
Modularizing Variability and Scalability Concerns in Distributed Real-time and
Embedded Systems with Modeling Tools and Component Middleware

Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale Andrey Nechypurenko
EECS Dept., Vanderbilt University Corporate Technology, Siemens AG

2015 Terrace Place Wittelsbacherplatz 2
Nashville, TN 37203, USA Munich, D-80333, Germany

{dengg,schmidt,gokhale}@dre.vanderbilt.edu andrey.nechypurenko@siemens.com

Abstract

Developing real-time software for large-scale dis-
tributed real-time and embedded (DRE) systems is hard
due to variabilities that arise from (1) integration with var-
ious subsystems based on different programming lan-
guages and hardware, OS, middleware platforms, (2) fine
tuning the system to satisfy a range of customer require-
ments, such as various quality-of-service (QoS) proper-
ties, and (3) changing functional and QoS properties of
the system based on available system resources. This pa-
per describes our experience applying model-driven
development (MDD) tools and QoS-enabled compo-
nent middleware technologies to address domain- and
middleware-specific variability challenges in an inven-
tory tracking system, which manages the storage and flow
of items in warehouses. Our results show that (1) co-
herent integration of MDD tools and component mid-
dleware can provide a productive software process for
developing DRE systems by modularizing and compos-
ing variability concerns and (2) significant challenges
remain that must be overcome to apply these technolo-
gies to a broader range of DRE systems.

Keywords: Model-Driven Development, Domain-
Specific Modeling Languages, Component Middle-
ware

1. Introduction
Emerging trends and challenges. Developing software for
large-scale distributed, realtime and embedded (DRE) sys-
tems of systems, such as a warehouse inventory tracking
system (ITS), is hard due to the numerous challenges that
must be addressed. For example, ITS software must provide
reliable, efficient, and convenient mechanisms that man-
age warehouses and the movement of inventory items in
a timely and reliable manner. An ITS should enable hu-
man operators to configure warehouse storage organization
and transportation facility criteria, maintain the set of items
known throughout a distributed environment (which may
span organizational and even international boundaries), and
track warehouse assets using GUI-based operator monitor-
ing consoles. Addressing these challenges is crucial since

it impacts the large set of users of an ITS, which includes
couriers (such as UPS, FedEx, and DHL), airport bag-
gage handling systems, and large trading and manufactur-
ing companies (such as Wal-Mart and Target).

Standards-based quality-of-service (QoS)-enabled
object-oriented middleware technologies, such as Real-
time CORBA [1] and Real-time Java [2], have been suc-
cessful in small- to medium-scale DRE systems, where
they support the provisioning of key QoS properties,
such as (pre)allocating CPU resources, reserving net-
work bandwidth, and monitoring/enforcing the proper use
of distributed real-time and embedded DRE system re-
sources at runtime to meet end-to-end QoS requirements,
such as throughput, latency, and jitter. Object-oriented tech-
nologies, however, tend to tangle functional (e.g., applica-
tion business-logic) aspects and QoS (e.g., end-to-end la-
tency and jitter requirements) aspects, so it remains hard to
develop larger-scale DRE systems, such as an ITS. In re-
cent years QoS-enabled component middleware [3, 4, 5]
has emerged to help developers of DRE systems en-
hance reuse by factoring out reusable concerns, such as
component lifecycle management, system resource reser-
vation and allocation, system authentication/authorization,
and remoting. As a result, software for large-scale DRE sys-
tems is increasingly being assembled from reusable and
configurable components.

Although QoS-enabled component middleware technol-
ogy provides powerful capabilities, however, it also yields
the following challenges for developers of DRE systems:

1. Increased scale. As DRE subsystems are joined to-
gether to form large-scale systems, developers rarely have
in-depth knowledge of the entire system or an integrated
view of all subsystems and libraries, which may cause
them to implement suboptimal solutions that duplicate code
unnecessarily, complicate system evolution, affect system
QoS, and violate architectural principles. For example, new
warehouses may be added at remote locations in an ITS,
so existing ITS software assets may need to be adapted to
these new warehouses incorporated into the global ITS sys-
tem. It is hard enough to satisfy ITS QoS requirements in-
dependently at remote locations, and even harder to satisfy
them in concert.

2. Increased variability. Additions to the features of
the system and/or availability of better implementations of
the same type of systems can further increase functional
and QoS variability. For example, new types of warehouse
transportation facilities, such as forklifts or cranes, with
sophisticated features and timeliness requirements may be
introduced in a warehouse, hence requiring appropriate
changes in the ITS software. It is hard to accommodate
these changes within individual components without com-
plicating the solution and affecting the overall QoS of the
entire system. To maximize software reuse and productivity,
therefore, increased scale and variability must be addressed
by more effectively combining technologies and tools that
support system configuration and integration.

Promising approach → Integrating model-driven develop-
ment and QoS-enabled component middleware. A promis-
ing way to alleviate the challenges of DRE system scale and
variability described above is to integrate model-driven de-
velopment (MDD) [6, 7, 8, 9] techniques with QoS-enabled
component middleware. MDD helps resolve key software
development challenges by combining (1) domain-specific
modeling languages (DSMLs), whose type systems formal-
ize the application structure, behavior, and requirements
within a particular domain, such as software defined ra-
dios, avionics mission computing, and warehouse inventory
tracking. DSMLs are described using metamodels that de-
fine the relationships among concepts in a domain and pre-
cisely specify the key semantics and constraints associated
with these concepts and (2) model transformations and code
generation that help automate repetitive, tedious, and error-
prone tasks in the software lifecycle to ensure the consis-
tency of software implementations with analysis informa-
tion associated with functional and QoS requirements cap-
tured by structural and behavioral models.

In prior work, we developed the Component-Integrated
ACE ORB (CIAO) [4], which is a QoS-enabled com-
ponent middleware platform that combines Lightweight
CORBA Component Model (CCM) [3] features (such
as standard mechanisms for specifying, implement-
ing, packaging, assembling, and deploying component in-
stances) with Real-time CORBA features [1] (such as
thread pools, portable priorities, synchronizers, prior-
ity preservation policies, and explicit binding mecha-
nisms). A key part of CIAO is the Deployment And
Configuration Engine (DAnCE) [10], which imple-
ments the OMG Deployment and Configuration (D&C)
specification [11] to help developers deploy and config-
ure pre-built components and component assemblies. We
also developed an MDD toolsuite called Component Syn-
thesis using Model Integrated Computing (CoSMIC)
(www.dre.vanderbilt.edu/cosmic), which is an inte-
grated collection of DSMLs that support the specifica-
tion, analysis, development, configuration, deployment,

and evaluation of component-based DRE systems. To eval-
uate how well the integration of QoS-enabled compo-
nent middleware and MDD tools helps resolve the scale
and variability challenges described above, we devel-
oped an ITS case study that provides logistics support to
manage the flow of items and assets in and across ware-
houses in a distributed and timely manner.

This paper presents our experience gained and lessons
learned while integrating MDD and QoS-enabled compo-
nent middleware to address two key variability concerns in
designing the ITS: (1) warehouse configuration and man-
agement concerns and (2) component management, assem-
bly, QoS configuration, and deployment concerns.

2. Overview of the ITS Case Study

2.1. ITS Component Architecture

Figure 1 illustrates the components that form the core
implementation and integration units of our ITS case study.
Some ITS components (such as the OperatorConsole) ex-
pose interfaces to end users, i.e., ITS operators. Other com-
ponents (such as TransportationUnit) represent hard-
ware entities, such as cranes, forklifts, and belts. Database
management components (such as ItemRepository and
StorageFacility) expose interfaces to manage external
backend databases (such as those tracking items inven-
tory and storage facilities). Finally, the sequences of events
within the ITS is coordinated by control flow components
(such as the WorkflowManager and StorageManager).

Warehouse Management

Material Flow Control

Transportation

Facility

TranspRepo

RouteCalculator

Item

Repository

Operator Console

Storage

Facility

DestinationCalculator

Storage

Manager

SystemState

W orkflow

Manager

Transportation

Facility

Warehouse Hardware

Item Location

Sensor

changed

position

Transport

Unit
TControl

order_complete

Storage

Facility
Item Repository

W orkflow

Definition

Child
Child
Child

changed

New_item()

item_here

NewItem Finish

Repo

Finish
NewItem

Updated

ItemRepo

Figure 1. ITS Subsystems and Key Components

The capabilities shown in Figure 1 are used in the context
of their associated ITS subsystems as follows: (1) the Ware-
house Management subsystem consists of a set of high-level
functionality and decision making components that calcu-
late the destination location, (2) The Material Flow Control
subsystem executes high-level decisions calculated by the

Warehouse Management subsystem to deliver items to the
destination location, e.g., it (re)calculates routes, schedules
transportation facilities, and reserves storage facilities, (3)
the Warehouse Hardware subsystem handles physical de-
vices, such as sensors and transportation units (e.g., belts,
forklifts, cranes, and pallet jacks) that correspond to vari-
ous component types, such as ItemLocationSensor and
TransportUnit.

The functionality of the ITS subsystems shown in Fig-
ure 1 can be monitored and controlled by one or more
OperatorConsole components, and all persistence con-
cerns are handled via databases. The Material Flow Control
subsystem requires high throughput for continuously re-
freshed data and soft real-time processing for regular tasks
such as monitoring warehouse good delivery activities. For
example, Material Flow Control subsystem need to contin-
uously refresh and collect the geographical location data of
good items as well as certain transportation units. Compo-
nents in the Warehouse Hardware subsystem require hard
real-time deadlines for certain processing tasks, such as
hardware process control. For example, an automatic crane
system is a hard real-time system because a delayed signal
may cause hardware failure or damage. To make develop-
ment more rapid and flexible, our ITS architecture is imple-
mented using the CIAO/DAnCE QoS-enabled component
middleware and the CoSMIC MDD tools described in Sec-
tion 1 to separate the application business logic from sys-
tem deployment and configuration concerns.

2.2. Scale and Variability in the ITS Case Study

Although the ITS component architecture described in
Section 2.1 are present in most warehouses, there may be
significant differences in customer needs, warehouse spe-
cific requirements, task specific QoS requirements, and
integration with other subsystems. Implementing an ITS
properly therefore requires a thorough understanding of the
scalability and variability manifested in the system. For ex-
ample, the warehouse automation hardware and software in-
frastructure is often supplied by multiple vendors who se-
lect different hardware and software platforms and tools.
The resulting heterogeneity yields integration and deploy-
ment challenges over an ITS lifetime since various com-
ponents may be removed or replaced by components from
other vendors, which often requires system-wide reconfig-
uration of system resources to ITS components to improve
overall system QoS.

In general, variabilities resulting from different ware-
house configurations, hardware/software platforms, and
QoS requirements yield much diversity in ITS implemen-
tations, particularly for large-scale warehouses that con-
sists of thousands of software/hardware components. An
ITS could have a diverse set of characteristics and QoS re-

quirements including – but not limited to – high throughput
of continuously refreshed data, hard real-time deadlines as-
sociated with periodic processing, well defined computa-
tional paths traversing multiple components, soft real-time
processing of regular tasks, and operator display and con-
trol requirements.

3. Resolving ITS Challenges by Integrating
MDD Tools and Component Middleware

This section describes how we applied the CoSMIC
MDD tools and CIAO/DAnCE QoS-enabled component
middleware to help simplify and automate the ITS develop-
ment challenges described in Section 2. We describe the key
problems faced when addressing these challenges, present
our solutions, and evaluate these solutions in the context of
the ITS case study.

3.1. Addressing ITS Warehouse Configuration
Concerns

A key challenge in ITS design is to provide a generic,
reconfigurable architecture that can be deployed rapidly in
different warehouse configurations or redeployed to adapt
to reconfiguration needs of existing warehouses. The proper
configuration of an ITS depends heavily on the physical
layout of transportation facilities and storage facilities of
a warehouse. The warehouse physical layout configuration
design should therefore enable timely delivery of messages
across ITS components, since the “logical” connections of
ITS CCM components must map to “physical” layout of a
warehouse. The layout information that is specified during
the warehouse design phase should be amenable to changes
both before and after the warehouse is deployed.

Problem: Ad hoc, tightly coupled warehouse design. ITS
developers have historically relied on ad hoc approaches
(i.e., manually writing programs from scratch) to (1) create
software components that correspond to transportation fa-
cility units and (2) populate physical warehouse layout con-
figurations into databases. Moreover, they often hard code
such information using third-generation programming lan-
guages or scripts, which overly couples their solutions to
particular warehouse configurations and technologies. Such
tight couplings make an ITS software product hard to evolve
after the initial deployment since changes in the warehouse
configuration require modification, reverification, recompi-
lation, and redeployment throughout the code.

Solution: A DSML for warehouse configuration. To address
the problems described above, we developed the Warehouse
Modeling and Generation Language (WMGL). WMGL is
a DSML in CoSMIC that represents warehouse structures
and behaviors as visual models that allow developers to

depict and manipulate the transportation facility network,
which includes position information (e.g., the physical loca-
tion and reachable areas) and properties (e.g., the type, ca-
pacity and toxicity of items each transportation unit could
transport in the network). WGML can also be used to de-
pict and manipulate the available storage facilities, which
include their physical position information and properties
(e.g., storage capacity and type of items they can store).

By capturing the physical position information of the
transportation facilities and storage facilities in visual mod-
els, WMGL can deduce the topology of the warehouse au-
tomatically and generate a warehouse connectivity graph,
which is a directed weighted graph that represents the con-
nectivity among transportation facilities and storage facili-
ties. The WorkflowManager component can then apply any
pluggable customized path finding algorithm on this graph
to determine the optimal transportation path to transfer a
particular item from a source (e.g., loading dock or gate)
to its destination (e.g., a storage unit). Whenever the ware-
house is reorganized or a new transportation facility or stor-
age facility is added, the graph can be (re)generated auto-
matically from the model, and all other information associ-
ated with such changes are updated automatically.

Figure 2. A Warehouse Configuration in WMGL

We built WMGL using Microsoft Visio since it sup-
ports a wide range of sophisticated graphics capabilities,
an embeddable programming environment that enables de-
velopers to build custom tools, and integration with pop-
ular database management systems, such as Oracle and
MySQL. Figure 2 illustrates a Visio screenshot of a par-
tial ITS WMGL model, where warehouse model elements
are available from the left-side master panel and the right-
side panel contains a drawing that represents a warehouse
configuration consisting of two moving angle belts, three
cranes, four storage racks, two fork lifts and two gates.

Modeling a warehouse in WMGL involves drawing the con-
crete warehouse physical structure and then adding cus-
tomized properties (such as capacity, size, etc) to transporta-
tion and storage facilities model elements. Warehouse mod-
elers can also specify the reachable range of particular trans-
portation units (e.g., forklifts and cranes) visually and de-
fine various properties (e.g., capacity, heating or cooling) of
storage locations.

One benefit of WMGL is its ability to validate location-
related constraints automatically to ensure that the physical
layout and configuration of the warehouse is valid at design-
time, rather than runtime. For example, when a crane is po-
sitioned over a storage location, the WMGL model inter-
preter can ensure that the crane is capable of reaching all
the storage cells of the location. When warehouse model-
ers mistakenly model a transportation facility or a storage
facility that is isolated from the rest of the warehouse trans-
portation facility network, the WMGL model checker will
emit a warning.

Different domain-specific concerns captured by WMGL
can be extracted from the model and used to generate
code artifacts that ITS components based on CIAO can
subsequently use to populate the databases, construct the
warehouse connectivity graph, and initialize the backend
databases by using generic database access libraries, such
as the Open Database Connectivity (ODBC) Template Li-
brary (OTL). After running the WMGL model interpreter,
the ITS can proceed with component deployment and con-
figuration process described in Section 3.2.

3.2. Addressing ITS Component Deployment and
Configuration Concerns

As discussed in Section 2, our ITS case study uses the
CIAO QoS-enabled component middleware. CIAO intro-
duces new complexities, however, that stem from the need
to deploy component assemblies into the appropriate DRE
system target nodes while simultaneously initializing and
configuring components to enforce end-to-end QoS require-
ments of component assemblies. Below, we discuss how
CoSMIC’s MDD tools resolve key deployment and config-
uration challenges that arose when developing our ITS case
study using CIAO.

3.2.1. Simplifying ITS Deployment and Configuration
Profile Design Deploying an ITS product instance into
a warehouse involves configuring the functional and QoS
behavior of its software components and deploying them
throughout the underlying hardware and software infras-
tructure. Like most other DRE systems, an ITS is assem-
bled from many independently developed reusable compo-
nents, as described in Section 2.2. These components must
be deployed and configured so that (1) assemblies meet ITS

operational requirements and (2) interactions between the
components meet ITS QoS requirements.

Developers must address a number of crosscutting con-
cerns when deploying and configuring component-based
ITS applications, including (1) identifying dependen-
cies between component implementation artifacts, such
as the OperatorConsole component having dependen-
cies on other ITS components (e.g., the WorkflowManager
component) and other third-party libraries (e.g., the QT li-
brary, which is a cross-platform C++ GUI library compati-
ble with the Embedded Linux OS), (2) specifying the in-
teraction behavior among ITS components, (3) specifying
components to configure and control various resources, in-
cluding processor resources, communication resources,
and memory resources, and (4) mapping ITS compo-
nents and connections to the appropriate nodes and net-
works in the target environment where the ITS will be
deployed.

Problem: Ad hoc deployment and configuration de-
sign for diverse system requirements. Assemblies in
large-scale DRE systems like ITS may contain thou-
sands of components. Conventional techniques for de-
ploying and configuring component-based systems can
incur inherent and accidental complexities. Common in-
herent complexities involve ensuring syntactic and seman-
tic compatibility, e.g., only connecting ports of components
in an ITS assembly with matching types. Common acci-
dental complexities stem from using ad hoc techniques for
writing and modifying middleware and application config-
uration files, such as handcrafting XML files describing
component metadata (e.g., the hundreds of connections be-
tween components in ITS assemblies), which are very
large, even for relatively simple groups of connected com-
ponents. Ad hoc techniques are tedious and error-prone,
making it hard to adapt the ITS to new deployment and con-
figuration requirements, such as another warehouse that
may have different types of transportation units or ITS op-
erator console GUI terminals.

Solution: MDD-based deployment and configuration of ITS
components. In our ITS project, system deployment and
configuration is performed via the Platform-Independent
Component Modeling Language (PICML) [12], which is a
DSML in the CoSMIC toolsuite that works together with
the DAnCE middleware to implement the OMG D&C spec-
ification [11]. PICML provides capabilities to handle com-
plex component engineering tasks, such as multi-aspect vi-
sualization and manipulation of components and the inter-
actions of their subsystems, component deployment plan-
ning, and hierarchical modeling and generation of compo-
nent assemblies. PICML itself uses the Generic Modeling
Environment (GME) [13], which is a metaprogrammable
development environment for building and processing vi-
sual DSMLs.

Figure 3. Partial PICML Assembly Model for ITS

PICML’s metamodel and model interpreter enforce con-
straints defined by semantic rules associated with com-
ponent assemblies. Its metamodel defines static seman-
tic rules that determine valid connections between compo-
nents. PICML’s model interpreters ensure the dynamic se-
mantics of models specified by users, e.g., they can analyze
models for various well-formedness properties and synthe-
size code for components and their XML descriptors that
convey metadata needed by DAnCE.

In the context of ITS, a major cause of missed deadlines
is priority inversions, where lower priority requests access
a resource at the expense of higher priority requests. Prior-
ity inversions must be prevented or bounded since they can
cause some critical paths in the ITS system to miss their
deadlines. To reduce priority inversions, we use PICML to
configure Real-time CORBA policies [14] of the ITS com-
ponent instances, which include (1) processor resources via
priority mechanisms, thread pools, and synchronizers, for
real-time components with fixed priorities, (2) communica-
tion resources via protocol properties and explicit bindings
to server objects using priority bands and private connec-
tions, and (3) memory resources via bounding the size of
request buffers and thread pools.

As shown in Figure 3, the PICML-generated metadata
includes the list of implementation artifacts associated with
each component instance, the list of connections between
the different component instances, the organization of the
application into different levels of hierarchy, and the default
properties with which each component instance is initial-
ized. This metadata is used by DAnCE to drive the deploy-
ment of the complete ITS applications, as explained in Sec-
tion 3.2.2.

3.2.2. Automating ITS Deployment Process to Ensure
QoS Requirements Deployment is the sequence of activi-
ties that occurs between (1) the acquisition of software and
its associated configuration and deployment metadata and
(2) the actual execution of software in a target environment
based on the acquired software and associated metadata.
Likewise, configuration is the process of mapping known
variations in the application requirements space to known
variations in the middleware and application software so-

lution space. To complete the deployment and configura-
tion of an ITS application, DAnCE uses the metadata gen-
erated by PICML (Section 3.2.1) to describe the concerns
from multiple actors and combines them in the target envi-
ronment to enforce overall system QoS requirements.

To deploy an ITS assembly, ITS developers must per-
form four tasks based on the deployment profile, includ-
ing (1) preparation, which places ITS software packages
into component software repositories [15], (2) installation,
which downloads ITS components to component server
processes that run in each node in the target environment,
including embedded system nodes used to host TransportU-
nit components and PC nodes that host other types of ITS
components, such as WorkflowManager and Operator-
Console, (3) configuration, which customizes QoS prop-
erties of components and containers on each node, and (4)
launching, which connects the ports of ITS components that
are distributed throughout the target environment and initi-
ates system execution.

Problem: Ad hoc deployment mechanisms for variable ITS
deployment requirements. In large-scale DRE systems, the
deployment process must consider QoS requirements (such
as low latency and bounded jitter) throughout the lifecy-
cle. Components, containers, and component servers must
therefore be deployed in accordance with real-time QoS
properties by (1) specifying middleware configurations pa-
rameters (such as client request optimization options) and
(2) setting the QoS policy options provided by the un-
derlying middleware into semantically consistent configu-
rations. For instance, whenever a ConveyorBelt compo-
nent’s hardware fails, the ITS should notify the Workflow-
Manager in real-time to minimize/avoid damage. Likewise,
ITS ConveyorBelt and Crane components may need to be
collocated with WorkflowManager in some assemblies to
minimize latency.

The existing OMG D&C specification does not sup-
port real-time QoS policies. Moreover, QoS-enabled
object-oriented middleware, such as Real-time CORBA
and Real-time Java, do not adequately separate real-time
policy configurations from application functionality, which
yields tightly coupled deployment mechanisms, which
makes deployment artifacts and effort hard to reuse, e.g.,
there is no easy way to reconfigure a warehouse to accom-
modate the variability. It is therefore hard for ITS develop-
ers to configure, validate, modify, and evolve their systems
consistently using QoS-enabled object-oriented middle-
ware.

Solution: Extending the OMG D&C specification to support
real-time QoS policies. DAnCE extends the OMG D&C
specification to enable the configuration of real-time QoS
policies through metadata generated by PICML. The archi-
tecture of DAnCE is shown in the right side of Figure 4.
This figure also shows how ITS developers can model vari-

IT S D & C

P r o file

IT S D & C

P r o file

Model ITS

D&C

Concerns

Create D&C

Profile

ITS System

Designer

Model with

PICML
Deploy and Configure

with DAnCE

Deployment Target Host

Node Manager

Node

Application

Manager

Execution Manager

ITS

Deployer

1. Deploy an

ITS

assembly

Node

Application

Container

5. configure component

server resources

Domain

Application

Manager

8. Install component

& homes

2. Deploy

components

on each node

7. Create

containers

Standard

Configurator

10. Configure

components

4. Create

component servers

6. Load and initialize

middleware services

IT S D & C

P r o file

IT S D & C

P r o file

XML

Configuratio

n Handler

9. Activate

component

s and ports

Repository

Manager

3. Fetch

component

binaries across

network

Figure 4. DAnCE Architecture and PICML Relation-
ship

ous warehouse D&C concerns via PICML, which automat-
ically generates the corresponding D&C profile for the des-
ignated system. DAnCE then takes the generated profile and
automatically deploys the system into CIAO, thereby bridg-
ing the gap between higher-level MDD tools and lower-
level component middleware runtime platforms.

As shown in Figure 4, DAnCE provides runtime ser-
vices that handle the instantiation, installation, configu-
ration, monitoring, and termination of ITS components
on the nodes of the target environment. Some services
(such as ExecutionManager and DomainApplication-
Manager) run at the end-to-end domain level and process
global deployment plans, whereas others (such as Node-
Manager and NodeApplicationManager) deploy and
configure ITS components on each node. These services to-
gether manage the lifecycle of the ITS deployment process
to configure component servers on the individual nodes, in-
stall components into containers, and establish connections
among components.

To enforce QoS requirements, DAnCE extends the OMG
D&C specification to defineNodeApplication server re-
source configurations, which influence end-to-end QoS be-
havior. Figure 5 shows the different categories of server
configurations that can be specified using the DAnCE server
resources XML schema, which are related to system end-to-
end QoS enforcement. Each server resources specification
can set the following options: (1) ORB command-line op-
tions, which control TAO’s connection management mod-
els, protocol selection, and optimized request processing,
and (2) ORB service configuration option, which specify
ORB resource factories that control server concurrency and
demultiplexing models. Using this XML schema, ITS sys-
tem deployers can specify their desired ORB configura-
tions.

ITS components are hosted in containers created by

Figure 5. Specifying Real-time QoS Requirements

the NodeApplication process, which provides the run-
time environment and resources for components to execute
and communicate with other components in a compo-
nent assembly. The ORB configurations defined by the
server resources XML schema are used to configure Node-
Application processes that host components, thereby pro-
viding the necessary resources for the components to op-
erate. For example, since some ITS components, such
as ItemLocationSensor and WorkflowManager, han-
dle real-time item delivery activities they can be con-
figured to deliver more stringent QoS requirements than
other ITS components, such as low end-to-end latency de-
lay and bounded jitter.

4. Related Work

Our work on MDD extends earlier work on Model-
Integrated Computing (MIC) (such as GME [13] and
Ptolemy [16]) used primarily in real-time and embed-
ded domains and Model Driven Architecture (MDA) [17]
based on UML and XML used primarily in the enter-
prise business domain. Kennedy Carter’s iUML Product
Suite [18] supports the Executable UML process from tex-
tual requirements management through modeling to
complete target code generation. The Rhapsody Sys-
tem Designer tool by I-Logix (www.ilogix.com) is based
on OMG’s MDA and UML 2.0 specifications and gen-
erates application code from UML models using multi-
ple programming languages (such as C/C++, Java, or Ada)
and multiple middleware platforms (such as CORBA and
EJB). The tools, however, are based on OMG’s UML spec-
ification, which is a domain-independent modeling lan-
guage. In contrast, our work on CoSMIC focuses on
domain-specific modeling languages (DSMLs) that bet-

ter unify the problem space and solution space by capturing
designer intent more effectively.

The Embedded Systems Modeling Language
(ESML) [19] provides a visual metamodeling lan-
guage that captures multiple views of embedded systems,
allowing a diagrammatic specification of complex mod-
els. The modeling building blocks include software
components, component interactions, hardware configu-
rations, and scheduling policies. The user-created mod-
els can be fed to analysis tools (such as AIRES, VEST,
and Cadena) to perform schedulability and event anal-
ysis. Unlike our work on CoSMIC and PICML, how-
ever, ESML is platform-specific since it is customized
for the Boeing Bold Stroke PRiSm QoS-enabled com-
ponent model. Moreover, ESML does not support nested
assemblies and the allocation of components are tied to pro-
prietary features of the Bold Stroke component model.

Cadena [20] is a MDD tool developed with Eclipse to
build component-based DRE systems, with the goal of ap-
plying static analysis, model checking, and lightweight for-
mal methods to enhance these systems. Unlike our work on
CoSMIC, however, Cadena does not support activities such
as component packaging, generating deployment plan de-
scriptors, and hierarchical modeling of component assem-
bly, thus it introduces additional burden to DRE application
developers to accomplish such tasks. We are collaborating
with the Cadena team to create an integrated suite of MDD
tools [21].

5. Concluding Remarks

This paper describes our experiences integrating MDD
tools and QoS-enabled component middleware technolo-
gies and applying them to an inventory tracking system
(ITS) case study in the warehouse management domain.
Some lessons learned from our work thus far include:

• MDD tools alleviate complexities associated with com-
ponent middleware. Although component middleware el-
evates the abstraction level of middleware to enhance
software developer quality and productivity, it also in-
troduces new complexities. For example, the OMG
Lightweight CCM [3] and Deployment and Configura-
tion (D&C) [11] specifications have a large number of
configuration points. To alleviate these complexities we ap-
plied MDD tools, such as PICML and WMGL. In our ITS
case study, when component deployment plans are incom-
plete or must change, the effort required is significantly
less than using the raw component middleware with-
out MDD tool support since applications can evolve from
the existing PICML/WMGL models. Likewise, if the ware-
house model is the primary changing concern in the
system (which is typical for end users), little new appli-
cation code must be written, yet the complexity of the

MDD tool remains manageable due to the limited num-
ber of well-defined configuration hot spots exposed by the
underlying infrastructure.

• Domain-specific modeling techniques can help reduce
the learning curve for end users. For example, warehouse
modelers in our ITS project needed little or no knowl-
edge of how to write component software since they used
higher-level models that correspond to the language under-
stood by domain engineers and visual modeling environ-
ments, such as WMGL. WMGL enbodies certain domain
rules which reduce the probability of architectural rules vi-
olation discussed in Section 2 and ensure the proper usage
of component middleware. Conversely, our experience ap-
plying PICML to model the ITS deployment structure indi-
cated that it raised the level of abstraction at which devel-
opers work, enabling them to concentrate on certain aspects
(e.g., deployment structure) in the multidimensional prob-
lem space associated with applying component middleware
for DRE systems. This separation of concerns helped elimi-
nate many sources of accidental complexities and improved
overall system quality.

The CoSMIC MDD tools and CIAO/DAnCE QoS-
enabled component middleware are available in open-
source form from www.dre.vanderbilt.edu.

References

[1] Object Management Group, Real-time CORBA Specifica-
tion, OMG Document formal/02-08-02 ed., Aug. 2002.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull, The Real-time Specification for
Java. Addison-Wesley, 2000.

[3] Object Management Group, Lightweight CCM RFP,
realtime/02-11-27 ed., Nov. 2002.

[4] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues,
B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D. Gill,
“QoS-enabled Middleware,” in Middleware for Communica-
tions (Q. Mahmoud, ed.), pp. 131–162, New York: Wiley and
Sons, 2003.

[5] D. C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development,” in Proceed-
ings of the 10th Annual Software Technology Conference,
Apr. 1998.

[6] J. Greenfield, K. Short, S. Cook, and S. Kent, Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. New York: John Wiley & Sons,
2004.

[7] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
integrated development of embedded software,” Proceedings
of the IEEE, vol. 91, pp. 145–164, Jan. 2003.

[8] D. C. Sharp and W. C. Roll, “Model-Based Integration of
Reusable Component-Based Avionics System,” in Proc. of
the Workshop on Model-Driven Embedded Systems in RTAS
2003, May 2003.

[9] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. S.
Krishna, G. T. Edwards, G. Deng, E. Turkay, J. Parsons,
and D. C. Schmidt, “Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed Real-
time and Embedded Applications,” The Journal of Science of
Computer Programming: Special Issue on Model Driven Ar-
chitecture, 2005 (to appear).

[10] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and
A. Gokhale, “DAnCE: A QoS-enabled Component Deploy-
ment and Configuration Engine,” in Proceedings of the 3rd
Working Conference on Component Deployment, (Grenoble,
France), Nov. 2005.

[11] Object Management Group, Deployment and Configuration
Adopted Submission, OMG Document ptc/03-07-08 ed., July
2003.

[12] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt, “A Platform-Independent
Component Modeling Language for Distributed Real-time
and Embedded Systems,” in Proceedings of the 11th Real-
time Technology and Application Symposium (RTAS ’05),
(San Francisco, CA), pp. 190–199, IEEE, Mar. 2005.

[13] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific
Design Environments,” IEEE Computer, pp. 44–51, Novem-
ber 2001.

[14] S. Paunov, J. Hill, D. C. Schmidt, J. Slaby, and S. Baker,
“Domain-Specific Modeling Languages for Configuring and
Evaluating Enterprise DRE System QoS,” in Proceedings of
13th Annual International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS ’06), (Pots-
dam, Germany), IEEE, Mar. 2006.

[15] S. Paunov and D. C. Schmidt, “RepoMan: A Component
Repository Manager for Enterprise Distributed Real-time
and Embedded Systems,” in Proceedings of the 44th ACM
Southeast Conference, (Melbourne, FL), Mar. 2006.

[16] J. Liu, X. Liu, and E. A. Lee, “Modeling Distributed Hy-
brid Systems in Ptolemy II,” in Proceedings of the American
Control Conference, June 2001.

[17] Object Management Group, Model Driven Architecture
(MDA), OMG Document ormsc/2001-07-01 ed., July 2001.

[18] K. Carter, “Kennedy Carter iUML 2.2.” www.kc.com, 2004.
[19] G. Karsai, S. Neema, B. Abbott, and D. Sharp, “A Modeling

Language and Its Supporting Tools for Avionics Systems,”
in Proceedings of 21st Digital Avionics Systems Conf., Aug.
2002.

[20] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Ca-
dena: An Integrated Development, Analysis, and Verifica-
tion Environment for Component-based Systems,” in Pro-
ceedings of the 25th International Conference on Software
Engineering, (Portland, OR), May 2003.

[21] G. Trombetti, A. Gokhale, D. C. Schmidt, J. Hatcliff,
G. Singh, and J. Greenwald, “An Integrated Model-driven
Development Environment for Composing and Validating
Distributed Real-time and Embedded Systems,” in Model
Driven Software Development- Volume II of Research and
Practice in Software Engineering (S. Beydeda, M. Book, and
V. Gruhn, eds.), New York: Springer-Verlag, 2005.

