
Why Telecom Software Reuse Has Failed
and How to Make It Work for You

Douglas C. Schmidt

Associate Professor & Computer Science Dept.
Director of the Center for Washington University, St. Louis
Distributed Object computing www.cs.wustl.edu/�schmidt/

Sponsors
NSF, DARPA, Bellcore/Telcordia, BBN, Boeing, CDI/GDIS, Hughes,
Kodak, Lockheed, Lucent, Microsoft, Motorola, Nokia, Nortel, OTI,
SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint, USENIX

April 22nd, 1999



Douglas C. Schmidt Making Software Reuse Work

Motivation: the Communication Software Crisis
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� Symptoms

– Hardware gets smaller,
faster, cheaper

– Software gets larger,
slower, more expensive

� Culprits

– Inherent and accidental
complexity

� Solutions

– Frameworks, components,
patterns, and architecture
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Techniques for Improving Communication
Software Quality, Reuse, and Productivity
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Proven solutions !

� Components
– Self-contained, “pluggable”

ADTs

� Frameworks
– Reusable, “semi-complete”

applications

� Patterns
– Problem/solution/context

� Architecture
– Families of related patterns

and components
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When Reality Sets In...

Components

� “Artifacts everyone
wants to use, but very
few are willing/able to
build or afford”

Patterns

� “An excuse to be vague”

Frameworks

� “Tangled webs of components
that give up all pretense of
modularity or separation of
concerns”

Architecture

� “Those who can no longer
develop become architects... ;-)”

Bottom-line : systematic reuse is hard...
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Why Systematic Software Reuse has (Largely) Failed
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� Improper software process

– Reuse techniques are often
decoupled from reality...

– Poor “expectation
management”

� Lack of organizational support

– e.g., no economic incentives

� Lack of technical expertise

– e.g., limited knowledge of
patterns and design principles
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Why We Need Reusable Communication Middleware

� System call-level programming is wrong abstraction for application
developers, e.g.,

– Too low-level ! error codes, endless reinvention
– Error-prone ! HANDLEs lack type-safety, thread cancellation
– Mechanisms do not scale ! Win32 TLS
– Steep learning curve ! Win32 Named Pipes
– Non-portable ! sockets and threads
– Inefficient ! i.e., tedious for humans

� GUI frameworks are inadequate for communication software, e.g.,

– Inefficient ! excessive use of virtual methods
– Lack of features ! minimal threading and synchronization

mechanisms, no network services
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The ADAPTIVE Communication Environment (ACE)
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www.cs.wustl.edu/�schmidt/ACE.html

ACE Overview !

� A concurrent
OO networking
framework

� Available in
C++ and Java

� Ported to
POSIX, Win32,
and RTOSs

Related work !

� x-Kernel

� SysV
STREAMS
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The ACE ORB (TAO)
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TAO Overview !

� An open-source,
standards-based,
real-time,
high-performance
CORBA ORB

� Runs on POSIX,
Win32, &
embedded RT
platforms
– e.g., VxWorks,

Chorus,
LynxOS

� Leverages ACE
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ACE and TAO Statistics

� Over 30 person-years of effort

– ACE > 185,000 LOC
– TAO > 100,000 LOC
– TAO IDL compiler > 100,000 LOC
– TAO CORBA Object Services >

150,000 LOC

� Ported to UNIX, Win32, MVS, and
RTOS platforms

� Large user community

– www.cs.wustl.edu/�schmidt/ACE-
users.html

� Currently used by dozens
of companies

– Bellcore, Boeing,
Ericsson, Kodak,
Lockheed, Lucent,
Motorola, Nokia, Nortel,
Raytheon, SAIC,
Siemens, etc.

� Supported commercially

– ACE !

www.riverace.com
– TAO !

www.ociweb.com
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Patterns for Communication Middleware
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Observation !

� Project failures rarely
result from unknown
scientific principles, but
from failing to apply
proven engineering
practices and patterns

Benefits of Patterns !

� Facilitate design reuse

� Preserve crucial design
information

� Guide design choices
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The Active Object Pattern
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Active Object

� Decouples thread
of method
invocation from
thread of method
execution

� Simplifies
synchronization of
concurrent objects
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How to Make Reuse Work for You

� Be patient

– Good components, frameworks,
and software architectures take
time to develop

� Reuse-in-the-large works best
when:

1. The marketplace is competitive
2. The domain is complex
3. Skilled middleware developers
4. Supportive corporate culture
5. “Reuse magnets” exist
6. Open source development

models

� The best components
come from solving real
problems

– Keep feedback loops tight
to avoid “runaway” reuse
efforts

� Produce reusable
components by
generalizing from working
applications

– i.e., don’t build
components in isolation
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The Good News

� Frameworks and components are becoming mainstream

– e.g., GUIs and ADTs

� Less “Not Invented Here” syndrome

– e.g., due to increased complexity and competition

� Developers are more sophisticated

– e.g., OOP/OOD, event loops, templates, applets

� More attention to performance

– e.g., good ORBs are very efficient, predictable, & scalable

� Software architecture is gaining substance

– e.g., patterns and architectural styles
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The Bad News

� Lack of breadth

– e.g., focus is mostly on a few areas (GUIs)

� Lack of component integration

– e.g., incompatible event loops, name space pollution, poor tools

� Lack of education

– e.g., most universities don’t teach software skills

� Lack of experience and training

– e.g., developers rarely apply reuse principles/patterns to their
code

� Lack of standardized semantics & performance

– e.g., design patterns & optimization principle patterns
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The Ugly News

� Lack of useful and truly open standards

– e.g., ODP, ISO OSI, CORBA, DCOM, TINA, Java
– Often leads to proprietary systems sold under guise of open

systems

� Lack of adequate payoff

– i.e., cost of building components “in-house” can be prohibitive
– Leads to cancelled projects

� Lack of effective leadership and management

– e.g., organizations often focus on Process at expense of Product
– Leads to the Dilbert Principle
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Towards a Product-Oriented Software Process

� Develop complex systems
incrementally

– i.e., not sequentially

� Emphasize qualitative reviews

– e.g., use systematic
design/code inspections

� Reward software development
skills

– Both generalization and
customization skills

� Use reverse-engineering tools

– e.g., auto-generate
documentation

� Invest in continuous
education and training

– Components and frameworks
are only as good as the
people who build and use
them
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Traits of Dysfunctional Software Organizations

Process Traits

� Death through quality

– “Process bureaucracy”

� Analysis paralysis

– “Zero-lines of code
seduction”

� Infrastructure churn

– e.g., programming to
low-level APIs

Organizational Traits

� Disrespect for quality
developers

– “Coders vs. developers”

� Top-heavy bureaucracy

Sociological Traits

� The “Not Invented Here”
syndrome
� Modern method madness

Washington University, St. Louis 17



Douglas C. Schmidt Making Software Reuse Work

Traits of Highly Successful Software Organizations

� Strong leadership in
business and technology

– e.g., understand the role
of software technology

– Don’t wait for “silver
bullets”

� Clear architectural vision

– e.g., know when to buy vs.
build

– Avoid worship of specific
tools and technologies

� Effective use of
prototypes and demos

– e.g., reduce risk and get
user feedback

� Commitment to/from
skilled developers

– e.g., know how to
motivate software
developers and recognize
the value of thoughtware
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Concluding Remarks

Take-home Points

� Not all problems require
complex solutions

� Beware simple(-minded)
solutions to complex problems

� Don’t settle for proprietary
open systems

� Systematic reuse is
achievable, though non-trivial

False Prophets

� Languages

� Methodologies

� Process

� Middleware

� Organization-central solutions
� Technology-centric solutions

There is no substitute for thinking and hard work !
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Web URLs for Additional Information

� These slides:
www.cs.wustl.edu/ �schmidt/keynote4.ps.gz

� More information on patterns:
www.cs.wustl.edu/ �schmidt/patterns.html

� More information on CORBA:
www.cs.wustl.edu/ �schmidt/corba.html
www.omg.org

� More info on ACE:
www.cs.wustl.edu/ �schmidt/ACE.html
comp.soft-sys.ace

� More info on TAO:
www.cs.wustl.edu/ �schmidt/TAO.html
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