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by Satish Tripathi. An earlier version of this paper appearedApplications and services for next-generation distributed sys-
the Proceedings of the International Conference on Distributeths must be flexible, reusable, robust, and capable of provid-
Computing Systems (ICDCS '97), Baltimore, MD, May 27ig scalable, low-latency quality of service to delay-sensitive
30, 1997. applications. In addition, communication software must al-
low bandwidth-sensitive applications to transfer data effi-
ciently over high-speed networks. Robustness, flexibility, and
reusability are essential to respond rapidly to changing appli-
Abstract catiqn requirements that span an increasingly wide range of
media types and access patterns [1].
Requirements for flexibility and reusability motivate the use
There is increasing demand to extend object-oriented midd@the Common Object Request Broker Architec{@®RBA)
ware, such as OMG CORBA, to support applications with] CORBA automates common network programming tasks
stringent quality of service (QoS) requirements. Howeveyich as object location, object activation, parameter marshal-
conven.tlona.l CORBA Object Request Brokef_(ORB) imp|ggy/demarshaling, framing, and error handling. CORBA also
mentations incur high latency and low scalability when US%‘#?)vides the basis for defining higher layer distributed services
for performance-sensitive applications. These inefficiencigg:n as naming, events, replication, transactions, and security
discourage developers from using CORBA for mission/lifigy.
critical applications such as real-time avionics, telecom call The success of CORBA in mission-critical distributed com-
processing, and medical imaging. puting environments depends heavily on the ability of Object
This paper provides two contributions to the research dtequest Brokers (ORBs) to provide the necessary quality of
CORBA performance. First, we systematically analyze t#eyvice (QoS) to applications. Common application QoS re-
latency and scalability of two widely used CORBA ORBg#jirements include:

VisiBroker and Orbix. These results reveal key sources.oingh bandwidth CORBA ORBs must provide high

overhead in conventional ORBs. Second, we describe &gl . ohnut to bandwidth-sensitive applications such as med-

niques used to improve latency and scalability in TAO, whighy jmaqing . satellite surveillance, or teleconferencing sys-
is a high-performance, real-time implementation of CORBAs:

Although conventional ORBs do not yet provide adequate

QoS guarantees to applications, our research results indiLow latency CORBA ORBs must support low latency for
cate it is possible to implement ORBs that can support higllay-sensitive applications such as real-time avionics, dis-
performance, real-time applications. tributed interactive simulations, and telecom call processing
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cation middleware performance, Real-time CORBA. e Scalability of endsystems and distributed systems
CORBA ORBs must scale efficiently and predictably as the
number of objects in endsystems and distributed systems in-
*This work was supported in part by NSF grant NCR-9628218. creases. Scalability is important for large-scale applications




that handle large numbers of objects on each network node, Overview of the CORBA ORB Ref-
as well asa Iqrge number of nodes throughout a distributed erence Model
computing environment.

Networks like ATM, FDDI, and Fiber Channel now suppor?ORBA Obje(.:t Requegt Brokers (O.RBS) [?] allow clients to

; o invoke operations on distributed objects without concern for

QoS guarantees for bandwidth, latency, and reliability. Hoyy- following issues [9]:
ever, conventional CORBA ORBs incur significant overheade. g ’ . .
when used for latency-sensitive applications over high-spédeject location: - CORBA objects can be collocated with the
networks. If not corrected, this overhead will force developegent or distributed on a remote server, without affecting their

to avoid CORBA middleware and continue to use lower-leviéhplementation or use.

vide other key benefits of CORBA such as robustness, flesiorBA include C, C++, Java, Ada95, COBOL, and
bility, and reusability, which are crucial to the success of comg|italk, among others.

plex latency-sensitive distributed applications [4]. Therefo
it is imperative to eliminate the sources of CORBA overhec ¢ ) X
shown in this paper. ing Win32, UNIX, MVS, and real-time embedded systems like
Our earlier work [5, 6, 7, 8] has focused on measuring a¥¢f/Vorks, Chorus, and LynxOs.
optimizing thethroughputof CORBA ORBs. This paper ex-Communication protocols and interconnects: The com-
tends our prior work by measuring thetencyandscalability munication protocols and interconnects that CORBA can run
of two widely used CORBA ORBs, Orbix 2.1 and VisiBroon include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ker 2.0, precisely pinpointing their key sources of overheanet, embedded system backplanes, and shared memory.

and describing how to systematically remove these sourceﬁgpdware: CORBA shields applications from side-effects

overhead by applying.opt'imization'principlgs. stemming from differences in hardware such as storage layout
The research contributions of this paper include the foIIO\gﬁd data type sizes/ranges

ing:
e CORBA Latency Section 4 measures the oneway and Figure 1 illustrates the componentsin the CORBA 2.x refer-
twoway latency of Orbix and VisiBroker. Our findings indicatence model, all of which collaborate to provide the portability,
that the latency overhead in these ORBs stem from (1) longeroperability, and transparency outlined above. Each com-
chains of intra-ORB function calls, (2) excessive presentation

layer conversions and data copying, and (3) non-optimized INTERFACE IDL IMPLEMENTATION
buffering algorithms used for network reads and writes. Sec- | REPOSITORY COMPILER REPOSITORY
tion 5.4 describes optimizations we have developed to redue
these common sources of ORB latency.

re
é}ﬁ platform: CORBA runs on many OS platforms, includ-

in args

operation()

OBJECT

CLIENT (SERVANT)

« CORBA Scalability Section 4 also measures the scalabil- out A T retury, value
ity of Orbix and VisiBroker to determine how the number of
objects supported by a server affects an ORB'’s ability to pro
cess client requests efficiently and predictably. Our findingy

SKELETON
IDL ORB OBJECT
o S ) . SauEs INTERFACE ADAPTER
indicate that scalability impediments are due largely to (1) in-

efficient server demultiplexing techniques and (2) lack of in[ % ]

tegration with OS and network features. Section 5.3 describ
demultiplexing optimizations we have developed to increas(__) STANPARD INTERFACE (CO)STANDARD LANGUAGE MAPPING
ORB scalability. O ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

The paper is organized as follows: Section 2 outlines, )

the CORBA ORB reference model; Section 3 describes oif9ure 1: Componentsin the CORBA 2.x Reference Model
CORBAJ/ATM testbed and experimental methods; Section
presents the key sources of latency and scalability overhea
conventional CORBA ORBs over ATM networks; Section Elient: This program entity performs application tasks by

describes our research on developing optimizations that eliptitaining object references to objects and invoking opera-
nate the latency and scalability bottlenecks in CORBA ORB®&ns on them. Objects can be remote or collocated rela-
Section 6 describes related work; and Section 7 presents ¢wme-to the client. Ideally, accessing a remote object should
cluding remarks. be as simple as calling an operation on a local objeet,

4
Bqﬁlent in the CORBA reference model is outlined below:



object —operation(args) . Figure 1 shows the under-Dynamic Invocation Interface (DIl): The DIl allows
lying components described below that ORBs use to transaliénts to generate requests at run-time. This flexibility is
remote operation requests transparently from client to objeaseful when an application has no compile-time knowledge
of the interface it accesses. The DIl also allows clients to
Object: In CORBA, an object is an instance of an Interfag@akedeferred synchronousalls, which decouple the request
Definition Language (IDL) interface. The object is identifiegng response portions of twoway operations to avoid blocking
by an object referencewhich uniquely names that instancene client until the servant responds. In contrast, in CORBA

across servers. A@bjectldassociates an object with its serz x sj| stubs only suppotwoway i.e., request/response, and

vantimplementation, and is unique within the scope of an Qknewayi.e., request-only operatiors.

ject Adapter. Over its lifetime, an object has one or more ser- i .

vants associated with it that implement its interface. Dynamic Skeleton Interface (DSI): The DSl is the server's
analogue to the client’s DIl. The DSl allows an ORB to deliver

Servant: This component implements the operations deequests to servants that have no compile-time knowledge of
fined by an OMG Interface Definition Language (IDL) inthe IDL interface they implement. Clients making requests
terface. In languages like C++ and Java that support objgtted not know whether the server ORB uses static skeletons or
oriented (OO) programming, servants are implemented dgnamic skeletons. Likewise, servers need not know if clients
ing one or more class instances. In non-O0 languages, lilge the DIl or SlI to invoke requests.

C, servants are typically implemented using functions a ‘ect Adapterr An Obiect Adapter associates a servant
struct s. A client never interacts with a servant directly, by ) prer: ) P

alwavs throuah an obiect with objects, demultiplexes incoming requests to the servant,
y 9 Ject. and collaborates with the IDL skeleton to dispatch the appro-

ORB Core: When a client invokes an operation on an offriate operation upcall on that servant. CORBA 2.2 porta-

ject, the ORB Core is responsible for delivering the requestijty €nhancements [2] define the Portable Object Adapter
the object and returning a response, if any, to the client. KBOA), which supports multiple nested POAs per ORB. Ob-
objects executing remotely, a CORBA-compliant ORB Colgct Adapters enable ORBs to support various types of ser-
communicates via a version of the General Inter-ORB ProMtnts that possess similar requirements. This de§|gn results in
col (GIOP), most commonly the Interet Inter-ORB Protoc8| Smaller and simpler ORB that can support a wide range of
(IIOP), which runs atop the TCP transport protocol. An oRfbiect granularities, lifetimes, policies, implementation styles,

Core is typically implemented as a run-time library linked int@"d Other properties.

both client and server applications. Interface Repository: The Interface Repository provides

) . . ._run-time information about IDL interfaces. Using this infor-
ORB Interface_. An ORB is an abstraction that can be Imfnation, it is possible for a program to encounter an object
plemented various ways,g, one or more processes or a s

¢ librari To d | licati ¢ ol ati %hose interface was not known when the program was com-
ot libranes. - 10 decouple applications from implementat led, yet, be able to determine what operations are valid on the
details, the CORBA specification defines an interface to

ORB. This ORB interface provides standard operations t

?gect and make invocations on it. In addition, the Interface
AT : pository provides a common location to store additional in-
(1) initialize and shutdown the ORB, (2) convert object re or

. . mation associated with interfaces to CORBA objects, such
erences to strings and back, and (3) create argument lists

requests made through tdgnamic invocation interfag®ll). a?’fype libraries for stubs and skeletons.

Implementation Repository: The Implementation Reposi-
OMG IDL Stubs and Skeletons: IDL stubs and skeletonstory [12] contains information that allows an ORB to activate
serve as a “glue” between the client and servants, respectivedyyers to process servants. Most of the information in the Im-
and the ORB. Stubs provide a strongly-typstitic invoca- plementation Repository is specific to an ORB or OS environ-
tion interface(Sll) that marshals application parameters intorfent. In addition, the Implementation Repository provides a
common data-level representation. Conversely, skeletons glimmon location to store information associated with servers,

marshal the data-level representation back into typed paragigch as administrative control, resource allocation, security,
ters that are meaningful to an application. and activation modes.

IDL Compiler:  An IDL compiler automatically transforms The use of CORBA as communication middleware en-
OMG IDL definitions into an application programming lanhances application flexibility and portability by automating
guage like C++ or Java. In addition to providing prograncommon network programming tasks such as object location,
ming Ianguage transparency, IDL F;ompilers e"minate- com 1The OMG has standardized an asynchronous method invocation interface
mon sqgrces of network progra_mmlng. error,s and prowde Qrpt'he Messaging specification [11], which will appear in CORBA 3.0.
portunities for automated compiler optimizations [10].
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object activation, and parameter marshaling. CORBA is

( h ((Servants
improvement over conventional procedural RPC middlewe . @ @ Object Adapter
Co C, .. G,

H4371NA3IHIS

like OSF DCE since it supports object-oriented language fé
tures and more flexible communication mechanisms bey(
standard request/response RPC.

Object-oriented language features supported by COR 8! Requests
include encapsulation, interface inheritance, parameteri ) 1/0 SUBSY STEM
types, and exception handling. The flexible communicatic Client Yy,

mechanisms supported by CORBA include its dynamic invo- [
B —{X—8,

JNILNNY

(]

cation capabilities and object refereAgarameters that sup-
port distributed callbacks and peer-to-peer communication:

These features enable complex distributed and concurrent aﬁ ATM Switch
plications to be developed more rapidly and correctly. Ultra 2 Ultra 2

The primary drawback to using middleware like CORBA is
its pOtF:‘T‘“a' for Io_wer throughput, higher Iatency, and lack gigure 2: ATM Testbed for ORB Endsystem Performance Ex-
scalability over high-speed networks. Conventional COR riments
ORBs have not been optimized significantly. In general, O
performance has not generally been an issue on low-speed net-
works, where middleware overhead is often masked by sl@\2 Traffic Generators
link speeds. On high-speed networks, however, this overhead
becomes a significant factor that limits communication perféur earlier studies [5, 6, 7] tested bulk data performance using

mance and ultimately limits adoption of CORBA by developflooding models” that transferred untyped bytestream data, as
ers. well as richly typed data between hosts using several CORBA

ORBs and lower-level mechanisms like sockets. On the client-

side, these experiments measured the static invocation inter-
3 CORBA/ATM Testbed and Experi- face (Sll) and the dynamic invocation interface (DII) provided

by the CORBA ORBs.

mental Methods The SlI allows a client to invoke a remote operation via

%tsatic stubs generated by a OMG IDL compiler. The Sll is
useful when client applications know the interface offered by
the server at compile-time. In contrast, the DIl allows a client
to access the underlying request mechanisms provided by an
3.1 Hardware and Software Platforms ORB directly. The DIl is useful when the applications do not

. . . . _. know the interf ffer h rver until run-time.
Our experimental ATM/CORBA testbed is depicted in Fig- owthe tg ace offered by t € serveru tl run-time .

; . . . The experiments conducted for this paper extend our earlier
ure 2. The experiments in this section were conducted us-

ing a FORE systems ASX-1000 ATM switch connected 0roughpu'f studies by measuring end-to-end latency incurred

two dual-processor UltraSPARC-2s running SunOS 5.5.1. 'ﬁ%réen invoking operations W'th arange of data types and sizes
n remote servant(s). In addition, we measure CORBA scal-

ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Eac?‘bility by determining the demultiplexing overhead incurred

UltraSparc-2 contains two 168 MHz Super SPARC CPUs W@v]wen increasing the number of servants in an endsystem server
a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP PO cess 9 y
tocol stack is implemented using the STREAMS communica: '

tion framework. Each UltraSPARC-2 has 256 mbytes of RAM Traffic for the latency experiment was generated and con-

and an ENI-L55s-MF ATM adaptor card, which supports 15 oY &1 Baiancect woicn o FEeP B3k TIER © &
Megabits per-sec (Mbps) SONET multimode fiber. The MaX-B/IP and UDP/IP networks. We extended TTCP to handle

imum Transmission Unit (MTU) on the ENI ATM adaptor is . . .
9,180 bytes. Each ENI card has 512 Kbytes of on-board me peway and twoway operations for Orbix 2.1 and VisiBroker

ory. A maximum of 32 Kbytes is allotted per ATM virtual™ _

circuit connection for receiving and transmitting frames (for aThe flow of control is uni-directional in oneway operations

total of 64 K). This allows up to eight switched virtual connecf"—nd t-h.e le? ntcan pr?ceeq in parallel W.'th the server. CORBA
tions per card. specifies “best-effort” delivery semantics for oneway opera-

tions; no application-level acknowledgment is passed back to
2An object referencainiquely identifies a servant residing on a server. the requester. Both Orbix and VisiBroker use TCP/IP to trans-

This section describes our CORBA/ATM testbed and outlin
our experimental methods.




mit oneway operations. ¢ Data buffer size For the latency measurements, the sender
In twoway operations, the flow of control is bi-directionalransmits parameter units of a specific data type incremented

After each twoway operation is invoked, the client blocks ui powers of two, ranging from 1 to 1,024. Thus, &forts

til an acknowledgment is receiveide., the operation returns.(which are two bytes on SPARCs), the sender buffers ranged

In our experiments, we defined twoway operations to retdram 2 bytes to 2,048 bytes. In addition, we measured the la-

“void ,” thereby minimizing the size of the acknowledgmenency of remote operation invocations that had no parameters.

from the server. - i th e Number of servants Increasing the number of servants on
we measured rqund-trlp atency usmg.t € “NOWaY CORBfe server increases the demultiplexing effort required to dis-

" i ope_rat|on late,%Ynt the latency overhead in this demultiplexing process, and
In addition, we measured operation transfers using fOHOW'ﬂQevaluate the scalability of CORBA implementations, our ex-

data types: primitive typessfort , char , long , octet , o iments used a range of servants (1, 100, 200, 300, 400, and
double )and a C++struct composed of all the pr|m|t|ve5500) on the server.

(BinStruct ). The CORBA ORBs transferred the data types

using IDL sequences , which are dynamically-sized arrays.

The following OMG IDL interface was used by the CORBA3 4 Profiling Tools
ORBs for the latency tests reported in this paper:

struct BinStruct{ short s; char c; long |; Detailed timing measurements used to compute latency were

. octet o; double d; } made with thegethrtime  system call available on SunOS

interface ttcp_sequence . . .

{ 5.5. This system call uses the SunOS 5.5 high-resolution
typedef sequence<BinStruct> StructSeq; timer, which expresses time in nanoseconds from an arbitrary
typedef sequence<octet> OctetSed; time in the past. The time returned lpgthrtime s very
/I Routines to send sequences of various data types accurate since it does not drift.
xg:g ggzggtg‘;tg:c?_—zzv‘\’yg’ ((I:r? ggt‘éféigq n‘é;%ig()l;)’ The profile information for the empirical analysis was ob-
void sendNoParams_2way(); tained using th&Quantify  [17] performance measurement
void sendNoParams_1lway(); tool. Quantify  analyzes performance bottlenecks and iden-

i tifies sections of code that dominate execution time. Un-

like traditional sampling-based profilers (such as the UNIX

3.3 TTCP Parameter Settings gprof tool), Quantify reports results without including its

own overhead. In additiorQuantify measures the over-
Related work [14, 15, 16, 7] on transport protocol performanigead of system calls and third-party libraries without requiring
over ATM demonstrate the performance impact of parametagsess to source code.
such as the size of socket queues, data buffers, and number
of seryants in a server. Therefore, our TTCP benchmarks ¥ Operation Invocation Strategies
tematically varied these parameters for each type of data as
follows: One source of latency incurred by CORBA ORBs in high-
speed networks involves theperation invocation strategy
» Socket queue size The sender and receiver socket quedgjs strategy determines whether the requests are invoked via
sizes used were 64 K bytes, which is the maximum on SUn@g static or dynamic interfaces and whether the client expects
5.5. These parameters influence the size of the TCP segmgmisponse from the server. In our experiments, we measured
window, which has been shown [16] to significantly affeghe following operation invocation strategies defined by the

CORBA-level and TCP-level performance on high-speed neloRrBA specification, which are shown in Figure 3.
works.
e Oneway static invocation The client uses the Sl stubs

e TCP “No Delay” option Since the request sizes for ougenerated by the OMG IDL compiler for the oneway opera-
tests are relatively small, tHECP.NODELAYoption is set on tions defined in the IDL interface, as shown in Figure 3 (A).
the client S'(,je' W'thOUt th§¢P‘NODEL€‘\Opt'9n’ the client e Oneway dynamic invocation The client uses the DIl to
uses Nagel's algorithm, which buffers “small” requests ungl

the preceding small request is acknowledged. On high—speugOI a request at run-time and uses the CO juest

E ke th hown in Fi B
networks the use of Nagel's algorithm can increase latency S’r%ss to make the requests, as shown in Figure 3 (B).
necessarily. Since this paper focuses on measuring the latentwoway static invocation The client uses the static invo-
of small requests, we enabled tR€P.NODELAYoption to cation interface (Sll) stubs for twoway operations defined in

send packets immediately. IDL interfaces, as shown in Figure 3 (C).



SERVANT CLIENT SERVANT

o in_args IDL o in_args IDL
operation() [skeLETON operation() (sKELETON

(A) oneway static invocation (B) oneway dynamic invocation

CLIENT SERVANT CLIENT SERVANT

O in_args o in_args
IDL | gperation() | IDL operation() | IDL
STUBS ) o SKELETON o SKELETON
out args + return value out args + return value
(C) twoway static invocation (D) twoway dynamic invocation

Figure 3: CORBA Operation Invocation Strategies

e Twoway dynamic invocation The client uses the dynamic
invocation interface (DII) to make the requests, but blocks un-
til the call returns from the server, as shown in Figure 3 (D).

We measured the average latency for 100 client requests for
groups of 1, 100, 200, 300, 400, and 500 servants on the server

In every request, we invoked the same operation. We restricted ‘g % %
the number of requests per servant to 100 since neither Orbix E g g LAYERED
nor VisiBroker could handle a larger numbers of requests with- =HIl= g DEMUXING
out crashing, as described in Section 4.4. comxto ot L2
OPERATION
) ] ) (sx'i:)f 1) (sxl:a)f 2) b QKEL M)
3.6 Servant Demultiplexing Strategies 5: DEMUX TO [ I ]

SKELETON :
Another source of overhead incurred by CORBA ORBs in- (SERVANT 1) GERVANT 2) e GERVANT N)
volves the time the Object Adapter spends demultiplexing re- 4:DEMUX To
. . SERVANT

quests to servants. The type of demultiplexing strategy used (OBJECT AD APTER)
by an ORB significantly affects its scalability. Scalability is  3:pgmux T0 |
important for applications ranging from enterprise-wide net- = OBJECT ADAPTER
work management systems, with agents containing a poten-
tially large number of servants on each ORB endsystem, to
real-time avionics mission computers, which must support
real-time scheduling and dispatching of periodic processing 1:pemux THru
operations. PROTOCOL STACK

A standard GIOP-compliant client request contains the
identity of its remote object and remote operation. A remote Figure 4: Layered CORBA Request Demultiplexing
object is represented by an Object Kegtet sequence
and a remote operation is represented sginag . Conven-
tional ORBs demultiplex client requests to the appropriate op-
eration of the servantimplementation using lgneered demul-
tiplexingarchitecture shown in Figure 4. These steps perform
the following tasks:

2:DEMUX TO
1/O HANDLE

OS KERNEL

0S 1/0 SUBSYSTEM




Steps 1 and 2: The OS protocol stack demultiplexes the in3.7 Request Invocation Algorithms
coming client request multiple times,g, through the data . . .
link, network, and transport layers up to the user/kernel bouJ&]-e exp'erlments condugted for this paper use four d|fr§arent
request invocation algorithms on the client-side. Each invo-
ary and the ORB Core. : . . .
~_cation algorithm evaluates the merits of the server-side Ob-
Steps 3, 4, and 5: The ORB Core uses the addressing ifect Adapter’s strategy for demultiplexing incoming client re-
formation in the client’s Object Key to locate the appropriaigiests. The experiments conducted for the Orbix 2.1 and Vis-
Object Adapter, servant, and the skeleton of the target IDL gBroker 2.0 ORBs use thequest trainandround robininvo-

eration. cation algorithms described below.

Step 6: The IDL skeleton locates the appropriate operation,Section 5 describes how we applied active demultiplexing

demarshals the request buffer into operation parameters, 8@ Perfect hashing to optimized demultiplexing in our high-
performs the operation upcall. performance, real-time ORB called TAO [22, 21]. To testthese

strategies, we developed two additional request invocation al-

However, |ayered demu|tip|exing is genera”y inappropria@fithms calledandom invocatiomndworst-case inVOCﬁtiqn

for high-performance and real-time applications for the fdiespectively. These algorithms are used to evaluate the pre-
lowing reasons [18]: dictability, consistency, and scalability properties of TAO's
. . . demultiplexing strategies, and to compare their performance
Decreased eff!mency:. Layered demulUpngmg reduces PEMith the worst-case performance of linear-search demultiplex-
formance by Increasing thg ”””.‘bef of internal tables tl?ﬁg All the four invocation algorithms are described below.
must be searched as incoming client requests ascend through

the processing layers in an ORB endsystem. Demultiplexi . . .

client requests through all these layers is expensive, partigl%-'l The Request Train Invocation Algorithm

larly when a large number of operations appear in an IDL i@ne way to optimize demultiplexing overhead is to have the
terface and/or a large number of servants are managed bygfect Adapter cache recently accessed servants. Caching
Object Adapter. is particularly useful if client operations arrive in “request
Increased priority inversion and non-determinism: Lay- trains,” where a server receives a series of requests for the

ered demultiplexing can cause priority inversions becalf@me servant. By caching information about a servant, the
servant-level quality of service (QoS) information is inacce€rver can reduce the overhead of locating the servant for ev-
sible to the lowest-level device drivers and protocol stacks&F INcoming request.

the 1/0 subsystem of an ORB endsystem. Therefore, an ObI0 determine if caching was used, and to measure its ef-
ject Adapter may demultiplex packets according to their FIFECtiveness, we devised the following request invocation algo-
order of arrival. FIFO demultiplexing can cause higher prioithm:

ity packets to wait for an indeterminate period of time while const int MAXITER = 100;

lower priority packets are demultiplexed and dispatched [19]. long sum = 0:
Conventional implementations of CORBA incur significant "rofile_Timer timer; // Begin timing.
demultiplexing overhead. For instance, [5, 20] show that con- for (int j = 0; j < num_servants; j++){

ventional ORBs spene17% of the total server time process- ~ for (int i = 0; i < MAXITER; i++) { .
/I Use one of the 2 invocation strategies

ing demultiplexing requests. Unless this overhead is reduced /I to call the send() operation on servant #
and demultiplexing is performed predictably, ORBs cannot /I at the server... _

provide uniform, scalable QoS guarantees to real-time appli- , ™ += timer.current_time ()

cations.

}
Prior work [21] analyzed the impact of various IDL skele- avg_latency = sum / (MAXITER * num_servants);

ton demultiplexing techniques such as linear search and difeis algorithm does not change the destination servant until
demultiplexing. However, in many applications the nUmbgfAX|TERrequests are performed. If a server is caching in-
of operations defined per-IDL interface is relatively small aRgrmation about recently accessed servants, the request train
static, compared to the number of potential servants, whigyorithm should elicit different performance characteristics

can be quite large and dynamic. ~ than the round robin algorithm described next.
To evaluate the scalability of the CORBA ORBs in this pa-

per, we varied the number of servants residing in the seryes
process from 1 to 500, by increments of 100. The server used’
the sharedactivation mode, where all servants on the servier this scheme, the client invokes theend operation

are managed by the same process. MAXITER times on a different object reference. This al-

2 The Round Robin Invocation Algorithm



gorithm is used to evaluate how predictable, consistent, and CLIENT SERVER

scalable is the demultiplexing technique used by the Object ) )
Adapter. The round robin algorithm is defined as follows: o Ay MeTaoD
const int MAXITER = 100; b
long sum = 0 . s
Profile_Timer timer; // Begin timing. ARSHALLING DEMARSHALLING AND
for (int i = 0; i < MAXITER; i++){ ) pempmmERe |
for (int j = 0; j < num_servants; j++) {
/I Use one of the 2 invocation strategies
/I to call the send() operation on servant_#j & o & o
/I at the server... FRAMING, ERROR FRAMING, ERROR
sum += timer.current_time (); CHECKING AND CHECKING AND
} INTEROPERABILITY INTEROPERABILITY
avg_latency = sum / (MAXITER * num_servants);
7 s Y
3.7.3 Random Invocation Algorithm OS LEVEL 0S LEVEL
The random invocation algorithm is different than the round g b g
robin algorithm since requests are made on a randomly choser
object reference for a randomly chosen operation as shownO NETWORK O
below:

Figure 5: General Path of CORBA Requests
const int MAXITER = 100;

long sum = 0;

Profile_Timer timer; // Begin timing. }
for (int i = 0; i < num_servants; i++) { avg_latency = sum / (MAXITER * num_servants);
for (int j = 0; j < NUM_OPERATIONS; j++) {
/I choose a servant at random from : :
I the set [0, NUM_SERVANTS - 1]; The purpose of 'thIS ;cheme is to compare the performance of
Il choose an operation at random from different demultiplexing schemes with that of the worst-case
/I"  the set [0, NUM_OPERATIONS - 1J; behavior depicted by a linear-search based scheme.

/I invoke the operation on that servant;

}

avg_latency = sum / (MAXITER * num_servants);

4 Performance Results for CORBA

The pattern of requests generated by this scheme is dif- Latency and Scalability over ATM

ferent from the well-defined pattern of requests made by the

round robin algorithm.  The random invocation algorithm igyis section presents the performance results from our latency

thus better suited to test the predictability, scalability, and cQfiq scalability experiments. Sections 4.1 and 4.2 describe the

sistency properties of the demultiplexing techniques used @ik hox experiments that measure end-to-end communica-

the round robin Invocation algorithm. tion delay from client requester to a range of servants using
a variety of types and sizes of data. Section 4.3 describes

3.7.4  Worst-case Invocation Algorithm a whitebox empirical analysis usir@uantify  to precisely

In this scheme, we choose the last operation of the last é’é'PPO"?‘ the overheads that yield these results. Our measure-
vant. The algorithm for sending the worse-case client requ nts include the overhead imposed by all the layers shown in

is shown below: igure 5.

const int MAXITER = 100;
4.1 Blackbox Results for Parameterless Opera-

long sum = 0;

Profile_Timer timer; // Begin timing. tions
f0ff (int(_it=_ 0; (i) < numUSMer\gSERi;%éNs 4 ¢ In this section, we describe the results for invoking parameter-
or (int ] =0; ] < | L . . . ..
JI invoke the last operation on the Igss operat!ons using the round robin and request train invoca-
Il last servant tion strategies.



4.1.1 Latency and Scalability of Parameterless Opera-
tions

Figures 6 and 7 depict the average latency for the parameter-
less operations using the request train variation of our request
invocation algorithm. Likewise, Figures 8 and 9 depict the av- 100
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erage latency for invoking parameterless operations using the 3.0 - .
round robin algorithm. 20 - ]

These figures reveal that the results for the request train ex- ol 1
periment and the round robin experiment are essentially iden- ™ ﬂ ﬂ ﬂ ﬂ ﬂ I
tical. Thus, it appears that neither ORB supports caching of %0 1-ob  100-objs 200-objs_300-objs 400-objs 500-obis
servants. As a result, the remainder of our tests just use the Invocation policy
round robin algorithm.

Twoyvgy latency The flgures Hllustrate that the performancEigure 9: VisiBroker: Latency for Sending Parameterless Op-
of VisiBroker was relatively constant for twoway latency. In

contrast, Orbix’s latency grew as the number of servants ?n@t'on using round robin Requests
creased. The rate of increase was approximately 1.12 times
for every 100 additional servants on the server.

We identified the problem with Orbix by usinguss

which is a Solaris tool for tracing the system calls at run-



time. When Orbix 2.1 is run over ATM networks, it opens In contrast, the twoway latency does not incur this flow con-
a new TCP connection (and thus a new socket descriptor)tfai overhead since the sender blocks for a response after every
every object referenceThis behavior has the following con-request.

sequences. Figure 10 compares the twoway latencies obtained for send-

e Increased demultiplexing overhead Opening a new ing parameterless operations for Orbix and VisiBroker with
socket connection for each object reference degradfeat of a low-level C++ implementation that uses sockets di-
latency significantly since the OS kernel must searegctly. The twoway latency comparison reveals that the Visi-
the socket endpoint table to determine which descriptor
should receive the data.

¢ Limited scalability— As the number of servants grew, all
the available descriptors on the client and server were ex-
hausted. We used the UNIXlimit command to in-
crease the number of descriptors to 1,024, which is the
maximum supported per-process on SunOS 5.5 without
reconfiguring the kernel. Thus, we were limited to ap-
proximately 1,000 object references per-server process
on Orbix over ATM.

15

10

Latency in msec

o
3

0.0

In contrast, VisiBroker did not create socket descriptors
for every object reference. Instead, a single connection and I N oker
socket descriptor were shared by all object references in the e
client. Likewise, a single connection and socket descriptor
were shared by all servant implementations in the server. This,
combined with its hashing-based demultiplexing scheme {51 er and Orbix versions perform only 50% and 46% as well
locating servants and operations, significantly reduces latengyine c++ version, respectively.
In addition, we were able to obtain object references for more
than 1,000 servants.

Figure 10: Comparison of Twoway Latencies

. _ _ 4.1.2 Summary of Results for Parameterless Operations
Oneway latency The figures illustrate that for VisiBroker,

the oneway latency remains nearly constant as the number ¢ Neither Orbix nor VisiBroker caches recently accessed
servants on the server increase. In contrast, Orbix’s latency Object references in the Object Adapter. As a result, the
grows as the number of servants increase. latency for. the request train and round robin cases are

Figures 6 and 8 reveal an interesting case with Orbix's Nnearly equivalent.
oneway latency. The oneway SlI and DIl latencies remaine Oneway latencies for VisiBroker remained relatively con-
slightly less than their corresponding twoway latencies until stant as the number of servants increase on the server.
200 servants on the server. Beyond this, the oneway latencies However, the oneway latency for Orbix increases linearly
exceed their corresponding twoway latencies. as the number of servants grow.

The reason for Orbix’s behavior is that it opens a new TCP, 5e\yay [atencies for Orbix exceed their corresponding
connection (and allocate a new socket descriptor) for every twoway latencies beyond 200 servants on the server. This
object reference. Since _the oneway calls do not involve any s due to the flow control mechanism used by the under-
server response to the c_Ilent,l the cllgnt can send requests Wlth- lying TCP transport protocol to throttle the fast sender.
out blocking. As explained in Section 4.3.3, the receiver is ) ) )
unable to keep pace with the sender due to the large number & TWOWay latency for VisiBroker remains relatively con-
open TCP connections and inefficient demultiplexing strate- Stant as the number of servants increases. This is due
gies. Consequently, the underlying transport protocol, TCP in 0 the efficient demultiplexing based on hashing used by
this case, must invoke flow control techniques to slow down ViSiBroker. Moreover, unlike Orbix, VisiBroker does not
the sender. As the number of servants increase, this flow con- P€n & new connection for every object reference.
trol overhead becomes dominant, which increases oneway la» Twoway latency for Orbix increases linearly at a rate of
tency. ~1.12 per 100 servant increment. As explained earlier,

SInterestingly, when the Orbix client is run over Ethernet it only uses a this stems from Orbix's inefficient demultiplexing strat-

single socket on the client, regardless of the number of servants in the server €9Y and the fact that it opens TCP connection per object
process. reference.

10



e Twoway DIl latency in VisiBroker is comparable to its
twoway SlI latency. This is due to its reuse of DIl re-
quests, thereby only creating the request once.

e Twoway DIl latency in Orbix is~2.6 times that of its o—e T object

=——a 100 objects

twoway Sl latency. In Orbix DIl, a new request must be 100 | 200 objects
. . A— 300 objects
created per invocatioh.

¥——¥ 400 objects
+——+ 500 objects

e Twoway DIl latency for Orbix is always greater than its

Latency in msec

twoway SlI latency, whereas for VisiBroker they are com- 080

parable. The reasons is that Orbix creates a new request - —

for every DIl invocation. In contrast, VisiBroker recycles

the requeSt 0'00040 206,0 40‘040 606,0 80‘040 100‘040 1260,0 140‘040

Units of Data type sent

4.2 Blackbox Results for Parameter PassingFigure 11: Orbix Latency for Sending Octets Using Oneway
Operations Sl

In this section, we describe the results for invoking parame-
ter passing operations using the round robin and request train
invocation strategies.

4.2.1 Latency and Scalability of Parameter Passing Op- o= 1 object

=——a 100 objects
1 200 objects

1.00 -
eratlonS 4—a 300 objects
¥——¥ 400 objects
+——* 500 objects

Figures 11 through 18 depict the average latency for sending
richly-typedstruct data and untypedctet data using (1) |
the oneway operation invocation strategies (described in Sec- '

tion 3.5) and (2) varying the number of servants (described :%
in Section 3.6). Similarly, Figures 19 through 26 depict the )
average latency for sending richly-typsttuct — data and *00 2000 400 8000 8000 10000 12000 14000

untypedoctet for twoway operations. These figures reveal *

that as the sender buffer size increases, the marshalinglgi gire 12: VisiBroker Latency for Sending Octets Using
data copying overhead also grows [5, 6], thereby increas eway Sli

latency. These results demonstrate the benefit of using more
efficient buffer management techniques and highly optimized
stubs [10] to reduce the presentation conversion and data copy-
ing overhead.

Latency in msec

1.50 -

Oneway latency The oneway SllI latencies for Orbix and
VisiBroker foroctets  are comparable. However, as depicted el nbeats
in Figures 12 through 16, due to inefficient internal buffering I L Z0otiects
strategies, there is substantial variance in latency. This jitter is T {0 otieas
generally unacceptable for real-time systems that require pre-
dictable behavior [4].

The Orbix DIl latency foroctets is nearly double the la-
tency for VisiBroker. The oneway SlI latencies for Orbix and
VisiBroker for BinStructs ~ are comparable. However, the 000 e
oneway DII latency for Orbix increases rapidly compared to O et e st 0 14000
that of VisiBroker. For 500 servants, the Orbix oneway DII

latency forBinStructs _ is ~5.6 times that of VisiBroker.  gigyre 13: Orbix Latency for Sending Octets Using Oneway
4The CORBA 2.0 specification does not dictate whether a new DI requ

should be created for each request, so an ORB may chose to use either ap-
proach.
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Figure 14: VisiBroker Latency for Sending Octets UsinBigure 17
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Figure 20: VisiBroker Latency for Sending Octets UsinBigure 23: Orbix Latency for Sending Structs Using Twoway
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200.0

the size of the request. This is due to the increased pa-
— T rameter marshaling overhead.
=——a 100 objects

200 objects ¢ VisiBroker exhibits relatively low, constant latency as the
150.0 | 4 300 objects | T i i i

v 400 objects number of servants increase, due to its use of hashing-
e ek based demultiplexing for servants and IDL skeletons at
10007 ] the receiver. In contrast, Orbix exhibits linear increases
in latency based on the number of servants and the num-
500 | ] ber of operationsin an IDL interface. This behavior stems
from Orbix’s use of linear search at the TCP/socket layer
since it opens a connection per object reference. In addi-
tion, it also uses linear search to locate servant operations
in its IDL skeletons.

Figure 26: VisiBroker Latency for Sending Structs Using e The DIl performs consistently worse than Sll. For
Twoway DII twoway Orbix operations the DIl performs 3 times worse
for octets and 14 times worse fdinStructs . For
VisiBroker the DIl performs comparable farctets
and~4 times worse foBinStructs ).

Latency in msec

0.0 \ . . . . . .
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

Twoway latency Figures 19 through 26 reveal that the
twoway latency for Orbix increases as (1) the number of ser- .
vants and (2) the sender buffer sizes increase. In contrast, for Since Orbix does not reuse the DIl requests, the D! la-
VisiBroker the latency increases only with the size of sender te€ncy for Orbix incurs additional overhead. However,
buffers. Figures 23 through 26 also reveal that the latency for POth Orbix and VisiBroker must populate the request
the Orbix twoway SlI case at 1,024 data unitSBaiStruct with parameters. This involves marshaling and demar-
is almost 1.2 times that for VisiBroker. shaling the parameters. The marshaling overhead for
Similarly, the latency for the Orbix twoway DIl case at ~ BinStructs s more significant than that farctets
1,024 data units oBinStruct  is almost 4.5 times that for ~ AS @ result, the DIl latency foBinStructs  is worse
VisiBroker. In addition, the figures reveal that for Orbix, Compared to that ajctets
the latency increases as the number of servants increase. As
shown in 4.3, this is due to the inefficient demultiplexing stra.3  Whitebox Analysis of Latency and Scalabil-
egy used by Orbix. For VisiBroker, the latency remains unaf- ity Overhead
fected as the number of servants increases.
Orbix incurs higher latencies than VisiBroker due to (ﬁections 4.1 and 4.2 presented the results of our blackbox
the additional overhead stemming from the inability of ORerformance experiments. These results demet the two
bix DII to reuse requests and (2) the presentation layer ov@RBs perform. However, the blackbox tests do not explain
head of marshaling and demarshaling B@Structs . whythere are differences in performance,, they do not re-
These sources of overhead reduce the receiver’s performateal thesourceof the latency and scalability overheads.

thereby triggering the flow control mechanisms of the trans- T his section presents the results of whitebox profiling that
port protocol, which impede the sender’s progress. illustrate why the two ORBs performed differently. We ana-

) o ) _lyze theQuantify  results on sources of latency and scala-
[5, 6] precisely pinpoint the marshaling and data copyifity overhead in the two ORBs to help explain the variation
overheads when transferring richly-typed data using Sl apgorted in Section 4. The performance results reported in this
DII. The latency for sendingctets is much less than thatgection motivated the latency and scalability optimizations ap-
for BinStructs  due to significantly lower overhead of Preplied to our TAO ORB in Section 5.
sentation layer conversions. Section 4.3 presents our analysiisigureS 27 and 28 show how Orbix and VisiBroker imple-
of theQuantify  results for sources of overhead thatincreaﬁgem the generic SlI request path shown in Figure 5. Per-
the latency of client request processing. centages at the side of each figure indicate the contribution to
the total processing time for a call to teendStructSeq
4.2.2 Summary of Latency and Scalability Results for method, which was used to perform the operation for sending
CORBA Parameter Passing Operations sequences d@inStructs .5 The DIl request path is similar
{&the Sl path, except that clients create requests at run-time

The following summarizes the latency results for parame : ;
g y P rather than using the stubs generated by the IDL compiler.

passing operations described above:

. o ) ) . 5The percentages in the figures do not add up to 100 since the overhead of
e Latency for Orbix and VisiBroker increases linearly witlhe OS and network devices are omitted.
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Figure 28: Request Path Through VisiBroker Sender and Re-

Figure 27: Request Path Through Orbix Sender and Receseier for Sl
for Sl

4.3.2 VisiBroker Sll Request Flow Overhead

4.3.1 Orbix SIl Request Flow Overhead In Figure 28, the VisiBroker sender invokes the stub for the
sendStructSeq  method defined by thigcp _sequence
class. The request passes through #end methods

In Figure 27, the Orbix sender invokes the stub for tled the CORBA::Object and thePMCStubinfo classes.

ttcp _sequence::sendStructSeq method. The re- Finally, the request passes through the methods of the

qguest traverses through thavoke and thesend rou- PMCIIOPStream class. This class implements the Internet
tines of the CORBARequest class and ends up in thdnter-ORB Protocol (IIOP), which specifies a standard com-

OrbixChannel class. At this point, it is handled by a spemunication protocol between servants on different heteroge-

cialized classQrbixTCPChannel , which uses the TCP/IPneous hosts. The IIOP implementation writes to the underly-

protocol for communication. ing socket descriptor.

Pn the receiver, the 1IOP implementation reads the packet

'On the receiver, the request travgls through a se”.esu%ng methods of theMCIIOPStream class, which passes
dispatcher classes that locate the intended servant im € request to the Obiect Adapter. The Obiect Adanter de-
mentation and its associated IDL skeleton. Finally, the q J pter. ) P

ticp _sequence dispatch class demuliplexes the in_muluplexes the incoming request by identifying the skeleton

coming request to the appropriate servant and dispatche§‘|$t|§ ltcp _sequence::skeleton ). The skeleton ident-

sendStructSeq  method with the demarshaled parameteré?S the servant and makes an upgall tostbedStr uctSeq
method of thdtcp _sequence _i implementation class.

On the sender, most of the overhead is attributed to the OSOn the sender, 56% of the overhead is attributed to the OS
The Orbix version uses thwrite  system call which accountsand networking level. The rest of the overhead stems from
for 73% of the processing time, due primarily to protocol pranarshaling and data copying, which accounts 4@&2% of
cessing in the SunOS 5.5 kernel. The remaining overhead tt@processing time. On the receiver, the demarshaling and de-
be attributed to marshaling and data copying, which accoumsltiplexing layer accounts for almost 72% of the processing
for ~25% of the processing time. On the receiver, the demtme. VisiBroker spends most of its receiver processing de-
shaling layer accounts for almost 72% of the overhead, duarshaling the parameters. In addition, the incoming parame-
largely to the presentation layer conversion overhead incurtexs must travel through long chain of function calls (shown in

while demarshaling incoming parameters. Figure 28), which increases the overhead.
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Comm. | Request Analysis operation,~16% of its time searching the hash table to lo-
Cfigtr']tty T’N"";” v’\cr‘?ttzOd Name {“25265 75‘2’0 cate the right servant and its skeletenl0% of its time in
Yes it 1220 7388 writes , and~7% of its time inselect . Orbix opens a new
Server No stremp 3,010 | 21.97 socket descriptor for every object reference obtained by the
hashTable:: 2,178 15.90 client. Hence, to demultiplex incoming requests, Orbix must
lookup s T useselect to determine which socket descriptor is ready
‘;‘g:;ect ’332 g:;g for reading. Thewrites are used for flushing of buffers in-
hashTable: 70452 | 514 voked by the underlying flow-control mechanism of the trans-
hash port protocol.
Selecthandler:: 476 3.45
processSockets Sources of VisiBroker demultiplexing overhead Table 2
read 346 | 2.55 depicts the affect on latency and scalability of instan-
Yes Stomp E'E;g iégg tiating 500 servants and invoking 10 iterations of the
lookup ' ' sendNoParams _1way method per servant using VisiBro-
write 1,504 | 10.63 ker. The table reveals no significant difference between the
f}‘;‘;ﬁame_ 322 g-gi round robin and request train case. Teantify  analysis
hash - : for the VisiBroker version reveals that the server spentlS-
Selecthandler Z79 | 3.39 20% of its time in network writes;-5% inreads , and~22%
processSockets time demultiplexing requests.
read 372 | 2.63 VisiBroker's Object Adapter manages the internal tables

. o ~NCTransDict andNCOutTbl . These tables use a hash-
Table 1: Analysis of Servant Demultiplexing Overhead for Ofy5e(d table lookup strategy to demultiplex and dispatch in-

bix coming requests to their intended servants.

Comparison of Orbix and VisiBroker demultiplexing over-
The request flow path traced by Orbix and VisiBroker igead

very similar. VisiBroker uses the standard IIOP common data

representation (CDR) encoding as its native protocol for rep- VisiBroker opens one socket descriptor for all object ref-

resenting data types internally. In contrast Orbix uses a pro- erences in the same server process. In contrast, Orbix

prietary communication protocol based on ONC’s XDR. opens a new socket descriptor for every object reference
over networks (described in Section 4.1).

4.3.3 Servant Demultiplexing Overhead ¢ VisiBroker uses a hashing-based scheme to demultiplex
incoming requests to their servant. In contrast, although

Orbix also uses hashing to identify the servant, a different

socket is used for each servant. Therefore, the OS kernel
must search the list of open socket descriptors to identify

which one is enabled for reading.

To evaluate how the CORBA ORBs scale for endsystem
servers, we instantiated 1, 100, 200, 300, 400, and 500
servants on the server. The following discussion ana-
lyzes the server-side overhead for demultiplexing client re-
guests to servants. We analyze the performance of the
sendNoParams _1way method for 500 servants on the
server and 10 iterations. TkendNoParams _1way method - .
is chosen so that the demultiplexing overhead can be analy eﬂ Additional Impediments to CORBA Scala-

without being affected by the demarshaling overhead involved bility

with sending richly-typed data as shown in Sections 4.3.1 &mdaddition to servant demultiplexing overhead, both versions

4.3.2. of CORBA used in our experiments possessed other imped-
Sources of Orbix demultiplexing overhead Table 1 depicts iments to scalability. In particular, neither worked correctly
the latency and scalability impact of instantiating 500 sewxhen clients invoked a large number of operations on a large
vants and invoking 10 requests of sendNoParams _1way number of servants accessed via object references.
method per servant using OrbiQuantify — analysis reveals We were not able to measure latency for more thdn000
that the performance of both the round robin and the requssstvants since both ORBs crashed when we performed a large
train case is similar. In both cases, the client spends moshafber of requests 011,000 servants. As discussed in Sec-
its time performing network writes. tion 4.1, Orbix was unable to support more thah,000 ser-

The server spends22% of its time doingstrcmps used vants since it opened a separate TCP connection and allocated
for linearly searching the operation table to lookup the rightnew socket for each servant in the server process. Moreover,
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Comm. | Request Analysis (I Problem | Solution | Principle |
Entity Train Method Name msec % High overhead of C++inline Optimize for
Client No write 10,895 | 99.00 small, frequently hints common case
Yes write 10,992 99.00 called methods
Server No write 393 | 20.84 Lack of supportfor | C preprocessor Optimize for
~NCTransDict 138 731 aggressive inlining | macros common case
~NCClassInfoDict 138 731 Too many method SpecializeTypeCode Generic to
read 83 | 4.40 calls interpreter specialized
NCOutTbl _ 3 3.84 Expensive no-ops for| Insert a check and Eliminate
NCClassInfoDict 1] 375 deepfree of scalar | delete at top level waste
Yes write _ 275 | 15.32 types
~NCTransDict_ 138 | 7.67 Repetitive size and | Precompute size and Precompute
~NCClassinfoDict 138 | 767 alignment calculation| alignment info in extra and maintain
read 83| 461 of sequence element$ state inTypeCode extra state
NCOutTbl _ 3 4.03 Duplication of tasks | Use default parameters Pass info.
NCClassInfoDict [£! 3.93 between function solution and pass info. across layers
calls when appropriate
Table 2: Analysis of Servant Demultiplexing Overhead fgf Cache miss penalty | Spilit large interpreter Optimize
VisiBroker into specialized _ for cache
methods and outline
Inefficient lookup Use active de-layered Optimize
even though VisiBroker supportedl,000 servants, it could techniques ﬂggﬁ:&plexmg and perfec) 2@222}2'5“”9

not support more than 80 requests per servant without crashing
when the server had 1,000 servargs no more than a total of
80,000 requests could be handled by VisiBroker (this appears

to be caused by a memory leak). Clearly, these limitations are . .
not acceptable for mission-critical ORBS. ¢ Intra-ORB function calls Conventional ORBs suffer

from excessive intra-ORB function calls, as shown in Section
4.3. Minimizing intra-ORB function calls requires sophisti-
cated compiler optimizations such as integrated layer process-
ing [1].
The following summarizes the results of our findings of con- . ,

Dynamic invocation overhead DIl performance drops as

ventional ORB latency and scalability over high-speed n&t—Y"] . - "
works: the size of requests increases. To minimize the dynamic in-

vocation overhead, ORBs should reuse DIl requests and mini-
e Sender-side overhead Much of the sender-side overheaflize the marshaling and data copying required to populate the
resides in OS calls that send requests. Removing this overH€ggests with their parameters.
requires the use of optimal buffer manager and tuning differ-

ent parameters (such as socket queue lengths and flow control . L.
strategies) of the underlying transport protocol. Ig Technlques for O.p.tlmlzmg ORB La-
tency and Scalability

Table 3: Optimization Principles Applied in TAO

4.5 Summary of Performance Experiments

¢ Receiver-side overhead Much of the receiver-side over-
head occurs from inefficient demultiplexing and presentatigRe performance results reported in Section 3 reveal the la-
layer conversions (particularly for passing richly-typed daggéncy and scalability capabilities and limitations of conven-
like structs ). Eliminating the demultiplexing overhead retional ORBs. We have used these results to guide the devel-
quires de-layered strategies and fast, flexible message demgiiinent of a high-performance, real-time ORB, called TAO
plexing [23, 21]. Eliminating the presentation layer overhegeb 4]. This section gives an overview of TAO and explains
requires optimized stub generators [24, 10] for richly-typeghw the ORB optimization principles shown in Table 3 have
data. been applied systematically to improve its latency and scala-
e Demultiplexing overhead The Orbix demultiplexing per- bilty.

forms worse than VisiBroker demultiplexing since Orbix uses .

alinear search strategy basedsting  comparisons for op- 2-1  Overview of TAO

eratipn demultiplexing. In addition, duelto an open TCP cofagy is 4 high-performance, real-time ORB endsystem tar-
nection for every object reference, Orbix must use the UNKGoq for applications with deterministic and statistical QoS

event_demultiplexing caBeIect_ to determine which SOCketrequirements, as well as “best-effort” requirements. The TAO
descriptors are ready for reading.
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ORB endsystem contains the network interface, OS, commureemptive, priority-based connection and concurrency archi-
nication protocol, and CORBA-compliant middleware contecture to provide an efficient and predictable CORBA 11OP
ponents and features shown in Figure 29. TAO supports tiretocol engine [26].

Real-time 1/0 subsystem: TAQ's real-time 1/O subsystem
[19] extends support for CORBA into the OS. TAO'’s I/O sub-
system assigns priorities to real-time 1/O threads so that the
schedulability of application components and ORB endsystem
resources can be enforced.

in args
operation()

out args + return value

OBJECT
(SERVANT)

A\

RIDL
[ — y ORB RUSTIME SKELETON fREAL-nME] High-speed network interface: At the core of TAO's I/O

STUBS SCHEDULER ommcr subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [29]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
OS KERNEL planes, multi-processor shared memory environments, and In-
REAL-TIME 1o ternet protocols like TCP/IP.

OS KERNEL
SUBSYSTEM
HIGH-SPEED HIGH-SPEED . .
NETWORK NETWORK INTERFACE TAO is developed atop lower-level middleware called
ACE [30], which implements core concurrency and distribu-
) . . tion patterns [31] for communication software. ACE provides
Figure 29: Components in the TAO Real-time ORB Endsygsysable C++ wrapper facades and framework components
tem that support the QoS requirements of high-performance, real-
time applications. ACE runs on a wide range of OS platforms,

standard OMG CORBA reference model [2], with the follow, o, 4ing Win32, most versions of UNIX, and real-time oper-

ing enhancements designed to overcome the shortcomingat g systems like Sun ClassiX, LynxOS, and Vx\Works
conventional ORBs [25] for high-performance and real-time ’ ' '

applications:

Real-time IDL Stubs and Skeletons: TAO's IDL stubs and 5.2 Overview of TAO Optlmlzatlons

skeletons efficiently marshal and demarshal operation paraie are developing TAO to overcome the following limitations
eters, respectively [26]. In addition, TAO's Real-time IDlwith conventional ORBSs:
(RIDL) stubs and skeletons extend the OMG IDL specifica-

tions to ensure that application timing requirements are spd¥ftn-optimal  demultiplexing ~ strategies Conventional
fied and enforced end-to-end [27]. ORBs utilize inefficient and inflexible demultiplexing

strategies based on layered demultiplexing, as explained in
Real-time Object Adapter: An Object Adapter associatessection 4.3 and shown in Figure 30(A & B). In contrast,
servants with the ORB and demultiplexes incoming requestso utilizes perfect hashing and active demultiplexing in
servants. TAO's Object Adapter uses perfect hashing [28] afighjunction with explicit dynamic linking [21] shown in
active demultiplexing [21] optimizations to dispatch servapigure 30(C & D). These strategies make it possible to adapt
operations in constar®(1) time, regardless of the numbepnd configure optimal demultiplexing of client requests within
of active connections, servants, and operations defined in IBRB endsystems.

interfaces.
Inefficient presentation layer conversions Conventional

ORB Run-time Scheduler:  TAO's run-time scheduler mapspRrBs are not optimized to generate efficient stubs and skele-
application QoS requirements to ORB endsystem/network fgns. As a result, they incur excessive marshaling and demar-
sources [22]. Common QoS requirements include boundigighjing overhead ([5, 6] and this paper in Figures 27 and 28)
end-to-end latency and meeting periodic scheduling deadlinggrepy adversely affecting latency. In contrast, TAO produces
Common ORB endsystem/network resources include CRidg configures multiple encoding/decoding strategies for in-
memory, network connections, and storage devices. terface definition language (IDL) descriptions. Each strategy
Real-time ORB Core: The ORB Core delivers client re-ca&n be configured for different time/space tradeoffs between

quests to the Object Adapter and returns responses (if any§q@'Piled vs. interpreted OMG IDL stubs and skeletons [32],

clients. TAO's real-time ORB Core [25] uses a multi-threade@d the application’s use of parameteesg( pass-without-

touching, read-only, mutable).
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Figure 30: Demultiplexing Strategies

Excessive data copying and intra-ORB calls Conventional 5.3 Increasing ORB Scalability via Demulti-
ORBs are not optimized to reduce the overhead of data copies. plexing Optimizations
In addition, these ORBs suffer from excessive intra-ORB func-
tion call overhead as shown in Section 4.3. In contrast, TAhe results of our measurements in Section 4.3.3 revealed that
uses advanced compiler techniques, such as program flaObject Adapter's demultiplexing strategy has a significant
analysis [33, 34] and integrated layer processing (ILP) [Tppact on ORB endsystem scalability. As a result, we de-
to automatically omit unnecessary data copies between $igned TAO's Object Adapter to support multiple demultiplex-
CORBA infrastructure and applications. In addition, ILP rdng strategies [35]. Section 5.3.2 presents the results of experi-
duces the overhead of excessive intra-ORB function calRents using the following four demultiplexing strategies avail-
Most importantly, this streamlining can be performed witho@ble in TAO: (A) linear search, (B) dynamic hashing, (C) per-
requiring modifications to the standard CORBA specificatiofgCt hashing, and (D) de-layered active demultiplexing shown
in Figure 30:
Lack of integration with advanced OS and Network fea- . ) ) i ,
tures Conventional ORBs do not fully utilize advanced o&in€ar search  The linear search demultiplexing strategy is
and network features, such as real-time threads, high-spad/0-Step layered demultiplexing strategy (shown in Fig-
network interfaces, and 1/O subsystems with QoS support. 4§ 30(A)). In the first step, the Object Adapter uses the object
contrast, TAO integrates a high-performance 1/0 subsyst&fY (© linearly search through treervant mapwhich asso-
and the APIC network adapter with its ORB Core and c)pﬁl_ates object kgys to servants mgmtalned by an ObjectAo!apter,
mized Object Adapter to produce a real-time ORB endsyst&i{ocate the right servant and its skeleton. Each entry in the
[22] that interoperates seamlessly with IIOP-compIiantORBSse.rvant map mamtaln.s a_pomter to its gssouated §keleton. In
turn, the skeleton maintains an operation map defined by the
Non-optimized buffering algorithms used for network IDL interface. In the second step, the Object Adapter uses
reads and writes Conventional ORBS utilize non-the operation name to linearly search the operation map of the
optimized internal buffers for writing to and reading fror@Ssociated skeletqn to locate the appropriate operation and in-
the network, as shown in Section 4.3. This causes the ORB&€ an upcall oniit. _
to spend a significant amount of time doing reads and writeg-ineéar search is known to be expensive and non-scalable.
affecting latency adversely. In contrast, TAO utilizes optim¥ye include it in our experiments for two reasons: (1) to pro-
buffer choices to reduce this overhead. vide an upper bound on the worst-case performance, and (2) to
contrast our optimizing demultiplexing strategies with strate-

) ) o ) gies used in conventional ORBs (such as Orbix) that use linear
The remainder of this section is organized as follows: S&gsarch for their operation demultiplexing.

tion 5.3 describes the demultiplexing strategies supported by

TAO and shows how these strategies can provide predictabimamic hashing The dynamic hashing strategy is an-
and consistent low delay to latency-critical applications; Sesther two-step layered demultiplexing strategy (shown in Fig-
tion 5.4 describes the principles we used to optimize TAQise 30(B)). In contrast to perfect hashing, which l{ad)
end-to-end latency. worst-case behavior and low constant overhead, dynamic
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hashing has higher overhead afidn?) worse-case behav-this strategy, the client includes a handle to the servant in the
ior. In particular, two or more keys dynamically hash to theervant map and the operation table in the CORBA request
same bucket. These collisions are resolved using linear sednelader. This handle is configured into the client when the ser-
which can yield poor worse-case performance. The prima@nt reference is registered with a Naming service or Trading
benefit of dynamic hashing is that it can be used when the sbrvice. On the receiving side, the Object Adapter uses the
ject keys are not knowa priori. In order to minimize col- handle supplied in the CORBA request header to locate the
lisions, the servant and the operation hash tables contaised/ant and its associated operation in a single step. It is pos-
twice as many array elements as the number of servants sibte to implement active demultiplexing in a de-layered man-

operations, respectively. ner, so only on€(1) table lookup is required to associate the

Perfect hashing The perfect hashing strategy is also a twd?cOMing request with its servant operation.

step layered demultiplexing strategy (shown in Figure 30(C)).

In contrast to linear search, the perfect hashing strategy Us&s1 Parameter Settings for Demultiplexing Experi-
an automatically-generated perfect hashing function to locate  ments

the servant. A second perfect hashing function is then used to

locate the operation. Both servant and operation lookup taS Section describes the parameter settings for analyzing the

constant time. behavior of each demultiplexing scheme described above.

Perfect hashing is applicable when the keys to be hash@¢mber of servants Increasing the number of servants on
are knowna priori. In many hard real-time systems (such afe server increases the demultiplexing effort required to dis-
avionic control systems [4]), the servants and operations ggiich the incoming request to the appropriate servant. To pin-
be configured statically. In this scenario, it is possible to usgint this demultiplexing overhead and to evaluate the effi-
perfect hashing to hash the servant and operations. For gighcy of different demultiplexing strategies, we benchmarked
experiment, we used the GNgperf [28] tool to generate various numbers of servants on the server, ranging from 1, 100,
perfect hash functions for object keys and operation names00, 300, 400, to 500.

The following is a code fragment from the GNgperf

generated hash function for 500 object keys used in our expeymber of operations defined by the interface In addition
iments: to the number of servants, demultiplexing overhead increases

with the number of operations defined in an interface. To mea-
class Servant_Hash

{
...

static u_int hash (const char *str, int len);
h
u_int
Servant_Hash::hash (register const char *str,
register int len)
static const u_short asso_values[] =

/I all values not shown here
1032, 1032, 1032, 1032, 1032, 1032, 1032,

100, 105, 130, 20, 100, 395, 435,
505, 330, 475, 45, 365, 180, 390,

440, 160, 125, 1032, 1032, 1032, 1032,

return len + asso_values[str[len - 1]]
+ asso_values[str[0]];

sure this demultiplexing overhead, our experiments defined
a range of operations (1, 10, and 100) in the IDL interface.
Since our experiments measured the overhead of demultiplex-
ing, these operations defined no parameters, thereby eliminat-
ing the overhead of presentation layer conversions. Section 5.4
describes our latency optimizations that reduce the overhead of
presentation layer conversions.

5.3.2 Performance Results

Figures 31 and 32 illustrate the performance of the four demul-
tiplexing strategies for the random and worst-case invocation
strategies described in Sections 3.7.3 and 3.7.4, respectively.
These figures reveal that in both cases, the active demultiplex-
ing and perfect hash-based demultiplexing strategies substan-
tially outperform the linear-search strategy and the dynamic

~ TAO uses the code shown above as follows: upon receitqhing strategy. Moreover, the worst-case performance over-
ing a client request, the Object Adapter retrieves the objgglyq of the linear-search strategy for 500 servants and 100 op-
key. It uses the object key to obtain a handle to the servapisions isv1.87 times greater than random invocation, which

map by using the perfettash function shown above. The

illustrates the non-scalability of linear search as a demultiplex-

hash function uses an automatically generated servant MAY strategy.
(asso -values ) to return a unique hash value for each object, 4qgition, the figures reveal that both the active demulti-

key.

plexing and perfect hash-based demultiplexing perform quite

Active demultiplexing The fourth demultiplexing strategyefficiently and predictably regardless of the invocation strate-
is calledactive demultiplexindshown in Figure 30(D)). In gies. The active demultiplexing strategy performs slightly bet-
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ter than the perfect hash-based strategy for both invocation
strategies.

5.3.3 Analysis of the Demultiplexing Strategies

The performance results and analysis presented in Sec-
tions 5.3.2 reveals that to provide low-latency and predictable
real-time support, a CORBA Object Adapter must use de-
multiplexing strategies based on active demultiplexing or per-
fect hashing rather than strategies such as linear-search (which
does not scale) and dynamic hashing (which has high over-
head).

The perfect hashing strategy is applicable when the object

Linear (100 methods)

s 8
g 8 £
- 28 %¢ LS .
- 8 £ & 5 g g keys are knowra priori. The number of operations are al-
4 = 2 hlied - .. - . .
- 8 £232:8¢§¢% ways knowra priori since they are defined in an IDL interface.
2 8 22 T 55 :
£ 8 = £ £ g~ -~ Thus, anIDL compiler can generate stubs and skeletons that
(=} o] . .
sz g é use perfect hashing for operation lookup. However, servants
gz bo§ s g implementing an interface can be created dynamically. In this
a o g 2 g 0
[C] o

case, the perfect hashing strategy cannot generally be used for
servant lookug. In this situation, more dynamic forms of
hashing can be used as long as they provide predictable col-
Demultiplexing scheme lision resolution strategies. In many hard real-time environ-

ments it is possible to configure the systampriori. In this
Figure 31: Demultiplexing Overhead for the random invocgituation, however, perfect hashing-based demultiplexing can
tion Strategy be used.

Our results show that active demultiplexing outperforms the
other demultiplexing strategies. However, it requires the client
to possess a handle for each servant and its associated opera-
tions in a servant map and operation map, respectively. There-
fore, active demultiplexing requires either (1) preconfiguring
the client with this knowledge or (2) defining a protocol for dy-
namically managing handles to add and remove servants cor-
rectly and securely.

For hard real-time systems, this preconfigurationis typically
feasible and beneficial. For this reason, we are using the per-
fect hashing demultiplexing strategy in the TAO ORB we are
building for real-time avionics applications [22, 4].

Number of Objects

Active Demux (1 Method)
Active Demux (10 Methods)
Active Demux (100 Methods)

Latency in microseconds

5.4 Reducing ORB Latency with IIOP Opti-
mizations

Linear (100 methods)

Linear (1 method)
Linear (10 methods)

To expedite the research goals of the TAO project, and to avoid
re-inventing existing components, we based TAO on SunSoft
IIOP, which is a freely available reference implementation of
the Internet Inter-ORB Protocol (IIOP). SunSoft IIOP is writ-
Demultiplexing scheme ten in C++ and provides many features of a CORBA 2.0 ORB.
However, it performs poorly over high-speed networks [8].

Figure 32: Demultiplexing Overhead for the worst-case invo-e; g possible to add new servants at run
cation Strategy

GPERF (1 Method)
GPERF (10 Methods)
GPERF (100 Methods)

Number of Objects

Active Demux (1 Method)
Active Demux (10 Methods)
Active Demux (100 Methods)

-time using dynamic linking,
though this is generally disparaged in hard real-time environments.

"We assume that the security implications of using active demultiplexing
are addressed via the CORBA security service.
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The source of overhead in SunSoft IOP include many fac-
tors reported in Section 4. In particular, it has (1) high invo-
cation overhead for small, frequently called methods, (2) re-
peated computation of invariant values, (3) excessive memory

management and data copying overhead, and (4) inefficient, 4.0
large functions that overflow the process cache. To alleviate

this overhead, we applied a set mfinciple-based optimiza-
tions[36] to SunSoft IOP in order to improve the performance a0 I
of TAO.

Table 3 summarizes the optimization principles used in
TAO. These principles includé€il) optimizing for the common
case, (2) eliminating gratuitous waste, (3) replacing general-
purpose methods with efficient special-purpose ones, (4) pre-
computing values, if possible, (5) storing redundant state to
speed up expensive operations, (6) passing information be-
tween layers, (7) optimizing for processor cache affinity, and
(8) optimizing demultiplexing strategiehe results of apply-

Latency in milliseconds
N
o
.

1.0

e——=e Unoptimized IIOP
=——a Optimized [IOP

ing these optimization principles to SunSoft IIOP improved %95
its latency substantially for all data types by alleviating the
following source of overhead:

¢ High invocation overhead for small, frequently called

500.0

1000.0

Units of octets sent

1500.0

methods TAO IIOP solves this problem using aggressive in- Figure 33: Improvementin Latency for Octets

lining based omnline functions andnacros This optimization
uses the principle afptimizing for the common case

e Repeated computation of values that do not change
TAO IIOP solves this problem by computing the values once
and storing them in additional storage. This optimization is
based on the principles pfecomputingandusing additional
storage

60.0
e Wasteful memory management The implementation of 550 &
the memory management system in SunSoft IIOP is overly . ¢
generic. This causes it to interpretively deallocate primitive 450 b

types, which instead can be freed wholesale. TAO IIOP reme-g

dies this problem by not interpreting buffers holding primitive § 40'2 ]
data types. This optimization is based on the principieliof- £ 304
inating gratuitous waste E %00
3 25.0
o Inefficient, large functions that overflow the process & 200

cache TAO IIOP streamlines the inefficient, large, and 15.0
generic functions in SunSoft IIOP into smaller, efficient, and
special-purpose functions. This optimizatiomproves cache
affinity.

5.0
0.0

e——=e Unoptimized IIOP
=—a Optimized IIOP

0.0

Figures 33 and 34 indicate that the latency for the optimized
IIOP version improves as the size of data transferred increases.
For 1,024 units of data sent, the optimized [IOP version per-

500.0

1000.0

Units of BinStructs sent

forms ~1.5 to 2.0 times better that the non-optimized 110P Figure 34: Improvementin Latency for Structs

version for all the primitive data types. F&inStructs ,
TAQO's latency is~4 times lower that the original SunSoft IOP
version.
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The optimized TAO implementation of IIOP is now compet- Earlier work [5, 6] using untyped data and typed data in
itive with existing commercial ORBs using CORBA's static ina similar CORBA/ATM testbed as the one in this paper re-
vocation interface. Moreover, TAO’s dynamic invocation imveal that the low-level C socket version and the C++ socket
plementation is 2 to 4.5 times (depending on the data typ&ppper versions of TTCP are nearly equivalent for a given
faster than commercial ORBs. socket queue size. Likewise, the performance of Orbix for

sequences of scalar data types is almost the same as that re-

ported for untyped data sequences. However, the performance
6 Related Work of transferring sequences of CORB#ucts  for 64 K and

8 K socket queue sizes was much worse than those for the
Existing research on measuring latency in high performang@ars. This overhead arises from the amount of time the

networking has focused extensively on enhancementsCORBA ORBs spend performing presentation layer conver-
TCP/IP. None of the systems described below are explicigfyns and data copying.

targeted for the requirements and constraints of communica-
tion middleware like CORBA. In general, less attention has ) )
been paid to integrating the following topics related to cor-2 Presentation Layer and Data Copying

munication middieware: The presentation layer is a major bottleneck in high-

performance communication subsystems [1]. This layer trans-
6.1 Transport Protocol Performance over ATM forms typed data from higher-level representations to lower-
Networks level representations (marshaling) and vice versa (demarshal-
. ing). In both RPC toolkits and CORBA, this transformation
The underlying transport protocols used by the ORB must B&,cess is performed by client-side stubs and server-side skele-
flexible and possess the necessary hooks to tune differentygas that are generated by interface definition language (IDL)
rameters of the underlying transport protocol. [14, 15, 18hmpilers. IDL compilers translate interfaces written in an

present results on performance of TCP/IP (and UDP/IP [1¢Bscription language to other forms such as a network wire
on ATM networks by varying a number of parameters (such g$mat.

TCP window size, socket queue size, and user data size). Thisjiminating the overhead of presentation layer conversions
work indicates that in addition to the host architecture and h?@&uires highly optimized stub compilersg, Universal Stub

network interface, parameters configurable in software (”kfompiler [24]) and the Flick IDL compiler [10]. The gener-

TCP window size, socket queue size, and user data size) {8y stub code must make an optimal tradeoff between com-

nificantly affect throughput. [14] shows that UDP performs;eq code (which is efficient, but large in size) and interpreted
better than TCP over ATM networks, which is attributed {g,4e (which is slow, but compact) [32].

r'edundant TCP procgssing ovgrhead on highly-reliable ATMq ;- o ajier results [5, 6] have presented detailed measure-
links. [14] also descnb.es techniques to tune TCP to be a Iﬁ'?énts of presentation layer overhead for transmitting richly-
bulky protocol so that its performance can be compgrqbl ed data. Our results for sendisggucts  reveal that with
UDP. They also show that the TCP delay characteristics (‘?reasing sender buffer sizes, the marshaling overhead in-

predictable and thaF it varies with the throughput. . creases, thereby increasing the latency. We are designing an
[37] present detailed measurements of various categoriegqf ompjler that will adapt according to the run-time access

processing overhead times of TCP/IP and UDP/IP. The @iy, o cteristics of various data types and operations. The run-

thors conclude that whenever a realistic distribution of Mefie usage of a operation or data type can be used to dynam-

sage sizes is considered, the aggregate costs of non-data tQUE|; |in in either the compiled or an interpreted version of
ing overheads (such as network buffer manipulation) consumgrsha"ng code.

a majority of the software processing time (84% for TCP and

60% for UDP). The authors show that most messages sent are

short (less than 200 bytes). They claim that these overne@d3 Application Level Framing and Integrated

are hard to eliminate and techniques such as integrated layer | ayer Processing on Communication Sub-
processing can be used to reduce the overhead. [38] presents systems

performance results of the SunOS 4.x IPC and TCP/IP im-

plementations. They show that increasing the socket buf@anventional layered protocol stacks and distributed object
sizes improves the IPC performance. They also show that thieldleware lack the flexibility and efficiency required to meet
socket layer overhead is more significant on the receiver sitte quality of service requirements of diverse applications run-
[39] discusses th# CP.NODELAYoption, which allows TCP ning over high-speed networks. One proposed remedy for this
to send small packets as soon as possible to reduce latencgroblem is to usépplication Level FramingALF) [1, 40, 41]

23



andIntegrated Layer ProcessindP) [1, 42, 43]. latency and scalability overhead arise from (1) long chains of

ILP ensures that lower layer protocols deal with data in unitgra-ORB function calls, (2) excessive presentation layer con-
specified by the application. ILP provides the implementeersions and data copying, (3) non-optimized buffering algo-
with the option of performing all data manipulations in one @ithms used for network reads and writes, (4) inefficient server
two integrated processing loops, rather than manipulating themultiplexing techniques, and (5) lack of integration with OS
data sequentially. [44] have shown that although ILP redueasl network features.
the number of memory accesses, it does not reduce the nun®ur goal in precisely pinpointing the sources of overhead
ber of cache misses compared to a carefully designed non-{ePCORBA is to optimize the performance of TAO [22] TAO
implementation. is a high-performance, real-time ORB endsystem designed to

As shown by our results, CORBA ORBs suffer from a nunmeet the QoS requirements of bandwidth- and delay-sensitive
ber of overheads that includes the many layers of software apglications. Our development strategy for TAO is guided
large chain of function calls. We plan to use integrated laygy applyingprinciple-driven performance optimizatioif8],
processing to minimize the overhead of the various softwagch as optimizing for the common case; eliminating gratu-
layers. We are developing a factory of ILP baselihe itous waste; replacing general purpose methods with special-
functions that are targeted to perform different functions. Thied, efficient ones; precomputing values, if possible; storing
allows us to dynamically link required functionality as the reedundant state to speed up expensive operations; passing in-
quirements change and yet have an ILP-based implementatiormation between layers; optimizing for the processor cache;
and optimizing demultiplexing strategies.

Applying these optimizations to TAO reduced its latency
by a factor of~1.5 to 2.0 times for primitive data types and
Demultiplexing routes messages between different levelsaspund 4 times for richly-typed data such BsStruct
functionality in layered communication protocol stacks. Moghe performance of TAO is now equal to, or better than, com-
conventional communication models (such as the Interfegrcial ORBs using static invocation. Moreover, TAO's dy-
model or the 1ISO/OSI reference model) require some foff@Mmic invocation implementation is 2 to 4.5 times faster than
of multiplexing to support interoperability with existing opcommercial ORBs, depending on the data types.
erating systems and protocol stacks. In addition, conventionalhe source code for the TAO ORB and the bench-
CORBA ORBs utilize several extra levels of demultiplexing &8arking tests reported in this paper are available at
the application layer to associate incoming client requests witww.cs.wustl.edu/  ~schmidt/TAO.html
the appropriate servant and operation (as shown in Figure 4).

Layered multiplexing and demultiplexing is generally dispar,
aged for high-performance communication systems [18] dﬁg;knowledgments
to the additional overhead incurred at each layer.[23] describes

a fast and flexible message demultiplexing strategy based¥f thank the anonymous reviewers for providing us with

dynamic code generation. [21] evaluates the performancd'§tny useful suggestions for improvement. We also thank
alternative demultiplexing strategies for real-time CORBA. Chris Cleeland for implementing TAO’s ORB Core and
Our resullts for latency measurements have shown that witie€dh Mungee for helping with the performance tests. In
increasing number of servants, the latency increases. Thiggdition, we thank IONA and Visigenic for their help in sup-
partly due to the additional overhead of demultiplexing the rBYINg the CORBA ORBs used for these tests. Both compa-
quest to the appropriate operation of the appropriate servaiftS &€ currently working to eliminate the latency overhead
TAO uses a de-layered demultiplexing architecture [21] thad?q scalablllty limitations described in this paper. We expect
can select optimal demultiplexing strategies based on compiiir forthcoming releases to perform much better over high-

time and run-time analysis of CORBA IDL interfaces. speed ATM networks.

6.4 Demultiplexing

7 Concluding Remarks References

[1] David D. Clark and David L. Tennenhouse, “Architectural Con-
An important class of applications (such as avionics, dis-  siderations for a New Generation of Protocols, Proceedings
tributed interactive simulation, and telecommunication sys- of the Symposium on Communications Architectures and Pro-
tems) require scalable, low-latency communication. However, tocols (SIGCOMM) Philadelphia, PA, Sept. 1990, ACM, pp.
the results in this paper indicate that conventional ORBs do 200-208.
not yet support latency-sensitive applications and servers thjal Object Management GroufT,he Common Object Request Bro-
support a large number of servants. The chief sources of ORB ker: Architecture and Specificatip@.2 edition, Feb. 1998.

24



[3] Object Management GrouzORBAServices: Common Objecf18] David L. Tennenhouse,

(4]

Services Specification, Revised Editi®-3-31 edition, Mar.
1995.

Timothy H. Harrison, David L. Levine, and Douglas C[19]
Schmidt, “The Design and Performance of a Real-time CORBA
Event Service,” irProceedings of OOPSLA '9Atlanta, GA,
October 1997, ACM.

[5] Aniruddha Gokhale and Douglas C. Schmidt, “Measuring the

[6] Aniruddha Gokhale and Douglas C. Schmidt,

(7]

[8] Aniruddha Gokhale and Douglas C. Schmidt,

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

Performance of Communication Middleware on High-Spega0]
Networks,” inProceedings of SIGCOMM '965tanford, CA,
August 1996, ACM, pp. 306-317.

“The Perfof21]
mance of the CORBA Dynamic Invocation Interface and Dy-
namic Skeleton Interface over High-Speed ATM Networks,” in
Proceedings of GLOBECOM "9&ondon, England, November
1996, IEEE, pp. 50-56. [22]

Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt,
“Design and Performance of an Object-Oriented Framework
for High-Performance Electronic Medical ImagingJSENIX
Computing Systemsol. 9, no. 4, November/December 1996. [23]

“Principles
for Optimizing CORBA Internet Inter-ORB Protocol Perfor-
mance,” inHawaiian International Conference on System Sci-
encesJanuary 1998.

Steve Vinoski, “CORBA: Integrating Diverse Applicationg24]
Within Distributed Heterogeneous Environmentdi2EE Com-
munications Magazinevol. 14, no. 2, February 1997.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-
strom, “Flick: A Flexible, Optimizing IDL Compiler,” irPro- [25]
ceedings of ACM SIGPLAN '97 Conference on Programming
Language Design and Implementation (PLDIas Vegas, NV,
June 1997, ACM.

Object Management GroupMessaging Service Specificatjon
OMG Document orbos/98-05-05 edition, May 1998.

Michi Henning, “Binding, Migration, and Scalability in [26]
CORBA,” Communications of the ACM special issue on
CORBAVvol. 41, no. 10, Oct. 1998.

USNA, TTCP: atest of TCP and UDP Performandzec 1984.

Sudheer Dharnikota, Kurt Maly, and C. M. Overstreet, “Perfoj27]
mance Evaluation of TCP(UDP)/IP over ATM networks,” De-
partment of Computer Science, Technical Report CSAR3,

Old Dominion University, September 1994,

Minh DoVan, Louis Humphrey, Geri Cox, and Carl Ravin, “Ini-
tial Experience with Asynchronous Transfer Mode for Use in[@8]
Medical Imaging Network,"Journal of Digital Imaging vol. 8,

no. 1, pp. 43-48, February 1995.

K. Modeklev, E. Klovning, and O. Kure, “TCP/IP Behaviof29]
in a High-Speed Local ATM Network Environment,” Pro-
ceedings of tha@9*" Conference on Local Computer Netwarks
Minneapolis, MN, Oct. 1994, IEEE, pp. 176-185.

PureAtria Software Inc., Quantify User's Guide PureAtria [30]
Software Inc., 1996.

25

“Layered Multiplexing Considered
Harmful,” in Proceedings of th@*’ International Workshop
on High-Speed NetworkMay 1989.

Douglas C. Schmidt, Rajeev Bector, David Levine, Sumedh
Mungee, and Guru Parulkar, “An ORB Endsystem Architecture
for Statically Scheduled Real-time Applications,” Broceed-
ings of the Workshop on Middleware for Real-Time Systems and
ServicesSan Francisco, CA, December 1997, IEEE.

"Aniruddha Gokhale and Douglas C. Schmidt, “Measuring and
Optimizing CORBA Latency and Scalability Over High-speed
Networks,” Transactions on Computingol. 47, no. 4, 1998.

Aniruddha Gokhale and Douglas C. Schmidt, “Evaluating
the Performance of Demultiplexing Strategies for Real-time
CORBA,” in Proceedings of GLOBECOM '9Phoenix, AZ,
November 1997, IEEE.

Douglas C. Schmidt, David L. Levine, and Sumedh Mungee,
“The Design and Performance of Real-Time Object Request
Brokers,” Computer Communicationsol. 21, no. 4, pp. 294—
324, Apr. 1998.

Dawson R. Engler and M. Frans Kaashoek, “DPF: Fast, Flexi-
ble Message Demultiplexing using Dynamic Code Generation,”
in Proceedings of ACM SIGCOMM '96 Conference in Com-
puter Communication Reviewtanford University, California,
USA, August 1996, pp. 53-59, ACM Press.

Sean W. O’Malley, Todd A. Proebsting, and Allen B. Montz,
“USC: A Universal Stub Compiler,” ifProceedings of the Sym-
posium on Communications Architectures and Protocols (SIG-
COMM), London, UK, Aug. 1994.

Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan,
and Aniruddha Gokhale, “Alleviating Priority Inversion and
Non-determinism in Real-time CORBA ORB Core Architec-
tures,” in Proceedings of the Fourth IEEE Real-Time Tech-
nology and Applications Symposiumenver, CO, June 1998,
IEEE.

Aniruddha Gokhale and Douglas C. Schmidt, “Optimizing a
CORBA IIOP Protocol Engine for Minimal Footprint Multime-
dia Systems,” submitted to the Journal on Selected Areas in
Communications special issue on Service Enabling Platforms
for Networked Multimedia Systeni98.

Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis,
Michael Squadrito, Steven Wohlever, Igor Zykh, and Rus-
sel Johnston, “Real-Time CORBA,” iRroceedings of the
Third IEEE Real-Time Technology and Applications Sympo-
sium Montréal, Canada, June 1997.

Douglas C. Schmidt, “GPERF: A Perfect Hash Function Gen-
erator,” inProceedings of the™¢ C++ Conference San Fran-
cisco, California, April 1990, USENIX, pp. 87-102.

Zubin D. Dittia, Guru M. Parulkar, and Jr. Jerome R. Cox, “The
APIC Approach to High Performance Network Interface De-
sign: Protected DMA and Other Techniques,” Hroceedings
of INFOCOM '97, Kobe, Japan, April 1997, IEEE.

Douglas C. Schmidt and Tatsuya Suda, “An Object-
Oriented Framework for Dynamically Configuring Extensible



Distributed Communication Systems,IEE/BCS Distributed [44] Torsten Braun and Christophe Diot, “Protocol Implementation
Systems Engineering Journal (Special Issue on Configurable Using Integrated Layer Processnig,”Rmoceedings of the Sym-
Distributed Systemsyol. 2, pp. 280-293, December 1994. posium on Communications Architectures and Protocols (SIG-

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Viis- COMM). ACM, September 1995.
sides, Design Patterns: Elements of Reusable Object-Oriented
Software Addison-Wesley, Reading, MA, 1995.

[32] Phillip Hoschka and Christian Huitema, “Automatic Generation
of Optimized Code for Marshalling Routines,” iRIP Confer-
ence of Upper Layer Protocols, Architectures and Applications
ULPAA'94, Barcelona, Spain, 1994, IFIP.

[33] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante, “Automatic
Construction of Sparse Data Flow Evaluation GraphsCam-
ference Record of the Eighteenth Annual ACE Symposium on
Principles of Programming LanguageACM, January 1991.

[34] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck, “Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph,”
in ACM Transactions on Programming Languages and Systems
ACM, October 1991.

[35] Douglas C. Schmidt and Chris Cleeland, “Applying Patterns to
Develop Extensible ORB Middleware3ubmitted to the IEEE
Communications Magazin@998.

[36] George Varghese, “Algorithmic Techniques for Efficient Pro-
tocol Implementations ,” i5SIGCOMM '96 Tutoria) Stanford,
CA, August 1996, ACM.

[37] Jonathan Kay and Joseph Pasquale, “The Importance of Non-
Data Touching Processing Overheads in TCP/IP Piaoceed-
ings of SIGCOMM '93 San Francisco, CA, September 1993,
ACM, pp. 259-269.

[38] Christos Papadopoulos and Gurudatta Parulkar, “Experimental
Evaluation of SUNOS IPC and TCP/IP Protocol Implementa-
tion,” IEEE/ACM Transactions on Networkingol. 1, no. 2,
pp. 199-216, April 1993.

[39] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman,
The Design and Implementation of the 4.3BSD UNIX Operating
SystemAddison-Wesley, 1989.

[40] Isabelle Chrisment, “Impact of ALF on Communication Sub-
systems Design and Performance, Hst International Work-
shop on High Performance Protocol Architectures, HIPPARCH
'94, Sophia Antipolis, France, December 1994, INRIA France.

[41] Atanu Ghosh, Jon Crowcroft, Michael Fry, and Mark Hand-
ley, “Integrated Layer Video Decoding and Application Layer
Framed Secure Login: General Lessons from Two or Three
Very Different Applications,” inFirst International Workshop
on High Performance Protocol Architectures, HIPPARCH,'94
Sophia Antipolis, France, December 1994, INRIA France.

[42] M. Abbott and L. Peterson, “Increasing Network Throughput
by Integrating Protocol Layers,”ACM Transactions on Net-
working vol. 1, no. 5, October 1993.

[43] Antony Richards, Ranil De Silva, Anne Fladenmuller, Aruna
Seneviratne, and Michael Fry, “The Application of ILP/ALF
to Configurable Protocols,” ifrirst International Workshop
on High Performance Protocol Architectures, HIPPARCH,' 94
Sophia Antipolis, France, December 1994, INRIA France.

26



