
Developing Product-lines for Distributed Real-time and Embedded Systems
with Modeling Tools and Component Middleware: A Case Study

Andrey Nechypurenko

Siemens Corporate Technology
Siemens AG

Wittelsbacherplatz 2
Munich, D-80333 Germany

Gan Deng
Department of EECS
Vanderbilt University
2015 Terrace Place

Nashville, TN 37203 USA

Douglas C. Schmidt
Department of EECS
Vanderbilt University
2015 Terrace Place

Nashville, TN 37203 USA

Aniruddha Gokhale
Department of EECS
Vanderbilt University
2015 Terrace Place

Nashville, TN 37203 USA

ABSTRACT

Developing software for product-line architectures (PLAs) in
large-scale distributed real-time and embedded (DRE) systems is
hard due to variabilities that arise from (1) integration with vari-
ous subsystems based on different hardware, programming lan-
guages, middleware, and OS platforms, (2) fine tuning each prod-
uct instance to satisfy customer requirements, such as real-time
quality-of-service constraints, and (3) changing functional and
non-functional aspects of product instances based on available
system resources. This paper presents experience gained and les-
sons learned addressing domain- and middleware-specific vari-
ability when applying model-driven development (MDD) tools
and component middleware technologies to develop a PLA for an
inventory tracking system, which manages the storage and flow of
items in warehouses. Our experience shows that (1) coherent
integration of MDD tools and component middleware provides a
more productive software process for developing PLA-based DRE
systems than using component middleware without MDD tools
and (2) significant challenges remain that must overcome to apply
these technologies to a broader range of PLA-based DRE systems.

Keywords

Inventory Tracking Systems, Model-Driven Development, Do-
main-Specific Modeling Languages, Component Middleware

1. Introduction
Software product line architectures (PLAs) [14] are a promising
technology for industrializing software development by focusing
on the automated assembly and customization of domain-specific
components, rather than (re)programming systems manually.
Conventional PLAs consist of component frameworks [19] as
core assets, whose design captures recurring structures, connec-
tors, and control flow in an application domain, along with the
points of variation explicitly allowed among these entities. PLAs
are typically designed using commonality/variability analysis
(CVA) [12], which captures key characteristics of software prod-
uct lines, including (1) scope, which defines the domains and
context of the PLA, (2) commonalities, which describe the attrib-
utes that recur across all members of the family of products, and
(3) variabilities, which describe the attributes unique to the differ-
ent members of the family of products.

Emerging trends and challenges. Standards-based quality-of-
service (QoS)-enabled object-oriented middleware technologies,
such as Real-time CORBA [9] and Real-time Java [8], support the
provisioning of key QoS properties, such as (pre)allocating CPU
resources, reserving network bandwidth, and monitor-

ing/enforcing the proper use of distributed real-time and embed-
ded DRE system resources at runtime to meet end-to-end QoS
requirements, such as throughput, latency, and jitter. Using these
object-oriented middleware technologies to build reusable com-
ponents for PLAs is still hard, however, because objects based on
such technologies often encapsulate tangled functional aspects
and non-functional aspects.

In recent years, QoS-enabled component middleware [1, 2, 3, 6]
has emerged to help developers of DRE systems factor out reus-
able concerns to enhance reuse, such as component life-cycle
management, authentication/authorization, and remoting. As a
result, software for large-scale DRE systems is increasingly being
assembled from reusable modular components available from
commercial-off-the-shelf (COTS) providers, rather than devel-
oped manually from scratch. Although QoS-enabled component
middleware technology provides powerful capabilities, it also
yields the following challenges for developers of PLAs for DRE
systems [20, 3]:

• Increased scale. As DRE systems are joined together to form
large-scale systems of systems, developers rarely have in-depth
knowledge of the entire system or an integrated view of all
subsystems and libraries, which may cause them to implement
suboptimal solutions that duplicate code unnecessarily, com-
plicate system evolution, and violate architectural principles.

• Increased variability. Additions to the physical features of the
system and/or availability of better implementations of the
same type of systems can further increase functional and non-
functional variability.

To maximize software reuse and productivity, therefore, increased
scale and variability must be addressed by combining technolo-
gies and tools that support system configuration and integration
more effectively.

Promising approach →→→→ Integrating model-driven development
and QoS-enabled component middleware. A promising way to
alleviate the challenges of DRE system scale and variability de-
scribed above is to integrate model-driven development (MDD)
[11, 5, 3, 13] techniques with QoS-enabled component middle-
ware [2, 6]. MDD helps resolve key software development chal-
lenges by combining (1) metamodeling, which defines type sys-
tems that precisely express key abstract syntax characteristics and
static semantic constraints associated with PLAs for particular
application domains, such as software defined radios, avionics
mission computing, and warehouse inventory tracking, (2) do-
main-specific modeling languages (DSMLs), which provide pro-
gramming notations that are guided by certain metamodels to
formalize the process of specifying application logic and QoS-

related requirements for PLAs in a particular domain, and (3)
model transformations and code generation that help automate
repetitive, tedious and error-prone tasks in the software PLA life-
cycle to ensure the consistency of software implementations with
analysis information associated with functional and QoS require-
ments captured by structural and behavioral models.

In prior work, we developed (1) a MDD toolsuite called Compo-
nent Synthesis using Model Integrated Computing (CoSMIC) [13],
which is an integrated collection of DSMLs that support the de-
velopment, deployment, configuration, and evaluation of QoS-
enabled component middleware-based DRE systems and (2) a
QoS-enabled component middleware platform called Component-
Integrated ACE ORB (CIAO) [2] that combines Lightweight
CORBA Component Model (CCM) [1] capabilities with Real-
time CORBA features [9]. To evaluate how the integration of
MDD tools and QoS-enabled component middleware helps re-
solve key challenges presented above, we recently developed a
software PLA for an inventory tracking system (ITS), which is a
representative DRE system that provides logistics support to man-
age the flow of items and assets in and across warehouses in a
distributed and timely manner. This paper presents our experience
gained and lessons learned while integrating MDD and QoS-en-
abled component middleware to address two key variability con-
cerns in designing the ITS PLA: (1) warehouse configuration and
management concern and (2) component management, assembly,
configuration, and deployment concern.

The goal of our case study was to evaluate how well these tech-
nologies could be integrated together to (1) modularize key func-
tional and QoS concerns at higher levels of abstractions than
third-generation programming languages, such as Java and C++,
(2) handle variabilities at different levels of abstractions, e.g., by
assembling a set of components to provision ITS functionality
based on particular warehouse requirements, and configuring
middleware and services via DSMLs, and (3) automate key steps
in the software lifecycle, such as automated ITS product instance
software assembly, deployment and configuration based on ware-
house-specific deployment requirements.

Paper organization. The remainder of this paper is organized as
follows: Section 2 provides an overview of the ITS case study;
Section 3 describes how we integrated and applied MDD tools
together with QoS-enabled middleware to resolve key technical
problems of our ITS case study; Section 4 evaluates our approach
and codifies our experience; Section 5 compares our work with
related efforts; and Section 6 presents concluding remarks.

2. Overview of the ITS Case Study
An inventory tracking system (ITS) provides reliable, efficient,
and convenient mechanisms that manage warehouses and the
movement of inventory items in a timely and reliable manner.
Users of an ITS include couriers (such as UPS, FedEx, and DHL),
airport baggage handling systems, and large trading and manufac-
turing companies (such as Wal-Mart and Target). An ITS should
enable human operators to configure warehouse storage organi-
zation criteria and warehouse transportation facility criteria, main-
tain the set of items known throughout a distributed environment
(which may span organizational and even international bounda-
ries), and track warehouse assets using GUI-based operator moni-
toring consoles.

Our ITS component architecture is developed in accordance with
Lightweight CCM using the Component-Integrated ACE ORB
(CIAO) [2], which is QoS-enabled component middleware built

atop The ACE ORB (TAO) [7] Real-time CORBA Object Request
Broker (ORB) that implements key patterns to meet the demand-
ing QoS requirements of DRE systems. CIAO extends TAO by
abstracting key QoS concerns (such as thread priority models,
concurrency model, thread-to-connection bindings, and timing
properties) into elements that can be configured separately from
the application business logic to make DRE system development
more flexible and productive. In addition, to automate the entire
system deployment process and bridge the gap between compo-
nent middleware with MDD tools, we developed a QoS-enabled
Deployment And Configuration Engine (DAnCE) [18] that works
in conjunction with CIAO to help developers configure and de-
ploy existing pre-built components and component assemblies and
customize them into reusable services.

This section provides an overview of the ITS case study, focusing
on its component architecture, as well as the scale and variability
of its requirements.

2.1 ITS Use Cases and Component Architecture
Figure 1 shows the primary actors and use cases in our ITS case
study, which performs the following activities:

Figure 1: Use Case Diagram for the ITS Case Study

• ITS Configurator actors use ITS capabilities to configure the
set of available facilities in certain warehouses, such as the
structure of transportation belts, routes used to deliver items,
and characteristics of storage facilities (e.g., whether hazard-
ous items are allowed to be stored, maximum allowed total
weight of stored items, etc).

• ITS Operator actors use ITS capabilities to reorganize ware-
houses to fit future changes, as well as receiving items, storing
items into the warehouse, fetching items from the warehouse
to certain locations, quering inventory, specifying delivery
time deadline, and updating operator console views.

• Operating Environment actors use ITS capabilities to tolerate
partial failures due to transportation hardware facility prob-
lems, such as broken belts. To handle such failures, the soft-
ware entities associated with hardware devices must alert the
ITS work flow manager in real-time, i.e., with low latency de-
lay, and higher processing priority. The ITS must then recalcu-
late the delivery possibilities dynamically based on available
transportation resources and delivery time requirements and
then reschedule the delivery.

Although the ITS actors and use cases described above are present
in most warehouses, they can have significant variation in cus-
tomer needs, warehouse specific requirements, and integration
with other subsystems. For example, the warehouse automation
hardware and software infrastructure is often supplied by multiple

vendors who select different hardware and software platforms and
tools. The resulting heterogeneity yields integration and deploy-
ment challenges over an ITS lifetime since various components -
may be removed or replaced by components from other vendors.
Software PLAs are a promising technology for addressing this
variability and heterogeneity [20].

Figure 2: ITS Subsystems and Key Components

Figure 2 illustrates the components that form the core implemen-
tation and integration units of our ITS case study. Some ITS com-
ponents (such as the OperatorConsole) expose interfaces to end
users, i.e., ITS operators. Other components represent hardware
entities, such as cranes, forklifts, and shelves. Yet other database
management components (such as ItemRepository and Storage-
Facility) expose interfaces to manage external backend databases
(such as those tracking items inventory and storage facilities).
Finally, the sequences of events within the ITS is coordinated by
control flow components (such as the WorkflowManager and
StorageManager). These capabilities are used in the context of
their associated ITS subsystems as follows:

• The Warehouse Management subsystem consists of a set of
high-level functionality and decision making components. This
subsystem calculates the destination location and delegates
other details to the Material Flow Control subsystem described
below.

• The Material Flow Control subsystem executes high-level
decisions calculated by the Warehouse Management subsystem
to deliver items to the destination location. This subsystem
handles all item delivery details, such as route (re)calculation
and reservation of transportation and storage facilities.

• The Warehouse Hardware subsystem handles physical de-
vices, such as sensors and transportation units (e.g., belts, fork-
lifts, cranes, and pallet jacks). Each sensor device and trans-
portation unit corresponds to a component type, such as Item-
LocationSensor and TransportUnit.

The functionality of the ITS subsystems shown in Figure 3 can be
monitored and controlled by one or more OperatorConsole com-
ponents, and all persistence concerns are handled via databases.

2.2 Scale and Variability in the ITS Case Study
Implementing a PLA for an ITS requires commonality and vari-
ability analysis. For example, all transportation facilities could be
represented with the same component interface, i.e., TransportU-

nit, while their implementations can vary, however, in response to
differences in hardware facilities for transporting certain types of
items, as well as different positioning precision and transportation
speeds. In general, variabilities resulting from different warehouse
configurations, hardware/software platforms, and QoS require-
ments yield much diversity in ITS implementations, particularly
for large-scale warehouses that consists of 1,000’s of soft-
ware/hardware components.

Table 1: Characteristics of an Example ITS Product Instance

Table 1 shows the ITS product instance we developed for this
case study. Based on requirements mined from Siemens ware-
house management business units our case study consists of
~120,000 lines of C++ source code. It contains 8 component
types and 193 component instances deployed into a warehouse,
including 2 OperatorConsoles, 1 TransportationFacility, 1 Item-
Repository, 1 StorageManager, 1 WorkflowManager, 1 Storage-
Facility, 18 ItemLocationSensors and 168 TransportUnits. These
193 components are deployed into 191 processes, which in turn
are hosted in 26 physical nodes. All components run in separate
processes except in two collocated cases: ItemReposi-
tory/StorageManager and TransportationFacility/StorageFacility.
Even for the same set of components, however, the composition
and configuration of an ITS deployment may vary significantly
across different warehouses, depending on the availability of ac-
tual transportation facilities, computing hardware and software
resources.

3. Developing ITS via an Integrated MDD
Tool and Component Middleware Solution
This section describes how we applied MDD tools and QoS-en-
abled component middleware to address scalability and variability
issues in our ITS case study by enabling them to work at higher
levels of abstraction than components and classes written in third-
generation languages and traditional object-oriented middleware
platforms, such as Real-time CORBA or Real-time Java. We
applied these tools and middleware to help simplify and automate
the following two concerns:

• Modeling and synthesizing warehouse configurations,
which involves simplifying and automating (1) physical layout
configuration, and (2) transportation facility network design of
warehouses, and automatically populating databases to capture
all the above information. Section 3.1 describes the Warehouse

Modeling and Generation Language (WMGL) MDD tool we
developed which raises the abstraction layer of warehouse
structures and behaviors to higher-level models.

• Modeling and synthesizing component software deployment
and configuration concerns, which involves simplifying and
automating the configuration of middleware and applications
that implement ITS functionality. Section 3.2 describes how
the CoSMIC MDD tools and DAnCE were integrated together
to help develop, assemble, configure, and deploy ITS software
components.

The remainder of this section describes key problems we faced
when addressing these concerns, presents our solutions, and
evaluates these solutions qualitatively and/or quantitatively in the
context of the ITS case study.

3.1 Addressing ITS Warehouse Configuration
Concerns
A key challenge in designing an ITS is to provide a generic, re-
configurable architecture that can be deployed rapidly in different
warehouse configurations or redeployed to adapt to reconfigura-
tions of an existing warehouse. The proper configuration of an
ITS heavily depends on the physical layout and transportation
facilities of a warehouse, which may vary in different circum-
stances.

The layout information that is specified during the warehouse
design phase should therefore be amendable to changes after the
warehouse is deployed. For example, when deploying an ITS in a
specific warehouse, all transportation facility units should be
mapped to their corresponding software entities, i.e., Transporta-
tionUnit components, as described in section 2.2. Likewise,
backend databases should capture and store warehouse physical
layout information (e.g., represented by the physical locations of
transportation and storage facilities), as well as the reachable
range of each transportation facility (i.e., the range within which a
transportation unit can pickup and transport items).

Problem →→→→ Ad hoc, tightly coupled warehouse design. ITS
developers have historically relied on ad hoc approaches (i.e.,
manually writing programs from scratch) to (1) create software
components that correspond to transportation facility units and (2)
populate physical warehouse layout configurations into databases.
Moreover, they often hard code such information using third-
generation programming languages, which overly couples their
solutions to particular warehouse configurations and technologies.
Such tight couplings make an ITS product instance hard to evolve
after the initial deployment since changes in the warehouse con-
figuration require modification, reverification, recompilation, and
redeployment throughout the code.

Solution →→→→ A DSML for warehouse configuration. To address
the problems described above, we have developed the Warehouse
Modeling and Generation Language (WMGL), which is a DSML
in the CoSMIC MDD toolsuite that represents warehouse struc-
tures and behaviors as higher-level models. WMGL allows devel-
opers to visually depict and manipulate the transportation facility
network, which includes position information (e.g., the physical
location and reachable areas) and properties (e.g., the type, capac-
ity and toxicity of items each transportation unit could transport in
the network). It can also be used to visually depict and manipulate
the available storage facilities, which include their physical posi-
tion information and properties (e.g., storage capacity and type of
items they can store).

By capturing the physical position information of the transporta-
tion facilities and storage facilities in models, WMGL can auto-
matically deduce the topology of the warehouse and generate a
warehouse connectivity graph, which is a directed weighted graph
that represents the connectivity among transportation facilities and
storage facilities. The WorkflowManager component can then
apply any pluggable customized path finding algorithm on this
graph to determine the optimal transportation path to transfer a
particular item from a source (e.g., loading dock or gate) to its
destination (e.g., a storage unit). The merits of this approach are
that whenever the warehouse is reorganized or a new transporta-
tion facility or storage facility is added, the graph can be
(re)generated automatically from the model, and all other informa-
tion associated with such change would also be updated automati-
cally.

We selected Microsoft Visio to build WMGL since it supports a
wide range of sophisticated graphics capabilities and provides
many pre-developed drawing types, such as graphics elements
required to model warehouse transportation units (e.g., forklifts,
cranes, and belts). Visio also provides an embeddable program-
ming environment that enables developers to build custom tools,
such as writing extensible model interpreters to describe the dy-
namic behaviors by extending the static Visio model. In addition,
Visio supports integration with popular database management
systems, such as Oracle and MySQL.

Figure 3. A Warehouse Configuration in WMGL

Figure 3 illustrates a Visio screenshot of an ITS WMGL model,
where warehouse model elements are available from the left-side
master panel and the right-side panel contains a drawing that
represents a warehouse configuration consisting of two moving
angle belts, three cranes, four storage racks, two folk lifts and two
gates. Modeling a warehouse in WMGL involves drawing the
concrete warehouse physical structure and then adding custom-
ized properties (such as capacity, size, etc) to transportation and
storage facilities model elements. Warehouse modelers can also
specify the reachable range of particular transportation units (e.g.,
forklifts and cranes) visually and define various properties (e.g.,
capacity, heating or cooling) of storage locations. To simplify the
use of WMGL during the modeling process, whenever a ware-
house artifact (such as a transportation unit or storage facility) is
positioned in the warehouse model, WMGL conveys to modelers
what other warehouse artifacts are interconnected with it interac-
tively.

A key benefit of WMGL is its ability to automate the correct-by-
construction transition from WMGL models to executable ware-
house configurations. After creating a WMGL model, the corre-
sponding configuration artifacts (such as lookup tables for trans-
portation route calculation, lookup data for storage facility utiliza-
tion planning, and schedules for warehouse maintenance) are
generated automatically via the WMGL model interpreter.

To validate the correctness of a data model, the WMGL model
checker applies analysis techniques to the warehouse model. Cer-
tain location-related constraints can be checked automatically to
ensure that the physical layout and configuration of the warehouse
is valid and meaningful. For example, when a crane is positioned
over a storage location, the WMGL model interpreter can ensure
that the crane is capable of reaching all the storage cells of the
location. When WMGL discovers potential conflicts, it issues
diagnostic messages to users. Likewise, when warehouse modelers
mistakenly model a transportation facility or a storage facility that
is isolated from the rest of the warehouse transportation facility
network, the WMGL model interpreter will warn the modelers
before generating code.

After WMGL has validated a model, it can generate C++ or Java
code to bootstrap ITS components at runtime. For example, differ-
ent domain-specific concerns captured by WMGL can be ex-
tracted from the model and used to generate code artifacts that
ITS components based on CIAO middleware can subsequently
use to populate the databases, construct the warehouse connec-
tivity graph, and initialize the backend databases by using generic
database access libraries, such as the Open Database Connectivity
(ODBC) Template Library (OTL). After running the WMGL
model interpreter, the ITS can proceed with component deploy-
ment and configuration process described in Section 3.2.

Evaluating WMGL for ITS. WMGL provides several benefits
for bridging the gap between software vendors and customers.
For example, it visually captures warehouse information (such as
positions, sizes, and reachable areas), which helps reduce com-
munication barrier. Moreover, the model analysis in the WMGL
interpreter detects warehouse design faults (such as isolated stor-
age facilities) during design rather than runtime.

WMGL significantly increased the productivity of application
developers. For example, in our ITS product instance scenario
shown in Table 1, the WMGL model interpreter automatically
synthesizes ~6,300 lines of C++ code (which is over 90% of the
total code) to describe the warehouse layout and artifact property
information. This generated code is then used by CIAO compo-
nents to populate ITS databases before the ITS system actually
runs...

In addition to the warehouse configuration aspects, WMGL em-
bodies certain assumption and rules about the mapping (usage
patterns) from problem domain of warehouse management to the
solution domain of component middleware. The mapping rules
understood by WMGL are defined by experienced software archi-
tects and then enforced by the WMGL modeling and code genera-
tion environment. These enforcement mechanisms reduce the
probability of architectural rules violation discussed in Section 2
and ensure the proper usage of component middleware.

3.2 Addressing ITS Component Deployment and
Configuration Concerns
As discussed in Section 2, our ITS case study is based on a PLA
for DRE systems created using CCM components developed to

run on the CIAO Lightweight CCM middlewar platform. We re-
cently enhanced CIAO with the Deployment And Configuration
Engine (DAnCE) [18], which supports the OMG Deployment and
Configuration (D&C) specification [4]. In this specification, de-
ployment is the sequence of activities that occurs between (1) the
acquisition of software and its associated metadata and (2) the
actual execution of software in a target environment based on the
acquired software and associated metadata. Likewise, configura-
tion is the process of mapping known variations in the application
requirements space to known variations in the software (and par-
ticularly the middleware) solution space [11]. Below, we discuss
how we applied MDD tools to resolve key deployment and con-
figuration challenges that arose when developing our ITS case
study using QoS-enabled component middleware.

3.2.1 Automating ITS Deployment and Configuration
Profile Generation

Deploying an ITS product instance into a warehouse involves
configuring the functional and non-functional behavior of its soft-
ware components and deploying them throughout the underlying
hardware and software infrastructure. Like other DRE systems,
an ITS is assembled from many independently developed reusable
components, as described in Section 2.2. These components must
be deployed and configured so that (1) assemblies meet ITS op-
erational requirements and (2) interactions between the compo-
nents meet ITS QoS requirements. Developers must address a
number of crosscutting concerns when deploying and configuring
component-based ITS applications, including (1) identifying de-
pendencies between ITS component implementation artifacts,
such as the OperatorConsole component having dependencies on
other ITS components (e.g., the WorkflowManager component)
and other third-party libraries (e.g., the QT library, which is a
cross-platform C++ GUI library compatible with the Embedded
Linux OS), (2) specifying the interaction behavior among ITS
components, and (3) mapping ITS components and connections to
the appropriate nodes and networks in the target environment
where the ITS will be deployed.

Problem →→→→ Ad hoc deployment and configuration profile crea-
tion for diverse system requirements. Large-scale DRE systems,
such an ITS, often require the creation of assemblies containing
thousands of components [3, 20]. Conventional techniques for
deploying and configuring such component-based systems can
incur both inherent and accidental complexities. Common inher-
ent complexities involve ensuring syntactic and semantic com-
patibility, e.g., only connecting ports of components in an ITS
assembly with matching types. Common accidental complexities
stem from using ad hoc techniques for writing and modifying
middleware and application configuration files, such as handcraft-
ing XML files describing component metadata (e.g., the dozens of
connections between components in ITS assemblies), which are
very large, even for relatively simple groups of connected compo-
nents. Such ad hoc techniques are tedious and error-prone, mak-
ing it hard to adapt the ITS to new deployment and configuration
requirements, such as another warehouse that may have different
types of transportation units or ITS operator console GUI termi-
nals.

Solution →→→→ Model-driven deployment and configuration of
ITS components. In our ITS project, system deployment and
configuration is performed via the Platform-Independent Compo-
nent Modeling Language (PICML) [13], which is a DSML in the
CoSMIC toolsuite that works together with the DAnCE middle-
ware to implement the OMG D&C specification. For example,

PICML provides capabilities to handle complex component engi-
neering tasks, such as multi-aspect visualization and manipulation
of components and the interactions of their subsystems, compo-
nent deployment planning, and hierarchical modeling and gen-
eration of component assemblies. We developed PICML using the
Generic Modeling Environment (GME) [5], which is a metapro-
grammable development environment for building and processing
DSMLs.

PICML allows modelers to define component interfaces and com-
ponent compositions, and establish connections among compo-
nents visually. In our ITS, for example, PICML is used to model
the interaction behavior among the ITS components, such as the
facet/receptacle interface port connection between WorkflowMan-
ager component and the StorageFacility component, and the
event source/sink connections between the WorkflowManager
component and OperatorConsole component. These interacting
components are connected together to form a valid component
assembly. The semantic rules associated with component assem-
blies are enforced by constraints defined in PICML’s metamodel
and model interpreter. Its metamodel defines static semantic rules
that determine valid connections between components. PICML’s
model interpreters ensure the dynamic semantics of models speci-
fied by users, e.g., they can analyze models for various well-
formedness properties and synthesize code for components and
their metadata.

PICML contains multiple model interpreters, each performing a
particular function. The most commonly used interpreter for our
ITS case study is the packaging interpreter, which generates
XML descriptors to address various concerns in the CCM D&C
specification. These XML descriptors include (1) component
interface descriptors, which capture information about component
interfaces including component ports, (2) component implementa-
tion descriptors, which capture information about component
implementations, such as the dependencies and the connections
among components, (3) implementation artifact descriptors,
which capture information about implementation artifacts includ-
ing dependencies between such artifacts, (4) component package
descriptors, which capture information about grouping of multiple
implementations of the same component interface into component
packages, (5) package configuration descriptors, which capture
information about specific configurations of such component
packages, and (6) component domain descriptors, which capture
information about the target environment in which the compo-
nent-based application will be deployed.

Figure 4. Partial PICML Assembly Model for ITS

In the context of ITS, a major cause of missed deadlines is priority
inversions, where lower priority requests access a resource at the
expense of higher priority requests. Priority inversions must be

prevented or bounded since they can cause some critical paths in
the ITS system to miss their deadlines. To reduce priority inver-
sions, PICML could be used to configure real-time policies of the
ITS component instances, such as those defined in Real-time
CORBA.

After using PICML to create component assemblies for our ITS
based on warehouse-specific deployment and configuration re-
quirements, we used its packaging interpreter to generate the
metadata needed to deploy the ITS assemblies. As shown in Fig-
ure 4, this metadata includes the list of implementation artifacts
associated with each component instance, the list of connections
between the different component instances, the organization of the
application into different levels of hierarchy, and the default prop-
erties with which each component instance is initialized.
PICML’s packaging interpreter generates the different types of
metadata in the form of XML descriptors that are tedious and
error-prone to write manually. This metadata is used by DAnCE
to drive the deployment of the complete ITS applications, which
is explained in the subsection 3.2.2 of the paper.

Evaluating PICML for ITS. In our ITS case study, we applied
PICML to a warehouse scenario where 193 ITS components are
deployed across 26 physical nodes, as described in Table 1. Based
on the deployment decisions discussed earlier, ~400 connections
must be established among these component ports. All these con-
nections are specified by using two types of XML descriptor files:
component interface descriptors and component implementation
descriptors. To create a deployment profile for this scenario is
prohibitively tedious and error-prone without tool support, i.e.,
the XML files are hard to write manually since cross-referenced
identifiers specify the component connections in accordance with
the OMG’s D&C standard.

In contrast, it was much easier to create a PICML model for these
ITS connections visually, rather than writing XML files manually.
The PICML packaging interpreter generates all six types of de-
scriptor files described above, with a total number of 582 XML
files averaging ~25 lines per file. Generating the deployment auto-
matically via PICML’s model interpreter enforces the correct-by-
construction paradigm in component-based application develop-
ment, which eliminates a common source of errors [13]. The ef-
fort we saved in applying PICML to a warehouse deployment
scenario shown in Table 1 was more than 300 developer hours,
which freed us to focus on more strategic aspects of our ITS case
study.

More generally, our experience applying PICML to model the ITS
deployment structure indicated that it raised the level of abstrac-
tion at which developers work, enabling them to concentrate on
certain aspects (e.g., deployment structure) in the multidimen-
sional problem space associated with applying component middle-
ware for DRE systems. This separation of concerns in turn elimi-
nated many sources of accidental complexities and improved
overall system quality.

3.2.2 Automate ITS Component Deployment to Target
Warehouse Environment

To complete the deployment of an ITS application, it is necessary
to take the metadata describing the concerns from multiple actors
and bring them together in the target environment. Section 3.2.1
explained how the PICML MDD tool addressed key concerns in
the ITS component configuration and assembly phase by auto-
matically and correctly synthesizing various types of XML de-

scriptors. These XML descriptors then form a profile that speci-
fies system deployment requirements.

To deploy an ITS assembly, deployers must perform four tasks
based on the deployment profile, including (1) preparation, which
takes the pre-built ITS software package and brings it into a com-
ponent software repository under the deployer’s control, (2) in-
stallation, which downloads the ITS components to component
server processes that run in each node in the target environment,
including embedded system nodes used to host TransportUnit
components and PC nodes that host other types of ITS compo-
nents, such as WorkflowManager and OperatorConsole, (3) con-
figuration, which customizes properties of components on each
node based on metadata in the deployment profile, and (4)
launching, which connects the ports of ITS components that are
distributed throughout the target environment based on metadata
in the deployment profile and executes the component assembly.

Problem →→→→ Ad hoc deployment mechanisms for variable ITS
deployment requirements. In an ITS environment, each of the
four deployment tasks described above can have variations due to
differences in the given deployment profiles. For example, de-
pending on the scale and amount of warehouse facilities, different
ITS systems can have a wide range of nodes. Moreover, different
types of nodes usually have different resources available, such as
OS, network interfaces, CPU and memory. Large-scale ware-
houses usually have hundreds of such nodes that form a hetero-
geneous distributed environment. Conventional techniques for
deploying large-scale component-based DRE systems can incur
both inherent and accidental complexities. Common inherent
complexities involve (1) ensuring component runtime libraries are
compatible with the hosting nodes (e.g., OS compatibility) and (2)
creating the correct number of processes to host components
based on the specified deployment profile (e.g., some ITS compo-
nents might be hosted in the same process to improve perform-
ance, whereas other ITS components might be hosted in different
processes to improve system fault tolerance and reliability). Com-
mon accidental complexities stem from using ad hoc techniques
for moving component runtime binaries and other dependent run-
time libraries to the corresponding nodes for deployment. To per-
form these changes manually is not only tedious and error-prone,
but also makes the deployment effort hard to reuse, e.g., there is
no easy way to migrate one component running from one
node/process to another when a deployment profile changes.

Solution →→→→ Standards-based deployment and configuration
framework. To automate ITS component deployment and con-
figuration, we developed a run-time framework called DAnCE
[18], which is shown in the right side of Figure 5. This figure also
shows how ITS developers can model various warehouse D&C
concerns via PICML, which then automatically generates the
corresponding D&C profile for the designated system. DAnCE
then takes the generated profile and automatically deploys the
system into CIAO, thereby bridging the gap between higher-level
MDD tools and lower-level middleware runtime platforms.

As shown in Figure 5, DAnCE consists of implementations of a
set of standards-based runtime interfaces that deal with the instan-
tiation, installation, setting up connections, monitoring, and ter-
mination of components on the nodes of the target environment.
Some interfaces (such as ExecutionManager and DomainAppli-
cationManager) run at the global domain level, whereas others
(such as NodeManager and NodeApplicationManager) run on
each node. These interfaces together manage the lifecycle of the
ITS deployment process to help configure component servers on

the individual nodes, install components into containers, and set
up connections among components that may be distributed across
multiple nodes.

When ITS deployers instruct a global interface to deploy an ITS
assembly, they must give the XML-based deployment profile
generated by the PICML MDD tool. The global interface then
uses this profile as input to populate a global deployment plan that
describes a mapping of a configured ITS assembly into a target
domain. This plan includes information about nodes where com-
ponents will be deployed, the mapping of component to nodes,
information about connections among component instances, and
information about process collocation strategies and attribute
configurations of components. Depending on the total number of
nodes needed for a particular deployment, global deployment
interfaces then split the global plan into multiple local (node-level)
deployment plans and passes them to each node-level interface
(service), based on the specification in the PICML model of the
ITS.

���������������������	
���
��
����

���������	�

����

���
�������

����	�

��������������	�

�������
���

���
������

������
�

����

���
�������

�
����

��������

�

�
�
��

�
����

��������
�

�����

������

������

���
�������

����	�

�����

�����������

���
��

����������

�������

�������

� 	
 ��
�

�������

� 	
 ��
�

����
����

���

�����
��

�
��������

�
� �
�

���������� �����	��
 �������

� 	
 ��
�

�������

� 	
 ��
�

����
�!���

����"
���
���������� �	�
��!���

�����

Figure 5. DAnCE Architecture and PICML Relationship

After each node-level deployment plan is dispatched, the node
level interfaces will then parse the node-level deployment plan to
prepare the components that will be deployed on the node that it
manages, and fetch the runtime libraries from a centralized com-
ponent repository if these libraries are not in the local file system.
This deployment process will in turn spawn of one or more node
application component servers, depending on the configuration
strategies specified in the ITS PICML model. After these node
applications are spawned, the specified components will then be
installed into the containers and attributes configured in the
PICML model will be honored by the container. After compo-
nents are installed in each individual node, DAnCE creates con-
nections among components, some of which may reside in hun-
dreds of nodes in the warehouse. After the component deploy-
ment and application launch is complete, DAnCE also assists in
monitoring component assemblies while they are executing and
tearing down the application after it finishes executing.

Evaluating DAnCE for ITS. Based on the information captured
by PICML, DAnCE maps ITS component software packages onto
a running DRE system based on particular deployment profile. In
our ITS case study shown in Table 1, without DAnCE tool sup-
port it would be prohibitively hard to (re)install all 193 compo-

nents on 26 nodes in our ITS case study manually, while taking
into consideration the heterogeneous software/hardware platforms,
and variable component configuration, and process collocation
strategies. In contrast, by using DAnCE in conjunction with
PICML, the whole ITS component deployment process is auto-
mated and simplified for deployers. Moreover, when the ware-
house is reconfigured, deployers need only extend the existing
ITS WMGL and PICML models. The new ITS can then be rede-
ployed and configured correctly via an OperatorConsole terminal
by DAnCE’s ExecutionManager without manual intervention.

4. Evaluation
The goals of integrating MDD tools with QoS-enabled component
middleware to develop a PLA for our ITS case study were to (1)
construct software systems from higher-level visual models that
facilitated more effective analysis, verification, and better produc-
tivity than handcrafting software using third generation languages
and (2) provide more reusable and composable abstractions than
using conventional object-oriented middleware platforms for
PLAs. This section evaluates how well we achieved these goals.

4.1 Verifiability
When developing software products using PLAs, it is essential
that product instances be verified and validated against certain
domain rules pre-defined for the PLA before the product instance
is released to customers or deployed onsite. As described in Sec-
tion 3.1, the WMGL DSML generated and ensured the syntactic
correctness of warehouse initialization code that precisely define
the physical layout of the warehouse, characteristics of warehouse
storages and facilities. Moreover, the embedded model checkers
of WMGL performed semantic analysis, such as reachability
analysis, of the warehouse configuration to ensure that each ware-
house storage cell could be reached by least one transportation
unit. In addition, WMGL encapsulated domain knowledge from
warehouse domain experts in the form of additional advanced
warehouse model checkers. Prior to this MDD tool support, ware-
house initialization and configuration scripts were handcrafted
manually, which was tedious and error-prone.

Prior work [20, 3, 13] has shown that it is hard for DRE develop-
ers to keep track of many complex dependencies when configur-
ing and deploying large-scale systems, even when using compo-
nent middleware. Without MDD tool support, therefore, the effort
required to deploy large-scale DRE product instances like ITS
involves hand-crafting deployment descriptor metadata in an ad
hoc manner. Addressing this challenge effectively requires tech-
niques that can analyze, validate, and verify functional and non-
functional system properties.

In our ITS case study, simple CORBA objects and more sophisti-
cated CCM components must coexist, which introduces even
more complexities in interface definition of components and in-
teraction definitions between components. For example, while
CORBA object interfaces can support multiple inheritance, CCM
components can only have only a single component parent, so
equivalent units of composition (i.e., interfaces in CORBA objects
and components in CCM) can have subtle semantic differences.
Without automated support from MDD tools like PICML, devel-
opers would have no systematic way to specify interconnections
and configurations. Manually configuring the systems via ad hoc
techniques can overwhelm developers since many configuration
aspects are tangled with each other which spread throughout dif-
ferent subsystems and layers of the ITS and component middle-
ware itself. When using PICML, however, the problems as-

sociated with multiple inheritance and semantics of tangled con-
figuration can be detected and resolved at design time.

4.2 Reusability and Composability
Reusability and composability are important requirements for
PLAs like ITS. Diversified operating policies (such as threading
and buffering strategies) of ITS components can be customized
based on a particular warehouse deployment scenario. Object-
oriented middleware, such as CORBA and Java RMI, allows these
configurations to be made imperatively via invocations on pro-
grammatic configuration interfaces. The drawbacks with object-
oriented approaches to reusability, however, are (1) impeded re-
usability due to tight coupling of application logic with specific
QoS properties, such as event latency thresholds and priorities,
[10] and (2) reduced composability due to hard coded application
interfaces, such as those integrated with particular types of mid-
dleware services [19].

In contrast, component middleware enhance reusability and com-
posability by using metaprogramming techniques (such as XML
descriptor files) to specify component configuration and de-
ployment concerns declaratively. This approach enables QoS
requirements to be specified later (i.e., just before run-time de-
ployment) in a system’s lifecycle, rather than earlier (i.e., during
component development). When deploying an ITS product in-
stance, DAnCE parses the given XML configuration files and
make appropriate invocations on the corresponding service con-
figuration interfaces. This approach is particularly useful for DRE
systems like ITS, which require customized QoS configurations
for variable target OS, network, and hardware platforms that have
different capabilities and properties.

Figure 6. Weight of WorkflowManager Component in ITS

Figure 6 shows the weight distribution of a typical ITS component
WorkflowManager based on its functionality and measured
through lines of code (LOC) and the percentage of code relative
to the entire component lifecycle. All other types of ITS compo-
nents have similar weight distributions. As illustrated in Figure 6,
the amount of code related to the WorkflowManager component
can be classified into five categories: “Component Business
Logic”, “Component Configuration”, “Component Deployment”,
“Object Stub & Skeleton Glue code”, and “XML descriptors.”
Each category implements different aspect of components during
their lifecycles.

When using object-oriented middleware, the “Object Stub and
Skeleton Code” is generated by the IDL compiler that shields
application developers from low-level network programming de-
tails. This code accounts for 58.9% of the entire implementation.
The rest of the code (more than 40% of the implementation) must
be hand written by the application developers. With the compo-

nent-based approach, conversely, most the code in the “Compo-
nent Configuration” and “Component Deployment” categories can
be factored into reusable CIAO component middleware infrastruc-
ture and then configured by MDD tools like PICML and D&C
frameworks like DAnCE. For our ITS product instance shown in
Table 1, where there are 8 components types and 193 component
instances, more than ~13,500 lines of code that were previously
handcrafted are now refactored into reusable component frame-
works and configured and deployed using PICML and DAnCE.

4.3 Open Issues
Our experiments with different ITS component deployment sce-
narios show the complementary relationships between CoSMIC
MDD tools (i.e., WMGL/PICML) and underlying component
middleware and D&C frameworks (i.e., CIAO/DAnCE). While
we were generally successful in integrating and applying MDD
and component middleware into our ITS case study, the following
were open issues we felt warranted addition R&D to enable
broader adoption of these integrated technologies:

1. How to optimally and effectively configure and deploy each
product instances. Despite the fact that PICML facilitates the
configuration of enterprise DRE systems based on Real-time
CORBA and Lightweight CCM, developers are still faced with
the question of what constitutes a “good” configuration and they
are still ultimately responsible for determining the appropriate
configurations. We observed that certain advanced scheduling
analysis and verification tools are required to perform these capa-
bilities and should be integrated into CoSMIC’s MDD toolsuite to
help system designers address such challenges. In addition, de-
spite the benefits of using visual MDD tools to describe different
aspects of the large scale DRE systems, it is still labor intensive
and error-prone to manually show all ~400 connections for the
number of components in our ITS case study. This observation
motivates the need for further research in automating the synthesis
of large-scale DRE systems based on the different types of meta-
information about assembly units, such as components or services.

2. How to reuse legacy code when transitioning from object-
oriented to component-based architectures. Port existing ob-
ject-oriented DRE systems to component-based systems is an
important concern for production systems that achieve reuse in an
ad hoc manner at the source code level. We observed that such
reuse is ineffective without advanced MDD tools to support this
transition effort. Our experience with the ITS case study indicated
that these tools should enable application developers to identify (1)
which part of the legacy code originally compliant to traditional
object-oriented middleware is still compliant to the new compo-
nent-based middleware, (2) which part of the legacy code is no
longer needed since it has been factored into reusable component
middleware frameworks, and (3) which part of the legacy code
should be refactored and configured through other tools and
frameworks, such as PIMCL and DAnCE. Developing these tools
requires analysis capability for both the object-oriented and com-
ponent-based programming models at the source code level.

3. How to handle challenges associated with domain evolution.
To effectively use MDD-based PLA technologies requires practi-
cal and scalable solutions to the domain evolution problem [21],
which arises when existing PLAs are extended and/or refactored
to handle unanticipated requirements or better satisfy existing
requirements. For example, changing metamodels in a PLA can
invalidate models based on previous versions of the metamodels.
While software developers can manually update their models

and/or components developed with a previous metamodel to work
with the new metamodel, this approach is clearly tedious, error-
prone, and non-scalable. Although MDD tools remove many com-
plexities associated with handcrafted solutions, developers are
still faced with the challenge of evolving existing models when
the respective domain evolves. Although model evolution tools,
such as GREAT [16], exist they are hard to use and only provide
partially automated solutions. Since these modifications signifi-
cantly complicate PLA evolution efforts, they can outweigh the
advantages of PLA development compared to traditional develop-
ment methods based on handcrafting solutions using third genera-
tion languages. To rectify these problems, compositional architec-
ture patterns are desired to guide the design of MDD tools compo-
nent middleware, so they can modularize system concerns and
reduce the effort associated with domain evolution.

These experiences motivate the need for further research on auto-
mated techniques to uncover effective heuristics to guide the
complicated process of developing and evaluating DRE systems,
reusing legacy code, and migrating models and metamodels as
knowledge of a domain expands. We are exploring all of these
open R&D issues in the context of our ITS case study.

5. Related Work
Our work on MDD extends earlier work on Model-Integrated
Computing (MIC). Examples of MIC technology used today
include GME [5] and Ptolemy [15] (used primarily in real-time
and embedded domains) and Model Driven Architecture (MDA)
based on UML and XML (used primarily in the enterprise busi-
ness domains). Kennedy Carter's iUML Product Suite
(www.kc.com) supports the Executable UML process from textual
requirements management through modeling to complete target
code generation. The Rhapsody System Designer tool by I-Logix
(www.ilogix.com) is based on UML 2.0 and provides complete
application generation from UML models, and the generated ap-
plication could be in multiple programming languages including
C/C++, Java or Ada, and multiple middleware platforms including
CORBA and COM. Both tools have proved many successes in
developing DRE systems. Unlike our approach, however, these
MDD tools are based on OMG’s UML specification, whereas our
tools are based on DSMLs that unify the problem space and solu-
tion space, which is particularly useful when developing software
PLAs. In contrast, Our work combines GME metamodeling
mechanisms and UML to model and synthesize component mid-
dleware for configuring and deploying DRE systems.

Cadena [17] is an MDD tool for building component-based DRE
systems, with the goal of applying static analysis, model-checking,
and lightweight formal methods to enhance these systems. Unlike
our work on CoSMIC, however, Cadena does not support activi-
ties such as component packaging, generating deployment plan
descriptors, and hierarchical modeling of component assembly,
thus it introduces additional burden to DRE application develop-
ers to accomplish such tasks. In our work, these aspects could be
captured through PICML MDD tool and then all the deployment
and configuration work can be automated using DAnCE. We are
collaborating with the Cadena researchers to create an integrated
suite of MDD tools [22].

6. Concluding Remarks
This paper focuses on our experience gained when integrating
MDD tools and QoS-enabled component middleware technolo-
gies and applying them to a PLA case study in the warehouse
management domain. The benefits observed thus far include:

• The component middleware paradigm and implementations
such as CIAO, elevates the abstraction level of middleware to
enhance software developer quality and productivity. It also
introduces extra complexities, however, that are hard to handle
in an ad hoc manner for large-scale DRE applications. For ex-
ample, the OMG Lightweight CCM and Deployment and Con-
figuration (D&C) specifications require a lot of configuration
effort due to their large number of configuration points, hence
we require advanced tools to help with this.

• The MDD paradigm expedites application development with
the proper integration of the modeling tool and underlying
technical infrastructure, such as the DAnCE D&C framework.
In our ITS case study, if the warehouse model is the primary
changing concern in the system (which is typical for end users),
little new application code must be written, yet the complexity
of the generation tool remains manageable due to the limited
number of well-defined configuration “hot spots” exposed by
the underlying infrastructure. Likewise, when component de-
ployment plans are incomplete or must change, the effort re-
quired is significantly less than using the raw component mid-
dleware without MDD tool support since applications can
evolve from the existing set of PICML and WMGL models.

• Domain-specific modeling techniques can help reduce the
learning curve for end users. For example, warehouse model-
ers in our ITS project needed little or no knowledge of how to
write component software since they used higher-level models
that correspond to the language understood by domain engi-
neers and visual modeling environments, such as WMGL.

Although our integrated approach addresses many hard problems,
there is still much room for improvement and future work, as dis-
cussed in Section 4.3. CoSMIC, CIAO, and DAnCE are available
in open-source format at www.dre.vanderbilt.edu.

References
[1] Object Management Group: “Lightweight CORBA Compo-

nent Model Revised Submission”, Object Management
Group, Inc. May 2003, realtime/03-05-05

[2] N. Wang, D. Schmidt, A. Gokhale, C. Gill, C. Rodrigues, B.
Natarajan, J. Loyall, and R. Schantz, “QoS-enabled Middle-
ware,” Middleware for Communications, Wiley and Sons,
New York.

[3] D. Sharp and W. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System”, Proceedings of the
Workshop on Model-Driven Embedded Systems in RTAS,
Washington DC, May 2003.

[4] Object Management Group: “Deployment and Configuration
for Component-based Distributed Applications,” www.omg.
org/docs/ptc/03-07-02.pdf, June 2003.

[5] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
Integrated Development of Embedded Software,” Proceed-
ings of the IEEE, January 2003.

[6], T. Ritter, M. Born, T. Untersch, T. Weis, “A QoS Metamodel
and its Realization in a CORBA Component Infrastructure,”
Proceedings of the 36 Hawaii International Conference on
System Sciences, Honolulu, HW, Jan. 2003.

[7] D. Schmidt, D. Levine, and S. Mungee, “The Design and Per-
formance of Real-Time Object Request Brokers,” Computer
Communications, vol. 21, no. 4, Apr. 1998.

[8] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Har-
din, and M. Turnbull, The Real-Time Specification for Java,
Addison-Wesley, 2000.

[9] Object Management Group: “Real-time CORBA”, Adopted
Specification of the Object Management Group, Inc. August
2002 Adopted Specification formal/02-08-02.

[10] G. Edwards, G. Deng, D. Schmidt, A. Gokhale, and B. Nata-
rajan, “Model-driven Configuration and Deployment of
Component Middleware Publisher/Subscriber Services”, Pro-
ceedings of the 3rd ACM International Conference on Gen-
erative Programming and Component Engineering, Vancou-
ver, CA, October 2004.

[11] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Fac-
tories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, Wiley and Sons, 2004.

[12] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and
Variability in Software Engineering,” IEEE Software, No-
vember/December, 1998.

[13] A. Gokhale, K. Balasubramanian., J. Balasubramanian, A.
Krishna, G. Edwards, G. Deng, E. Turkay, J. Parsons, and D.
Schmidt, “Model Driven Middleware: A New Paradigm for
Deploying and Provisioning Distributed Real-time and Em-
bedded Applications,” The Journal of Science of Computer
Programming: Special Issue on Model Driven Architecture,
2005 [in press].

[14] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns, Addison-Wesley, 2002.

[15] J. T. Buck and S. Ha and E. A. Lee and D. G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping Het-
erogeneous Systems”, International Journal of Computer
Simulation, Special Issue on Simulation Software Develop-
ment Component Development Strategies, Vol.4, April 1994.

[16] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle, “On the Use
of Graph Transformations in the Formal Specification of
Computer-Based Systems,” Proceedings of IEEE TC-ECBS
and IFIP10.1 Joint Workshop on Formal Specifications of
Computer-Based Systems, Huntsville, AL, April 2003.

[17] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad,
“Cadena: An Integrated Development, Analysis, and Verifica-
tion Environment for Component-based Systems,” Proceed-
ings of the 25th International Conference on Software Engi-
neering, Portland, OR, May, 2003.

[18] G. Deng, J. Balasubramanian, W. Otte, D. Schmidt, and A.
Gokhale, DAnCE: A QoS-enabled Component Deployment
and Conguration Engine, Proceedings of the 3rd Working
Conference on Component Deployment, Grenoble, France,
November 28-29, 2005.

[19] C. Szyperski, “Component Software: Beyond Object-Ori-
ented Programming”, Addison-Wesley, Dec. 1997.

[20] D. Sharp, Avionics Product Line Software Architecture Flow
Policies. In: Proceedings of the 18th IEEE/AIAA Digital Avi-
onics Systems Conference (DASC), 1999.

[21] R. Macala, L. Stuckey, D. Gross, "Managing Domain-Spe-
cific, Product line Development,” IEEE Software, Vol.14, No.
13, May 1996.

[22] G. Trombetti, A. Gokhale, D. Schmidt, J. Hatcliff, G. Singh,
and J. Greenwald, “An Integrated Model-driven Development
Environment for Composing and Validating Distributed Real-
time and Embedded Systems,” Model Driven Software De-
velopment- Volume II of Research and Practice in Software
Engineering, Springer-Verlag, 2005.

