become the new leader.
The original leader then concurrently plays the role of apro-
cessing thread, which demultiplexes the event from the handle
set to its associated event handler and dispatches the handler’s
hook method to handle the event. After a processing thread
is finished handling an event, it returns to playing the role of
a follower thread and waits on the synchronizer for its turn to
become the leader thread again.
! For example, each OLTP server designed using the

Leader/Followers pattern can have a pool of threads waiting
to process transaction requests. At any point in time, multiple
threads in the pool can be processing transaction requests and
sending results back to their clients. Up to one thread in the
pool is the currentleader, which waits on the handle set for
new CONNECT andREAD events to arrive. When this occurs,
the leader thread will then play the role of a processing thread,
which demultiplexes the event from its handle to its associ-
ated event handler and dispatches the handler’s hook method
to process the event. Any remaining threads in the pool are
thefollowers, which wait on a synchronizer for their turn to be
promoted to become the leader thread.

The following figure illustrates the structure of participants
in the Leader/Followers pattern.

HANDLE  SET

handle_events()
select()
suspend_handler()
resume_handler()

HANDLE

<<USES>>
<<

U
SES>>

0..*

CONCRETE

EVENT  HANDLER

EVENT  HANDLER

handle_event()
get_handle()

TTHREAD HREAD PPOOLOOL

join ()

promote_new_leader()

synchronizer(s)

<<demuxes>>

7 Dynamics

The following collaborations occur in the Leader/Followers
pattern.

� Leader thread demultiplexing. The leader thread waits
for an event to occur on any handle in the handle set. If there
is no current leader thread,e.g., due to events arriving faster
than the available threads can service them, the underlying op-

3



erating system can queue events internally until a leader thread
is available.

� Follower thread promotion. After the leader thread has
detected an new event, it chooses a follower thread to become
the new leader by using one of the promotion protocols de-
scribed inimplementation activity5.

� Event handler demultiplexing and event processing.
After promoting a follower to become the new leader, the for-
mer leader plays the role of a processing thread, which con-
currently demultiplexes the event it detected to its associated
event handler and then dispatches the handler’s hook method
to handle the event.

� Rejoining the thread pool. To demultiplex handles in a
handle set, a processing thread must first rejoin the thread pool
after it is complete and can process another event. A process-
ing thread can become the leader immediately if there is no
current leader thread. Otherwise, the processing thread returns
to playing the role of a follower and waits until it is promoted
by a leader thread.

The following figure illustrates the collaborations among
participants in the Leader/Followers pattern for a pool of two
threads.

:: THREAD THREAD

POOLPOOL

:: HANDLE HANDLE

SETSET

join()join()
BECOMEBECOME

FOLLOWERFOLLOWER

THREADTHREAD

handle_events()handle_events()

select()select()

:: CONCRETE CONCRETE

EVENT  HANDLEREVENT  HANDLER
:: THREAD THREAD22:: THREAD THREAD11

join()join()

handle_event()handle_event()

EVENT ARRIVESEVENT ARRIVES

BECOME  NEW  LEADER  THREADBECOME  NEW  LEADER  THREAD

handle_events()handle_events()

BECOME  NEW  LEADER  THREADBECOME  NEW  LEADER  THREAD

join()join()

BECOME  PROCESSING  THREADBECOME  PROCESSING  THREAD

BECOMEBECOME

FOLLOWERFOLLOWER

THREADTHREAD

select()select()

promote_new_leader()promote_new_leader()

At any point in time, a thread participating in the
Leader/Followers pattern is in one of following three states:

� Leader. A thread in this state is currently the leader,
waiting for an event to occur on the handle set. A thread in
the leader state can transition into the processing state when it
detects a new event.

� Processing. A thread in this state can execute concur-
rently with the leader thread and any other threads that are in
the processing state. A thread in the processing state typically
transitions to the follower state, though it can transition to the

leader state immediately if there is no current leader thread
when it finishes its processing.

� Follower. A thread in this state waits as a follower in
the thread pool. A follower thread can transition to the leader
state when promoted by the current leader.

The figure below illustrates the states and the valid transi-
tions in the Leader/Followers pattern.

LEADING FOLLOWING

NEW

EVENT

NEW LEADER

EVENT

HANDOFF

PROCESSING

COMPLETED;

LEADER

AVAILABLE

PROCESSING

COMPLETED;

NO LEADER

AVAILABLE

PROCESSING

8 Implementation

The following activities can be used to implement the
Leader/Followers pattern.

1. Choose the handle and handle set mechanisms.A han-
dle set is a collection of handles that can be used to wait for
events to occur. Developers often choose the handles and han-
dle set mechanisms provided by an operating system, rather
than implementing them from scratch. The following sub-
activities can be performed to choose the handle and handle
set mechanisms.

1.1. Determine the type of handles. There are two general
types of handles:

� Concurrent handles. This type of handle allows multi-
ple threads to access the handle concurrently without incur-
ring race conditions that can corrupt, lose, or scramble the
data [3]. For instance, the Socket API for record-oriented pro-
tocols, such as UDP, allows multiple threads to invokeread
or write operations on the same handle concurrently.

� Iterative handles. This type of handle requires multi-
ple threads to access the handle iteratively because concurrent
access will cause race conditions. For instance, the Socket
API for bytestream-oriented protocols, such as TCP, does not
guarantee thatread or write operations are atomic. Thus,
corrupted or lost data can result if I/O operations on the socket
are not serialized properly.

1.2. Determine the type of handle set. There are two gen-
eral types of handle sets:

4



� Concurrent handle set. This type of handle set can be
called concurrently,e.g., by a pool of threads. When it is
possible to initiate an operation ononehandle without block-
ing the operation, a concurrent handle set returns that han-
dle to one of its calling threads. For example, the Win32
WaitForMultipleObjects function [9] supports con-
current handle sets by allowing a pool of threads to wait on
the same set of handles simultaneously.

� Iterative handle set. This type of handle set returns to
its caller when it is possible to initiate an operation onone
or morehandles in the set without the operation(s) blocking.
Although an iterative handle set can return multiple handles
in a single call, it cannot be called simultaneously by mul-
tiple threads of control. For example, theselect [3] and
poll [10] functions only support iterative handle sets. Thus,
a pool of threads cannot useselect or poll to demultiplex
events on the same handle set concurrently because multiple
threads can be notified that the same I/O events are pending,
which elicits erroneous behavior.

1.3. Determine the consequences of selecting certain
handle and handle set mechanisms. In general, the
Leader/Followers pattern is used to prevent multiple threads
from corrupting or losing data erroneously, such as invoking
read s on a shared TCP bytestream socket handle concur-
rently or invokingselect on a shared handle set concur-
rently. However, some application use cases need not guard
against these problems. In particular, if the handle and handle
set mechanisms are both concurrent, many implementation ac-
tivities can be skipped.

For instance, certain network programming APIs, such as
UDP support in Sockets, support concurrent multiple I/O op-
erations on a shared handle. Thus, a complete message is al-
ways read or written by one thread or another, without the risk
of a partialread or of data corruption from an interleaved
write . Likewise, certain handle set mechanisms, such as the
Win32WaitForMultipleObjects function [9], return a
single handle per call, which allows them to be called concur-
rently by a pool of threads.2

In these situations, it may be possible to implement the
Leader/Followers pattern by simply using the operating sys-
tem’s thread scheduler to (de)multiplex threads, handle sets,
and handles robustly, in which case,implementation activities
2 through 6 can be skipped.

1.4. Implement an event handler demultiplexing mech-
anism. In addition to calling an event demultiplexer to
wait for indication events to occur on its handle set, a
Leader/Followers pattern implementation must demultiplex
events to event handlers and dispatch their hook methods to

2However,WaitForMultipleObjects does not by itself address the
problem of notifying a particular thread when an event is available.

process the events. The following are two strategies for imple-
menting this mechanism:

� Implement a demultiplexing table. In this strategy, the
handle set demultiplexing mechanisms provided by the oper-
ating system are used directly. Thus, a Leader/Follower imple-
mentation must maintain a demultiplexing table that is a man-
ager [PLoPD3] containing a set of<handle, event handler,
event registration types> tuples. Each handle is a “key” used
to associate handles with event handlers in its demultiplexing
table, which also stores the type of indication event(s), such as
CONNECTandREAD, that each event handler is registered for
on its handle. The contents of this table are converted into han-
dle sets passed to the native event demultiplexing mechanism,
such asselect or WaitForMultipleObjects ,
! Implementation activity3.3 of the Reactor pattern [2]

illustrates how to implement a demultiplexing table.

� Apply a higher-level event demultiplexing pattern. In
this strategy, developers leverage higher-level patterns, such
as Reactor [2], Proactor [2], and Wrapper Facade [2]. These
patterns help to simplify the Leader/Followers implementa-
tion and reduce the effort needed to address the “accidental
complexities” of programming to native operating system han-
dle set demultiplexing mechanisms directly. Moreover, apply-
ing higher-level patterns makes it easier to decouple the I/O
and demultiplexing aspects of a system from its concurrency
model, thereby reducing code duplication and maintenance ef-
fort.
! For example, in our OLTP server example, an event must

be demultiplexed to the concrete event handler associated with
the socket handle that received the event. The Reactor pat-
tern [2] supports this activity, thereby simplifying the imple-
mentation of the Leader/Followers pattern. In the context of
the Leader/Followers pattern, however, a reactor only demul-
tiplexesonehandle to its concrete event handler, regardless of
how many handles have events pending on them.

2. Implement a protocol for temporarily (de)activating
handles in a handle set. When an event arrives, the leader
thread deactivates the handle from consideration in the han-
dle set temporarily, promotes a follower thread to become the
new leader, and continues to process the event. Temporarily
deactivating the handle from the handle set avoids race condi-
tions that could otherwise occur between the time when a new
leader is selected and the event is processed. If the new leader
waits on the handle set during this interval, it could falsely dis-
patch the event a second time. After the event is processed, the
handle is reactivated in the handle set, which allows the leader
thread to wait for events to occur on it and any other activated
handles in the set.
! In our OLTP example, this handle (de)activation protocol

can be provided by extending theReactor interface defined

5



in implementation activity2 of the Reactor pattern [2], as fol-
lows:

class Reactor {
public:

// Temporarily deactivate the <HANDLE>
// from the internal handle set.
int deactivate_handle (HANDLE, Event_Type et);
// Reactivate a previously deactivated
// <Event_Handler> to the internal handle set.
int reactivate_handle (HANDLE, Event_Type et);
// ...

};

3. Implement the thread pool. To promote a follower
thread to the leader role, as well as to determine which
thread is the current leader, an implementation of the
Leader/Followers pattern must manage a pool of threads. All
follower threads in the set can simply wait on a single syn-
chronizer, such as a semaphore or condition variable. In this
design, it does not matter which thread processes an event, as
long as multiple threads sharing a handle set are serialized.
! For example, theLF Thread Pool class shown below

can be used for the back-end database servers in our OLTP
example:

class LF_Thread_Pool {
public:

// By default, use a singleton reactor.
LF_Thread_Pool (Reactor *reactor =

Reactor::instance ()):
reactor_ (reactor) {}

// Wait on handle set and demultiplex events
// to their event handlers.
int join (Time_Value *timeout = 0);

// Promote a follower thread to become the
// leader thread.
int promote_new_leader (void);

// Support the <HANDLE> (de)activation protocol.
int deactivate_handle (HANDLE, Event_Type et);
int reactivate_handle (HANDLE, Event_Type et);

private:
// Pointer to the event demultiplexer/dispatcher.
Reactor *reactor_;

// The thread id of the leader thread, which is
// set to NO_CURRENT_LEADER if there is no leader.
Thread_Id leader_thread_;

// Follower threads wait on this condition
// variable until they are promoted to leader.
Thread_Condition followers_condition_;

// Serialize access to our internal state.
Thread_Mutex mutex_;

};

The constructor ofLF Bound Thread caches the reac-
tor passed to it. By default, this reactor implementation uses
select , which only supports iterative handle sets. There-
fore, LF Thread Pool is responsible for serializing multi-

ple threads that take turns callingselect on the reactor’s
handle set.

Application threads invoke thejoin method to wait on a
handle set and demultiplex new events to their associated event
handlers. As shown inImplementation activity4, this method
does not return to its caller until the application terminates or
a timeout occurs. Thepromote new leader method pro-
motes one of the follower threads in the set to become the new
leader, as shown inImplementation activity5.2.

The deactivate handle and reactive handle
methods temporarily deactivate and activate handles within a
reactor’s handle set. The implementations of these methods
simply forward to the same methods defined on theReactor
interface shown inimplementation activity2.

Note that a single condition variable synchronizer is shared
by all threads in this set. As shown inimplementation ac-
tivities 4 and 5, the implementation ofLF Thread Pool is
designed using the Monitor Object pattern [2].

4. Implement a protocol to allow threads to initially join
(and rejoin) the thread pool. This protocol is used when
event processing completes and a thread is available to pro-
cess another event. If no leader thread is available, a follower
thread can become the leader immediately. If a leader thread
is already available, a thread can become a follower by wait-
ing on the thread pool’s synchronizer. The following two sub-
activities can be used to implement this protocol.
! For example, our back-end database servers can imple-

ment the followingjoin method of theLF Thread Pool
to wait on a handle set and demultiplex new events to their
associated event handlers:

int LF_Thread_Pool::join (Time_Value *timeout)
{

// Use Scoped Locking idiom to acquire mutex
// automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

for (;;) {
while (leader_thread_ != NO_CURRENT_LEADER)

// Sleep and release <mutex> atomically.
if (followers_condition_.wait (timeout) == -1

&& errno == ETIME)
return -1;

// Assume the leader role.
leader_thread_ = Thread::self ();

// Leave monitor temporarily to allow other
// follower threads to join the pool.
guard.release ();

// After becoming the leader, the thread uses
// the reactor to wait for an I/O event.
if (reactor_->handle_events () == -1)

return;

// Reenter monitor to serialize the test
// for <leader_thread_> in the while loop.
guard.acquire ();

}
}

6



Within the for loop, the calling thread alternates between
its role as aleader, processing, andfollower thread. In the first
part of this loop, the thread waits until it it can be a leader, at
which point it uses the reactor to wait for an I/O event on the
shared handle set. When the reactor detects an event on a han-
dle, it will demultiplex the event to its associated event han-
dler and dispatch itshandle event method to process the
event. After the reactor demultiplexes one event, the thread re-
assumes its follower role. These steps continue looping until
the application terminates or a timeout occurs.

5. Implement the follower promotion protocol. Immedi-
ately after a leader thread detects an event, but before it demul-
tiplexes the event to its event handler and processes the event,
it must promote a follower thread to become the new leader.
The following two sub-activities can be used to implement this
protocol.

5.1. Implement the handle set synchronization protocol.
If the handle set is iterative and we blindly promote a new
leader thread, it is possible that the new leader thread will at-
tempt to handle the same event. To avoid this race condition,
we must remove the handle from consideration in the handle
set before promoting a new follower and dispatching the event
to its concrete event handler. The handle must be restored once
the event has been dispatched.
! The Decorator pattern [7] can be applied to allow the

Leader/Followers pattern implementation to promote a new
leaderbeforeinvoking thehandle event hook, as follows:

class LF_Event_Handler : public Event_Handler
// This use of <Event_Handler> plays the
// <Component> role in the Decorator pattern.

{
// This use of <Event_Handler> plays the
// <ConcreteComponent> role in the Decorator
// pattern, which is used to implement
// the application-specific functionality.
Event_Handler *concrete_event_handler_;

// Instance of an <LF_Thread_Pool>.
LF_Thread_Pool *thread_pool_;

public:
LF_Event_Handler (Event_Handler *eh,

LF_Thread_Pool *tp)
: concrete_event_handler_ (eh),

thread_pool_ (tp) {}

virtual int handle_event (HANDLE, Event_Type et) {
// Temporarily deactivate the handler in the
// reactor to prevent race conditions.
thread_pool_->deactivate_handle

(this->get_handle (), et);

// Promote a follower thread to become leader.
thread_pool_->promote_new_leader ();

// Dispatch application-specific OLTP event
// processing code.
concrete_event_handler_->handle_event (h, et);

// Reactivate the handle in the reactor.
thread_pool_->reactivate_handle

(this->get_handle (), et);
}

};

As shown above, an application can implement concrete event
handlers and the Leader/Followers implementation can use the
Decorator pattern to promote a new leader transparently.

5.2. Determine the promotion protocol ordering. The
following ordering can be used to determine which follower
thread to promote.

� LIFO order. In many applications, it does not matter
which of the follower threads is promoted next because all
threads are “equivalent peers.” In this case, the leader thread
can promote follower threads inlast-in, first-out(LIFO) order.
The LIFO protocol maximizes CPU cache affinity by ensuring
that the thread waiting theshortesttime is promoted first [9],
which is an example of the “Fresh Work Before Stale” pat-
tern [11]. Implementing a LIFO promotion protocol requires
an additional data structure, however, such as a stack of wait-
ing threads, rather than just using a native operating system
synchronization object, such as a semaphore.

� Priority order. In some applications, particularly real-
time applications [12], threads may run at different priorities.
In this case, therefore, it may be necessary to promote follower
threads according to their priority. This protocol can be imple-
mented using some type of priority queue, such as a heap [13].
Although this protocol is more complex than the LIFO proto-
col, it may be necessary to promote follower threads according
to their priorities in order to minimize priority inversion [12].

� Implementation-defined order. This ordering is most
common when implementing handle sets using operating sys-
tem synchronizers, such as semaphores or condition variables,
which often dispatch waiting threads in an implementation-
defined order. The advantage of this protocol is that it maps
onto native operating system synchronizers efficiently.
! For example, back-end database servers could use the

following simple protocol to promote follower thread in what-
ever order they are queued by an operating system’s condition
variable:

int LF_Thread_Pool::promote_new_leader (void)
{

// Use Scoped Locking idiom to acquire mutex
// automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

if (leader_thread_ != Thread::self ())
// Error, only the leader thread can call this.
return -1;

// Indicate that we’re no longer the leader
// and notify a <join> method to promote
// the next follower.
leader_thread_ = NO_CURRENT_LEADER;
followers_condition_.notify ();

// Release mutex automatically in destructor.
}

7



As shown in implementation activity 5.1, the
promote new leader method is invoked by a
LF Event Handler decorator before it forwards to
the concrete event handler to process a request.

6. Implement the concrete event handlers. Application
developers must decide what actions to perform when the hook
method of concrete event handler is invoked by a processing
thread in the Leader/Followers pattern implementation.Imple-
mentation activity6 in the Reactor pattern [2] describes vari-
ous issues associated with implementing concrete event han-
dlers.

9 Example Resolved

In this section, we illustrate how the Leader/Followers pattern
can be applied to our OLTP back-end database servers.3 Back-
end database servers can use the Leader/Followers pattern to
implement a thread pool that demultiplexes I/O events from
socket handles to their event handlers efficiently. As illus-
trated in the following figure, there is no designated network
I/O thread. Instead, a pool of threads is pre-allocated during

LEADERLEADER

THREADTHREAD

NETWORKNETWORK

INTERFACEINTERFACE

FO
LLO

W
ER

FO
LLO

W
ER

T
H

R
E
A
D
S

T
H

R
E
A
D
S

HANDLE  SETHANDLE  SET

PROCESSINGPROCESSING

THREADSTHREADS

database server initialization, as shown in the followingmain
function:

const int MAX_THREADS = ...;

void *worker_thread (void *);

int main (void) {
LF_Thread_Pool thread_pool (Reactor::instance ());

// Code to set up a passive-mode Acceptor omitted.

for (int i = 0; i < MAX_THREADS - 1; i++)
Thread_Manager::instance ()->spawn

(worker_thread, &thread_pool);

thread_pool.join ();

};

These threads are not bound to any particular socket handle.
Thus, all threads in this pool take turns playing the role of the

3The Variants section describes how this pattern can be applied to our
OLTP front-end communication servers.

network I/O thread by calling theLF Thread Pool::join
method, as follows:

void *worker_thread (void *arg) {
LF_Thread_Pool *thread_pool =

reinterpret_cast <LF_Thread_Pool *> (arg);

thread_pool->join ();
};

As shown inimplementation activity4, the join method
allows only the leader thread to use theReactor singleton to
select on a shared handle set of sockets connected to OLTP
front-end servers. If requests arrive when all threads are busy,
they will be queued in socket handles until a thread in the pool
is available to execute the requests.

When a request event arrives, the leader thread temporarily
deactivates the socket handle from consideration inselect ’s
handle set, promotes a follower thread to become the new
leader, and continues to handle the request event as a process-
ing thread. This processing thread then reads the request into
a buffer that resides in the run-time stack or is allocated us-
ing the Thread-Specific Storage pattern [2].4 All OLTP activi-
ties occur in the processing thread. Thus, no further context
switching, synchronization, or data movement is necessary.
When it finishes handling a request, the processing thread re-
turns to playing the role of a follower and waits in the thread
pool. Moreover, the socket handle it was processing is reacti-
vated in the handle set so thatselect can wait for I/O events
to occur on it, along with other sockets in the handle set.

10 Variants

10.1 Bound Handle/Thread Associations

Earlier sections in this pattern describeunbound handle/thread
associations, where there is no fixed association between
threads and handles. Thus, any thread can process any event
that occurs on any handle in a handle set. Unbound associa-
tions are often used when a pool of threads take turns demul-
tiplexing a shared handle set.
! For example, our OLTP back-end database server exam-

ple illustrates an unbound association between threads in the
pool and handles in the handle set managed byselect . Con-
crete event handlers that process request events in a database
server can run in any thread. Thus, there is no need to maintain
bound associations between handles and threads. In this case,
maintaining an unbound thread/handle association simplifies
back-end server programming.

However, an important variant of this pattern usesbound
handle/thread associations. In this use case, each thread is

4In contrast, the “half-sync/half-reactive” thread pool described in theEx-
amplesection must allocate each request dynamically from a shared heap be-
cause the request is passed between threads.

8



bound to its own handle, which it uses to process particular
events. Bound associations are often used when a client ap-
plication thread waits on a socket handle for a response to a
two-way request it sent to a server. In this case, the client ap-
plication thread expects to process the response event on this
handle in a specific thread,i.e., the thread that sent the original
request.
! For example, threads in our OLTP front-end communica-

tion server forward incoming client requests to a specific back-
end server chosen to process the request. To reduce the con-
sumption of operating system resources in large-scale multi-
tier OLTP systems, worker threads in front-end server pro-
cesses can communicate to back-end servers usingmultiplexed
connections[12], as shown in the following figure. After a

ONE TCP

CONNECTION

WORKER  THREADS

FRONT-END

COMMUNICATION

SERVER

WORKER  THREADS

BACK-END

DATABASE

SERVER

request is sent, the worker thread waits for a result to return
on a multiplexed connection to the back-end server. In this
case, maintaining a bound thread/handle association simpli-
fies front-end server programming and minimizes unnecessary
context management overhead for transaction processing [14].

As described below, supporting bound thread/handle as-
sociations requires changes to the following sections of the
Leader/Followers pattern.

Structure

Thread pool. In the bound handle/thread association model,
the leader thread may need to hand-off an event to a follower
thread if the leader does not have the necessary context to
process the event. Thus, the follower threads wait to either
become the leader thread or to receive event hand-offs from
the current leader thread. The leader/follower thread pool can
be maintainedimplicitly, for example, using a synchronizer,
such as a semaphore or condition variable, orexplicitly, using
a collection class. The choice depends largely on whether the
leader thread must notify a specific follower thread explicitly
to perform event hand-offs.

Dynamics

The bound handle/thread association model variant of the
Leader/Followers pattern requires changes to the following
two collaboration:

� Follower thread promotion. After the leader detects a
new event, it checks the handle associated with the event to

determine which thread is responsible for processing it. If
the leader thread discovers that it is responsible for the event,
it promotes a follower thread to become the new leader us-
ing the same protocols described inimplementation activity5
above. Conversely, if the event is intended for another thread,
the leader must hand-off the event to the designated follower
thread. This follower thread then unregisters itself from the
thread pool and processes the incoming event concurrently.
Meanwhile, the current leader thread continues to wait for an-
other event to occur on the handle set.

� Event handler demultiplexing and event processing. Ei-
ther the processing thread continues to handle the event it de-
tected or a follower thread processes the event that the leader
thread handed off to it.

Implementation

The first two implementation activitiesin the earlierImple-
mentationsection require no changes. However, the following
changes are required to support bound handle/thread associa-
tions in subsequentimplementation activities.

3. Implement the thread pool. In the bound handle/thread
design a leader thread can hand-off new events to specific fol-
lower threads. For example, a reply received over a multi-
plexed connection by the leader thread in a front-end OLTP
communication server may belong to one of the follower
threads. This scenario is particularly relevant in high-volume,
multi-tier distributed systems, where results often arrive in a
different order than requests were initiated.

In addition, a bound handle/thread association may be nec-
essary if an application multiplexes connections among two
or more threads, in which case the thread pool can serialize
access to the multiplexed connection. This multiplexed de-
sign minimizes the number of network connections used by
the front-end server. However, front-end server threads must
now serialize access to the connection when sending and re-
ceiving over a multiplexed connection to avoid corrupting the
request and reply data, respectively.
! For example, below we illustrate how a bound han-

dle/thread association implementation of the Leader/Followers
pattern can be used for the front-end communication servers in
our OLTP example. We focus on how a server can demultiplex
events on a singleiterative handle, which threads in front-end
communication servers use to wait for responses from back-
end data servers. This example complements the implemen-
tation shown in the thread pool in the earlierImplementation
section, where we illustrated how to use the Leader/Followers
pattern to demultiplex an iterativehandle set.

We first define aThread Context class:

class Thread_Context {
public:

9



// The response we are waiting for.
int request_id (void) const;

// Returns true when response is received.
bool response_received (void);
void response_received (bool);

// The condition the thread waits on.
Thread_Condition *condition (void);

private:
// ... data members omitted for brevity ...

};

A Thread Context provides a separate condition variable
synchronizer for each waiting thread, which allows a leader
thread to notify the appropriate follower thread when its re-
sponse is received.

Next, we define theBound LF Thread Pool class:

class Bound_LF_Thread_Pool {
public:

Bound_LF_Thread_Pool (Reactor *reactor)
: reactor_ (reactor),

leader_thread_ (NO_CURRENT_LEADER) {}

// Register <context> into the thread pool.
// It stays there until its response is
// received.
int expecting_response (Thread_Context *context);

// Wait on handle set and demultiplex events
// to their event handlers.
int join (Thread_Context *context);

// Handle the event by parsing its header
// to determine the request id.
virtual int handle_event (HANDLE h, Event_Type et);

// Read the message in handle <h>, parse the header
// of that message and return the response id
virtual int parse_header (HANDLE h);

// Read the body of the message, using the
// information obtained in <parse_header>
virtual int read_response_body (HANDLE h);

private:
// Wrapper facade for the the multiplexed
// connection stream.
Reactor *reactor_;

// The thread id of the leader thread.
// Set to NO_CURRENT_LEADER if there
// is no current leader.
Thread_Id leader_thread_;

// The pool of follower threads indexed by
// the response id.
typedef std::map<int, Thread_Context *>

Follower_Threads;
Follower_Threads follower_threads;

// Serialize access to our internal state.
Thread_Mutex mutex_;

};

A thread that wants to send a request uses the
expecting response method to register its associated
Thread Context with the bound thread set to inform the
set that it expects a response:

void new_request (Bound_LF_Thread_Pool *tp
... /* request args */)

{
// Create a new context, with a new unique
// request id
Thread_Context *context = new Thread_Context;
tp->expecting_response (context);
send_request (context->request_id (),

/* request args */);
tp->join (context);

}

This registration must be performedbeforethe thread sends
the request. Otherwise, the response could arrive before the
bound thread pool is informed which threads are waiting for
it.

After the request is sent, the client thread invokes thejoin
method defined in theBound LF Thread Pool class to
wait for the response. This method performs the following
three steps:

� Step (a)– wait as a follower or become a leader

� Step (b)– dispatch event to bound thread

� Step (c)– promote new leader

The definition of steps (a), (b) and (c) in thejoin method
of Bound LF Thread Pool are illustrated in the updated
implementation activities4, 5, and 6, respectively, which are
shown below.

It is instructive to compare the data members in the
Bound LF Thread Pool class shown above with those in
the LF Thread Pool defined inimplementation activity3.
The primary differences are that the pool of threads in the
LF Thread Pool is implicit, namely, the queue of wait-
ing threads blocked on its condition variable synchronizer. In
contrast, theBound LF Thread Pool contains anexplicit
pool of threads, represented by theThread Context ob-
jects, and a multiplexedSOCKStream wrapper facade ob-
ject. Thus, each follower thread can wait on a separate con-
dition variable until they are promoted to become the leader
thread or receive an event hand-off from the current leader.

4. Implement a protocol to allow threads to initially join
(and rejoin) the thread pool. For bound thread/handle as-
sociations, the follower must first add its condition variable to
the map in the thread pool and then callwait on it. This al-
lows the leader to use the Specific Notification pattern [15, 16]
to hand-off an event to a specific follower thread.
! For example, our front-end communication servers must

maintain a bound pool of follower threads. This set is updated
when a new leader is promoted, as follows:

int

10



Bound_LF_Thread_Pool::join (Thread_Context *context)
{

// Step (a): wait as a follower or become a leader.

// Use Scoped Locking idiom to acquire mutex
// automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

while (leader_thread_ != NO_CURRENT_LEADER
&& !context->response_received ()) {

// There is a leader, wait as a follower...
// Insert the context into the thread pool.
int id = context->response_id ();
follower_threads_[id] = context;

// Go to sleep and release <mutex> atomically.
context->condition ()->wait ();

// The response has been received, so return.
if (context->response_received ())

return 0;
}
// No leader, become the leader.
for (leader_thread = Thread::self ();

!context->response_received ();
) {

// Leave monitor temporarily to allow other
// follower threads to join the set.
guard.release ();
if (reactor_->handle_events () == -1)

return -1;
// Reenter monitor.
guard.acquire ();
// ... more below ...

After the thread is promoted to the leader role, the thread must
perform all its I/O operations, waiting until its own event is
received. In this case theEvent Handler forwards the I/O
event to the thread pool:

class Bound_LF_Event_Handler : public Event_Handler
{
private:

// Instance of a <Bound_LF_Thread_Pool>.
Bound_LF_Thread_Pool *thread_pool_;

public:
Bound_LF_Event_Handler (Bound_LF_Thread_Pool *tp)

: thread_pool_ (tp) {}

int handle_event (HANDLE h, Event_Type et) {
thread_pool_->handle_event (h, et);

}
}

Unlike the unbound case we cannot apply the Decorator pat-
tern to augment any user defined event handler to participate
in the Leader/Follower pattern. The thread pool needs to parse
the request to extract the response id and match it to the corre-
spondingThread Context . Consequently the thread pool
must perform at least part of the I/O, and it cannot be com-
pletely encapsulated by theEvent Handler .
Next, the thread pool can handle the event by parsing its header
to determine the request id and processing the event as before:

int
Bound_LF_Event_Handler::handle_event (HANDLE handle,

Event_Type)
{

// Parse the response header and
// get the response id.
int response_id = parse_header (handle);

// Find the correct thread.
Follower::iterator i =

follower_threads_.find (response_id);
// We are only interested in the value of
// the <key, value> pair of the STL map.
Thread_Context *destination_context

= (*i).second;
follower_threads_.erase (i);

// Leave monitor temporarily to allow other
// follower threads to join the set.
guard.release ();
// Read response into an application buffer
destination_context->read_response_body (handle);
// Reenter monitor.
guard.acquire ();

// Notify the condition variable to
// wake up the waiting thread.
destination_context->response_received (true);
destination_context->condition ()->notify ();

}

Application developers are responsible for implementing
theparse header andread response body methods,
which apply the Template Method pattern [7].

6. Implement the follower promotion protocol. The fol-
lowing two protocols may be useful for bound handle/thread
associations:

� FIFO order. A straightforward protocol is to promote
the follower threads infirst-in, first-out (FIFO) order. This
protocol can be implemented using a native operating system
synchronization object, such as a semaphore, if it queues wait-
ing threads in FIFO order. The benefits of the FIFO protocol
for bound thread/handle associations are most apparent when
the order of client requests matches the order of server re-
sponses. In this case, no unnecessary event hand-offs need
be performed because the response will be handled by the
leader, thereby minimizing context switching and synchro-
nization overhead.

One drawback with the FIFO promotion protocol, however,
is that the thread that is promoted next is the thread that has
been waiting thelongest, thereby minimizing CPU cache affin-
ity [5, 17]. Thus, it is likely that state information, such as
translation lookaside buffers, register windows, instructions,
and data, residing within the CPU cache for this thread will
have been flushed.

� Specific order. This ordering is common when imple-
menting a bound thread pool, where it is necessary to hand-off
events to a particular thread. In this case, the protocol imple-
mentation more complex because it must maintain a collection
of synchronizers.
! For example, this protocol can be implemented as part of

theBound LF Thread Pool ’s join method to promote a
new leader, as follows:

11



int
Bound_LF_Thread_Pool::join (Thread_Context *context)
{

// ... details omitted ...

// Step (c): Promote a new leader.
Follower_Threads::iterator i =

follower_threads_.begin ();
if (i == follower_threads_.end ())

return 0; // No followers, just return.

Thread_Context *new_leader_context
= (*i).second;

leader_thread_ = NO_CURRENT_LEADER;
// Remove this follower...
follower_threads_.erase (i);
// ... and wake it up as newly promoted leader.
new_leader_context->condition ()->notify ();

}

7. Implement the event hand-off mechanism. Unbound
handle/thread associations do not require event hand-offs be-
tween leader and follower threads. For bound handle/thread
associations, however, the leader thread must be prepared to
hand-off an event to a designated follower thread. The Spe-
cific Notification pattern [15, 16] can be used to implement
this hand-off scheme. Each follower thread has its own syn-
chronizer, such as a semaphore or condition variable, and a
set of these synchronizers is maintained by the thread pool.
When an event occurs, the leader thread can locate and use the
appropriate synchronizer to notify a specific follower thread.
! In our OLTP example, front-end communication servers

can use the following protocol to hand-off an event to the
thread designated to process the event:

int
Bound_LF_Thread_Pool::join (Thread_Context *context)
{

// ... Follower code omitted ...

// Step (b): dispatch event to bound thread.
for (leader_thread_ = Thread::self ();

!context->response_received ();
) {

// ... Leader code omitted ...

// Parse the response header and
// get the response id.
int response_id = parse_header (buffer);

// Find the correct thread.
Follower::iterator i =

follower_threads_.find (response_id);
// We are only interested in the value of
// the <key, value> pair of the STL map.
Thread_Context *destination_context

= (*i).second;
follower_threads_.erase (i);

// Leave monitor temporarily to allow other
// follower threads to join the set.
guard.release ();
// Read response into pre-allocated buffers.
destination_context->read_response_body (handle);
// Reenter monitor.
guard.acquire ();

// Notify the condition variable to
// wake up the waiting thread.
destination_context->response_received (true);
destination_context->condition ()->notify ();

}
// ... more below ...

}

Example Resolved

Our OLTP front-end communication servers can use the bound
handle/thread association version of the Leader/Follower pat-
tern to wait for both requests from remote clients and re-
sponses from back-end servers. Themain function im-
plementation can be structured much like the back-end
servers described in the mainExample Resolvedsection.
The main difference is that the front-end server threads
use the Bound LF Thread Pool class rather than the
LF Thread Pool class to bind threads to particular socket
handles once they forward a request to a back-end server.
Hence, each thread can wait on a condition variable until its
response is received. After the response is received, the front-
end server uses the request id to hand-off the response by lo-
cating the correct condition variable and notifying the desig-
nated waiting thread. This thread then wakes up and processes
the response.

Using the Leader/Followers pattern is more scalable than
simply blocking in aread on the socket handle because the
same socket handle can be shared between multiple front-
end threads. This connection multiplexing conserves limited
socket handle resources in the server. Moreover, if all threads
are waiting for responses, the server will not dead-lock be-
cause it can use one of the waiting threads to process new
incoming requests from remote clients. Avoiding deadlock
is particularly important in multi-tier systems where servers
callback to clients to obtain additional information, such as
security certificates.

10.2 Relaxing Serialization Constraints

There are operating system platforms where multiple leader
threads can wait simultaneously on a handle set. For exam-
ple, the Win32WaitForMultipleObjects function [9]
supports concurrent handle sets that allow a pool of threads
to wait on the same set of handles simultaneously. Thus, a
thread pool designed using this function can take advantage
of multi-processor hardware to perform useful computations
while other threads wait for events. In such cases, the con-
ventional Leader/Followers pattern implementation serializes
thread access to handle sets, which can overly restrict applica-
tion concurrency. To relax this constrain, the following vari-
ants of the Leader/Followers pattern can allow multiple leader

12



threads to be active simultaneously:

Leader/followers per multiple handle sets. This variant
applies the conventional Leader/Followers implementation to
multiple handle sets separately. For instance, each thread is
assigned a designated handle set. This variant is particularly
useful in applications where multiple handle sets are available.
However, this approach limits a thread to use a specific handle
set.

Multiple leaders and multiple followers. In this variant,
the pattern is extended to support multiple simultaneous leader
threads, where any of the leader threads can wait on any han-
dle set. When a thread re-joins the leaders/followers thread
pool it checks if a leader is associated with every handle set
already. If there is a handle set without a leader, the re-joining
thread can become the leader of that handle set immediately.

10.3 Hybrid Thread Associations

Some applications use hybrid designs that implement both
bound and unbound handle/thread associations simultane-
ously. Likewise, some handles in an application may have
dedicated threads to handle certain events, whereas other han-
dles can be processed by any thread. Thus, one variant of the
Leader/Follower pattern uses its event hand-off mechanism to
notify certain subsets of threads, according to the handle on
which event activity occurs.

For example, the OLTP front-end communication server
may have multiple threads using the Leader/Followers pattern
to wait for new request events from clients. Likewise, it may
also have threads waiting for responses to requests they in-
voked on back-end servers. In fact, threads play both roles
over their lifetime, starting as threads to dispatch new incom-
ing requests, issuing requests to the back-end servers to satisfy
the client application requirements and then waiting for the re-
sponses from the back-end server.

10.4 Hybrid Client/Servers

In complex systems, where peer applications play both client
and server roles, it is important that the communication in-
frastructure process incoming requests while waiting for one
or more replies. Otherwise the system can dead-lock because
one client has all its threads blocked waiting for responses.

In this variant, the binding of threads and handles changes
dynamically, for example, initially a thread may be unbound,
during processing of an incoming request the application re-
quires services provided by other peers in the distributed sys-
tem. In that case the unbound thread dispatches new requests
while executing application code, effectively binding itself to
the handle used to send the request. Later when the response

arrives and the thread completes the original request it be-
comes unbound again.

In such an implementation, theBound LF Thread Pool
cannot simply demultiplex events for a single handle. As with
theLF Thread Pool class, the unbound version must be ex-
tended to support a full handle set. In particular thewait()
method in Step 4 cannot perform the I/O directly. Instead
the Event Handler performs all the I/O, and it informs
theBound LF Thread Pool to dispatch the message to the
correct thread.

10.5 Alternative Event Sources and Sinks

Consider a system where events are obtained not only through
handles but also from other sources, such as shared memory or
message queues. For example, in UNIX there are no event de-
multiplexing functions that can wait for I/O events, semaphore
events, and/or message queue events simultaneously. How-
ever, a thread can either block waiting for one type of event
at the same time. Thus, the Leader/Followers pattern can be
extended to wait for more than one type of events simultane-
ously, as follows:

1. A leader thread is assigned to each source of events (as
opposed to a single leader thread for the complete sys-
tem).

2. After the event is received, but before processing the
event, a leader thread can select any follower thread to
wait on the leader’s event source.

A drawback with this variant, however, is that the number of
participating thread must always be greater than the number
of event sources. Therefore, it can be hard to scale it as the
number of event sources increases.

11 Known Uses

ACE Thread Pool Reactor framework [18]. The ACE
framework provides an object-oriented framework implemen-
tation of the Leader/Followers pattern called the “thread pool
reactor” (ACETP Reactor ) to demultiplex events to event
handlers within a pool of threads. When using a thread
pool reactor, an application pre-spawns afixed number of
threads. When these threads invokeACETP Reactor ’s
handle events method, one thread will become the leader
and wait for an event. Threads are considered unbound by the
ACE thread pool reactor framework. Thus, once the leader
leader thread detects the event, it promotes an arbitrary thread
to become the next leader it and then demultiplexes the event
to its associated event handler.

13



CORBA ORBs. Many CORBA implementations, includ-
ing Chorus COOL ORB [12] and TAO [19] use the Lead-
ers/Followers pattern for both their client-side connection
model and the server-side concurrency model.

Web servers. The JAWS Web server [1] uses the
Leader/Followers thread pool model...

Transaction monitors. Popular transaction monitors, such
as Tuxedo, have traditionally operated on a per-process basis,
i.e., transactions are always associated with a process. Con-
temporary OLTP systems demand high-performance and scal-
ability, however, and performing transactions on a per-process
basis may fail to meet these requirements. Therefore, next-
generation transaction services, such as the CORBA Transac-
tion Service [14], employ bound associations between threads
and transactions. The Leader/Followers pattern supports this
architecture with bound associations between threads and han-
dles.

Taxi stands. The Leader/Followers pattern is used in ev-
eryday life to organize many airport taxi stands. In this case,
taxi cabs are the threads, with the first taxi cab in line being
the leader and the remaining taxi cabs being the followers.
Likewise, passengers arriving at the taxi stand constitute the
‘events’ that must be demultiplexed to the cabs. In general,
if any taxi cab can service any passenger, this is equivalent to
the unboundhandle/thread association described in the main
Implementationsection. However, if only certain cabs can
service certain passengers, this is is equivalent to thebound
handle/thread association described in the variant’sImplemen-
tationsection.

12 See Also

The Proactor pattern [2] can be used as an alternative to the
Leader/Followers pattern when an operating system supports
asynchronous I/O efficiently.

The Half-Sync/Half-Async [2] and Active Object [2] pat-
terns are alternatives to the Leader/Followers pattern when
there are additional synchronization or ordering constraints
that must be addressed before requests can be processed by
threads in the pool.

13 Consequences

The Leader/Followers pattern provides the followingbenefits:

Performance enhancements. Compared with the half-
sync/half-reactive thread pool approach described in theEx-
amplesection, the Leader/Followers pattern can improve per-
formance as follows:

� It enhances CPU cache affinity and eliminates unbound
allocation and data buffer sharing between threads by read-
ing the request into buffer space allocated on the stack of the
leader or by using the Thread-Specific Storage pattern [2] to
allocate memory.

� It minimizes locking overhead by not exchanging data
between threads, thereby reducing thread synchronization. In
bound handle/thread associations, the leader thread demulti-
plexes the event to its event handler based on the value of the
handle. The request event is then read from the handle by the
follower thread processing the event. In unbound associations,
the leader thread itself reads the request event from the handle
and processes it.

� It can minimize priority inversion because no ex-
tra queueing is introduced in the server. When combined
with real-time I/O subsystems [20], the Leader/Followers
thread pool model can significantly reduce sources of non-
determinism in server request processing.

� It does not require a context switch to handle each event,
reducing the event dispatching latency. Note that promoting a
follower thread to fulfill the leader roledoesrequire a context
switch. If two events arrive simultaneously this increases the
dispatching latency for the second event, but it is no worse
than half-sync/half-reactive thread pool implementations.

Programming simplicity. The Leader/Follower pattern
simplifies the programming of concurrency models where
multiple threads can receive requests, process responses, and
demultiplex connections using a shared handle set.

However, the Leader/Followers pattern has the followingli-
abilities:

Implementation complexity. The advanced variants of the
Leader/Followers pattern are harder to implement than half-
sync/half-reactive thread pools. In particular, when used as a
multi-threaded connection multiplexer, the Leader/Followers
pattern must maintain a pool of follower threads waiting to
process requests. This set must be updated when a fol-
lower thread is promoted to a leader and when a thread
rejoins the pool of follower threads. All these operations
can happen concurrently, in an unpredictable order. Thus,
the Leader/Follower pattern implementation must be efficient,
while ensuring operation atomicity.

Lack of flexibility. Thread pool models based on the “half-
sync/half-reactive” variant of the Half-Sync/Half-Async pat-
tern [2] allow events in the queueing layer to be discarded
or re-prioritized. Similarly, the system can maintain multi-
ple separate queues serviced by threads at different priorities
to reduce contention and priority inversion between events at
different priorities. In the Leader/Followers model, however,

14



it is harder to discard or reorder events because there is no ex-
plicit queue. One way to provide this functionality is to offer
different levels of service by using multiple Leader/Followers
groups in the application, each one serviced by threads at dif-
ferent priorities.

Network I/O bottlenecks. The Leader/Followers pattern
described in theImplementationsection serializes processing
by allowing only a single thread at a time to wait on the han-
dle set. In some environments, this design could become a
bottleneck because only one thread at a time can demultiplex
I/O events. In practice, however, this may not be a problem
because most of I/O-intensive processing is performed by the
operating system kernel. Thus, the I/O operations can be per-
formed rapidly.

Acknowledgements

Thanks to Hans Rohnert for providing insightful comments
that helped to improve this paper significantly.

References
[1] J. Hu, I. Pyarali, and D. C. Schmidt, “The Object-Oriented Design and

Performance of JAWS: A High-performance Web Server Optimized for
High-speed Networks,”Parallel and Distributed Computing Practices
Journal, special issue on Distributed Object-Oriented Systems, vol. 3,
Mar. 2000.

[2] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. New York: Wiley & Sons, 2000.

[3] W. R. Stevens,UNIX Network Programming, Volume 1: Networking
APIs: Sockets and XTI, 2nd Edition. Englewood Cliffs, NJ: Prentice
Hall, 1998.

[4] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of Real-
time ORBs,” inProceedings of the5th Conference on Object-Oriented
Technologies and Systems, (San Diego, CA), pp. 145–159, USENIX,
May 1999.

[5] J. D. Salehi, J. F. Kurose, and D. Towsley, “The Effectiveness of
Affinity-Based Scheduling in Multiprocessor Networking,” inIEEE IN-
FOCOM, (San Francisco, USA), IEEE Computer Society Press, Mar.
1996.

[6] D. C. Schmidt and T. Suda, “Measuring the Performance of Parallel
Message-based Process Architectures,” inProceedings of the Confer-
ence on Computer Communications (INFOCOM), (Boston), pp. 624–
633, IEEE, Apr. 1995.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[8] W. Pree,Design Patterns for Object-oriented Software Development.
Reading, MA: Addison-Wesley, 1995.

[9] D. A. Solomon,Inside Windows NT, 2nd Edition. Redmond, WA: Mi-
crosoft Press, 1998.

[10] S. Rago, UNIX System V Network Programming. Reading, MA:
Addison-Wesley, 1993.

[11] G. Meszaros, “A Pattern Language for Improving the Capacity of Reac-
tive Systems,” inPattern Languages of Program Design(J. O. Coplien,
J. Vlissides, and N. Kerth, eds.), Reading, Massachusetts: Addison-
Wesley, 1996.

[12] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
Architectures for Reducing Priority Inversion and Non-determinism in
Real-time Object Request Brokers,”Journal of Real-time Systems, spe-
cial issue on Real-time Computing in the Age of the Web and the Inter-
net, vol. 21, no. 2, 2001.

[13] R. E. Barkley and T. P. Lee, “A Heap-based Callout Implementation to
Meet Real-time Needs,” inProceedings of the USENIX Summer Confer-
ence, pp. 213–222, USENIX Association, June 1988.

[14] Object Management Group,Transaction Services Specification, OMG
Document formal/97-12-17 ed., Dec. 1997.

[15] T. Cargill, “Specific Notification for Java Thread Synchronization,” in
Pattern Languages of Programming Conference (PLoP), Sept. 1996.

[16] D. Lea,Concurrent Programming in Java: Design Principles and Pat-
terns, Second Edition. Boston: Addison-Wesley, 2000.

[17] J. C. Mogul and A. Borg, “The Effects of Context Switches on Cache
Performance,” inProceedings of the4th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), (Santa Clara, CA), ACM, Apr. 1991.

[18] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” inHandbook of Program-
ming Languages(P. Salus, ed.), MacMillan Computer Publishing, 1997.

[19] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for Dynamic
Configuration of Services,” inProceedings of the3rd Conference on
Object-Oriented Technologies and Systems, USENIX, June 1997.

[20] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and Perfor-
mance of RIO – A Real-time I/O Subsystem for ORB Endsystems,” in
Proceedings of the International Symposium on Distributed Objects and
Applications (DOA’99), (Edinburgh, Scotland), OMG, Sept. 1999.

15


