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Abstract

Communication software and distributed services for next-
generation applications must be reliable, efficient, flex-
ible, and reusable. These requirements motivate the
use of the Common Object Request Broker Architecture
(CORBA). However, building highly available applications
with CORBA is hard. Neither the CORBA standard nor
conventional implementations of CORBA directly address
complex problems related to distributed computing, such as
real-time or high-speed quality of service, partial failures,
group communication, and causal ordering of events. This
paper describes a CORBA-based framework that uses the Vir-
tual Synchrony model to support reliable data- and process-
oriented distributed systems that communicate through syn-
chronous methods and asynchronous messaging.

1 Introduction

Communication software and distributed services for next-
generation applications must be reliable, efficient, flexible,
and extensible. For instance, applications like personal com-
munication systems (PCS), real-time market data feeds, and
flight reservation systems must be highly available and scal-
able to meet their stringent reliability and performance de-
mands. In addition, these applications must be flexible and
extensible to cope with their inherent complexity and to re-
spond rapidly to changing application requirements that span
a wide range of media types and access patterns.

These requirements motivate the use of the Object Man-
agement Group’s Common Object Request Broker Architec-
ture (OMG CORBA) [1, 2]. CORBA is an open standard
for distributed object computing. It defines a set of compo-
nents that allow client applications to invoke operations on
remote object implementations. CORBA enhances applica-
tion flexibility and portability by automating many common
development tasks such as object registration, location, and
activation; demultiplexing; framing and error-handling; pa-

rameter marshalling and demarshalling; and operation dis-
patching.

Experience over the past several years [3] illustrates that
CORBA is well-suited for best-effort, client-server applica-
tions running over conventional local area networks (such
as Ethernet and Token Ring). However, building highly
available applications with CORBA is much harder. Neither
the CORBA standard nor conventional implementations of
CORBA directly address complex problems related to dis-
tributed computing, such as real-time quality of service [4]
or high-speed performance [5], group communication [6],
partial failures, [7] and causal ordering of events [8].

This paper makes three contributions to the study of re-
liable distributed object computing systems with CORBA.
First, we examine the question of whether reliable applica-
tions can (or should) be implemented with CORBA today.
Next, we present an extension to the Object Management
Architecture that improves support for reliability and fault-
tolerance. Finally, we propose a CORBA-based framework
based on the Virtual Synchrony model [7] that supports reli-
able data- and process-oriented distributed systems. In addi-
tion, our proposed framework supportsapplications requiring
loosely coupled processes that communicate through asyn-
chronous messaging.

2 Reliability Matters

Distributed systems are intended to form the backbone of
emerging next-generation communication systems, includ-
ing electronic commerce, PCS, satellite surveillance systems,
distributed medical imaging, real-time data feeds, and flight
reservation systems. An obvious benefit of distributed sys-
tems is that they reflect the global business and social envi-
ronments in which we live and work. Another benefit is that
they can improve the quality of service (in terms of reliability,
availability, and performance) for complex systems.

Reliability is an important quality in mission-critical dis-
tributed applications. In many distributed environments,
even small amounts of downtime can annoy customers, hurt
sales, or endanger human lives. We define a distributed
system as reliable if its behavior is predictable despite of
partial failures, asynchrony, and run-time reconfiguration of
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the system. In addition, we require reliable applications to be
highly available, i.e., the application can provide its essen-
tial services despite the failure of computing nodes, software
objects, and communication links.

Certain aspects of distributed systems make reliability
more difficult to achieve. For instance, partial failures are
an inherent problem in distributed systems. The “mean time
to failure” (MTTF) of components in a distributed system
rapidly decreases as the number of computing nodes and com-
munication links that constitute the system increases. An-
other inherent problem is that developers must address com-
plex execution states of concurrent programs. Distributed
systems consist of processes that run in parallel on heteroge-
neous platforms and are therefore prone to race conditions,
communication errors, node failures, and deadlocks. Thus,
distributed systems are often more difficult to develop, ad-
minister, and maintain than their centralized counterparts.

Conversely, other aspects of distributed systems can help
make applications more robust. For instance, distributed sys-
tems can be made more reliable than centralized systems by
providing important services redundantly on multiple nodes.
To enable redundancy, active or passive replication should
be supported by the communication system used to run dis-
tributed applications.

Hence, we face a peculiar situation: although program-
ming distributed applications is a daunting and error-prone
task, a high degree of failure tolerance and reliability can
be achieved if the underlying communication system soft-
ware supports replication. The conclusion we draw is that
non-robust communication software will lead to fragile dis-
tributed applications that will be frequently unavailable and
will require constant supervision. In contrast, sophisticated
communication software (such as the Virtual Synchrony ap-
proach presented in Section 4.3) can lead to distributed appli-
cations that are inherently more reliable, more modular, and
more scalable than centralized ones.

3 Software Quality Matters

Most reported success with object technology has involved
centralized applications running on stand-alone computers.
In particular, user interfaces have widely adopted object-
oriented design and programming techniques [9]. In contrast,
relatively few examples [10, 3] of object-oriented distributed
systems are currently deployed in production commercial
systems.

There are a number of interesting projects that are currently
employing object-oriented distributed technology and which
are planned to become operational shortly. For example the
Iridium system, which is being designed and manufactured
by Motorola and associated companies, intends to provide
global personal satellite based communications via hand-held
terminals by the year 1998. Iridium will use 66 satellites
orbiting in six 450 miles altitude polar planes and will cost in
excess of $4 billion US dollars. The number of subscribers
to this system is expected to exceed 1 million. Motorola is

using CORBA to implement portions of the Iridium system
control software.

Building distributed systems is complex and expensive.
Distribution presents developers with a number of inherent
problems such as latency, concurrency control, heterogene-
ity, and partial failures. Further complicating matters are
accidental problems such as the lack of widely reused higher-
level application frameworks, primitive debugging tools, and
non-scalable, unreliable software infrastructures.

Distributed object models like CORBA were devised to ad-
dress several of these problems. In CORBA, objects are spec-
ified in a strongly typed interface definition language (IDL).
Thus, CORBA objects can be used to hide heterogeneity and
the details of the underlyingsystem software, communication
protocols, and hardware. For instance, two CORBA objects
running on the Object Request Brokers (ORBs) of different
manufacturers can interoperate with each other even when
implemented in different programming languages, operating
systems, or hardware platforms.

CORBA’s synchronous method invocation model can help
programmers avoid concurrency related problems. More-
over, CORBA object services (such as the Event, Concur-
rency, and Transaction Service) help to orchestrate the ac-
tivities of distributed network objects that execute in parallel
across local area and wide area networks.

The CORBA model by itself does not provide solutions
to the problem of detecting and reacting to partial failures
and to network partitioning. However, a CORBA object
can encapsulate internal state and make it accessible through
an IDL interface. Due to this encapsulation, fault-tolerance
techniques like replication and state-checkpointing become
easier to implement because the internal state of an object is
isolated.

There is a need for distributed debugging tools and run-
time validation tools in the CORBA model. Distributed de-
bugging has not been addressed by the OMG yet. However,
viewing a complex system in the form of distributed state
machines that interact by invoking operations on each other
can help in tracing distributed activities and in isolating and
correcting problems.

Reliable distributed computing requires the presence of an
execution model that allows programmers to predict the be-
havior of a distributed application despite asynchrony, con-
currency, and partial failures. There are three interesting
models that can help in building reliable systems: message
queues, TP monitors, and Virtual Synchrony. Each model
represents a certain view of distributed computing and has
its specific advantages and disadvantages. Below, we give
an overview of the models and explain how CORBA can be
used to define a unified model for reliable distributed object
computing.
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4 Evaluating Alternative Solutions

4.1 Message Queues

4.1.1 Overview

A straightforward approach to reliability employs message
queues (MQ) for inter-process communication (Figure 1).

Sender Receiver

MQ
Handler

MQ
Handler

Send Queue Receive Queue

Network

Figure 1: Inter-process Communication Using Message
Queues.

A process S that wants to reliably submit message M to
process R submits the message to its local MQ handler. The
handler writes the content of the message on non-volatile
storage to avoid message loss if a crash occurs. After hav-
ing submitted the message, process S is relieved from any
activity necessary to deliver M . The MQ handler consists
of an independent process that is responsible for storing and
delivering messages on behalf of application processes. S’s
handler attempts to transfer the message to R’s handler. If
the destination handler happens to be unavailable because of
downtime, a site crash, or a network partition, S’s handler
will attempt to deliver the message periodically until R’s
handler becomes available.

Reliability is achieved by decoupling sender processes
from receiver processes. A sender can submit a message
without having to know whether the receiver is unavailable
and without having to deal with transient network failures.
The model can tolerate the failure of MQ handlers because
messages are written to non-volatile storage automatically
and can be retransmitted, if necessary.

4.1.2 Variations

Several refinements to the basic Message Queue scheme are
possible. For instance, instead of logging messages to disk,
the queue could be maintained in memory to increase perfor-
mance. To increase reliability, the queue must be replicated
among two or more nodes, or a battery-backed RAM disk or
Flash Memory could be employed as a non-volatile message
buffer.

A publish/subscribe API can be used to present a con-
venient access point to the MQ. Receiver-processes register
their interest in particular messages by subscribing to a spe-
cific subject with the MQ handler. Sender-processes submit
messages, using subjects as addresses. A sender process can
be replaced by another process at run-time, as long as the new

process services the same subjects as the original one. The
ability to replace service implementations transparently (i.e.,
without affecting clients) is important for configurability and
availability.

An area related to message queues is mail enabled appli-
cations. These applications use existing e-mail mechanisms
to store-and-deliver inter-process communication (IPC) mes-
sages. Thus, e-mail can be used as a powerful and ubiquitous
type of middleware in many organizations. Several APIs for
mail enabled applications exists, for example VIM (jointly
backed by Lotus, Apple, IBM, Borland, MCI, Oracle, Word-
Perfect, and Novell), MAPI (by Microsoft), and CMC (by
the X.400 API association). These APIs provide functions
for single-point and multi-point message delivery, message
box manipulation, managing address directories, composing
mail, authentication, and security.

4.1.3 Evaluation

The MQ model is well-suited for applications that can be
interconnected by an asynchronous, one-way, “forward-and-
forget” communication paradigm. The advantage of the MQ
model is that it is easy to use, implement, and understand. In
addition, it supports disconnected operation of mobile equip-
ment. To that purpose, a mobile device can direct messages
to a local MQ handler while disconnected. Upon reconnec-
tion to a backbone network the messages are transmitted over
the network by the handler.

The drawbacks are that some type of recoverable mes-
sage log must be provided and that high-availability is not
supported. Using a disk to log messages is the most straight-
forward approach to recoverability. However, disks impose
tight limits on the maximum throughput. A battery-buffered
RAM disk can lead to better performance, albeit at a higher
cost.

Another drawback is the lack of support for two-way com-
munication in many MQ products. One manifestation is the
lack of return values. Furthermore, senders typically have no
guarantee of delivery; they don’t know when or if a message
is delivered.

The message queue model does not ensure high availabil-
ity. In case of a crashed queue handler, a queued (but not yet
delivered message) remains unavailable until the defect that
lead to the crash is repaired. A replicated RAM queue can
offer good performance and availability, but requires sophis-
ticated group communication support, which we describe in
Section 4.3.

4.2 Transaction Processing Monitors

4.2.1 Overview

A transaction processing monitor (TP monitor) [11] allows
a distributed client application to bracket a series of service
invocations by begin/end transaction markers. If a service
fails during a transaction, the transaction monitor will roll
back invocations issued within the transaction.
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TP monitors typically provide two-way commit protocols
and serializability of requests (Figure 2). Thus, TP monitors
can be used to maintain distributed data consistency in spite
of crash failures, by employing a roll back mechanism. TP
monitors are primarily aimed at data-oriented applications
that manage distributed, persistent data objects. Examples of
data-oriented applications include management information
systems, flight-reservation systems, and business workflow
management.

Begin Transaction
End Transaction

2-Phase-Commit

2-Phase-Commit
DB Server 1

DB Server 2

Client

TP Monitor

Figure 2: Transaction Processing Monitor.

4.2.2 Evaluation

TP monitors are well-understood and have been applied to
mission critical applications for many years. The primary
limitations with traditional transaction models are (1) they
are hard to program and (2) they introduce substantial per-
formance overhead and excessive serialization in many situ-
ations such as groupware applications and real-time market
data feeds. Various extensions have been proposed to cope
with the serialization problem, notably nested atomic trans-
actions.

4.3 Virtual Synchrony

4.3.1 Overview

Virtual Synchrony is a distributed execution model that is
lower-level and more fundamental than the message queue
and transaction process monitoring mechanisms discussed
earlier. The Virtual Synchrony model was originally devel-
oped by Ken Birman in the context of the Isis toolkit [7]. Vir-
tual Synchrony guarantees that the behavior of a distributed
application is predictable regardless of partial failures, asyn-
chronous messaging, and objects that join and leave the sys-
tem dynamically. At the core of the model are a failure
suspector service and a group abstraction.

The failure suspector service detects faulty objects and
guarantees that non-faulty objects have a consistent view
of which objects are believed faulty. The failure suspector
relies on timeouts to detect suspicious objects. It only detects
crash failures; it assumes that objects fail by crashing without
emitting spurious messages.

In an asynchronous system it is impossible to distinguish
a crashed object from one that is very slow [12]. A down-
side of failure suspector services is that they might report a
healthy object as suspicious, for example when a machine or
a network happens to be temporarily overloaded. In practice,
this is not a problem as long as (1) false suspicions occur in-
frequently and (2) failure beliefs are propagated to all objects
that have an interest in the suspicious objects.

Without consistent views on partial failures the following
situation might occur. A client application mistakenly be-
lieves a server object as faulty, due to a high temporary load
on the server’s machine. However, another client applica-
tion is able to interact with that server without any problem.
Believing the server has crashed, the first client requests the
run-time system to create a new instance of the server on
another host. The result is that now two servers with an
inconsistent internal state exist, and that both clients and
servers believe that the system is running correctly. In real-
ity, the clients are submitting update requests to two different
servers, which places the system into an inconsistent state.

High availability is ensured by process replication. To
achieve this, Virtual Synchrony provides a group abstraction
and a reliable multicast mechanism. Highly-availableobjects
can be created on several computing nodes, the instances are
then joined to an object group [6]. The object group abstrac-
tion allows programmers to assign a single object reference
to a set of network objects that implement the same interface
(Figure 3).

Object Group
(Server Objects)

Client Application
(Object Reference)

Reliable Multicast

Figure 3: Object Group Computing in the Virtual Synchrony
Model.

Object groups appear like single entities to the client ap-
plication. Client requests are transparently multicast to the
group. A request succeeds as long as at least one group
member is operational. In contrast to TP monitors, Virtual
Synchrony implements a roll forward recovery mechanism
in which crashed objects are restarted and rejoined to their
object group. Upon joining a group, an object obtains a copy
of the replicated group state.

The application areas of Virtual Synchrony are primarily
process-oriented applications. Process-oriented applications
maintain a volatile state and communicate mainly by message
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passing and RPC. Examples of process-oriented applications
include teleconferencing systems, PCS, real-time stock ex-
change feeds, and satellite surveillance systems.

The primary characteristics of process-oriented applica-
tions is that (1) low-overhead IPC is required, (2) their net-
work objects often need to communicate in an asynchronous
manner, (3) part of their network objects need to be highly
available, and (4) little or no persistent state needs to be
maintained. Database management systems and transaction
monitors are thus not well-suited to coordinate the activities
of a process-oriented application because they introduce an
excessive amount of synchronization and overhead.

4.3.2 Evaluation

Generally speaking, Virtual Synchrony is appropriate for ap-
plications that need to maintain a distributed, volatile state.
The model assumes that processes are rather tightly cou-
pled and interested in up-to-date information on failures and
group membership changes. This implies that applications
are aware of the underlying Virtual Synchrony middleware.
The middleware signals membership changes and failures
to the server applications by delivering upcalls to them, the
applications must be prepared to deal with those upcalls.

One downside of present work on Virtual Synchrony is that
it has led to a variety of toolkits with incompatible, and often
low-level, programming interfaces. Examples of toolkits that
implement Virtual Synchrony are Horus, Isis, and Transis.
Those toolkits provide a rather low-level message passing
API in the form of C and SML programming libraries. Due
to the lack of high-level abstractions, standard APIs, and
frameworks, applications can become hard to implement,
administer, and maintain.

5 A Unified Reliability Model

The three models we described above provide different
types of reliability, which are summarized in Figure 4.
TP monitors are effective for orchestrating data-oriented
distributed systems that manage persistent data. Message
queues are well-suited for applications that consist of loosely-
coupled processes that mainly interact asynchronously. Vir-
tual Synchrony is a fundamental reliability model intended
for process-oriented distributed systems that must be highly
available.

While none of the models is powerful enough to be viewed
as a complete solution to reliable distributed computing, they
do provide complementary functionality and guarantees. In
this section, we outline a unified object-oriented architecture
that combines the three models and allows applications to
pay only for reliability guarantees they need. For instance,
in this architecture, asynchronous applications may employ
a message queue without having to pay for the overhead
incurred by a transaction monitor. Likewise, tightly-coupled,
process-oriented applications can run efficiently atop of a
virtually synchronous communication subsystem. Finally,

data-oriented applications can access a “plug-in” TP monitor
to coordinate access to distributed data objects.

Our architecture consists of an extended CORBA Object
Request Broker (Figure 5). The ORB runs on top of a virtu-
ally synchronous group communication subsystem like Ho-
rus, Isis, Totem, or Transis [13]. This enhanced ORB sup-
ports the abstraction of an object group [6], meaning that
CORBA objects of the same type can be named and accessed
as a single entity. Object groups allow the run-time repli-
cation of stateful CORBA objects and efficient multicast of
CORBA requests.

Virtual Synchrony ORB

TP
Monitor

MQ
Handler

Naming
Context

LifeCycle
Service

Common Object Services

Common FacilitiesApplication Objects

GUI
Classes

Compound
Documents

...

Figure 5: Extended CORBA Architecture for Reliable Sys-
tems.

From the programmer’s point of view, a virtually syn-
chronous ORB appears like a conventional ORB, except that
an extended CORBA API is presented [8]. The extended
API provides functions for creating object groups, joining an
object implementation to a group, destroying groups, and re-
moving an object implementation from a group. These calls
are provided through a special CORBA Object Adapter. Fur-
ther, the ORB provides functionality that enhances reliability
by allowing applications to set upcalls. These upcalls will
be invoked by the ORB when certain object implementations
are believed to be faulty. Such an upcall might either display
a warning message, attempt to restart the crashed object, or
introduce another application-specific behavior.

The TP Monitor and MQ Handler are provided in the form
of plug-in OMG Common Object Services on top of the ORB.
The virtually synchronous ORB facilitates the implementa-
tion of a TP monitor considerably. For instance, reliable
multicast can be employed to deliver commit and abort no-
tifications to objects that participate in a transaction. Failure
detection is useful for detecting crashes that occur during a
transaction.

In addition, Virtual Synchrony facilitates a robust and ef-
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Figure 4: TP Monitors Versus Message Queues Versus Virtual Synchrony.

ficient implementation of the Message Queue model. An ob-
ject group can be used to implement a replicated in-memory
message log. Request-multicast is useful for distributing a
message to all objects that have registered an interest in a cer-
tain subject. Thus, the messaging infrastructure can exploit
hardware multicast where available, and does not impose any
single point of failure.

6 Concluding Remarks

Contemporary CORBA Object Request Brokers were built in
a straightforward fashion using communication support pro-
vided by operating systems (notably BSD sockets and RPC).
As a consequence, predicting the behavior of distributed ap-
plications implemented atop of such CORBA ORBs is often
impossible when partial failures occur. This is becoming a
serious problem since many organizations are planning to
implement mission-critical software with CORBA.

In this paper we recommend extending the CORBA model
to support the Virtual Synchrony model. This can be achieved
by layering an ORB on top of a toolkit such as Horus, Isis,
Totem, or Transis, rather than building directly atop sockets
or other low-level communication mechanisms. Examples of
CORBA ORBs that implement the Virtual Synchrony model
are Orbix+Isis and Electra [8].

TP monitors have been in use for almost a decade, for ex-
ample in mission critical banking applications. Well-known
examples are Tuxedo and Transarc’s Encina. CORBA re-
quest brokers also have been combined with TP monitors
leading to products such as Orbix+Tuxedo. The OMG has
recently standardized a TP monitor specification designed to
be used in conjunction with CORBA applications.

Message queues have been extensively used in the finan-
cial domain for several years. This type of service is often
referred to as message oriented middleware (MOM), infor-

mation buses, or event streams. Examples are Isis Message
Distribution System, TIBCO Information Bus, Iona’s Or-
bixTalk, and IBM’s MQSeries. The OMG has recently stan-
dardized an Event Channel service specification to be used
in conjunction with CORBA applications.

OrbixTalk, for example, is an OMG compliant Event Ser-
vice that distributes requests via IP multicast. It employs
negative acknowledgements to make sure that a request is
delivered to every object that has subscribed for it. However,
OrbixTalk neither provides totally ordered multicast nor pro-
vides Virtual Synchrony. Furthermore, requests can get lost
under high load situations or when a receiver detects that
it has missed a message after the sender has discarded that
message from its internal message queue.

Portions of the integrated architecture outlined in this pa-
per have been realized in the context of the Orbix+Isis and
Electra projects [8]. Orbix+Isis and Electra are CORBA
object request brokers that run on top of Virtual Synchrony
toolkits such as Isis. Unfortunately, both ORBs are suited to
support process-oriented applications, but do not provide a
TP monitor service to accommodate applications that manage
distributed data objects. We expect that subsequent genera-
tions of CORBA middleware will support this behavior.
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