Automatically Composing Reusable Software Components for Mobile Devices

Jules White and Douglas C. Schmidt Egon Wuchner and Andrey Nechypurenko
Vanderbilt University Siemens AG, Corporate Technology (SE 2)
Nashville, TN, USA Munich, Germany

{jules, schmidt}@dre.vanderbilt.edu {egon.wuchner, andrey.nechypurenko}@siemens.com

Abstract google mail, news, and maps and applications that can be
downloaded to mobile phones [2].

Product-line architectures (PLAs) are an effective mech- A recent trend in mobile devices that makes pervasive
anism for facilitating the reuse of software components on computing more realistic is the proliferation of services
different mobile devices. Mobile applications are typigal that allow mobile devices to download software on-demand
delivered to devices using over-the-air provisioning ser- across a mobile network. Services that allow software to
vices that allow a mobile phone to download and install be downloaded over cellular networks are called Over The
software over a cellular network connection. Current tech- Aijr Provisioning (OTAP) services [19, 28, 4, 5]. For exam-
niques for automating product-line variant selection dé no ple, mobile phones can now access web-based applications,
address the unique requirements (such as the need to consuch as google mail, or download custom applications from
sider resource constraints) of dynamically selecting d@var services, such as Verizon's “Get It Now.” Nokia estimates

ant for over-the-air provisioning. _ o that in 2003, 10,000,000 Java 2 Micro Edition (J2ME)
This paper presents t_he foIIowmg contr_lbutlons t_o gameger monthwere downloaded worldwide [31].
product-line variant selection for mobile devices: (1) it In pervasive computing environments, the ability to

describes how a constraint solver can be used to dynam-gownload software on-demand plays a critical role in de-
ically select a product-line variant while adhering to re- jivering custom services to users where and when they are
source constraints, (2) it presents architectures for awt peeded. For example, when a mobile device enters a retail
ically discovering device capabilities and mapping them to store, software for browsing back room inventory, display-
product-line feature models, (3) it includes results from € ing store circulars, and purchasing items can be downloaded
periments and field tests with an automated variant selec-by the mobile device. When exiting the store, the device
tor, and (4) it describes PLA design rules that can be used gy pe carried onto a train, in which case applications for
to increase the performance of automated constraint-basedmacing food orders, checking train schedules, and resgrvi
variant selection. Our empirical results show that fast au- fyrther tickets could be downloaded by the mobile device.
_tomate_d variant S(_alect|on_ from _afe_ature model is possible Despite the advances in middleware and deployment
if certain product-line design guidelines are followed. technologies, however, there are still significant vatiabi
) ties between devices in terms of hardware resources (such
. Keywords: Method_s, Processes,_ Tools and Experlencesds CPU power, RAM, and display size), middleware ver-
in Software Product Lines, Automation sions (such as Java Virtual Machine versions), hardware ca-
pabilities (such as Bluetooth support), and service pevid
1 Introduction restrictions (such as required use of provider-specifichPI
Developing software that can handle all of these diverse re-
The increasing popularity and abundance of mobile andstrictions and be deployed on a large number of heteroge-
embedded devices is bringing the promise of pervasiven€ous devices is hard [6]. In some cases, due to large differ-
computing closer to reality. At the end of 2003, it was esti- €nces in non-functional device properties like displag siz
mated that there were over two billion consumer electronic separate variants of the same Java application must be de-
devices, such as mobile phones and television set-top poxesreloped for each device despite the presence of a virtual
and 300 million Personal Digital Assistants (PDAs) [33]. machine [3].
Not only is the number of devices increasing, but the num- Product-line architectures (PLAs) [13] are a promis-
ber of available mobile applications is growing as well. ing approach to help developers reduce the high cost of
For example, Google delivers both web-based interfaces tomobile application development by facilitating software

reuse [7, 40, 30]. A product-line architecture (PLA) [13] speed of different automation techniques.

leverages a set of reusable software components that can be To address these gaps in online mobile software variant
composed in different configurations (variants) for diéier ~ selection engines, we have developed a tool caBedt-
requirement sets. Constructing a product-line variant con ter that first captures the requirements of a PLA and the
sists of finding a way of reusing and composing the product- resources of a mobile device and then quickly constructs
line’s components to create a functional application. The a custom variant from a PLA for the device. This paper
design of a PLA is typically guided by scope, commonal- presents the architecture and functionality of Scatter and
ity, and variability (SCV) analysis [16]. SCV captures key provides the following contributions to research on sofava
characteristics of software product-lines, includingrt(i®) reuse for mobile devices:

scope which defines the domains and context of the PLA,
(2) commonalitieswhich describe the attributes that recur
across all members of the family of products, andu&j-
abilities, which describe the attributes unique to the differ-

e We describe Scatter’s architecture for integrating with
an open-source over-the-air provisioning server and
capturing device capabilities

ent members of the family of products. e We show how Scatter enables and disables fea-

A product-line documents the rules that a developer must tures/components in product-line models based on the
follow when assembling existing reusable software compo- sets of device capabilities it receives from the provi-
nents into an application for a new mobile device. It hard sioning server

to manually retarget mobile applications using produog-li
components, however, due to the large number of mobile ® We discuss how Scatter transforms requirement spec-
devices, limited device capabilities, complex produceli ifications into a format that can be manipulated
constraints, and the rapid development rate of new devices. by @ constraint solver and how we extend existing
Moreover, in a pervasive environment, software reuse must ~ constraint-based automation approaches [9] to include
happen on-demand. When a device enters a particular con- ~ reésource constraints

text, such as a retail store, the provisioning server must ve
quickly deduce and create a variant for the device, regard-
less of whether or not the device type and its capabilities
have been previously encountered.

Current automated software reuse techniques, such as
those presented in [9, 25, 29, 32, 35], do not sufficiently
address various challenges of designing and implementing

an automated approach to selecting a product variant for o \we present data from experiments that show how

a mobile device. One common capability lacking in each PLA constraints impact variant selection time for a
approach is the ability to consider resource consumption constraint-based variant selection engine

constraints, such as the total available memory consumed

by the features selected for the variant must be less than e We present results from field tests using both real
64 kilobytes. Resource constraints are important for mo- and emulated devices to obtain applications from the
bile devices since resources are typically limited. Some Scatter-integrated provisioning server

resources, such as cellular network bandwidth, also have

a measurable cost associated with them and must be con- ® We describe PLA design rules gleaned from our ex-
served. Reusing software components on mobile devicesre- ~ periments that help to improve variant selection time

e We describe the automated variant selection engine,
based on a Constraint Logic Programming Finite Do-
main (CLP(FD)) solver [21, 36], that can dynamically
derive a valid configuration of reusable software com-
ponents suitable for a target device’s capabilities and
resource constraints

quires careful consideration of both the limited and unique when using a constraint-based software reuse ap-
resources of a device and the complex constraints on the proach.
mobile application product-line. This paper builds on our previous work on software reuse

Another missing detail of these automatic reuse ap- that involved automatically deriving product-variants fo
proaches is the architecture for how an over-the-air provi- mobile devices with a constraint solver [38]. In particu-
sioning server can characterize a device’s functional andlar, this paper enhances previous work by describing the
non-functional properties (such as OS, total RAM, etc.) so design and functionality of a Scatter-integrated server fo
that a variant can be selected for it. A variant selection en- performing over-the-air provisioning of mobile devicese W
gine for mobile devices must be able to interface with a pro- also offer new empirical results obtained from field testing
visioning server and map device capabilities to produa-li the Scatter-integrated provisioning server with both amal
models. Finally, to provide fast feature selection engines emulated mobile devices. The new results show that despite
(which aids dynamic software delivery for mobile devices), the apparent complexity of product-line composition rules
research is needed on how PLA design decisions impact theand non-functional requirements, a constraint solver @n b

DeliveryOptiong

'
ToSeazDeliver}

pp! 1‘ ‘ CustomerL

used to derive a product variant quickly enough to support
over-the-air provisioning. [Prerwpreaucy
The remainder of this paper is organized as follows: Sec- \
tion 2 presents the train food services application that we
use as an example product-line throughout the paper; Sec-
tion 3 describes the challenges of dynamically composing
reusable software components for different mobile devices
and the unresolved problems of using current techniques;
Section 4 presents architectures for integrating an auto-

ToCustomerDelivery

ppi 7‘ ‘OpenDMTPRel ‘PaymemAppR#f

CustomerLocatorApp

<

OpenDMTH

75 PDA ProfileRqf [CLDC 1.1Ref [MIDP 2.0Re]

LocatorFor

Figure 5: Food Services Delivery Options Feature Model

mated variant selection mechanism into an over-the-ai pro - Figure 6: Customer Locator Application Feature Model

visioning server; Section 5 shows how Scatter automayicall

transforms PLA requirements and mobile device resources
into a model that can be operated on by the CLP(FD) based

variant selector; Section 6 analyzes the results of field tes
and simulations of using Scatter for over-the-air provisio

ing; Section 7 summarizes product-line design rules that
we have learned from our results that improve the speed at

o o
OptionalLibrarie ExternalDevicef

é
GPS|

Pharos iGPS-BT | TomTom Navigator

Figure 7: Target Device Feature Model

which a product variant can be selected; Section 8 compares

our work on Scatter with related research; and Section 9

presents lessons learned and concluding remarks.

CustomerLocatdr

PaymentAp)

‘ Jsng,cnaﬁ

JSR 229 PaymemRF(HTTPSReﬂ

FoodServices

m ordersubmissmnmnspn

HTTPS_Pa} [opendmTA [LocatorFom] [DeliveryOpiion

Figure 1: Feature Model for Train Services Applications

MenuDescriptior

N

SecondC\assMeau FirstClassMenu

‘nghReslmageF ‘anReslmageF ‘anmage% ‘Nolmagesf ‘LowRes\mageF ‘H\ghReslmages

Figure 2: Food Services Menu Feature Model

ul
<
‘ TexlAndImagesU’

JSR 135 Mobile Media APIRef [MIDP 2.0Rel]

Figure 3: Food Services Ul Feature Model

OrderSubmissionTranspdrt

U
‘ SMm: s,Msg‘

‘ HTTPJ’OS‘# HTTPS,POST

HTTPRef ‘JSR 120 Wireless Messaging F*ef HTTPSRe!

Figure 4: Food Services Order submission Feature Model

2 Motivating Example

To motivate the need for—and capabilities of—Scatter,
we use an application throughout this paper that allows trai

OptionalLbrarieg

[CommLibg

JSR 82 B\ueTuottw RFCOMM

Figure 8: Java Optional Libraries Feature Model

‘JSR 75 PDA Profile [JSR 135 Mobile Med*a ‘JSR 229 Payment [JSR 120 Wireless Messag\‘wg

VM

|avmconti

.l - ‘ o |
] T |
o I—E i
coc cLbc MIDP 1.0{ [MIDP2.0| |TCP/IP |HTTPS
CDC 1.0 |cLDC 1.0||CLDC 1.1]

Figure 9: Java Virtual Machine Feature Model

passengers to order food from their mobile phones. This
application is downloaded by passengers to their phones
upon entering a train. The application allows passengers to
choose menu items from either a first class or second class
menu (depending on the traveler’s ticket class).

The food services product-line has been described using
feature models. Feature modeling [8, 17] characterizes and
application based on function and non-functional variabil
ties. The feature models are designed to show the composi-
tion rules for the variable application components and how
device capabilities affect what application components ca
be deployed.

The food services application is implemented using a va-
riety of components, such as the Open Device Monitoring
and Tracking Protocol (OpenDMTP) Java MIDietThis
application can be reconfigured for devices that support dif
ferent Java JVM Mobile Information Device Profile (MIDP)
versions, JVM configuratione(g. CDC 1.0, CLDC 1.0,
and CLDC 1.1), and optional Java APk g.JSR 135 Mo-
bile Media API, JSR 229 Payment API, etc.). Figures 1
through 6 show feature models capturing the SCV of the

1A Java application for an embedded Java 2 MicroEdition JVM.

food service application. Figures 7 through 9, show the ponents consume anothe® kilobytes. The total combined
key points of variability in the target devices that deter- resource consumption of all of the application components
mine which food services application components are cho-must be considered when choosing image sets.

sen when selecting a variant for a mobile device. For exam- For a phone with at least 66 kilobytes of remaining stor-
ple, if theTextAndlmagesUieature from the feature model age space, a number of variants are possible. If the owner of
in Figure 3 is chosen, the target device must havelBie the device has afirst class ticket and a GPS capable phone, a
135 Mobile Media APfeature (Figure 8) enabled. variant with the OpenDMTP library and low resolution im-
ages is suitable. If the user does not have a first class ticket
or a GPS capable phone, then the high resolution images
may fit. To choose an appropriate variant, therefore, the
variant selection must account for the tradeoffs in ressurc
consumption of different configurations.

Coach Class

3 Challengesof Automated Variant Selection
for Mobile Devices

Applications for mobile devices must be carefully
matched to the capabilities of each individual device due
to resource constraints. Developers must therefore con-
sider both functional capabilities (such as the optional li
braries installed on the device) and non-functional cdpabi
ities (such as total memory) when reusing software compo-
nents. Due to the large and highly differing array of device
capabilities, however, it is difficult to determine whicHtso
ware components can function with each device’s unique
Figure 10: Alternate Variant Selection Based on Cabin limitations and how an entire application can be assembled
Class by reusing these viable components. For example, reusing

product-line components for a mobile device involves:

Context data also determines which application compo-))
nents can be delivered to a device, as seen in Figure 10. 1. Capturing the rules for composing the reusable
Second class passengers can pre-order food from a second ~ Product-line components or features (the application

First Class

First Class Menu

7t

. . Coach Class Menu
Variant Selection Server

class menu from their mobile devices but must go to the
restaurant car of the train to pickup the food. First class
passengers, however, order from a more extensive first class
menu and can have the food delivered to either their seat

model)

2. Specifying what capabilities the target mobile device

must have to support each application component or

. . .) feature (the target infrastructure model)
or directly to their current location on the train. The food

services application uses the OpenDMTP Java clientimple- 3.
mentation to report the location of a first class passenger
with a Global Positioning System (GPS) capable phone. Ifa
first class passenger does not have a phone with a connected
GPS device, an application variant is delivered to the devic
that replaces the OpenDMTP tracking MIDlet with a form
for the user to enter their current seat number.

Finally, non-functional characteristics of the device-dic g
tate certain key features of the selected variant. The food
services application can be delivered with either high+eso
lution images of the entrees (requires 64 kilobytes of gfera
space), low resolution images (12 kilobytes), or no entree
images (O kilobytes). The available memory and storage For example, with the food services application pre-
space on the device determines which of these image setsented in Section 2, the rules for composing the applica-
is appropriate. The OpenDMTP client is the largest of the tion’s components rules were first documented in the feature
other application components and requires approximately 2models presented in Figures 1 through 6. Next, the impor-
kilobytes of storage space. The remaining application com-tant features of the target infrastructure that govern twhic

Identifying the target mobile device and mapping its
capabilities onto the target infrastructure model by en-
abling or disabling features in the model

4. Disabling application components that cannot be sup-
ported by the functional and non-functional capabili-
ties of the device

. Selecting and assembling a product variant from the
remaining enabled components and features that ad-
heres to the product-line’s composition rules and the
resource constraints of the device.

application components can be supported by a device weranercial tool that provides feature modeling capabilitads,
documented in Figures 7 through 9. lows developers to specify features and feature conssraint

The dependencies between the application componentsaind derives required unconfigured features for a partially
and target device capabilities were specified with feature configured variant. All these tools, however, are designed
references. For example, tl8MS_Msgcomponent (Fig- for a priori product variant selection and assume that a hu-
ure 4) for submitting orders contains a reference to the tar-man modeler enables/disables features and uses the tool to
getinfrastructure featurdsR 120 Wireless Messagi(fgg- derive any required additional features. To select a varian
ure 8). This reference indicates that the JSR 120 Wirelessfor a mobile device, therefore, developers must manually
Messaging feature must be enabled on the target device ifenable/disable model features to reflect the capabilifies o
the SMS_Msg component will be deployed to it. target device.

To find a way of reusing existing software components An over-the-air provisioning request begins by a mobile
to assemble a variant of the food services application for device sending a request to a provisioning server that in-
a Blackberry Pearl 8100 mobile phone, a developer would cludes a unique identifier for the device type, as seen in
enable and disable the appropriate features in the target deFigure 11. From this unique identifier, the provisioning
vice feature model (Figures 7 through 9). T@BC feature
of the JVM Configurationand the GPS features would be Device Discovery and
disabled while the€LDC 1.1feature would be enabled (the Characterization
Blackberry 8100 supports MIDP 2.0, CLDC 1.1, and no
GPS). Since the Blackberry 8100 does not support GPS in I‘QY
its stock configuration, this would preclude deploying the .
OpenDMTP feature to the phone and thus it would be dis- Device IDX*
abled. Finally, an appropriate set of features, would be se- .
lected from the remaining points of variabilitg.(, Tex- RZZZE;S \ﬁ
tUl or TextAndimagesUl, SMS_Msg order submission or Variant P
HTTPS_Post, etc.).

Traditional processes of reusing software components
involve developers manually evaluating a mobile device and N2
determining the software components that must be in an ap- Rlr=
plication variant, the components to configure, and how to
compose and deploy the components. In addition to being Variant Selection
infeasible in a pervasive environment (where the target de- ﬁ and Assembly

saniqede) 2dA19@

Variant Delivery

vice signatures are not known ahead of time and variant se-

lection must be done on demand), such manual approaches Product Line Components

are tedious and error-prone, and are thus a significantesourc

of system downtime [18]. Manual reuse approaches also doFigure 11: Selecting a Food Services Variant for a Black-
not scale well and become impractical with the large solu- berry 8100 Mobile Phone

tion spaces typical of PLAs.

Numerous tools and techniques are available that haveserver must be able to find the capabilities associated with
helped improve software reuse by automating various por-the device and automatically map these capabilities ireo th
tions of variant selection and assembly. Although these model of the target infrastructure. Existing tools do not ad
techniques are extremely valuable for product-line specifi dress how a human is removed from the modeling loop and
cation, variant selection, and variant assembly, they do no a single device identifier is mapped into a complex set of
specifically address all of the issues related to onlinecsele infrastructure model capabilities. In Section 4, we présen
tion of variants. The remainder of this section describes th three different architectures that can be used to automati-
key challenges that have not been addressed when applyingally discover device capabilities and map them to product-
current approaches to dynamic variant selection for over-line models.
the-air mobile software provisioning.

2. There is no documented architecture for handling
1. Thereisno clear architecture for automatically dis- incomplete context information and unknown device
covering and mapping device capabilities to product- types. Many research efforts [29, 9, 26] have produced
line models. Numerous tools and approaches have beenmodels for transforming a feature model or other SCV cap-
developed [10, 11, 8] to capture the rules for composing aturing mechanism into a formal model that can be reasoned
product variant. For exampl@ure::variants [10] is a com- with automatically. For example, [9] presents a method

for transforming feature models into Constraint Satisfact 4. It is unclear if automated variant selection can be
Problems (CSPs). A solver, such as a Constraint Logic Pro-performed fast enough to support on-demand software
gramming (CLP) solver, can then be used to automaticallyreuse. Determing which components to reuse and how to
derive product variants for a set of device capabilities. assemble them must happen rapidly. For instance, in the

The key assumption with these techniques is that valuedirain example frpm Section 2 a variant selection_ engin.e may
for all relevant device capabilities are known. Although de have tens of minutes or hours before the device exits (al-
vices may share common communication protocols and re-though the traveler may become irritated if variant setecti
source description schemas, a variant selection servite wi takes this long). In a retail store, conversely, if custosner
not know all device signatures at design time. In many cannotgeta variant of a sales application quickly, they may
cases, information, such as the exact set of optional ldsar P€come frustrated and leave. To provide a truly seamless
installed on a device or ticket class of the owner may not be Pervasive environment, automated variant selection must
able to be determined based on the unique device identi-Nappen rapidly. When combined with the challenge of not
fier associated with the provisioning request. In othemsitu knowing device signatures priori and the need for opti-
tions, a provisioning server may encounter a newly releasedmization, achieving quick selection times is even harder.

device with completely unknown capabilities. Many methods and tools [9, 10, 11] for automating vari-
ant selection are used for design-time selection of vari-

; bil licati theref ith rat for ants. It is still unclear, however, whether the current ap-
or mobile applications, therelore, either a stralegy 1or S proaches and tools provide sufficient performance to sup-

Iecttlng a \;ﬁnzl}t W'tgt |pqomplgt§ |nformatt::$|;1 c_)rfan al‘t'.to' port dynamic software reuse for over-the-air mobile soft-
mated method for obtaining missing capability information ., . provisioning. Design-time selection with a human in-
is needed. Current research does not address this open prob-

I Section 4 A d d orobi h olves processing a single request at a time. An over-the-
em. Seclion 4 presents oon-gemand probingpproac air provisioning server could potentially receive hundied
that allows a provisioning server to help guarantee it has

complete device information when selecting a variant thousands, or more simultaneous requests. Empirical eval-
P vicel lonw Ing a variant. uation is needed to determine if current automation tech-

niques are sufficiently fast in practice. Section 6 presents
the results from field and performance tests we performed

3. Thereis no method for incorporating resource con- using automated and constraint-based variant selection.

straintsin variant selection. Although multiple models

and tools are available [29, 9, 26, 10, 11, 8] for deriving 5. There are no documented design rules for facili-
ways of reusing and assembling components for a set oftating variant selection automation. ~ Although the tools
device capabilities, none of these techniques or tools ad-and related papers cited above cover the basics of building a
dress how resource constraints are considered in the seledroduct-line, they do not systematically capture bestgtesi
tion process. For mobile devices, resource constrainta are practices to facilitate automation. Many constraint srdve
major concern and must be considered carefully. Without aand theorem proving algorithms—particularly ones that
mechanism for adhering to resource constraints, no reliabl incorporate resource constraints—have exponential worst
component selection automation can be performed. For ex-case performance. For developers of product-lines that
ample, deploying a set of components that requires moreWill leverage an automated variant selector, therefore, it
JVM stack capacity than is available on the target deviceiS important to have guidelines for designing a product-
will result in a non-functioning variant. line’s composition rules to avoid these worst case scegario
and improve automated selection speed. Few—if any—of

Different configurations of reusable components may th ¢ f rules h b q ted f duct
have different costs associated with them. There may be,. ese lypes of rules have yet been documented for product-

many valid variants that can be deployed and the selectoﬂr'i?/if‘j' frsoen(iu(())l:]rQrgeiiﬁzr;??Zs%rl?g?oczheTe S;aS:gCerl:LeeSg(aegg
must possess the ability to choose the best configuration : >Mp >1P IMprov P
t which a variant can be automatically derived using a

based on a cost formula. For example, if the variant selecte .

is deployed to a device across a GPRS connection that isconstralnt-based approach.

billed for the total data transferred, it is crucial thatsthi . . .
cost/benefit tradeoff be analyzed when determining which4 AN Architecture for Over-the-air Provi-
variant to deploy. If one variant minimizes the amount of sioning from a Product-line

data transferred over thousands or hundreds of thousands

of devices deployments, it can provide significant cost sav- In previous work [38], we developed Scatter, which is a
ings. In Section 5, we describe a modified constraint-basedgraphical modeling tool for capturing the SCV of a product-
variant selection approach that can take resource contstrai line, compiling the product-line rules into a constraint-sa
into account. isfaction problem (CSP), and using a constraint solver to

To address the more dynamic information needs of PLAS

derive a valid product variant for a mobile device. This uses to determine the type of device issuing the provision-
initial research began to address challenges 4 and 5 froming request and the requesting device’s capabilities. The
Section 3, which involved showing that constraint-based capabilities of the device are used to help determine what
approaches to variant selection provide good performancecomponents are compatible with the device and should be
and deriving PLA design rules to facilitate automation. used to assemble a variant to fulfill the request. The high-
We found that model-driven development could be used tolevel architecture for issuing a provisioning request aed d
transform a high-level specification of a product-line,tsuc riving a variant for a mobile device with Scatter is shown in
as a feature model, into a constraint satisfaction problem.Figure 12.
We also found that a constraint solver could be given a CSP
and a set of device capabilities and derive an optimal varian . : i

quest, the device’s functional properties (such as op-

in a reasonable time-frame. k . . .
o tional Java libraries that are installed) and non-funetlon
Our initial results, however, also showed that care was . . .
T . . properties (such aslVMConfiguration Memory and
needed when designing a product-line to achieve good con— _,".)
. .) -~ "CabinClas3) must be obtained and mapped to the target
straint solving performance. Depending on the constraints.

;) . infrastructure model of the product-line. In our experienc
governing the product-line, solving performance for a 50 . S
. . we found that device capabilities can be returned as a set of
feature model varied from a low ef1 second to a high of

. . name/value pairs. Each reusable component can have an ex-
over 30 seconds. We found that several widely applicable P P

rules, such as grouping components into sets based on Iimi_|0ressi0n associated with it based on these name/value pairs

)) . N that determines if it can be reused in a particular device. Fo
tations in packaging variability, could help ensure bexgtec) o
. example, after a set of device capabilities is collected, th
solving performance.

Thi d bes h tended . K JSR 135 feature (Figure 9) can be enabled or disabled based
IS paper describes how We exiended our prior Work , , \nether or not tha SRL35 device capability variable is
on Scatter to integrate it with the open-source JVending

: . . e equal to true. If the JSR 135 feature is disabled, the Tex-
project, an |mplemer_1t§1t|qn of the Java specification 124 for tAndimagesUIl component will not be considered for reuse.
an over-the-air provisioning server [19, 28, 4, 5]. The re-
mainder of this section presents our solutions to each open The values for these variables are typically determined
challenge outlined in Section 3. Section 6 then presentsusing either a push or pull architecture. With a pull archi-
empirical results obtained from testing Scatter and JVend-tecture the device sends its unique identifier and the pro-
ing that show a constraint-solver based approach to derivin visioning server queries either a device description repos

Once a mobile device has initiated a provisioning re-

product-variants for over-the-air provisioning is fedsib tory [39, 24] (a database of device identifiers and their as-
sociated capabilities) or the device itself for the capabil

4.1 Obtaining the Device Information Re- ties of the device. A push model may also be used where

quired to Make Reuse Decisions the mobile device sends its device type information and ca-

pabilities to the server as part of its provisioning request
For example, if a user is presented with a set of HTML
links to variants for a Java MIDP 1.0/CLDC 1.0 phone or
an MIDP 2.0/CLDC 1.1 phone, when the user clicks on a

The first step in determining how to fulfill a provisioning
request using existing software components is to character
ize the unique capf_;ll_)mtles of the requesting mobile device specific link, the device is sending a request that is pushing
After these capabilities are known, compatible components : S .

. . the needed device capability information.
can be selected and reused in a product variant. Below, we
present three different architectures for dynamicallgals We next describe the push and pull models in more detail
ering device capabilities and mapping them to product-line and show how neither is ideally suited for obtaining the in-
models. These architectures can be used to help addres®rmation required for deriving a configuration of reusable
Challenge 1 of Section 3, which is that no clear architesture software components for a product variant. We then present
have been developed for integrating an automated variantan alternative approach, called-demand probinghat at-
selector and an over-the-air provisioning server. Each ar-tempts to address the limitations of the push and pull mod-
chitecture provides a differing level of device informatio els. Scatter uses this on-demand probing approach to gather
that can be leveraged to select a product-line variant. Wemissing device capability information and ensure that all
also evaluate each architecture in terms of Challenge 2 (in-needed capability values are known when reusable compo-
complete device information) since different architeetur nents are selected and assembled for a device.
provide more complete device information than others.

Over-the-air provisioning is typically initiated by a mo-
bile user dialing a SpeCI.fl.ed .mOblle number or sendlng.an 2CabinClasss a boolean indicating if the traveler has a first or second
HTTP request to a provisioning server. In Most SCeNarios, gjass ticket. Although it would be possible to mo@binClassoutside
the provisioning request includes an identifier that theeser the target infrastructure model, we include it there foriaity.

guest headers. The provisioning server uses the User-Agent
name to query a device description repository and identify
the device’s capabilities. Once the device’s unique sigeat

is known, Scatter is executed to determine the appropriate
product variant to fulfill the provisioning request.

Discovery

1. HTTP Request Product Variant / User-Agent -
»

Device
Characterization

2. Query Device
Reposito!

Device

3. Device Capabilities
Returned

Scatter -

Variant "|
Constraint..
Solver

5. Product Variant MIDlet Returned 4. Scatter
Derives
Variant

e % ®

"~ Optimal '
PLA Variant

Figure 12: Scatter Integration with a Discovery Service

Figure 13: An HTTP Provisioning Request for a J2ME Mi-
dlet Product Variant

The key disadvantage of pull models is that they limit
41.1 Pull Models for Discovering Device Capabilities the information that can be used to guide variant construc-
tion since they rely on pre-compiled device information
A pull model extracts device capabilities from a device de- databases. New devices are released frequently and thus
scription repository and can provide detailed information a repository may not know the capabilities of the latest
with regard to static device capabilities ranging from sup- products. Pre-compiled databases also cannot use dynamic
ported APIs to hardware specifications. A mobile device information, such as CabinClass, specific to an individual
may not be able to introspectively determine all of the in- user’s device. In situations where not all required device
formation available in a device description repository nor information is available, the variant selection procese$a
may it be efficient to send this large amount of data acrossChallenge 2 of Section 3, which involves handling missing
a cellular network. Pull models are also desirable since capability information.
they place the burden of the work on the server and de-
couple the device from the capability discovery mechanism.
Moreover, a pull model does not require error-prone user-
interaction. Push models offer an apparent solution to the deficiencies of
Numerous open-source and commercial projects arepull models. With a push model, the mobile device encodes
available that offer databases of device capabilities.hWit all required capabilities and context information for deri
a pull model, the provisioning server’s main task is to iden- ing a product variant into its provisioning request. This ar
tify the identifier for the type of device issuing the request chitecture avoids Challenge 2 from 3 by ensuring that all
and then query the appropriate device description reposi-needed device information is submitted with the request.
tory for its capabilities. Although having a large database For example, a device can issue an HTTP request with re-
of device capabilities may appear to make it possible to quest parameters for the device memory, JVM stack size,
build variants for devices ahead of time, a device descrip- display dimensions, JVM profiles/configurations, and a list
tion repository only containstatic capability information of available optional Java libraries.
and cannot leverage context.g. CabinClass) or dynamic A push model can also incorporate context-dependent
information €.g. remaining storage space) about a device. data. For example, a user can be presented with an HTML
The database packaged with the open-source Wireless Uniform to capture the traveler’s ticket number. The form can
versal Resource File (WURFL) [24] project contains 5,038 then be sent to the provisioning server via an HTTP POST
unique device signatures. and the server can obtain the device user’s cabin-clags, sea
A diagram of a request for a MIDP application (MIDlet) assignment, name, and other reservation attributes before
product variant is shown in Figure 13. Initially, the device invoking Scatter and deriving a variant. This form-based
sends an HTTP request to the provisioning server for thearchitecture is shown in Figure 14.
MIDlet and includes the deviceldserAgentan identifier The push model, however, has its own drawbacks. First,
of the requesting device type or browser type, in the re- the push model relies on the user to supply critical infor-

4.1.2 Push Modelsfor Discovering Device Capabilities

the server to obtain the originally requested product véria
This on-demand probing architecture is shown in Figure 15.

1. HTTP Request Product Variant / User-Agent

2. Return HTML Form to Obtain Capabilities

3. Probe HTTP POSTs Capability Info

POST Parameters:
JVM Profiles/Configuration, JVM Stack Size,
Ticket Number, etc.

1. HTTP Request Product Variant / User-Agent

2. Query Device
Reposito!

Sevi
5. Product Variant MIDlet Returned 4. Scatter avlee
Derives

Variant

3a. No, Send MIDlet Probe 3. Sufficient

Capability

. 3b. Probe HTTP POSTs Missing Capability Info _ ot
Figure 14: An HTTP Provisioning Request with a Push : POST Parametors: g

Model for a J2ME Midlet Product Variant ! e et Namero,

5. Product Variant MIDlet Returned 4-D3l?aller

erives

mation that is used to select a product variant. A user can Variant

e_aS|Iy make mlst_akesa(g. provide the wrong CLbC ver Figure 15: An HTTP Provisioning Request with a On-
sion) and cause incorrect software variants to be delivered . : .

) . demand Probing Model for a J2ME Midlet Product Variant
to the device. Users may not know all of the required plat-

form information, such as JVM stack size, required by the on-d d orobi bi he b i f both
provisioning server. The push model also requires sending n-demand probing combines the best attributes of bot

device capabilities, such as CPU megahertz, across the nelt-he push and pull models. When only static device capabil-

work even though they do not vary across a particular device'!'eS are nee(_jed by the p_rodu_ct-lme C(_)nstralnts, on-glelman
model. probing obtains the required information from a device de-

scription repository. When context or other informatioatth
is unavailable in the repository is needed, Scatter adelsess
4.1.3 On-demand Probing: A Hybrid Capability Dis- Challenge 2 by reverting to a push model. To help reduce
covery Model user interaction and improve the reliability of the capabil
ity information received through a push, Scatter delivers a
Integrating Scatter with a provisioning server created the small executable probe to the device to obtain missing ca-
unique challenge that the device information required to papility information.
perform variant selection could vary depending on the con- \yhen a new device is encountered, a probe can pro-
straints of the product-line. For example, for some prod- grammatically determine display size, JVM configura-
ucts, a pull model is appropriate since the product-line tion/profile, and other information through Java APIs. This
constraints only depend on device capabilities that do notjnformation is gleaned programmatically and can be cached
vary across a model. For other product-lines, such as thefor future encounters with the same device type. For
train food service application, context information, s@sh context-specific information, the same probe can promptthe
cabin-class, is needed, motivating a push model. user for reservation numbers and other required attributes
The Scatter integration needed to support context infor- The on-demand probing approach minimizes human in-

mation that would not be available with a pull model. Since teraction and can obtain dynamic context information for
selecting product variants using partial information is no product variant derivation.

a well-understood area of research, we decided our solu-
tion had to ensure that all required device information was

available. Instead of opting for a push model and requiring 5 Scatter’s Resource-aware Variant Selection

error-prone interaction with the user to obtain all reqdire Engine
capabilities, Scatter’s integration with JVending useya h
brid push/pull model, which we catin-demand probing Finding a way to configure and reuse existing software

On-demand probing uses a device description repositorycomponents on an arbitrary mobile device is hard. The
to obtain static capabilities. If a product-line includeme complex requirements and composition constraints of the
straints on capabilities that are unavailable from the sepo product-line must be used to derive a component configu-
tory, Scatter returns a small MIDlet to the device. The MI- ration that will function properly on the limited resources
Dlet programmatically probes the user’s device for the miss of the device. Developer may therefore need to consider a
ing capability information and may also prompt the user for combination of context, resource, software dependengy, Ul
context informationé.gticket number). After obtainingthe and cost constraints when selecting which components to
needed capabilities the probe sends the information back taeuse and how to configure them.

Itis particularly important to respect resource constsain

. .) Initiall
when reusing software components on different mobile de- Mimonsyof
vices. As discussed in Section 3, current approaches do not G

account for resource constraints when deriving a product
variant. Likewise, they also do not provide optimization
mechanisms to selectively reuse components that consume
less bandwidth and hence incur smaller cellular air time
charges. To address this deficiency, this section describes
how we extended the CSP approach presented in [9] to in-
clude both resource constraints and a simple variant cost
optimization.

Scatter provides an automated variant selector that lever-

ages Prolog’s inferencing engine and the Java Choco 4 4\
CLP(FD) constraint solver [1]. The Scatter solver uses a Possible Variants ;- NG
layered solving approach to reduce the combinatorial com- | Reduced by Local Possible Variants

plexity of satisfying the resource constraints. Scattanps Consiraint Satving After Solving

the solution space using the PLA composition rules and the
local non-functional requirements so only variants that ca
run on the targetinfrastructure are considered. The resour
constraints are a form of tHenapsack probleran NP-Hard
problem [14]. Scatter’s layered pruning helps improve se-
lection speed and enables more efficient solving. As shown
in the Section 6, this layered pruning can significantly im-
prove variant selection performance.

Resource Constraints

Single
Variant

Figure 16: Scatter's Layered Deployment Solving Ap-
proach

greater than 1.2, the target device must contain a capabil-
5.1 Layered Solution Space Pruning ity named JVMVersion with a value greater that 1.2 or the
component is pruned from the solution space and not con-
Initially, the variant solution space may contain many sidered.
millions or more possible component or feature composi- The simple Prolog rules for performing this pruning are
tions. Solving the resource constraints is thus time con-listed below:
suming since it is a higly combinatorial problem. To op-

timize this search, Scatter first prunes the solution spgce b conpar eval ue(V1, V2, >") :- V1 > V2,
eliminating components that cannot be reused on the deviceonpar eval ue(V1, V2, <) :- VI < V2.
because their non-functional requirements, such a JVMVer-conpar eval ue(V1, V2,’ =) :- V1 == V2.
sion or CabinClass, are not met. After pruning away theseconpar eval ue(V1,V2,"-") :- V1 >= V2,

components, Scatter evaluates the PLA composition rules
to see if any components can no longer be reused becauseat chesResour ce(Req, Resour ces)
one of their dependencies has been pruned in the previous nenber (Res, Resour ces),

step. This layered pruning process is shown in Figure 16 sel f_nane(Req, RNane) ,
After pruning the solution space using the PLA compo- sel f _name(Res, RNane) ,
sition rules, Scatter considers resource requirementsr Af sel f _resourcetype(Req, Type),
solving the resource constraints, Scatter is left with atitra sel f _val ue(Req, Rqv),
cally reduced number of reusable component configurations sel f _val ue(Res, Rsv),
to select from. At this point, if there is more than one valid conpar eval ue(Rsv, Rqv, Type).

variant remaining, Scatter uses a branch and bound algo-
rithm to iteratively try and optimize a developer-supplied canReuseOn(Conponenti d, Devi ce)

cost function by searching the remaining valid solutions. sel f _type(Conponenti d, conponent),

The first two phases of Scatter’s solution space pruning sel f _type(Device, node),
use a constraint solver based on Prolog inferencing. A rule sel f _requires(Conponentid, Requirenents),
is specified that only allows a component to be reused on a sel f _dependenci es(Conponent i d, Depends),
device, if for every local non-functional requirement oe th sel f _provi des(Devi ce, Resour ces),
component, a capability is present that satisfies the requir foral | (menber (Req, Requi renment s),
ment. For example, if a component requires a JVMVersion mat chesResour ce(Req, Resour ces)),

10

foral | (menber (D, Depends), canReuseOn(D, Devi ce)) contributed by that component to the sum falls to zero. The
constrainty Ci(R) « DC; < Dvc(R) is created to enforce this

For ea(_:h component_, Fhe rule_ canReuseQn is invoked rule. Components that are not selected by the solver, there-
to determine reuse feasibility. This rule also simultarsipu fore, will have DG = 0 and will not add to the resource
tests the feasibility of reusing a component based on its de'dem’ands of the variant

pendencies. The last invocation in the rule checks to ensure 14 <o\ver supports multiple types of composition rela-

that all of the components that the current component de’tionships betweerComponents For eachComponent ¢
pends on can also be reused on the device. If any of theﬂ16th depends on, Scatter creates the constraBit>
dependencies cannot be reused, the component cannot t@_} C. — 1. Scatter also supports a cardinality composi-
reused. The rule also throws out components with a reé-tion C(J)nstraint that allows at leaMin and at mosiVax

source requirement exceeding what is available on the de’components from the dependencies to be present. The car-
vice, which helps to eliminate the size of the search space

dinality operator creates the constrai@: > 0 — 3 Cj >
for the resource solver. Min, s Cj < Max. The standard XOR dependencies from
the metamodel are modeled as a special case of cardinality
whereMin/Max= 1.
The Scatter solver also supports component exclusion.
. S . i For eachComponent gthat cannot be present wi@, the
After performing this initial pruning of the solution constrainG, > 0— C, = 0 is created. The variables that can

Space, _the resource and PLA composition constraints %e referred to by the constraints need not be direct children
turned into an input for a CLP(FD) solver. The transforma- of a component or feature and thus are references

tion is an extension of the model proposed in [9] to include To support optimization, a variabl€ostV) is de-
resource consumption constraints. The model is also ex-f 4 using the user suppli'ed cost function. Eor exam-

tended to aIIo_w for f(_aatur(_a references. _ ple, CostV) = DC; * GPRSG + DC;, * GPRSG + DC; *

A Constraint Satisfaction Problem (CSP) is a problem GPRSG... DG, + GPRSG could be used to specify the cost
tha_t involves finding a labeling (a set (_)f values) for a set Of of a variant as the sum of the costs of transferring each com-
variables that adheres to aset O,f labeling rules (conssjain ponent to the target device using a GPRS cellular data con-
For example, given the constrain* Y* thenX = 3 and nection. This cost function would attempt to minimize the

Y=4is a %?rred I(;abellng O.f ther:/alues mra?d\é'_TheCSPsize of the variant deployed within the resource and PLA
more variables and constraints that are involved in a ‘composition limits.

the more complex it typically is to find a correct labeling of After the product-line rules have been translated into

the varlaples. . CLP(FD) constraints, Scatter asks the CLP solver for a la-
Selecting a product varlant.can be reduced_ to a CSP'beIing of the variables that maximizes or minimizes the

Sce_ltter constructs a set of Var'abB@O"'DC“’ with do- . variableCostV). This approach allows Scatter’s variant

main|0, 1], to indicate whether or not the ith component is selector to choose components that not only adhere to the

pre_sentr:n a Vﬁgﬁmt' A_varlant therefq;ehbgcomes a blnarycompositional and resource constraints but that maximize
string where t position represents If the” component - e yajye of the variant. Users therefore supply a fithess

(pr fgature) _is present.. Satisfying the CSP for variantsele criteria for selecting the best variant from the populatbn
tion is devising a labeling ddCy . . . DC,, that adheres to the valid solutions

composition rules of the feature model.

Resource consumption constraints are created
by ensuring that the sum of the resource de-
mands of a binary string representing a variant
do not exceed any resource bound on the device
(e.g., Y variant_componentresourcedemands <
deviceresourceys For eachComponent Cthat is de-
ployable in the PLA, a presence varial€;, with domain
[0,1] is created to indicate whether or not tBemponenis
presentin the chosen variant. For every resource type in th
model, such as CPU, the individu@bmponentiemands
on that resourceCi(R), when multiplied by their presence
variables and summed cannot exceed the available amount e Synthetic experiments, which are simulated product-

5.2 Using CLP(FD) to Solve Resource
Constraints

6 Scatter Performance Results

A key question discussed in Challenge 4 of Section 3 is
whether or not automated techniques for dynamically com-
posing and reusing software components are fast enough to
support over-the-air provisioning of mobile devices. Te de
termine the feasibility of timely on-demand software reuse
éjsing a constraint solver, we devised the following series
of tests of the Scatter-integrated over-the-air provisign
server:

of that resourceDvc(R), on theDevice line models and device configurations designed to test
If the presence variable is assigned 0 (which indicates specific scenarios for variant selection and product-
the component is not in the variant) the resource demand line design hypotheses.

11

e Field and stress tests, which use actual J22ME appli- 40
cation requirements, device identifiers, device capa-
bilities, and HTTP provisioning requests to determine
how fast variants can be derived in a realistic provi-
sioning scenario.

w
(9]

w
o

N
(&)

6.1 Synthetic Variant Selection Experi-
ments

N N
o o
\

To test Scatter’s performance, we developed a series of
progressively larger PLA models to evaluate solution time.
The tests focused solely on the time taken by Scatter to de-
rive a solution and did not involve deploying components.
We also tested how various properties of PLA composition
and local non-functional constraints affected the sotutio
speed. Our tests were performed on an IBM T43 laptop,
with a 1.86ghz Pentium M CPU and 1 gigabyte of memory.

Note that optimization and satisfaction of resource con-
straints is an NP-Hard problem, where it is always possible

to play the role of an adversary and craft a problem instancetg 2 500 units for the 50 component model. We chose the
that provides exponential performance [14]. Constraitt sa 50 component model since it yielded the worst performance

isfaction and optimization algorithms often perform well fom Scatter. The results can be seen in Figure 18. As
in practice, however, despite their theoretical worsecas

performance. One challenge when developing a PLA that
needs to support online variant selection is ensuring teat t 40
PLA does not induce worst-case performance of the selec-
tor. We therefore attempted to model realistic PLAs and to
test Scatter's performance and better understand the®ffec
of PLA design decisions.

Variant Selection Time (seconds)
N
o
—

(&)

o

Total Components

Figure 17: Scatter Performance on Pure Resource Con-
straints

w
o

w
o

N
[$))

6.2 Pure Resource Constraints

-
(&)

We first tested the brute force speed of Scatter when con-
fronting PLAs with no local non-functional or PLA compo-
sition requirements that could prune the solution space. We
created models with 18, 21, 26, 30, 40, and 50 components.
Our models were built incrementally, so each successively
larger model contained all of the components from the pre-
vious model. In each model, we ensured that not all of the
components could be simultaneously supported by the de-
vice's resources. Figure 18: Scatter Performance as CPU Resources Expand

Our device was initially allocated 100 units of CPU and ©n Device
16 megabytes of memory. Scatter's performance results on
this model can be seen in Figure 17. This figure shows ashown in Figure 18, expanding the CPU units from 100 to
large jump for the time to select a variant from 40 to 50 500 units dramatically decreased the time required to solve
components, which indicates that solving for a variant doesfor a variant. Moreover, after increasing the CPU units to
not scale well if resource constraints alone are considered 2,500, there was no increase in performance indicating that

the tightness of the CPU resource constraints were no longer
6.3 Testing the Effect of Limited Re- the limiting bottleneck.
sources We then proceeded to increase the memory on the de-
vice while keeping 2,500 units of CPU. The results are

We next investigated how the tightness of the resourceshown in Figure 19. Doubling the memory immediately
constraints affected solution time. We incrementally in- halved the solution time. Doubling the memory againto 128
creased the available CPU on the modeled device from 100megabytes provided little benefit since the initial douflin

N

-
o

Variant Selection Time (seconds)
N
o

(&)

o

0 500 1000 1500 2000 2500 3000
CPU Units on Target Device

12

=K

o
£
o

w
[31]

(5]
o

[
[5}]

(o8]
o

—_
(8,

=y
o

Variant Selection Time (seconds)
Variant Selection Time (seconds)

o = N W H» OO N O ©

0 50 100 150

.................

B

o

Total Device Memory

0 0.5 1 1.5 2 25
Total Dependency Trees

Figure 19: Scatter Performance as Memory Resources Ex-
pand on Device

Figure 20: Scatter Performance as PLA Dependency Trees
are Introduced

to 64 megabytes deployed all of the components possible.

As we hypothesized initially, the solution speed when pure g 5 pield and Stress Testing Scatter

resource constraints are considered is highly dependent on

the tightness of the resource constraints. We conducted a series of field tests with real mobile

phones and a series of stress tests to determine how on-

demand variant selection would scale with Scatter. We in-

tegrated Scatter with an open-source over-the-air pravisi

ing server called JVending. JVending delivers mobile appli

cations to devices via HTTP.

Our next set of experiments evaluated how well the de- O;Jr dtests usfd aT?ix oftreelllhha(rjdware an%synthetiéiallyk
. Ly . . created requests. The actual hardware used was a Black-

pendency constraints within a PLA could filter the solution berry 8100, Motorola Razr V3, and Treo 650 mobile phone.

space and reduce solution time. We modified our models he st test ¢ d using Apache JMeter t
so that the components composed sets of applications thaI € Stress 1ests were periormed using Apache JVIEter 1o

should be deployed together. For example, TrainTicke- send high numbers of synthetic mobile phone provision-

tReservationServiogas paired with th@rainScheduleSer- ing requests. JMeter is an application for stress testirig we
: applications by sending varying numbers, types, and con-
viceand other complementary components. . . .
P y P figurations of HTTP requests. We used JMeter to simulate

As with the first experiment from Section 6.2, we used (gquests since it was infeasible to manually produce large
our 50 component model as the initial baseline. We first hympers and rates of requests using real mobile phone hard-
constructed a tree of dependencies that tied 10 componentgare. The goals of these tests was to (1) ensure that real
into an application set that led the root of the tree, thetrai pardware could be provisioned correctly by Scatter and (2)
service, to only be deployed if all children where deployed. getermine the number of provisioning requests per second
Each level in the tree depended on the deployment of theiat could be handled by Scatter.
layer beneath it. The max depth of the tree was 5. We con- 1he product-line used for testing was the train food ser-
tinued to create new dependencies between the componentgces application presented in Section 2. The productsiine
to produce trees and see the effect. The results are shown ifatre models comprise a total of 56 features. For the field
Figure 20. tests, we selected hardware for a commodity x86 server.

As shown in Figure 20, adding dependencies betweenThe testbed was a Windows XP machine with a 2.6 giga-
components and creating a dependency tree decreased shertz Intel Core DUO CPU, 3 gigabytes of DDR2 6400
lection time. This decrease occurs because the tree reducedRAM, a 10,000 rpm SATA harddrive, and dual gigabit-
the number of possible combinations of the components thatethernet network cards. The JVending provisioning web-
must be considered for a variant. Adding more dependen-application was run in Apache Tomcat 6.1.0 using a Java
cies to the model to add other trees provided only a very 1.5 JVM in server mode. The Tomcat server and JVending
small gain over the original large performance increase. application were configured with all logging disabled.

6.4 Testing the Effect of PLA Composi-
tion Constraints

13

We used the Wireless Universal Resource File version When comparing the synthetic and train food service
2.1.0.1 and its associated Java querying libraries to matchfeature models, we found that properly specified real featur
static device capabilities to device types using ttheerA- models tend to have large numbers of constraints between
gentheader parameter included with requests. The WURFL features. Our synthetic feature models were significantly
database contains information on roughly 400 capabilitiesless constrained (had a higher degree of variability) than
for approximately 5,000 devices. We do not include the our food services application. Less constrained models typ
WURFL querying time in our results (although it was typi- ically have far more features/components that are not dis-
cally no more than 3-4ms). abled by target device characteristics and must be included

Typical web servers may receive hundreds, thousands, otin the resource constraint solving. We expect that thislresu
more requests per second. Although we do not expect a typ-will apply to other mobile applications since they are often
ical provisioning server to receive such high request rates carefully matched for the features of the target device.
constraint-solver based software reuse must still provide We repeated the same test with Scatter to select a second
relatively high performance. To test Scatter’s variant se- class variant for each device. The results from the second
lection throughput, we used JMeter to generate a 1,000 syn+test are shown in Figure 22. There was little differencein se
thetic provisioning requests from 3 different mobile phone

types. The synthetic request formats were derived by send-
ing real HTTP provisioning requests from the phones to
the provisioning server and capturing the included request
headers. From the point of view of the provisioning server,

Second Class

140

120

100 |

there was no difference between the requests produced by Variant 80
7 Selection 601"
JMeter and the actual device. Time (ms)
We measured the average variant selection time for both 40
each individual mobile phone type and overall for all phone 20
types. The results shown in Figure 21 present the time re- 0
quired by Scatter to derive a first class food services varian Blackber Treo50 Raziv3 Overal
for each device. The times shown in this figure do not in- BAverage 103.1 756 115.6 98.1
B Worst 117.3 81.7 122:1 1221
140+ [JBest 92 72.3 108.8 72.3
120 1 i . i i
100 Figure 22: Second Class Food Services Variant Selection
] Time Over 1,000 Provisioning Requests
Variant 80
Selection Time
(ms) 60 lection time for a second class versus a first class variint. |
401 Figures 21 and 22 are compared, the average selection time
201 differs by approximately~-2ms less per device for second
ks class variants. We attribute this difference to the slightl
5100 | Treo850 | Razrv | Overal higher variability of first class variants. First class eats
WAverage| 10547 781 1172 1003 can select between two different customer locators whereas
B Worst 117.8 91.5 1234 123.4 the second class variants cannot.
OBest 81.2 72.3 109 723

7 Results Analysis:
Strategies

Figure 21: First Class Food Services Variant Selection Time Mobile PLA Design

Over 1,000 Provisioning Requests

clude the time to send the requests across a cellular network Although Scatter achieved a throughput-a® requests

or download the selected variant since these attributes ofa second, Product-line designers still must be careful when
provisioning are outside the scope of this paper. building a PLA for automated software reuse and real world

As shown in Figure 21, Scatter averaged und@20ms dynamic over-the-air provisioning. Clustering, hardware

for all device types. Scatter could reasonably support ap-and constraint solver improvements can increase variant se
proximately 9 requests per second. One interesting obseriection throughput. Product-line designers can also help
vation from this data is that the selection times for our 56 increase performance by designing their product-line mod-
feature train food service application models were signifi- els for automated software reuse. Based on the results we
cantly faster than those of our 50 component model in the collected from the experiments, we devised a set of mobile
synthetic experiments. PLA design rules to help improve variant selection perfor-

14

mance and address Challenge 5 of Section 3. The remaindeimages can be deployed to the device but any combination
of this section presents the design rules we gleaned from ouiof the application components are possible.
results.

Limit resource tightness. Due to the increased cost of
M aximizevariant selection result caching. If a product- finding a variant for small devices where resources are more
line is designed carefully, a provisioning server can cachelimited, we developed another design rule. To decrease the
the results of variant selection requests to greatly improv difficulty of finding a deployment on small devices, PLA
the performance of provisioning. Scatter need only be in- developers should provide local non-functional constgain
voked when a variant must be found for a new device/- t0 immediately filter out unessential resource consumptive
context/capabilities signature. For example, two ideitic components when the resource requirements of the deploy-
Blackberry 8100 mobile phones in first class can reuse theable components greatly exceed the available resources on
same application components in the same configurationthe device. Although the cost function can be used to per-
The majority of requests will be for previously encountered form this tradeoff analysis and filter these components dur-
device/context combinations, so previous component reusdnd optimization, this method is time consuming. Filtering
decisions will still apply. some components out ahead of time may lead to less op-

Context dependent decisions make caching hardertimal solutions_but it can greatly improve solution speed.

Product-lines can limit the number of contexts that a pro- EVen by selecting only the least valued components to ex-
visioning server is interested in. For example, the tragdfo ¢lude from consideration, performance can be increased
services application is interested in differentiatingides ~ Significantly.
owned by first and second class passengers. The Cabin-
Class context effectively doubles the number of device/- Exploit non-functional requirements. Non-functional
capability/context signatures that the server must CaChe-requirements can be used to further increase the perfor-
The number of unique values for CabinClass acts as a multi-mance of Scatter. Each component with an unmet non-
plier for the number of configurations that the provisioning functional requirement is completely eliminated from con-
server may need to cache. In this example, the provisioningsjgeration. When PLA dependency trees are present, this
server needs to cache separate variant selection decisior@uning can have a cascading effect that completely elimi-
for devices in first class and second class cabins. Designerg gtes large numbers of components. One PLA construction
should attempt to use as coarse-grained context informatio yje based on non-functional requirements that was particu
as possible to limit this multiplier effect. larly powerful and natural to implementin Scatter expldite

the relative lack of variation in packaging of a PLA variant.

Limit the situations wher e resour ce constraints must be

considered. Resource constraints also can limit what the Prune using low-granularity requirements. The re-
server can cache and are the most time consuming comguirements with the lowest granularity filter the largest
ponent of variant selection. For example, if two identical numbers of variants. For example, when deploying vari-
Blackberry 8100 devices are encountered in first class, oneants, especially from a PLA with high configuration-based
device having 72K of remaining storage capacity and the variability, such as varying input parameters, the disk-foo
other with 2mb of remaining storage capacity, the selection print of various classes of variants can be used to greatly
results from the first device will not be applicable to the-sec prune the solution space. If a PLA with 50 components
ond device. Either Scatter must be reinvoked for each newis composed of 5 Java Archive Resource (JAR) files, there
storage space value or a method is needed to identify wherare relatively fewalid combinations of the JAR files, even
differing storage values will still produce identical ré&su though there are a large numberpafssibleways the PLA
and thus can be cached. can be composed.

One strategy is to broadly categorize devices based on Many variants may also require common sets of these
remaining storage capacity. For example, all devices can beJAR files with various footprints. These variants can be
placed into one of three groups, devices with more than 70K grouped based on their JAR configurations. For each group,
of remaining storage capacity, devices with 14K to 70K, and a non-functional requirement can be added to the compo-
devices with less than 12K. Any device with 70K can host nents to ensure that a target Device provide sufficient disk
any combination of the components and features of the foodspace or communication bandwidth to receive the JARs. For
services application, and thus resource constraints do nosmall devices that usually have little availabe disk space,
need to be considered. For devices with 12K to 70K, con- where resource constraints are tighter and solving takes
straint solving is necessary since multiple but not all con- more time, large numbers of components can be pruned
figurations are valid. Finally, with less than 12K, no menu solely due to the lack of packaging variability and need for

15

disk space. This footprint-based strategy works evenitthe but also extends it with the capability to handle references
are few functional PLA dependencies between componentsand resource constraints. Resource constraints are a-key re
qguirement type in mobile devices with limited capabilities
Moreover, the approach presented by Benavides does not
show how this constraint-based mechanism could utilize a
mobile device discovery service as Scatter does. Finally,
unlike this paper, Benavides et al. do not address how PLA
design decisions can be used to improve constraint solver

Create service classes. Another effective mechanism for
pruning the solution space with non-functional require-
ments is to provide various classes of service that divide
the components into broad categories. In our train example,
for instance, by annotating numerous components with the
CabinClassand other similar context-based requirements, performance.)))
the solution space can be quickly pruned to only search the Many complex modeling tools are available for describ-
correct class of service for the target device. In general,iN9 @nd solving combinatorial constraint problems, such
the more non-functional requirements that can be specified S those presented in [27, 15, 34, 12, 20]. These mod-
the quicker Scatter can prune away invalid solutions and ©/ing tools provide mechanisms for describing domain-
hone in on the correct configuration. Moreover, each non- constraints, a set of knowledge, and finding solutions to
functional requirement gives the solver more insight into tN€ constraints. These tools, however, do not provide a
how components are meant to be used and thus reduces tHdgh-level mechanism to capture non-functional require-
likelihood of unanticipated variants that fail. As we padt ~ MeNts and PLA composition rules geared towards mobile
out earlier, however, it is important that service classes a devices. These tools also do not provide a mechanism for

course-grained since they can adversely affect caching. incorporating data from a device discovery service. The_se
papers also have not addressed how PLA design decisions

influence variant selection speed.

8 Redated Work

This section compares our research on Scatter with otherAd"’lpt"jltlon frameworksfor mobiledevices. Chisel [22]

tools and techniques that can be used to help automate thg_rovides an adaptiye application framework for mo_bile de_—
selection of reusable software components for a mobile de-VIC€S based on policy-driven context aware adaptatiors Thi

vice. We first compare our work to other theoretical tech- framework allows a running application to adap.t t(.) han-_
niques for using product-line models to derive which com- die resource and othgr context-based c.har!ges In s envi-
ponents should be reused for a device. Next we Compareronment. Although Chisel allows an application to adapt to

Scatter to frameworks for adapting applications and cdnten 2f:rt|cglart delv|c$5 %ha;ﬁctfer:lstlc_s, itis not sufficiott
to the capabilities of a mobile device. Finally, we evalu- variant sefection for the tollowing reasons
ate Scatter against other tools that allow developers 1d bui

product-line models and derive valid variant configuragion * Chisel assumes that the core functionality of the appli-

cation does not change via adaptation, which is not the
case in the scenarios we describe, where PLA variants
Product-variant derivation techniques. In [25], Man- may share components but function very differently.
nion et al present a method for specifying PLA compo-

sitional requirements using first-order logic. The valid- e Chisel is based on explicit developer-provided poli-

ity of a variant can then be checked by determining if a cies that describe how to adapt to changing conditions.
PLA satisfies a logical statement. Although Scatter's ap- These policies are produced manually and thus may
proach to PLA composition also checks variant validity, it not provide optimal or even good adaptation proce-

extends the work in [25] by including the evaluation of non- dures to handle variant selection based on the envi-
functional requirements not related to composition. In par ronment. In contrast, Scatter automates and optimizes
ticular, Scatter automates the variant selection process u component selection. Automating component selec-

ing these boolean expressions and augments the selection tion is key when hard constraints, such as resource
process to take into account resource constraints, as svell a consumption, are present.

optimization criteria. Although the idea of automated the-

orem proving is enhanced in [26], this approach does not e Scatter’s optimization algorithms provide guarantees

provide a requirements-driven optimal variant selection e on solution quality, whereas Chisel's manually pro-

gine like Scatter. Additional discussion of the differesice duced policies give no guarantee of solution quality.

between constraint-based variant selection and Mannion’s

logic-based approach is available in [9]. e Scatter does not assume that the functionality of the
A mapping from feature selection to a CSP is provided variants is identical and can thus handle the selection

by Benavides et al. [9]. Scatter uses this same reduction of multiple variants to deploy.

16

In [23], Lemlouma et. al, present a framework for adapt- from a product-line for the device’s capabilities. Mobile
ing and customizing content before delivering it to a mobile software is often deployed using over-the-air provisignin
device. Their strategy takes into account device prefe®nc which requires online selection of reusable components for
and capabilities, as does Scatter. The approaches are conan application variant. As discussed in Section 3, existing
parable in that each attempts to deliver customized data tareuse approaches do not address the unique challenges of
a device that handles its capabilities and preferences. Redynamic software reuse for mobile devices.
source constraints are a key difference that makes the-selec Dynamically assembling reusable software components
tion of software for a device more challenging than adapting into an application for a mobile device is a challenging do-
content. Unlike [23], Scatter not only provides adaptation main that can benefit from automation since there are too
for a device, but also optimizes adaptation of the software many complexities and unknown device characteristics to
with respect to its provided PLA cost function. account for all possibilities manually priori. Constraint-

solver based automation is a promising technique for on-
Product-line modeling and variant derivation tools. line variant selection. This paper describes how our Scatte
The Eclipse Feature Modeling Plug-in (FMP) [8] provides tool supports efficient online variant selection. By caligfu
feature modeling capabilities for the Eclipse platform.f®EM evaluating and constructing a PLA selection model based on
allows developers to build feature models to capture thethe design rules presented in Section 7, developers can alle
rules governing product-line configuration. FMP can also Viate the effects of worst-case solver behavior. As shown in
enforce product-line constraints as developers build-vari Section 6, a constraint-based variant selection appréath t
ants. Although FMP can automatically map from Java includes resource constraint considerations can provifie s
code to feature models, FMP does not provide a mech-ficient performance to dynamically select variants for ever
anism for discovering and mapping mobile device capa- the-air provisioning of mobile software.
bilities to product-line models or observing resource con- From our experience developing and evaluating Scatter,
straints. Scatter provides both of these missing critiapbe we learned the following lessons:
bilities. We are collaborating with the FMP research group
to apply Scatter's on-demand probing techniques to other
domains [37].

Pure::variants [10] is a commercial tool for model-
ing product-lines using feature models. Developers use
Pure::variants to describe a product-line and the comggrai
between features. Given a feature model, Pure::variants
can derive values for any remaining unconfigured features
that are mandated by the product-line. Unlike Scatter, how-
ever, Pure::variants does not take into account resource co
straints. Moreover, Pure::variants is designed to be used a
design-time by a modeler and does not provide support for
automated target discovery and variant selection.

Big Lever Software Gears [11] is another widely used
commercial product-line modeling tool. Software Gears
posesses similar capabilities to Pure::variants. Develop
ers describe the rules governing the variable parts of their
product-line and Software Gears can derive values for reqi-
ured but unconfigured variabilities. Software Gears does
not consider resource constraints or have a mechanism
for performing automated autonomous variant selection as
Scatter does.

e Although push and pull capability gathering mod-
els are commonly used for over-the-air provisioning,
neither is ideal for automated software reuse from
product-lines that leverage context information. On-
demand probing—which is a hybrid of the push and
pull models described in Section 4.1.3—can be used to
obtain the information completeness that a push model
provides while simultaneously minimizing human in-
teraction.

e Resource constraints can be incorporated into an,
constraint-based approach to reusing software, but are
time consuming to solve as we showed in Section 6.
Product-line designers should therefore attempt to de-
sign their constraints to only consider resource con-
straints when absolutely necessary, such as when a de-
vice could support multiple possible component con-
figurations but not all components can fit in the de-
vice's memory.

e Although Scatter can automate variant selection, it
works best when the constraints on a PLAS reusable
software components are crafted with performance in
mind. An arbitrary PLA may or may not allow for
rapid variant selection. PLAs that will be used in

9 Concluding Remarks

Product-line architectures (PLAs) can be used to de-
scribe the rules for reusing software components on differ-
ent mobile devices. Each time a new device is encountered
and an application must be assembled from existing soft-
ware components, a new application variant can be derived

17

conjunction with an automated variant selector should
therefore be constructed carefully to avoid perfor-
mance problems. As described in Section 7, the most
valuable strategies involve exploiting points of course-
grained variability, such as packaging variability or

service classes, to allow the variant selector to prune [7] M. Anastasopoulos. Software Product Lines for Penasiv
away large numbers of possible variants. Computing.IESE-Report No. 044.04/E versiah

)) [8] M. Antkiewicz and K. Czarnecki. FeaturePlugin: feature
e Dynamically packaging reusable software components modeling plug-in for Eclipse. leclipse '04: Proceedings of

into an application is not easy. Other research [6] the 2004 OOPSLA workshop on eclipse technology
has evaluated different mechanisms to manage pack- €Xchangepages 67-72, New York, NY, USA, 2004. ACM
aging and compilation variation, however, building a Press.

ture work, we plan to evaluate different strategies of Reasoning on Feature Modetszth anfergnce on
. . L . ; Advanced Information Systems Engineering (CAISESO05,
dynamically packaging application variants derived by Proceedings), LNC®520:491-503, 2005

Scatter. [10] D. Beuche. Variant management with pure:: variants.

e When a PLA for a mobile device is properly speci- Tﬁcr:g_r;icgtleﬁp;o::tériugadgyéstems GmbH, http://www.
fied with good constraints, Scatter can solve models P y ' ' ' o
involving 50 components iR-100ms, as shown in our] R. Buhrdorf, D. Churchett, and C. Krueger. SalionSs

experiments in Section 6.5. This performance should Experience with a Reactive Software Product Line
xper ! : ~ ISP u Approach.Proceeding of the 5th International Workshop on

be adequate for many pervasive environments, partic- Product Family Engineering. No2003.

ularly when device signature and variants are cached[lz] Y. Caseau, F.-X. Josset, and F. Laburthe. CLAIRE:

to eliminate repetitive solving for known solutions. In Combining Sets, Search And Rules To Better Express
future work, we intend to test Scatter with larger mod- Algorithms. Theory and Practice of Logic Programming
els and evaluate more characteristics of PLAs thatcan ~ 2:2002, 2004.

be used to reduce variant selection time. [13] P.Clements and L. Northrosoftware Product Lines:

Practices and PatternsAddison-Wesley, Boston, 2002.
e Developers normally focus on the functional variabil- [14] E. Coffman Jr, G. Galambos, S. Martello, and D. Vigo. Bin

ity in a product. It is also important to evaluate non- packing approximation algorithms: combinatorial analysi
functional variability, such as packaging variability. Handbook of Combinatorial Optimization. Kluwer
As shown in Section 7, although a product may have Academic Publisher4.998.

high functional variability, it can be significantly less [15] J. Cohen. Constraint Logic Programming Languages.

variable with respect to the number of ways it can be 6 fogmlgn. ADC'\|’|_|3?;(7)-52—63.DI93\;)-_ . i and
; ;) ,D. ,) : ty an

packaged and deployed or in terms of its memory foot- -oplen, L. Holfiman, and L. WEISS. Lommonall

print. These non-functional aspects can be exploited to Variability in Software EngineeringEEE Software

d h lexi f d . lecti 15:37-45, Nov.-Dec. 1998.
reduce the complexity of automated variant selection. [17] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged

Scatter is available in open-source form framw. sf . configuration through specialization and multi-level
net/ proj ects/ gens. configuration of feature modelSoftware Process
Improvement and Practicd 0(2):143-169, 2005.
References [18] D. P. D. Oppenheimer, A. Ganapathi. Why do Internet

Services Fail, and What can be Done aboutRt®ceedings

) . of the USENIX Symposium on Internet Techfnologies and
[1] Choco Constraint Programming System, SystemsMarch 2003.

http://choco.sourceforge.net/. [19] M. Dillinger, R. Becher, and A. Siemens. Decentralized

[2] Google Mobile Products, http://www.google.com/meil software distribution for SDR terminal§Vireless

[3] Develop/Optimize Case Study: Macrospace’s Dragon Communications, |IEEE [see also IEEE Personal
Island. Nokia Forum, http://www.forum.nokia.com/main/ Communications]9(2):20-25, 2002.

2004. [20] R. Fourer, D. M. Gay, and B. W. KernighaAMPL: A

[4] O. M. Alliance. OMA Client Provisioning V1.1 Candidate Modeling Language for Mathematical Programming
Enabler, Duxbury Press, November 2002.
http://www.openmobilealliance.org/release_program/ [21] J.Jaffar and M. Maher. Constraint Logic Programming: A
cp_vl_1.htm. Survey.constraints 2(2):0, 1994.

[5] O. M. Alliance. OMA Download over the Air V2.0 [22] J. Keeney and V. Cahill. Chisel: a Policy-driven,
Candidate Enabler, Context-aware, Dynamic Adaptation FramewoPelicies
http://www.openmobilealliance.org/release_program/ for Distributed Systems and Networks, 2003. Proceedings.
dlota_v2_0.html. POLICY 2003. IEEE 4th International Workshop, gages

[6] V. Alves, |. Cardim, H. Vital, P. Sampaio, A. Damasceno, 3-14, 2003.

P. Borba, and G. Ramalho. Comparative Analysis of Porting [23] T. Lemlouma and N. Layaida. Context-aware Adaptation
Strategies in J2ME GameSoftware Maintenance, 2005. for Mobile Devices.Mobile Data Management, 2004.
ICSM’05. Proceedings of the 21st IEEE International Proceedings. 2004 IEEE International Conference on
Conference onpages 123-132, 2005. pages 106-111, 2004.

18

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

A. T. Luca Passani. Wireless Universal Resource File,
http://wurfl.sourceforge.net/.

M. Mannion. Using First-order Logic for Product Line
Model Validation.Proceedings of the Second International
Conference on Software Product Lin@879:176—-187,
2002.

M. Mannion and J. Camara. Theorem Proving for Product
Line Model Verification.Fifth International Workshop on
Product Family Engineering, PFE-5, Sienaages 46,

2003.

L. Michel and P. V. Hentenryck. Comet in Context. In
PCK50: Proceedings of the Paris C. Kanellakis memorial
workshop on Principles of computing & knowledgages
95-107, New York, NY, USA, 2003. ACM Press.

S. Microsystems. Over The Air User Inititated Provisiog
Recommended Practice. May 2001.

S. Mittal and F. Frayman. Towards a generic model of
configuration tasksProceedings of the Eleventh
International Joint Conference on Atrtificial Intelligence
2:1395-1401, 1989.

D. Muthig, I. John, M. Anastasopoulos, T. Forster, JriD6
and K. Schmid. GoPhone-A Software Product Line in the
Mobile Phone DomainlESE-Report Np25, 2004.

Nokia. Java Technology Enables Exciting Downloading
Services for Mobile Users. October 2003.

D. Sabin and R. Weigel. Product configuration
frameworks-a surveyintelligent Systems and Their
Applications, IEEE [see also IEEE Intelligent Systems]
13(4):42-49, 1998.

D. Saha and A. Mukherjee. Pervasive computing: a
paradigm for the 21st centurZomputer 36(3):25-31,
2003.

G. Smolka. The Oz Programming Model. JELIA '96:
Proceedings of the European Workshop on Logics in
Artificial Intelligence page 251, London, UK, 1996.
Springer-Verlag.

T. van der StormVariability and Component Composition
Springer, 2004.

P. Van HentenryckConstraint Satisfaction in Logic
Programming MIT Press Cambridge, MA, USA, 1989.

J. White, K. Czarnecki, D. C. Schmidt, G. Lenz,

C. Wienands, E. Wuchner, and L. Fiege. Automated
model-based configuration of enterprise java applications
In EDOC 2007 2007 (to appear).

J. White, A. Nechypurenko, E. Wuchner, and D. C.
Schmidt. Optimizing and Automating Product-Line Variant
Selection for Mobile Devices. Ih1th International

Software Product Line Conferencgeptember 2007.

M. Womer and F. Telecom. Device Description Landscape.

W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid.
Reengineering a PC-based system into the mobile device
product line.Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles,gfages 149-160,
2003.

19

