
Why Telecom Software Reuse Has Failed
and How to Make It Work for You

Douglas C. Schmidt

Associate Professor & Computer Science Dept.
Director of the Center for Washington University, St. Louis
Distributed Object computing www.cs.wustl.edu/�schmidt/

Sponsors
NSF, DARPA, Bellcore/Telcordia, BBN, Boeing, CDI/GDIS, Hughes,
Kodak, Lockheed, Lucent, Microsoft, Motorola, Nokia, Nortel, OTI,
SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint, USENIX

April 22nd, 1999

Douglas C. Schmidt Making Software Reuse Work

Motivation: the Communication Software Crisis

WIDE AREA
NETWORK

SATELLITES
TRACKING
STATION
PEERS

STATUS INFO

COMMANDS BULK DATA

TRANSFER

LOCAL AREA NETWORK

GROUND
STATION
PEERS

GATEWAY
� Symptoms

– Hardware gets smaller,
faster, cheaper

– Software gets larger,
slower, more expensive

� Culprits

– Inherent and accidental
complexity

� Solutions

– Frameworks, components,
patterns, and architecture

Washington University, St. Louis 1

Douglas C. Schmidt Making Software Reuse Work

Techniques for Improving Communication
Software Quality, Reuse, and Productivity

Washington University, St. Louis 2

Douglas C. Schmidt Making Software Reuse Work

NETWORKING

DATABASE

GUI

EVENT

LOOP

APPLICATION-
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

EVENT

LOOP

CALL

BACKSINVOKES

(A) CLASS LIBRARY ARCHITECTURE

(B) FRAMEWORK ARCHITECTURE

DATABASE

CLASSES

NETWORK

IPC
CLASSES

MATH

CLASSES

ADT
CLASSES

GUI
CLASSES

APPLICATION-
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

GLUE

CODE

LOCAL

INVOCATIONS

ADT
CLASSES

MATH

CLASSES

Proven solutions !

� Components
– Self-contained, “pluggable”

ADTs

� Frameworks
– Reusable, “semi-complete”

applications

� Patterns
– Problem/solution/context

� Architecture
– Families of related patterns

and components

Washington University, St. Louis 3

Douglas C. Schmidt Making Software Reuse Work

When Reality Sets In...

Components

� “Artifacts everyone
wants to use, but very
few are willing/able to
build or afford”

Patterns

� “An excuse to be vague”

Frameworks

� “Tangled webs of components
that give up all pretense of
modularity or separation of
concerns”

Architecture

� “Those who can no longer
develop become architects... ;-)”

Bottom-line : systematic reuse is hard...

Washington University, St. Louis 4

Douglas C. Schmidt Making Software Reuse Work

Why Systematic Software Reuse has (Largely) Failed

HHOOSSTT IINNFFRRAASSTTRRUUCCTTUURREE MMIIDDDDLLEEWWAARREE

DDIISSTTRRIIBBUUTTIIOONN MMIIDDDDLLEEWWAARREE

CCOOMMMMOONN MMIIDDDDLLEEWWAARREE SSEERRVVIICCEESS

AAPPPPLLIICCAATTIIOONNSS

HHAARRDDWWAARREE DDEEVVIICCEESS

WWTTSS
HHUUDD

NNaavv

AAVVIIOONNIICCSS
RREEPPLLIICCAATTIIOONN

SSEERRVVIICCEE
DDOOMMAAIINN--SSPPEECCIIFFIICC MMIIDDDDLLEEWWAARREE SSEERRVVIICCEESS

OOPPEERRAATTIINNGG SSYYSSTTEEMMSS && PPRROOTTOOCCOOLLSS

EEVVEENNTT
CCHHAANNNNEELL

CCoonnss
CCoonnss

CCoonnss

� Improper software process

– Reuse techniques are often
decoupled from reality...

– Poor “expectation
management”

� Lack of organizational support

– e.g., no economic incentives

� Lack of technical expertise

– e.g., limited knowledge of
patterns and design principles

Washington University, St. Louis 5

Douglas C. Schmidt Making Software Reuse Work

Why We Need Reusable Communication Middleware

� System call-level programming is wrong abstraction for application
developers, e.g.,

– Too low-level ! error codes, endless reinvention
– Error-prone ! HANDLEs lack type-safety, thread cancellation
– Mechanisms do not scale ! Win32 TLS
– Steep learning curve ! Win32 Named Pipes
– Non-portable ! sockets and threads
– Inefficient ! i.e., tedious for humans

� GUI frameworks are inadequate for communication software, e.g.,

– Inefficient ! excessive use of virtual methods
– Lack of features ! minimal threading and synchronization

mechanisms, no network services

Washington University, St. Louis 6

Douglas C. Schmidt Making Software Reuse Work

The ADAPTIVE Communication Environment (ACE)

PROCESSES/
THREADS

DYNAMIC

LINKING

SHARED

MEMORY
SELECT/
IO COMP

FILE SYS

APIS

WIN32 NAMED
PIPES & UNIX

STREAM PIPES

UNIX

FIFOS

C
APIS

SOCKETS/
TLI

COMMUNICATION

SUBSYSTEM

VIRTUAL MEMORY & FILE

SUBSYSTEM

GENERAL OPERATING SYSTEM SERVICES

PROCESS/THREAD

SUBSYSTEM

FRAMEWORK

LAYER

ACCEPTOR CONNECTOR

NETWORKED

SERVICE

COMPONENTS

LAYER

NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

GATEWAY

SERVER

SOCK SAP/
TLI SAP

FIFO

SAP

LOG

MSG

SERVICE

HANDLER

TIME

SERVER

C++
WRAPPER

FACADE

LAYER SPIPE

SAP

CORBA

HANDLER

FILE

SAP

SHARED

MALLOC

THE ACE ORB

(TAO)

JAWS ADAPTIVE

WEB SERVER
STANDARDS-BASED MIDDLEWARE

REACTOR/
PROACTOR

PROCESS/
THREAD

MANAGERS

STREAMS

SERVICE

CONFIG-
URATOR

SYNCH

WRAPPERS

MEM

MAP

OS ADAPTATION LAYER

www.cs.wustl.edu/�schmidt/ACE.html

ACE Overview !

� A concurrent
OO networking
framework

� Available in
C++ and Java

� Ported to
POSIX, Win32,
and RTOSs

Related work !

� x-Kernel

� SysV
STREAMS

Washington University, St. Louis 7

Douglas C. Schmidt Making Software Reuse Work

The ACE ORB (TAO)

NETWORK

ORB RUN-TIME
SCHEDULER

operation()

IDL
STUBS

IDL
SKELETON

in args

out args + return
value

CLIENT

OS KERNEL

HIGH-SPEED
NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

OBJECT
(SERVANT)

OS KERNEL

HIGH-SPEED
NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE
COMPONENTS

OBJ
REF

REAL-TIME ORB CORE
IOP

PLUGGABLE
ORB & XPORT
PROTOCOLS

IOP
PLUGGABLE

ORB & XPORT
PROTOCOLS

REAL-TIME
OBJECT

ADAPTER

www.cs.wustl.edu/�schmidt/TAO.html

TAO Overview !

� An open-source,
standards-based,
real-time,
high-performance
CORBA ORB

� Runs on POSIX,
Win32, &
embedded RT
platforms
– e.g., VxWorks,

Chorus,
LynxOS

� Leverages ACE

Washington University, St. Louis 8

Douglas C. Schmidt Making Software Reuse Work

ACE and TAO Statistics

� Over 30 person-years of effort

– ACE > 185,000 LOC
– TAO > 100,000 LOC
– TAO IDL compiler > 100,000 LOC
– TAO CORBA Object Services >

150,000 LOC

� Ported to UNIX, Win32, MVS, and
RTOS platforms

� Large user community

– www.cs.wustl.edu/�schmidt/ACE-
users.html

� Currently used by dozens
of companies

– Bellcore, Boeing,
Ericsson, Kodak,
Lockheed, Lucent,
Motorola, Nokia, Nortel,
Raytheon, SAIC,
Siemens, etc.

� Supported commercially

– ACE !

www.riverace.com
– TAO !

www.ociweb.com

Washington University, St. Louis 9

Douglas C. Schmidt Making Software Reuse Work

Patterns for Communication Middleware

Event
Patterns

Concurrency
Patterns

External
Polymorphism

Wrapper
Facade

Connector

Thread
Pool

Thread-per
Session

Thread-per
Request

Asynchronous
Completion

Token

Thread
Specific
Storage

Active
Object

Half-Sync/
Half-Async

Leader/
Followers

Component
Configurator

Object
 Lifetime
Manager

Reactor

Proactor

Double
Checked
Locking

Thread-
Safe

Interface

Scoped
Locking

Strategized
Locking

Initialization
Patterns

Synchronization
Patterns

Acceptor
Observation !

� Project failures rarely
result from unknown
scientific principles, but
from failing to apply
proven engineering
practices and patterns

Benefits of Patterns !

� Facilitate design reuse

� Preserve crucial design
information

� Guide design choices

Washington University, St. Louis 10

Douglas C. Schmidt Making Software Reuse Work

The Active Object Pattern

Proxy

Future m1()
Future m2()
Future m3()

HIDDEN
FROM

CLIENTS

VISIBLE
TO

CLIENTS

2: enqueue(M1)

Activation
List

enqueue()
dequeue()

Servant
n

1

loop {
 m = act_list.dequeue()
 if (m.guard()) m.call()
 else act_list.enqueue (m);
}

Scheduler
dispatch()
enqueue()

m1()
m2()
m3() 4: m1()

1 1

1: enqueue(new M1)

3: dispatch()

Method
Request
guard()
call()

M1

M2

M3

www.cs.wustl.edu/�schmidt/patterns/
Act-Obj.ps.gz

Active Object

� Decouples thread
of method
invocation from
thread of method
execution

� Simplifies
synchronization of
concurrent objects

Washington University, St. Louis 11

Douglas C. Schmidt Making Software Reuse Work

How to Make Reuse Work for You

� Be patient

– Good components, frameworks,
and software architectures take
time to develop

� Reuse-in-the-large works best
when:

1. The marketplace is competitive
2. The domain is complex
3. Skilled middleware developers
4. Supportive corporate culture
5. “Reuse magnets” exist
6. Open source development

models

� The best components
come from solving real
problems

– Keep feedback loops tight
to avoid “runaway” reuse
efforts

� Produce reusable
components by
generalizing from working
applications

– i.e., don’t build
components in isolation

Washington University, St. Louis 12

Douglas C. Schmidt Making Software Reuse Work

The Good News

� Frameworks and components are becoming mainstream

– e.g., GUIs and ADTs

� Less “Not Invented Here” syndrome

– e.g., due to increased complexity and competition

� Developers are more sophisticated

– e.g., OOP/OOD, event loops, templates, applets

� More attention to performance

– e.g., good ORBs are very efficient, predictable, & scalable

� Software architecture is gaining substance

– e.g., patterns and architectural styles

Washington University, St. Louis 13

Douglas C. Schmidt Making Software Reuse Work

The Bad News

� Lack of breadth

– e.g., focus is mostly on a few areas (GUIs)

� Lack of component integration

– e.g., incompatible event loops, name space pollution, poor tools

� Lack of education

– e.g., most universities don’t teach software skills

� Lack of experience and training

– e.g., developers rarely apply reuse principles/patterns to their
code

� Lack of standardized semantics & performance

– e.g., design patterns & optimization principle patterns

Washington University, St. Louis 14

Douglas C. Schmidt Making Software Reuse Work

The Ugly News

� Lack of useful and truly open standards

– e.g., ODP, ISO OSI, CORBA, DCOM, TINA, Java
– Often leads to proprietary systems sold under guise of open

systems

� Lack of adequate payoff

– i.e., cost of building components “in-house” can be prohibitive
– Leads to cancelled projects

� Lack of effective leadership and management

– e.g., organizations often focus on Process at expense of Product
– Leads to the Dilbert Principle

Washington University, St. Louis 15

Douglas C. Schmidt Making Software Reuse Work

Towards a Product-Oriented Software Process

� Develop complex systems
incrementally

– i.e., not sequentially

� Emphasize qualitative reviews

– e.g., use systematic
design/code inspections

� Reward software development
skills

– Both generalization and
customization skills

� Use reverse-engineering tools

– e.g., auto-generate
documentation

� Invest in continuous
education and training

– Components and frameworks
are only as good as the
people who build and use
them

Washington University, St. Louis 16

Douglas C. Schmidt Making Software Reuse Work

Traits of Dysfunctional Software Organizations

Process Traits

� Death through quality

– “Process bureaucracy”

� Analysis paralysis

– “Zero-lines of code
seduction”

� Infrastructure churn

– e.g., programming to
low-level APIs

Organizational Traits

� Disrespect for quality
developers

– “Coders vs. developers”

� Top-heavy bureaucracy

Sociological Traits

� The “Not Invented Here”
syndrome
� Modern method madness

Washington University, St. Louis 17

Douglas C. Schmidt Making Software Reuse Work

Traits of Highly Successful Software Organizations

� Strong leadership in
business and technology

– e.g., understand the role
of software technology

– Don’t wait for “silver
bullets”

� Clear architectural vision

– e.g., know when to buy vs.
build

– Avoid worship of specific
tools and technologies

� Effective use of
prototypes and demos

– e.g., reduce risk and get
user feedback

� Commitment to/from
skilled developers

– e.g., know how to
motivate software
developers and recognize
the value of thoughtware

Washington University, St. Louis 18

Douglas C. Schmidt Making Software Reuse Work

Concluding Remarks

Take-home Points

� Not all problems require
complex solutions

� Beware simple(-minded)
solutions to complex problems

� Don’t settle for proprietary
open systems

� Systematic reuse is
achievable, though non-trivial

False Prophets

� Languages

� Methodologies

� Process

� Middleware

� Organization-central solutions
� Technology-centric solutions

There is no substitute for thinking and hard work !

Washington University, St. Louis 19

Douglas C. Schmidt Making Software Reuse Work

Web URLs for Additional Information

� These slides:
www.cs.wustl.edu/ �schmidt/keynote4.ps.gz

� More information on patterns:
www.cs.wustl.edu/ �schmidt/patterns.html

� More information on CORBA:
www.cs.wustl.edu/ �schmidt/corba.html
www.omg.org

� More info on ACE:
www.cs.wustl.edu/ �schmidt/ACE.html
comp.soft-sys.ace

� More info on TAO:
www.cs.wustl.edu/ �schmidt/TAO.html

Washington University, St. Louis 20

