Why Telecom Software Reuse Has Falled
and How to Make It Work for You

Douglas C. Schmidt

Associate Professor & Computer Science Depit.
Director of the Center for Washington University, St. Louis
Distributed Object computing www.cs.wustl.edu/~schmidt/

p¥e¥o

Sponsors
NSF, DARPA, Bellcore/Telcordia, BBN, Boeing, CDI/GDIS, Hughes,
Kodak, Lockheed, Lucent, Microsoft, Motorola, Nokia, Nortel, OTI,

SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint, USENIX

April 22741999

Douglas C. Schmidt

Making Software Reuse Work

Motivation: the Communication Software Crisis

TRACKING
STATION
PEERS

& SATELLITES

¢ _
STATUS INFO - ¢
2

/

WIDE AREA r 7
NETWORK r, il
/ / /
COMMANDS // J/ e BULK DATA
/ /S TRANSFER

/! /7
GATEWAY —+—— —
| | | -EE
‘)) : [&
E‘ —

LOCAL AREA NETWORK

GROUND — |
STATION _
PEERS — ST

=

e Symptoms

— Hardware gets smaller,
faster, cheaper

— Software gets larger,
slower, more expensive

e Culprits

— Inherent and accidental
complexity

e Solutions

— Frameworks, components,
patterns, and architecture

Washington University, St. Louis

Douglas C. Schmidt Making Software Reuse Work
Techniques for Improving Communication

Software Quality, Reuse, and Productivity

r i &y
Washington University, St. Louis D C

Douglas C. Schmidt

APPLICATION-
SPECIFIC
FUNCTIONALITY

Making Software Reuse Work

]

LOCAL

INVOCATIONS

ADT
CLASSES

GUI
CLASSES

MATH
CLASSES

DATABASE
CLASSES

NETWORK
IPC
CLASSES

(A) CLASS LIBRARY ARCHITECTURE

EVENT
NETWORKING @

Proven solutions —

e Components
— Self-contained, “pluggable”
ADTs
e Frameworks
— Reusable, “semi-complete”
applications
e Patterns
— Problem/solution/context

B e Architecture
ADT |<— _ .-
s | L* J— Ul Families of related patterns
|| APPLICATION- [+~ and components
INVOKES SPECIFIC BACKS
' | FUNCTIONALITY EVENT
MATH | <—I_ LOOP
CLASSES |<—
— 1 DATABASE @ N
OP
NG PN~

Washing) FRAVEEWORRVARCHITECT unt

-

Douglas C. Schmidt Making Software Reuse Work

When Reality Sets In...

Components Frameworks

e “Artifacts everyone e “Tangled webs of components
wants to use, but very that give up all pretense of
few are willing/able to modularity or separation of
build or afford” concerns’

Patterns Architecture

e “An excuse to be vague” e “Those who can no longer
develop become architects... ;-)”

Bottom-line : systematic reuse is hard...

Washington University, St. Louis

Douglas C. Schmidt Making Software Reuse Work

Why Systematic Software Reuse has (Largely) Failed

| o Improper software process

APPLICATIONS

DOMAIN-SPECIFIC MIDDLEWARE SERVICES (@m REPLICATION .
>5“°u< — Reuse techniques are often
couon MmLEwARS sERvIcES | decoupled from reality...
DISTRIBUTION MIDDLEWARE @E;iﬁ% — Poor “expecta‘“on

management”
OFERATING STSTEMS & PROTOCOLS e Lack of organizational support

HOST INFRASTRUCTURE MIDDLEWARE

HARDWARE DEVICES

— e.g., N0 economic incentives
e Lack of technical expertise

— e.g., limited knowledge of
patterns and design principles

D -C-C

Washington University, St. Louis

Douglas C. Schmidt Making Software Reuse Work
Why We Need Reusable Communication Middleware

e System call-level programming is wrong abstraction for application
developers, e.g.,

— Too low-level — error codes, endless reinvention

— Error-prone — HANDLES lack type-safety, thread cancellation
— Mechanisms do not scale — Win32 TLS

— Steep learning curve — Win32 Named Pipes

— Non-portable — sockets and threads

— Inefficient — I.e., tedious for humans

e GUI frameworks are inadequate for communication software, e.g.,

— Inefficient — excessive use of virtual methods
— Lack of features — minimal threading and synchronization
mechanisms, no network services

-G

Washington University, St. Louis B -’ Nt 6

Douglas C. Schmidt Making Software Reuse Work

The ADAPTIVE Communication Environment (ACE)

JAWS ADAPTIVE STANDARDS-BASED MIDDLEWARE I

NETwoRKED NS ADAPTIV mssmpoiemre ACE Overview —
TOKEN GATEWAY]

COMPONENTS SERVER SERVER

= (TAO) ™7
LAYER ﬂ e A concurrent
SERVER SERVER OO networklng

TIME
SERVER

- CCEPTOR . framework
FRAMEWORK ANDLER & e < ANDLER . .
LAYER e Avalilable in
A o = e [C++ and Java
AcAvE e

e Ported to

LAYER SOCKSAP/ FIFO FILE .
7] TUSAP [7] SAP MAP SAP
: POSIX, WIn32,
OS ADAPTATION LAYER
c PROCESSES/ || WNS2NAVED |1} SOCKETS/ | UNIX | SELECT/ |4 DYNAMIC {1 SHARED |4 FILE SYS and RTOSS
APIs | THREADS | ereaueees |1 TLI 1 FIFOS [10comMP [/ LINKING 4 MEMORY [i APIS
=1=Tg - AD O A O R A OR :

Related work —

GENERAL OPERATING SYSTEM SERVICES

x-Kernel
www.cs.wustl.edu/~schmidt/ACE.htm! °

o SysV
STREAMS

r i &y r-‘
Washington University, St. Louis D C v

Douglas C. Schmidt Making Software Reuse Work

The ACE ORB (TAO)

in args TAO Overview —
operation() OBJECT
out args + return (SERVANT) -
____________________________ Bes” Agoet—f ® Anopen-source,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Standards-based,
IDL .
SKELETON real-tlme,
ORB RUN-TIME RE‘;:(':“T"E h h f
SCHEDULER C APTER Ign-periormance
CORBA ORB

REAL-TIME ORB CORE m

PLUGGABLE PLUGGABLE

_10P_ e Runs on POSIX,
ORB & XPORT H : ORB & XPORT mmm mmm

PROTOCOLS . - PROTOCOLS mmm mm Win32, &

.................................. e
embedded RT

OS KERNEL

REAL-TIME 1/0 REAL-TIME 1/O
SUBSYSTEM COMPONENTS platforms
HIGH-SPEED - e.g., VxXWorks,
NETWORK INTERFACE NETWORK NETWORK INTERFACE Chorus
]

www.cs.wustl.edu/~schmidt/TAO.html LynxOS
e Leverages ACE

pYelo

- 8

Washington University, St. Louis



Douglas C. Schmidt Making Software Reuse Work

ACE and TAO Statistics

e Over 30 person-years of effort e Currently used by dozens
_ ACE > 185,000 LOC of companies
— TAO > 100,000 LOC — Bellcore, Boeing,
— TAO IDL compiler > 100,000 LOC Ericsson, Kodak,
— TAO CORBA Object Services > Lockheed, Lucent,
150,000 LOC Motorola, Nokia, Nortel,

Raytheon, SAIC,

e Ported to UNIX, Win32, MVS, and Siemens, etc.

RTOS platforms

: e Supported commercially
e Large user community

. — ACE —
— \l/JvSV\évrvécr?t.:/nvlustl.edulwschmldt/ACE- WWW.TIVerace.com
' — TAO —
WwWWw.ociweb.com
=] r r-"! ] r:‘
Washington University, St. Louis D Yo' N 9



Douglas C. Schmidt

Making Software Reuse Work

Patterns for Communication Middleware

Thread-per € Active
Request Object Acceptor
Tg’::g;‘:ler. O Connector
o Half-Sync/ )
Thread Half-Async Component
Pool o > [Configurator
Thread Leader/ i
Specific ] Followers szjﬁrc:e
Storage O
Manager
A%%nrgg[gt?g# =)l Reactor Double Thread-
Token Proactor Checked Safe
oacto Locking Interface
External Wrapper Scoped | |Strategized
Polymorphism|| Facade Locking Locking

Concurrency Event Initialization | | Synchronization
Patterns Patterns Patterns Pattemns

Observation —

e Project failures rarely
result from unknown
scientific principles, but
from failing to apply
proven engineering
practices and patterns

Benefits of Patterns —

e Facilitate design reuse

e Preserve crucial design
Information

e Guide design choices

Washington University, St. Louis

D-C-&

10



Douglas C. Schmidt Making Software Reuse Work

The Active Object Pattern

_,g loop { < Active Object
P —>§ rp = act_ligt.dequetljle()
e BN cl5e Sot It enqueus (my| ® Decouples thread
Future m1() 1.<queue(new M1) } of method
Futire 23,8 Schedul ?{gispatch() Activation) invocation from
d‘.: et hu e/’ List thread of method
VISIBLE 'spatch() 9. vi1y| €nqueue() fi
o enqueue() . enqueue( 1) dequeue() execution
CLIENTS n_ — : g
Servant Method | = ) ?;/rr?cpklllz)ensization of
m1() Request
ooy | M20 — guaf(';(‘) : M2 concurrent objects
cLients | M30) 4: m1() | call() <+—-+M3

www.cs.wustl.edu/~schmidt/patterns/
Act-Obj.ps.gz

o | PHGHO
Washington University, St. Louis =t N’ Nt 11



Douglas C. Schmidt Making Software Reuse Work
How to Make Reuse Work for You

e Be patient e The best components
come from solving real
— Good components, frameworks,
. problems
and software architectures take
time to develop — Keep feedback loops tight
. to avoid “runaway” reuse
e Reuse-in-the-large works best Y
efforts
when:
1 Th Ketol . i e Produce reusable
2. The anar etplace is ciompe itive components by
- 1he domain 1S complex generalizing from working
3. Skilled middleware developers g
. applications
4. Supportive corporate culture
5. “Reuse magnets” exist — le., don’t build
6. Open source development components in isolation

models

PRGHO

Washington University, St. Louis b Ve’ N 12



Douglas C. Schmidt Making Software Reuse Work

The Good News
e Frameworks and components are becoming mainstream

— e.g., GUIs and ADTs

e Less “Not Invented Here” syndrome
— e.g., due to increased complexity and competition
e Developers are more sophisticated
— e.g., OOP/O0OD, event loops, templates, applets
e More attention to performance
— e.g., good ORBs are very efficient, predictable, & scalable
e Software architecture is gaining substance

— e.g., patterns and architectural styles

PRGHO

Washington University, St. Louis e N 13



Douglas C. Schmidt Making Software Reuse Work

The Bad News

e Lack of breadth
— e.g., focus is mostly on a few areas (GUISs)
e Lack of component integration
— e.g., incompatible event loops, name space pollution, poor tools
e Lack of education
— e.g., most universities don’t teach software skills
e Lack of experience and training

— e.g., developers rarely apply reuse principles/patterns to their
code

e Lack of standardized semantics & performance

— e.g., design patterns & optimization principle patterns

m.{:!u{:"

Washington University, St. Louis e et 14



Douglas C. Schmidt Making Software Reuse Work

The Ugly News

e Lack of useful and truly open standards

— e.g., ODP, ISO OSI, CORBA, DCOM, TINA, Java
— Often leads to proprietary systems sold under guise of open
systems

e Lack of adequate payoff

— I.e., cost of building components “in-house” can be prohibitive
— Leads to cancelled projects

e Lack of effective leadership and management

— e.g., organizations often focus on Process at expense of Product
— Leads to the Dilbert Principle

E}.{T!ur:"

Washington University, St. Louis N 15



Douglas C. Schmidt Making Software Reuse Work
Towards a Product-Oriented Software Process

e Develop complex systems e Use reverse-engineering tools

iIncrementall
y — e.g., auto-generate

— L.e., not sequentially documentation

e Emphasize qualitative reviews e Invest in continuous

. education and training
— e.g., use systematic

design/code inspections — Components and frameworks
are only as good as the

e Reward software development people who build and use

skills them
— Both generalization and
customization skills
=] r r-"! H] r:‘
Washington University, St. Louis D Y’ N 16



Douglas C. Schmidt Making Software Reuse Work
Traits of Dysfunctional Software Organizations

Process Traits Organizational Traits
e Death through quality e Disrespect for quality
developers

— “Process bureaucracy”

: : — “Coders vs. developers”
e Analysis paralysis

_ “zero-lines of code e Top-heavy bureaucracy

seduction” Sociological Traits
e [nfrastructure churn e The “Not Invented Here”
. syndrome
— e.g., programming to
low-level APIs e Modern method madness
W g
I:f'.) 2 C o 17

Washington University, St. Louis



Douglas C. Schmidt

Making Software Reuse Work

Traits of Highly Successful Software Organizations

e Strong leadership in
business and technology

— e.g., understand the role
of software technology

— Don’t wait for “silver
bullets”

e Clear architectural vision

— e.g., know when to buy vs.
build

— Avoid worship of specific
tools and technologies

e Effective use of

prototypes and demos

— e.g., reduce risk and get

user feedback

e Commitment to/from

skilled developers

— e.g., know how to
motivate software
developers and recognize
the value of thoughtware

Washington University, St. Louis

7" N 18



Douglas C. Schmidt Making Software Reuse Work
Concluding Remarks

Take-home Points False Prophets

e Not all problems require e Languages

complex solutions .
P e Methodologies

e Beware simple(-minded)

: e Process
solutions to complex problems

e Don't settle for proprietary * Migdleware
open systems e Organization-central solutions

e Systematic reuse is e Technology-centric solutions
achievable, though non-trivial

There is no substitute for thinking and hard work !

m.ﬁ!u{?

Washington University, St. Louis bt Nt et 19



Douglas C. Schmidt Making Software Reuse Work

Web URLSs for Additional Information

e These slides:
www.cs.wustl.edu/ ~schmidt/keynote4.ps.gz

e More information on patterns:
www.cs.wustl.edu/ ~schmidt/patterns.html

e More information on CORBA:
www.cs.wustl.edu/ ~schmidt/corba.html
WWW.0mg.org

e More info on ACE:
www.cs.wustl.edu/ ~schmidt/ACE.html
comp.soft-sys.ace

e More info on TAO:
www.cs.wustl.edu/ ~schmidt/TAO.html

| _ | PDREGHO
Washington University, St. Louis =t N’ Nt 20



