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Abstract

There is increasing demand to extend object-oriented middle-
ware, such as OMG CORBA, to support applications with
stringent quality of service (QoS) requirements. However,
conventional CORBA Object Request Broker (ORB) imple-
mentations incur high latency and low scalability when used
for performance-sensitive applications. These inefficiencies
discourage developers from using CORBA for mission/life-
critical applications such as real-time avionics, telecom call
processing, and medical imaging.

This paper provides two contributions to the research on
CORBA performance. First, we systematically analyze the
latency and scalability of two widely used CORBA ORBs,
VisiBroker and Orbix. These results reveal key sources of
overhead in conventional ORBs. Second, we describe tech-
niques used to improve latency and scalability in TAO, which
is a high-performance, real-time implementation of CORBA.
Although conventional ORBs do not yet provide adequate
QoS guarantees to applications, our research results indi-
cate it is possible to implement ORBs that can support high-
performance, real-time applications.

Keywords: Distributed object computing, CORBA communi-
cation middleware performance, Real-time CORBA.
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1 Introduction

Applications and services for next-generation distributed sys-
tems must be flexible, reusable, robust, and capable of provid-
ing scalable, low-latency quality of service to delay-sensitive
applications. In addition, communication software must al-
low bandwidth-sensitive applications to transfer data effi-
ciently over high-speed networks. Robustness, flexibility, and
reusability are essential to respond rapidly to changing appli-
cation requirements that span an increasingly wide range of
media types and access patterns [1].

Requirements for flexibility and reusability motivate the use
of theCommon Object Request Broker Architecture(CORBA)
[2]. CORBA automates common network programming tasks
such as object location, object activation, parameter marshal-
ing/demarshaling, framing, and error handling. CORBA also
provides the basis for defining higher layer distributed services
such as naming, events, replication, transactions, and security
[3].

The success of CORBA in mission-critical distributed com-
puting environments depends heavily on the ability of Object
Request Brokers (ORBs) to provide the necessary quality of
service (QoS) to applications. Common application QoS re-
quirements include:

� High bandwidth CORBA ORBs must provide high
throughput to bandwidth-sensitive applications such as med-
ical imaging, satellite surveillance, or teleconferencing sys-
tems;

� Low latency CORBA ORBs must support low latency for
delay-sensitive applications such as real-time avionics, dis-
tributed interactive simulations, and telecom call processing
systems;

� Scalability of endsystems and distributed systems
CORBA ORBs must scale efficiently and predictably as the
number of objects in endsystems and distributed systems in-
creases. Scalability is important for large-scale applications
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that handle large numbers of objects on each network node,
as well as a large number of nodes throughout a distributed
computing environment.

Networks like ATM, FDDI, and Fiber Channel now support
QoS guarantees for bandwidth, latency, and reliability. How-
ever, conventional CORBA ORBs incur significant overhead
when used for latency-sensitive applications over high-speed
networks. If not corrected, this overhead will force developers
to avoid CORBA middleware and continue to use lower-level
tools like sockets. Unfortunately, lower-level tools fail to pro-
vide other key benefits of CORBA such as robustness, flexi-
bility, and reusability, which are crucial to the success of com-
plex latency-sensitive distributed applications [4]. Therefore,
it is imperative to eliminate the sources of CORBA overhead
shown in this paper.

Our earlier work [5, 6, 7, 8] has focused on measuring and
optimizing thethroughputof CORBA ORBs. This paper ex-
tends our prior work by measuring thelatencyandscalability
of two widely used CORBA ORBs, Orbix 2.1 and VisiBro-
ker 2.0, precisely pinpointing their key sources of overhead,
and describing how to systematically remove these sources of
overhead by applying optimization principles.

The research contributions of this paper include the follow-
ing:

� CORBA Latency Section 4 measures the oneway and
twoway latency of Orbix and VisiBroker. Our findings indicate
that the latency overhead in these ORBs stem from (1) long
chains of intra-ORB function calls, (2) excessive presentation
layer conversions and data copying, and (3) non-optimized
buffering algorithms used for network reads and writes. Sec-
tion 5.4 describes optimizations we have developed to reduce
these common sources of ORB latency.

� CORBA Scalability Section 4 also measures the scalabil-
ity of Orbix and VisiBroker to determine how the number of
objects supported by a server affects an ORB’s ability to pro-
cess client requests efficiently and predictably. Our findings
indicate that scalability impediments are due largely to (1) in-
efficient server demultiplexing techniques and (2) lack of in-
tegration with OS and network features. Section 5.3 describes
demultiplexing optimizations we have developed to increase
ORB scalability.

The paper is organized as follows: Section 2 outlines
the CORBA ORB reference model; Section 3 describes our
CORBA/ATM testbed and experimental methods; Section 4
presents the key sources of latency and scalability overhead in
conventional CORBA ORBs over ATM networks; Section 5
describes our research on developing optimizations that elimi-
nate the latency and scalability bottlenecks in CORBA ORBs;
Section 6 describes related work; and Section 7 presents con-
cluding remarks.

2 Overview of the CORBA ORB Ref-
erence Model

CORBA Object Request Brokers (ORBs) [2] allow clients to
invoke operations on distributed objects without concern for
the following issues [9]:

Object location: CORBA objects can be collocated with the
client or distributed on a remote server, without affecting their
implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects
stemming from differences in hardware such as storage layout
and data type sizes/ranges.

Figure 1 illustrates the components in the CORBA 2.x refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above. Each com-
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Figure 1: Components in the CORBA 2.x Reference Model

ponent in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by
obtaining object references to objects and invoking opera-
tions on them. Objects can be remote or collocated rela-
tive to the client. Ideally, accessing a remote object should
be as simple as calling an operation on a local object,i.e.,
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object !operation(args) . Figure 1 shows the under-
lying components described below that ORBs use to transmit
remote operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an Interface
Definition Language (IDL) interface. The object is identified
by an object reference, which uniquely names that instance
across servers. AnObjectIdassociates an object with its ser-
vant implementation, and is unique within the scope of an Ob-
ject Adapter. Over its lifetime, an object has one or more ser-
vants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented us-
ing one or more class instances. In non-OO languages, like
C, servants are typically implemented using functions and
struct s. A client never interacts with a servant directly, but
always through an object.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request to
the object and returning a response, if any, to the client. For
objects executing remotely, a CORBA-compliant ORB Core
communicates via a version of the General Inter-ORB Proto-
col (GIOP), most commonly the Internet Inter-ORB Protocol
(IIOP), which runs atop the TCP transport protocol. An ORB
Core is typically implemented as a run-time library linked into
both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
(1) initialize and shutdown the ORB, (2) convert object ref-
erences to strings and back, and (3) create argument lists for
requests made through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters into a
common data-level representation. Conversely, skeletons de-
marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms
OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing program-
ming language transparency, IDL compilers eliminate com-
mon sources of network programming errors and provide op-
portunities for automated compiler optimizations [10].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility is
useful when an application has no compile-time knowledge
of the interface it accesses. The DII also allows clients to
makedeferred synchronouscalls, which decouple the request
and response portions of twoway operations to avoid blocking
the client until the servant responds. In contrast, in CORBA
2.x, SII stubs only supporttwoway, i.e., request/response, and
oneway, i.e., request-only operations.1

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to servants that have no compile-time knowledge of
the IDL interface they implement. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a servant
with objects, demultiplexes incoming requests to the servant,
and collaborates with the IDL skeleton to dispatch the appro-
priate operation upcall on that servant. CORBA 2.2 porta-
bility enhancements [2] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB. Ob-
ject Adapters enable ORBs to support various types of ser-
vants that possess similar requirements. This design results in
a smaller and simpler ORB that can support a wide range of
object granularities, lifetimes, policies, implementation styles,
and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on the
object and make invocations on it. In addition, the Interface
Repository provides a common location to store additional in-
formation associated with interfaces to CORBA objects, such
as type libraries for stubs and skeletons.

Implementation Repository: The Implementation Reposi-
tory [12] contains information that allows an ORB to activate
servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
such as administrative control, resource allocation, security,
and activation modes.

The use of CORBA as communication middleware en-
hances application flexibility and portability by automating
common network programming tasks such as object location,

1The OMG has standardized an asynchronous method invocation interface
in the Messaging specification [11], which will appear in CORBA 3.0.
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object activation, and parameter marshaling. CORBA is an
improvement over conventional procedural RPC middleware
like OSF DCE since it supports object-oriented language fea-
tures and more flexible communication mechanisms beyond
standard request/response RPC.

Object-oriented language features supported by CORBA
include encapsulation, interface inheritance, parameterized
types, and exception handling. The flexible communication
mechanisms supported by CORBA include its dynamic invo-
cation capabilities and object reference2 parameters that sup-
port distributed callbacks and peer-to-peer communication.
These features enable complex distributed and concurrent ap-
plications to be developed more rapidly and correctly.

The primary drawback to using middleware like CORBA is
its potential for lower throughput, higher latency, and lack of
scalability over high-speed networks. Conventional CORBA
ORBs have not been optimized significantly. In general, ORB
performance has not generally been an issue on low-speed net-
works, where middleware overhead is often masked by slow
link speeds. On high-speed networks, however, this overhead
becomes a significant factor that limits communication perfor-
mance and ultimately limits adoption of CORBA by develop-
ers.

3 CORBA/ATM Testbed and Experi-
mental Methods

This section describes our CORBA/ATM testbed and outlines
our experimental methods.

3.1 Hardware and Software Platforms

Our experimental ATM/CORBA testbed is depicted in Fig-
ure 2. The experiments in this section were conducted us-
ing a FORE systems ASX-1000 ATM switch connected to
two dual-processor UltraSPARC-2s running SunOS 5.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSparc-2 contains two 168 MHz Super SPARC CPUs with
a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP pro-
tocol stack is implemented using the STREAMS communica-
tion framework. Each UltraSPARC-2 has 256 mbytes of RAM
and an ENI-155s-MF ATM adaptor card, which supports 155
Megabits per-sec (Mbps) SONET multimode fiber. The Max-
imum Transmission Unit (MTU) on the ENI ATM adaptor is
9,180 bytes. Each ENI card has 512 Kbytes of on-board mem-
ory. A maximum of 32 Kbytes is allotted per ATM virtual
circuit connection for receiving and transmitting frames (for a
total of 64 K). This allows up to eight switched virtual connec-
tions per card.

2An object referenceuniquely identifies a servant residing on a server.
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Figure 2: ATM Testbed for ORB Endsystem Performance Ex-
periments

3.2 Traffic Generators

Our earlier studies [5, 6, 7] tested bulk data performance using
“flooding models” that transferred untyped bytestream data, as
well as richly typed data between hosts using several CORBA
ORBs and lower-level mechanisms like sockets. On the client-
side, these experiments measured the static invocation inter-
face (SII) and the dynamic invocation interface (DII) provided
by the CORBA ORBs.

The SII allows a client to invoke a remote operation via
static stubs generated by a OMG IDL compiler. The SII is
useful when client applications know the interface offered by
the server at compile-time. In contrast, the DII allows a client
to access the underlying request mechanisms provided by an
ORB directly. The DII is useful when the applications do not
know the interface offered by the server until run-time.

The experiments conducted for this paper extend our earlier
throughput studies by measuring end-to-end latency incurred
when invoking operations with a range of data types and sizes
on remote servant(s). In addition, we measure CORBA scal-
ability by determining the demultiplexing overhead incurred
when increasing the number of servants in an endsystem server
process.

Traffic for the latency experiment was generated and con-
sumed by an enhanced version of TTCP [13]. TTCP is a
widely used benchmarking tool to evaluate the performance of
TCP/IP and UDP/IP networks. We extended TTCP to handle
oneway and twoway operations for Orbix 2.1 and VisiBroker
2.0.

The flow of control is uni-directional in oneway operations
and the client can proceed in parallel with the server. CORBA
specifies “best-effort” delivery semantics for oneway opera-
tions; no application-level acknowledgment is passed back to
the requester. Both Orbix and VisiBroker use TCP/IP to trans-
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mit oneway operations.
In twoway operations, the flow of control is bi-directional.

After each twoway operation is invoked, the client blocks un-
til an acknowledgment is received,i.e., the operation returns.
In our experiments, we defined twoway operations to return
“void ,” thereby minimizing the size of the acknowledgment
from the server.

We measured round-trip latency using the twoway CORBA
operations. We first measured operations that did not use
any parameters to determine the “best case” operation latency.
In addition, we measured operation transfers using following
data types: primitive types (short , char , long , octet ,
double ) and a C++struct composed of all the primitives
(BinStruct ). The CORBA ORBs transferred the data types
using IDL sequences , which are dynamically-sized arrays.
The following OMG IDL interface was used by the CORBA
ORBs for the latency tests reported in this paper:
struct BinStruct{ short s; char c; long l;

octet o; double d; };
interface ttcp_sequence
{

typedef sequence<BinStruct> StructSeq;
typedef sequence<octet> OctetSeq;

// Routines to send sequences of various data types
void sendStructSeq_2way (in StructSeq ttcp_seq);
void sendOctetSeq_2way (in OctetSeq ttcp_seq);
void sendNoParams_2way();
void sendNoParams_1way();

};

3.3 TTCP Parameter Settings

Related work [14, 15, 16, 7] on transport protocol performance
over ATM demonstrate the performance impact of parameters
such as the size of socket queues, data buffers, and number
of servants in a server. Therefore, our TTCP benchmarks sys-
tematically varied these parameters for each type of data as
follows:

� Socket queue size The sender and receiver socket queue
sizes used were 64 K bytes, which is the maximum on SunOS
5.5. These parameters influence the size of the TCP segment
window, which has been shown [16] to significantly affect
CORBA-level and TCP-level performance on high-speed net-
works.

� TCP “No Delay” option Since the request sizes for our
tests are relatively small, theTCP NODELAYoption is set on
the client side. Without theTCP NODELAYoption, the client
uses Nagel’s algorithm, which buffers “small” requests until
the preceding small request is acknowledged. On high-speed
networks the use of Nagel’s algorithm can increase latency un-
necessarily. Since this paper focuses on measuring the latency
of small requests, we enabled theTCP NODELAYoption to
send packets immediately.

�Data buffer size For the latency measurements, the sender
transmits parameter units of a specific data type incremented
in powers of two, ranging from 1 to 1,024. Thus, forshorts
(which are two bytes on SPARCs), the sender buffers ranged
from 2 bytes to 2,048 bytes. In addition, we measured the la-
tency of remote operation invocations that had no parameters.

� Number of servants Increasing the number of servants on
the server increases the demultiplexing effort required to dis-
patch the incoming request to the appropriate servant. To pin-
point the latency overhead in this demultiplexing process, and
to evaluate the scalability of CORBA implementations, our ex-
periments used a range of servants (1, 100, 200, 300, 400, and
500) on the server.

3.4 Profiling Tools

Detailed timing measurements used to compute latency were
made with thegethrtime system call available on SunOS
5.5. This system call uses the SunOS 5.5 high-resolution
timer, which expresses time in nanoseconds from an arbitrary
time in the past. The time returned bygethrtime is very
accurate since it does not drift.

The profile information for the empirical analysis was ob-
tained using theQuantify [17] performance measurement
tool. Quantify analyzes performance bottlenecks and iden-
tifies sections of code that dominate execution time. Un-
like traditional sampling-based profilers (such as the UNIX
gprof tool),Quantify reports results without including its
own overhead. In addition,Quantify measures the over-
head of system calls and third-party libraries without requiring
access to source code.

3.5 Operation Invocation Strategies

One source of latency incurred by CORBA ORBs in high-
speed networks involves theoperation invocation strategy.
This strategy determines whether the requests are invoked via
the static or dynamic interfaces and whether the client expects
a response from the server. In our experiments, we measured
the following operation invocation strategies defined by the
CORBA specification, which are shown in Figure 3.

� Oneway static invocation The client uses the SII stubs
generated by the OMG IDL compiler for the oneway opera-
tions defined in the IDL interface, as shown in Figure 3 (A).

� Oneway dynamic invocation The client uses the DII to
build a request at run-time and uses the CORBARequest
class to make the requests, as shown in Figure 3 (B).

� Twoway static invocation The client uses the static invo-
cation interface (SII) stubs for twoway operations defined in
IDL interfaces, as shown in Figure 3 (C).
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Figure 3: CORBA Operation Invocation Strategies

� Twoway dynamic invocation The client uses the dynamic
invocation interface (DII) to make the requests, but blocks un-
til the call returns from the server, as shown in Figure 3 (D).

We measured the average latency for 100 client requests for
groups of 1, 100, 200, 300, 400, and 500 servants on the server.
In every request, we invoked the same operation. We restricted
the number of requests per servant to 100 since neither Orbix
nor VisiBroker could handle a larger numbers of requests with-
out crashing, as described in Section 4.4.

3.6 Servant Demultiplexing Strategies

Another source of overhead incurred by CORBA ORBs in-
volves the time the Object Adapter spends demultiplexing re-
quests to servants. The type of demultiplexing strategy used
by an ORB significantly affects its scalability. Scalability is
important for applications ranging from enterprise-wide net-
work management systems, with agents containing a poten-
tially large number of servants on each ORB endsystem, to
real-time avionics mission computers, which must support
real-time scheduling and dispatching of periodic processing
operations.

A standard GIOP-compliant client request contains the
identity of its remote object and remote operation. A remote
object is represented by an Object Keyoctet sequence
and a remote operation is represented as astring . Conven-
tional ORBs demultiplex client requests to the appropriate op-
eration of the servant implementation using thelayered demul-
tiplexingarchitecture shown in Figure 4. These steps perform
the following tasks:
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Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times,e.g., through the data
link, network, and transport layers up to the user/kernel bound-
ary and the ORB Core.

Steps 3, 4, and 5: The ORB Core uses the addressing in-
formation in the client’s Object Key to locate the appropriate
Object Adapter, servant, and the skeleton of the target IDL op-
eration.

Step 6: The IDL skeleton locates the appropriate operation,
demarshals the request buffer into operation parameters, and
performs the operation upcall.

However, layered demultiplexing is generally inappropriate
for high-performance and real-time applications for the fol-
lowing reasons [18]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for an indeterminate period of time while
lower priority packets are demultiplexed and dispatched [19].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [5, 20] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

Prior work [21] analyzed the impact of various IDL skele-
ton demultiplexing techniques such as linear search and direct
demultiplexing. However, in many applications the number
of operations defined per-IDL interface is relatively small and
static, compared to the number of potential servants, which
can be quite large and dynamic.

To evaluate the scalability of the CORBA ORBs in this pa-
per, we varied the number of servants residing in the server
process from 1 to 500, by increments of 100. The server used
the sharedactivation mode, where all servants on the server
are managed by the same process.

3.7 Request Invocation Algorithms

The experiments conducted for this paper use four different
request invocation algorithms on the client-side. Each invo-
cation algorithm evaluates the merits of the server-side Ob-
ject Adapter’s strategy for demultiplexing incoming client re-
quests. The experiments conducted for the Orbix 2.1 and Vis-
iBroker 2.0 ORBs use therequest trainandround robininvo-
cation algorithms described below.

Section 5 describes how we applied active demultiplexing
and perfect hashing to optimized demultiplexing in our high-
performance, real-time ORB called TAO [22, 21]. To test these
strategies, we developed two additional request invocation al-
gorithms calledrandom invocationandworst-case invocation,
respectively. These algorithms are used to evaluate the pre-
dictability, consistency, and scalability properties of TAO’s
demultiplexing strategies, and to compare their performance
with the worst-case performance of linear-search demultiplex-
ing. All the four invocation algorithms are described below.

3.7.1 The Request Train Invocation Algorithm

One way to optimize demultiplexing overhead is to have the
Object Adapter cache recently accessed servants. Caching
is particularly useful if client operations arrive in “request
trains,” where a server receives a series of requests for the
same servant. By caching information about a servant, the
server can reduce the overhead of locating the servant for ev-
ery incoming request.

To determine if caching was used, and to measure its ef-
fectiveness, we devised the following request invocation algo-
rithm:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int j = 0; j < num_servants; j++){
for (int i = 0; i < MAXITER; i++) {

// Use one of the 2 invocation strategies
// to call the send() operation on servant_#j
// at the server...
sum += timer.current_time ();

}
}
avg_latency = sum / (MAXITER * num_servants);

This algorithm does not change the destination servant until
MAXITERrequests are performed. If a server is caching in-
formation about recently accessed servants, the request train
algorithm should elicit different performance characteristics
than the round robin algorithm described next.

3.7.2 The Round Robin Invocation Algorithm

In this scheme, the client invokes thesend operation
MAXITER times on a different object reference. This al-
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gorithm is used to evaluate how predictable, consistent, and
scalable is the demultiplexing technique used by the Object
Adapter. The round robin algorithm is defined as follows:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < MAXITER; i++){
for (int j = 0; j < num_servants; j++) {

// Use one of the 2 invocation strategies
// to call the send() operation on servant_#j
// at the server...
sum += timer.current_time ();

}
}
avg_latency = sum / (MAXITER * num_servants);

3.7.3 Random Invocation Algorithm

The random invocation algorithm is different than the round
robin algorithm since requests are made on a randomly chosen
object reference for a randomly chosen operation as shown
below:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < num_servants; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

// choose a servant at random from
// the set [0, NUM_SERVANTS - 1];
// choose an operation at random from
// the set [0, NUM_OPERATIONS - 1];
// invoke the operation on that servant;

}
}
avg_latency = sum / (MAXITER * num_servants);

The pattern of requests generated by this scheme is dif-
ferent from the well-defined pattern of requests made by the
round robin algorithm. The random invocation algorithm is
thus better suited to test the predictability, scalability, and con-
sistency properties of the demultiplexing techniques used than
the round robin Invocation algorithm.

3.7.4 Worst-case Invocation Algorithm

In this scheme, we choose the last operation of the last ser-
vant. The algorithm for sending the worse-case client requests
is shown below:

const int MAXITER = 100;

long sum = 0;
Profile_Timer timer; // Begin timing.

for (int i = 0; i < num_servant; i++) {
for (int j = 0; j < NUM_OPERATIONS; j++) {

// invoke the last operation on the
// last servant
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DII REQUESTDII REQUEST

CLIENTCLIENT SERVERSERVER

FRAMINGFRAMING,, ERROR ERROR

CHECKING ANDCHECKING AND
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DEMULTIPLEXINGDEMULTIPLEXING
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NETWORKNETWORK

Figure 5: General Path of CORBA Requests

}
}
avg_latency = sum / (MAXITER * num_servants);

The purpose of this scheme is to compare the performance of
different demultiplexing schemes with that of the worst-case
behavior depicted by a linear-search based scheme.

4 Performance Results for CORBA
Latency and Scalability over ATM

This section presents the performance results from our latency
and scalability experiments. Sections 4.1 and 4.2 describe the
blackbox experiments that measure end-to-end communica-
tion delay from client requester to a range of servants using
a variety of types and sizes of data. Section 4.3 describes
a whitebox empirical analysis usingQuantify to precisely
pinpoint the overheads that yield these results. Our measure-
ments include the overhead imposed by all the layers shown in
Figure 5.

4.1 Blackbox Results for Parameterless Opera-
tions

In this section, we describe the results for invoking parameter-
less operations using the round robin and request train invoca-
tion strategies.
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4.1.1 Latency and Scalability of Parameterless Opera-
tions

Figures 6 and 7 depict the average latency for the parameter-
less operations using the request train variation of our request
invocation algorithm. Likewise, Figures 8 and 9 depict the av-
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Figure 6: Orbix: Latency for Sending Parameterless Operation
using request train Requests
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Figure 7: VisiBroker: Latency for Sending Parameterless Op-
eration using request train Requests

erage latency for invoking parameterless operations using the
round robin algorithm.

These figures reveal that the results for the request train ex-
periment and the round robin experiment are essentially iden-
tical. Thus, it appears that neither ORB supports caching of
servants. As a result, the remainder of our tests just use the
round robin algorithm.

Twoway latency The figures illustrate that the performance
of VisiBroker was relatively constant for twoway latency. In
contrast, Orbix’s latency grew as the number of servants in-
creased. The rate of increase was approximately 1.12 times
for every 100 additional servants on the server.

We identified the problem with Orbix by usingtruss ,
which is a Solaris tool for tracing the system calls at run-
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Figure 8: Orbix: Latency for Sending Parameterless Operation
using Round Robin Requests
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Figure 9: VisiBroker: Latency for Sending Parameterless Op-
eration using round robin Requests
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time. When Orbix 2.1 is run over ATM networks, it opens
a new TCP connection (and thus a new socket descriptor) for
every object reference.3 This behavior has the following con-
sequences:

� Increased demultiplexing overhead– Opening a new
socket connection for each object reference degrades
latency significantly since the OS kernel must search
the socket endpoint table to determine which descriptor
should receive the data.

� Limited scalability– As the number of servants grew, all
the available descriptors on the client and server were ex-
hausted. We used the UNIXulimit command to in-
crease the number of descriptors to 1,024, which is the
maximum supported per-process on SunOS 5.5 without
reconfiguring the kernel. Thus, we were limited to ap-
proximately 1,000 object references per-server process
on Orbix over ATM.

In contrast, VisiBroker did not create socket descriptors
for every object reference. Instead, a single connection and
socket descriptor were shared by all object references in the
client. Likewise, a single connection and socket descriptor
were shared by all servant implementations in the server. This,
combined with its hashing-based demultiplexing scheme for
locating servants and operations, significantly reduces latency.
In addition, we were able to obtain object references for more
than 1,000 servants.

Oneway latency The figures illustrate that for VisiBroker,
the oneway latency remains nearly constant as the number of
servants on the server increase. In contrast, Orbix’s latency
grows as the number of servants increase.

Figures 6 and 8 reveal an interesting case with Orbix’s
oneway latency. The oneway SII and DII latencies remain
slightly less than their corresponding twoway latencies until
200 servants on the server. Beyond this, the oneway latencies
exceed their corresponding twoway latencies.

The reason for Orbix’s behavior is that it opens a new TCP
connection (and allocate a new socket descriptor) for every
object reference. Since the oneway calls do not involve any
server response to the client, the client can send requests with-
out blocking. As explained in Section 4.3.3, the receiver is
unable to keep pace with the sender due to the large number of
open TCP connections and inefficient demultiplexing strate-
gies. Consequently, the underlying transport protocol, TCP in
this case, must invoke flow control techniques to slow down
the sender. As the number of servants increase, this flow con-
trol overhead becomes dominant, which increases oneway la-
tency.

3Interestingly, when the Orbix client is run over Ethernet it only uses a
single socket on the client, regardless of the number of servants in the server
process.

In contrast, the twoway latency does not incur this flow con-
trol overhead since the sender blocks for a response after every
request.

Figure 10 compares the twoway latencies obtained for send-
ing parameterless operations for Orbix and VisiBroker with
that of a low-level C++ implementation that uses sockets di-
rectly. The twoway latency comparison reveals that the Visi-
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Figure 10: Comparison of Twoway Latencies

Broker and Orbix versions perform only 50% and 46% as well
as the C++ version, respectively.

4.1.2 Summary of Results for Parameterless Operations

� Neither Orbix nor VisiBroker caches recently accessed
object references in the Object Adapter. As a result, the
latency for the request train and round robin cases are
nearly equivalent.

� Oneway latencies for VisiBroker remained relatively con-
stant as the number of servants increase on the server.
However, the oneway latency for Orbix increases linearly
as the number of servants grow.

� Oneway latencies for Orbix exceed their corresponding
twoway latencies beyond 200 servants on the server. This
is due to the flow control mechanism used by the under-
lying TCP transport protocol to throttle the fast sender.

� Twoway latency for VisiBroker remains relatively con-
stant as the number of servants increases. This is due
to the efficient demultiplexing based on hashing used by
VisiBroker. Moreover, unlike Orbix, VisiBroker does not
open a new connection for every object reference.

� Twoway latency for Orbix increases linearly at a rate of
�1.12 per 100 servant increment. As explained earlier,
this stems from Orbix’s inefficient demultiplexing strat-
egy and the fact that it opens TCP connection per object
reference.
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� Twoway DII latency in VisiBroker is comparable to its
twoway SII latency. This is due to its reuse of DII re-
quests, thereby only creating the request once.

� Twoway DII latency in Orbix is�2.6 times that of its
twoway SII latency. In Orbix DII, a new request must be
created per invocation.4

� Twoway DII latency for Orbix is always greater than its
twoway SII latency, whereas for VisiBroker they are com-
parable. The reasons is that Orbix creates a new request
for every DII invocation. In contrast, VisiBroker recycles
the request.

4.2 Blackbox Results for Parameter Passing
Operations

In this section, we describe the results for invoking parame-
ter passing operations using the round robin and request train
invocation strategies.

4.2.1 Latency and Scalability of Parameter Passing Op-
erations

Figures 11 through 18 depict the average latency for sending
richly-typedstruct data and untypedoctet data using (1)
the oneway operation invocation strategies (described in Sec-
tion 3.5) and (2) varying the number of servants (described
in Section 3.6). Similarly, Figures 19 through 26 depict the
average latency for sending richly-typedstruct data and
untypedoctet for twoway operations. These figures reveal
that as the sender buffer size increases, the marshaling and
data copying overhead also grows [5, 6], thereby increasing
latency. These results demonstrate the benefit of using more
efficient buffer management techniques and highly optimized
stubs [10] to reduce the presentation conversion and data copy-
ing overhead.

Oneway latency The oneway SII latencies for Orbix and
VisiBroker foroctets are comparable. However, as depicted
in Figures 12 through 16, due to inefficient internal buffering
strategies, there is substantial variance in latency. This jitter is
generally unacceptable for real-time systems that require pre-
dictable behavior [4].

The Orbix DII latency foroctets is nearly double the la-
tency for VisiBroker. The oneway SII latencies for Orbix and
VisiBroker for BinStructs are comparable. However, the
oneway DII latency for Orbix increases rapidly compared to
that of VisiBroker. For 500 servants, the Orbix oneway DII
latency forBinStructs is�5.6 times that of VisiBroker.

4The CORBA 2.0 specification does not dictate whether a new DII request
should be created for each request, so an ORB may chose to use either ap-
proach.
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Figure 11: Orbix Latency for Sending Octets Using Oneway
SII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

0.50

1.00
La

te
nc

y 
in

 m
se

c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 12: VisiBroker Latency for Sending Octets Using
Oneway SII
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Figure 13: Orbix Latency for Sending Octets Using Oneway
DII
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Figure 14: VisiBroker Latency for Sending Octets Using
Oneway DII
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Figure 15: Orbix Latency for Sending Structs Using Oneway
SII
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Figure 16: VisiBroker Latency for Sending Structs Using
Oneway SII
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Figure 17: Orbix Latency for Sending Structs Using Oneway
DII
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Figure 18: VisiBroker Latency for Sending Structs Using
Oneway DII
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Figure 19: Orbix Latency for Sending Octets Using Twoway
SII
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Figure 20: VisiBroker Latency for Sending Octets Using
Twoway SII
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Figure 21: Orbix Latency for Sending Octets Using Twoway
DII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

La
te

nc
y 

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 22: VisiBroker Latency for Sending Octets Using
Twoway DII

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

La
te

nc
y 

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 23: Orbix Latency for Sending Structs Using Twoway
SII
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Figure 24: VisiBroker Latency for Sending Structs Using
Twoway SII
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Figure 25: Orbix Latency for Sending Structs Using Twoway
DII

13



0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0
Units of Data type sent

0.0

50.0

100.0

150.0

200.0

La
te

nc
y 

in
 m

se
c

1 object
100 objects
200 objects
300 objects
400 objects
500 objects

Figure 26: VisiBroker Latency for Sending Structs Using
Twoway DII

Twoway latency Figures 19 through 26 reveal that the
twoway latency for Orbix increases as (1) the number of ser-
vants and (2) the sender buffer sizes increase. In contrast, for
VisiBroker the latency increases only with the size of sender
buffers. Figures 23 through 26 also reveal that the latency for
the Orbix twoway SII case at 1,024 data units ofBinStruct
is almost 1.2 times that for VisiBroker.

Similarly, the latency for the Orbix twoway DII case at
1,024 data units ofBinStruct is almost 4.5 times that for
VisiBroker. In addition, the figures reveal that for Orbix,
the latency increases as the number of servants increase. As
shown in 4.3, this is due to the inefficient demultiplexing strat-
egy used by Orbix. For VisiBroker, the latency remains unaf-
fected as the number of servants increases.

Orbix incurs higher latencies than VisiBroker due to (1)
the additional overhead stemming from the inability of Or-
bix DII to reuse requests and (2) the presentation layer over-
head of marshaling and demarshaling theBinStructs .
These sources of overhead reduce the receiver’s performance,
thereby triggering the flow control mechanisms of the trans-
port protocol, which impede the sender’s progress.

[5, 6] precisely pinpoint the marshaling and data copying
overheads when transferring richly-typed data using SII and
DII. The latency for sendingoctets is much less than that
for BinStructs due to significantly lower overhead of pre-
sentation layer conversions. Section 4.3 presents our analysis
of theQuantify results for sources of overhead that increase
the latency of client request processing.

4.2.2 Summary of Latency and Scalability Results for
CORBA Parameter Passing Operations

The following summarizes the latency results for parameter
passing operations described above:

� Latency for Orbix and VisiBroker increases linearly with

the size of the request. This is due to the increased pa-
rameter marshaling overhead.

� VisiBroker exhibits relatively low, constant latency as the
number of servants increase, due to its use of hashing-
based demultiplexing for servants and IDL skeletons at
the receiver. In contrast, Orbix exhibits linear increases
in latency based on the number of servants and the num-
ber of operations in an IDL interface. This behavior stems
from Orbix’s use of linear search at the TCP/socket layer
since it opens a connection per object reference. In addi-
tion, it also uses linear search to locate servant operations
in its IDL skeletons.

� The DII performs consistently worse than SII. For
twoway Orbix operations the DII performs 3 times worse
for octets and 14 times worse forBinStructs . For
VisiBroker the DII performs comparable foroctets
and�4 times worse forBinStructs ).

Since Orbix does not reuse the DII requests, the DII la-
tency for Orbix incurs additional overhead. However,
both Orbix and VisiBroker must populate the request
with parameters. This involves marshaling and demar-
shaling the parameters. The marshaling overhead for
BinStructs is more significant than that foroctets .
As a result, the DII latency forBinStructs is worse
compared to that ofoctets .

4.3 Whitebox Analysis of Latency and Scalabil-
ity Overhead

Sections 4.1 and 4.2 presented the results of our blackbox
performance experiments. These results depicthow the two
ORBs perform. However, the blackbox tests do not explain
why there are differences in performance,i.e., they do not re-
veal thesourceof the latency and scalability overheads.

This section presents the results of whitebox profiling that
illustrate why the two ORBs performed differently. We ana-
lyze theQuantify results on sources of latency and scala-
bility overhead in the two ORBs to help explain the variation
reported in Section 4. The performance results reported in this
section motivated the latency and scalability optimizations ap-
plied to our TAO ORB in Section 5.

Figures 27 and 28 show how Orbix and VisiBroker imple-
ment the generic SII request path shown in Figure 5. Per-
centages at the side of each figure indicate the contribution to
the total processing time for a call to thesendStructSeq
method, which was used to perform the operation for sending
sequences ofBinStructs .5 The DII request path is similar
to the SII path, except that clients create requests at run-time
rather than using the stubs generated by the IDL compiler.

5The percentages in the figures do not add up to 100 since the overhead of
the OS and network devices are omitted.
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Figure 27: Request Path Through Orbix Sender and Receiver
for SII

4.3.1 Orbix SII Request Flow Overhead

In Figure 27, the Orbix sender invokes the stub for the
ttcp sequence::sendStructSeq method. The re-
quest traverses through theinvoke and the send rou-
tines of the CORBARequest class and ends up in the
OrbixChannel class. At this point, it is handled by a spe-
cialized class,OrbixTCPChannel , which uses the TCP/IP
protocol for communication.

On the receiver, the request travels through a series of
dispatcher classes that locate the intended servant imple-
mentation and its associated IDL skeleton. Finally, the
ttcp sequence dispatch class demultiplexes the in-
coming request to the appropriate servant and dispatches its
sendStructSeq method with the demarshaled parameters.

On the sender, most of the overhead is attributed to the OS.
The Orbix version uses thewrite system call which accounts
for 73% of the processing time, due primarily to protocol pro-
cessing in the SunOS 5.5 kernel. The remaining overhead can
be attributed to marshaling and data copying, which accounts
for �25% of the processing time. On the receiver, the demar-
shaling layer accounts for almost 72% of the overhead, due
largely to the presentation layer conversion overhead incurred
while demarshaling incoming parameters.
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Figure 28: Request Path Through VisiBroker Sender and Re-
ceiver for SII

4.3.2 VisiBroker SII Request Flow Overhead

In Figure 28, the VisiBroker sender invokes the stub for the
sendStructSeq method defined by thettcp sequence
class. The request passes through thesend methods
of the CORBA::Object and thePMCStubInfo classes.
Finally, the request passes through the methods of the
PMCIIOPStream class. This class implements the Internet
Inter-ORB Protocol (IIOP), which specifies a standard com-
munication protocol between servants on different heteroge-
neous hosts. The IIOP implementation writes to the underly-
ing socket descriptor.

On the receiver, the IIOP implementation reads the packet
using methods of thePMCIIOPStream class, which passes
the request to the Object Adapter. The Object Adapter de-
multiplexes the incoming request by identifying the skeleton
( sk ttcp sequence::skeleton ). The skeleton identi-
fies the servant and makes an upcall to thesendStructSeq
method of thettcp sequence i implementation class.

On the sender, 56% of the overhead is attributed to the OS
and networking level. The rest of the overhead stems from
marshaling and data copying, which accounts for�42% of
the processing time. On the receiver, the demarshaling and de-
multiplexing layer accounts for almost 72% of the processing
time. VisiBroker spends most of its receiver processing de-
marshaling the parameters. In addition, the incoming parame-
ters must travel through long chain of function calls (shown in
Figure 28), which increases the overhead.
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Comm. Request Analysis
Entity Train Method Name msec %

Client No write 1,225 75.60
Yes write 1,229 73.88

Server No strcmp 3,010 21.97
hashTable:: 2,178 15.90
lookup
write 1,392 10.16
select 902 6.58
hashTable:: 704.52 5.14
hash
Selecthandler:: 476 3.45
processSockets
read 346 2.55

Yes strcmp 2,979 21.06
hashTable:: 2,178 15.40
lookup
write 1,504 10.63
select 902 6.38
hashTable:: 712 5.04
hash
Selecthandler:: 479 3.39
processSockets
read 372 2.63

Table 1: Analysis of Servant Demultiplexing Overhead for Or-
bix

The request flow path traced by Orbix and VisiBroker is
very similar. VisiBroker uses the standard IIOP common data
representation (CDR) encoding as its native protocol for rep-
resenting data types internally. In contrast Orbix uses a pro-
prietary communication protocol based on ONC’s XDR.

4.3.3 Servant Demultiplexing Overhead

To evaluate how the CORBA ORBs scale for endsystem
servers, we instantiated 1, 100, 200, 300, 400, and 500
servants on the server. The following discussion ana-
lyzes the server-side overhead for demultiplexing client re-
quests to servants. We analyze the performance of the
sendNoParams 1way method for 500 servants on the
server and 10 iterations. ThesendNoParams 1way method
is chosen so that the demultiplexing overhead can be analyzed
without being affected by the demarshaling overhead involved
with sending richly-typed data as shown in Sections 4.3.1 and
4.3.2.

Sources of Orbix demultiplexing overhead Table 1 depicts
the latency and scalability impact of instantiating 500 ser-
vants and invoking 10 requests of thesendNoParams 1way
method per servant using Orbix.Quantify analysis reveals
that the performance of both the round robin and the request
train case is similar. In both cases, the client spends most of
its time performing network writes.

The server spends�22% of its time doingstrcmps used
for linearly searching the operation table to lookup the right

operation,�16% of its time searching the hash table to lo-
cate the right servant and its skeleton,�10% of its time in
writes , and�7% of its time inselect . Orbix opens a new
socket descriptor for every object reference obtained by the
client. Hence, to demultiplex incoming requests, Orbix must
useselect to determine which socket descriptor is ready
for reading. Thewrites are used for flushing of buffers in-
voked by the underlying flow-control mechanism of the trans-
port protocol.

Sources of VisiBroker demultiplexing overhead Table 2
depicts the affect on latency and scalability of instan-
tiating 500 servants and invoking 10 iterations of the
sendNoParams 1way method per servant using VisiBro-
ker. The table reveals no significant difference between the
round robin and request train case. TheQuantify analysis
for the VisiBroker version reveals that the server spends�15-
20% of its time in network writes,�5% in reads , and�22%
time demultiplexing requests.

VisiBroker’s Object Adapter manages the internal tables
�NCTransDict andNCOutTbl . These tables use a hash-
based table lookup strategy to demultiplex and dispatch in-
coming requests to their intended servants.

Comparison of Orbix and VisiBroker demultiplexing over-
head

� VisiBroker opens one socket descriptor for all object ref-
erences in the same server process. In contrast, Orbix
opens a new socket descriptor for every object reference
over networks (described in Section 4.1).

� VisiBroker uses a hashing-based scheme to demultiplex
incoming requests to their servant. In contrast, although
Orbix also uses hashing to identify the servant, a different
socket is used for each servant. Therefore, the OS kernel
must search the list of open socket descriptors to identify
which one is enabled for reading.

4.4 Additional Impediments to CORBA Scala-
bility

In addition to servant demultiplexing overhead, both versions
of CORBA used in our experiments possessed other imped-
iments to scalability. In particular, neither worked correctly
when clients invoked a large number of operations on a large
number of servants accessed via object references.

We were not able to measure latency for more than�1,000
servants since both ORBs crashed when we performed a large
number of requests on�1,000 servants. As discussed in Sec-
tion 4.1, Orbix was unable to support more than�1,000 ser-
vants since it opened a separate TCP connection and allocated
a new socket for each servant in the server process. Moreover,
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Comm. Request Analysis
Entity Train Method Name msec %

Client No write 10,895 99.00
Yes write 10,992 99.00

Server No write 393 20.84
�NCTransDict 138 7.31
�NCClassInfoDict 138 7.31
read 83 4.40
NCOutTbl 73 3.84
NCClassInfoDict 71 3.75

Yes write 275 15.32
�NCTransDict 138 7.67
�NCClassInfoDict 138 7.67
read 83 4.61
NCOutTbl 73 4.03
NCClassInfoDict 71 3.93

Table 2: Analysis of Servant Demultiplexing Overhead for
VisiBroker

even though VisiBroker supported�1,000 servants, it could
not support more than 80 requests per servant without crashing
when the server had 1,000 servantsi.e., no more than a total of
80,000 requests could be handled by VisiBroker (this appears
to be caused by a memory leak). Clearly, these limitations are
not acceptable for mission-critical ORBS.

4.5 Summary of Performance Experiments

The following summarizes the results of our findings of con-
ventional ORB latency and scalability over high-speed net-
works:

� Sender-side overhead Much of the sender-side overhead
resides in OS calls that send requests. Removing this overhead
requires the use of optimal buffer manager and tuning differ-
ent parameters (such as socket queue lengths and flow control
strategies) of the underlying transport protocol.

� Receiver-side overhead Much of the receiver-side over-
head occurs from inefficient demultiplexing and presentation
layer conversions (particularly for passing richly-typed data
like structs ). Eliminating the demultiplexing overhead re-
quires de-layered strategies and fast, flexible message demulti-
plexing [23, 21]. Eliminating the presentation layer overhead
requires optimized stub generators [24, 10] for richly-typed
data.

� Demultiplexing overhead The Orbix demultiplexing per-
forms worse than VisiBroker demultiplexing since Orbix uses
a linear search strategy based onstring comparisons for op-
eration demultiplexing. In addition, due to an open TCP con-
nection for every object reference, Orbix must use the UNIX
event demultiplexing callselect to determine which socket
descriptors are ready for reading.

Problem Solution Principle

High overhead of C++ inline Optimize for
small, frequently hints common case
called methods
Lack of support for C preprocessor Optimize for
aggressive inlining macros common case
Too many method SpecializeTypeCode Generic to
calls interpreter specialized
Expensive no-ops for Insert a check and Eliminate
deepfree of scalar delete at top level waste
types
Repetitive size and Precompute size and Precompute
alignment calculation alignment info in extra and maintain
of sequence elements state inTypeCode extra state
Duplication of tasks Use default parameters Pass info.
between function solution and pass info. across layers
calls when appropriate
Cache miss penalty Split large interpreter Optimize

into specialized for cache
methods and outline

Inefficient lookup Use active de-layered Optimize
techniques demultiplexing and perfect demultiplexing

hashing strategies

Table 3: Optimization Principles Applied in TAO

� Intra-ORB function calls Conventional ORBs suffer
from excessive intra-ORB function calls, as shown in Section
4.3. Minimizing intra-ORB function calls requires sophisti-
cated compiler optimizations such as integrated layer process-
ing [1].

� Dynamic invocation overhead DII performance drops as
the size of requests increases. To minimize the dynamic in-
vocation overhead, ORBs should reuse DII requests and mini-
mize the marshaling and data copying required to populate the
requests with their parameters.

5 Techniques for Optimizing ORB La-
tency and Scalability

The performance results reported in Section 3 reveal the la-
tency and scalability capabilities and limitations of conven-
tional ORBs. We have used these results to guide the devel-
opment of a high-performance, real-time ORB, called TAO
[22, 4]. This section gives an overview of TAO and explains
how the ORB optimization principles shown in Table 3 have
been applied systematically to improve its latency and scala-
bility.

5.1 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. The TAO
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ORB endsystem contains the network interface, OS, commu-
nication protocol, and CORBA-compliant middleware com-
ponents and features shown in Figure 29. TAO supports the

NETWORK

ORB RUN-TIME

SCHEDULER

REAL-TIME
ORB  CORE

operation()

RIDL
STUBS

REAL-TIME

OBJECT

ADAPTER

RIDL
SKELETON

in  args

out  args + return  value

CLIENT

OS  KERNEL

HIGH-SPEED

NETWORK  INTERFACE

REAL-TIME  I/O
SUBSYSTEM

RIOP

OBJECT
(SERVANT)

OS  KERNEL

HIGH-SPEED

NETWORK  INTERFACE

REAL-TIME  I/O
SUBSYSTEM

ACE  COMPONENTS

Figure 29: Components in the TAO Real-time ORB Endsys-
tem

standard OMG CORBA reference model [2], with the follow-
ing enhancements designed to overcome the shortcomings of
conventional ORBs [25] for high-performance and real-time
applications:

Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and
skeletons efficiently marshal and demarshal operation param-
eters, respectively [26]. In addition, TAO’s Real-time IDL
(RIDL) stubs and skeletons extend the OMG IDL specifica-
tions to ensure that application timing requirements are speci-
fied and enforced end-to-end [27].

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests to
servants. TAO’s Object Adapter uses perfect hashing [28] and
active demultiplexing [21] optimizations to dispatch servant
operations in constantO(1) time, regardless of the number
of active connections, servants, and operations defined in IDL
interfaces.

ORB Run-time Scheduler: TAO’s run-time scheduler maps
application QoS requirements to ORB endsystem/network re-
sources [22]. Common QoS requirements include bounding
end-to-end latency and meeting periodic scheduling deadlines.
Common ORB endsystem/network resources include CPU,
memory, network connections, and storage devices.

Real-time ORB Core: The ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [25] uses a multi-threaded,

preemptive, priority-based connection and concurrency archi-
tecture to provide an efficient and predictable CORBA IIOP
protocol engine [26].

Real-time I/O subsystem: TAO’s real-time I/O subsystem
[19] extends support for CORBA into the OS. TAO’s I/O sub-
system assigns priorities to real-time I/O threads so that the
schedulability of application components and ORB endsystem
resources can be enforced.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [29]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
planes, multi-processor shared memory environments, and In-
ternet protocols like TCP/IP.

TAO is developed atop lower-level middleware called
ACE [30], which implements core concurrency and distribu-
tion patterns [31] for communication software. ACE provides
reusable C++ wrapper facades and framework components
that support the QoS requirements of high-performance, real-
time applications. ACE runs on a wide range of OS platforms,
including Win32, most versions of UNIX, and real-time oper-
ating systems like Sun ClassiX, LynxOS, and VxWorks.

5.2 Overview of TAO Optimizations

We are developing TAO to overcome the following limitations
with conventional ORBs:

Non-optimal demultiplexing strategies Conventional
ORBs utilize inefficient and inflexible demultiplexing
strategies based on layered demultiplexing, as explained in
Section 4.3 and shown in Figure 30(A & B). In contrast,
TAO utilizes perfect hashing and active demultiplexing in
conjunction with explicit dynamic linking [21] shown in
Figure 30(C & D). These strategies make it possible to adapt
and configure optimal demultiplexing of client requests within
ORB endsystems.

Inefficient presentation layer conversions Conventional
ORBs are not optimized to generate efficient stubs and skele-
tons. As a result, they incur excessive marshaling and demar-
shaling overhead ([5, 6] and this paper in Figures 27 and 28)
thereby adversely affecting latency. In contrast, TAO produces
and configures multiple encoding/decoding strategies for in-
terface definition language (IDL) descriptions. Each strategy
can be configured for different time/space tradeoffs between
compiled vs. interpreted OMG IDL stubs and skeletons [32],
and the application’s use of parameters (e.g., pass-without-
touching, read-only, mutable).
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Figure 30: Demultiplexing Strategies

Excessive data copying and intra-ORB calls Conventional
ORBs are not optimized to reduce the overhead of data copies.
In addition, these ORBs suffer from excessive intra-ORB func-
tion call overhead as shown in Section 4.3. In contrast, TAO
uses advanced compiler techniques, such as program flow
analysis [33, 34] and integrated layer processing (ILP) [1]
to automatically omit unnecessary data copies between the
CORBA infrastructure and applications. In addition, ILP re-
duces the overhead of excessive intra-ORB function calls.
Most importantly, this streamlining can be performed without
requiring modifications to the standard CORBA specification.

Lack of integration with advanced OS and Network fea-
tures Conventional ORBs do not fully utilize advanced OS
and network features, such as real-time threads, high-speed
network interfaces, and I/O subsystems with QoS support. In
contrast, TAO integrates a high-performance I/O subsystem
and the APIC network adapter with its ORB Core and opti-
mized Object Adapter to produce a real-time ORB endsystem
[22] that interoperates seamlessly with IIOP-compliant ORBs.

Non-optimized buffering algorithms used for network
reads and writes Conventional ORBS utilize non-
optimized internal buffers for writing to and reading from
the network, as shown in Section 4.3. This causes the ORBs
to spend a significant amount of time doing reads and writes
affecting latency adversely. In contrast, TAO utilizes optimal
buffer choices to reduce this overhead.

The remainder of this section is organized as follows: Sec-
tion 5.3 describes the demultiplexing strategies supported by
TAO and shows how these strategies can provide predictable
and consistent low delay to latency-critical applications; Sec-
tion 5.4 describes the principles we used to optimize TAO’s
end-to-end latency.

5.3 Increasing ORB Scalability via Demulti-
plexing Optimizations

The results of our measurements in Section 4.3.3 revealed that
the Object Adapter’s demultiplexing strategy has a significant
impact on ORB endsystem scalability. As a result, we de-
signed TAO’s Object Adapter to support multiple demultiplex-
ing strategies [35]. Section 5.3.2 presents the results of experi-
ments using the following four demultiplexing strategies avail-
able in TAO: (A) linear search, (B) dynamic hashing, (C) per-
fect hashing, and (D) de-layered active demultiplexing shown
in Figure 30:

Linear search The linear search demultiplexing strategy is
a two-step layered demultiplexing strategy (shown in Fig-
ure 30(A)). In the first step, the Object Adapter uses the object
key to linearly search through theservant map, which asso-
ciates object keys to servants maintained by an Object Adapter,
to locate the right servant and its skeleton. Each entry in the
servant map maintains a pointer to its associated skeleton. In
turn, the skeleton maintains an operation map defined by the
IDL interface. In the second step, the Object Adapter uses
the operation name to linearly search the operation map of the
associated skeleton to locate the appropriate operation and in-
voke an upcall on it.

Linear search is known to be expensive and non-scalable.
We include it in our experiments for two reasons: (1) to pro-
vide an upper bound on the worst-case performance, and (2) to
contrast our optimizing demultiplexing strategies with strate-
gies used in conventional ORBs (such as Orbix) that use linear
search for their operation demultiplexing.

Dynamic hashing The dynamic hashing strategy is an-
other two-step layered demultiplexing strategy (shown in Fig-
ure 30(B)). In contrast to perfect hashing, which hasO(1)
worst-case behavior and low constant overhead, dynamic
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hashing has higher overhead andO(n2) worse-case behav-
ior. In particular, two or more keys dynamically hash to the
same bucket. These collisions are resolved using linear search,
which can yield poor worse-case performance. The primary
benefit of dynamic hashing is that it can be used when the ob-
ject keys are not knowna priori. In order to minimize col-
lisions, the servant and the operation hash tables contained
twice as many array elements as the number of servants and
operations, respectively.

Perfect hashing The perfect hashing strategy is also a two-
step layered demultiplexing strategy (shown in Figure 30(C)).
In contrast to linear search, the perfect hashing strategy uses
an automatically-generated perfect hashing function to locate
the servant. A second perfect hashing function is then used to
locate the operation. Both servant and operation lookup take
constant time.

Perfect hashing is applicable when the keys to be hashed
are knowna priori. In many hard real-time systems (such as
avionic control systems [4]), the servants and operations can
be configured statically. In this scenario, it is possible to use
perfect hashing to hash the servant and operations. For our
experiment, we used the GNUgperf [28] tool to generate
perfect hash functions for object keys and operation names.

The following is a code fragment from the GNUgperf
generated hash function for 500 object keys used in our exper-
iments:

class Servant_Hash
{

// ...
static u_int hash (const char *str, int len);

};

u_int
Servant_Hash::hash (register const char *str,

register int len)
{

static const u_short asso_values[] =
{

// all values not shown here
1032, 1032, 1032, 1032, 1032, 1032, 1032,

100, 105, 130, 20, 100, 395, 435,
505, 330, 475, 45, 365, 180, 390,
440, 160, 125, 1032, 1032, 1032, 1032,

};
return len + asso_values[str[len - 1]]

+ asso_values[str[0]];
}

TAO uses the code shown above as follows: upon receiv-
ing a client request, the Object Adapter retrieves the object
key. It uses the object key to obtain a handle to the servant
map by using the perfecthash function shown above. The
hash function uses an automatically generated servant map
(asso values ) to return a unique hash value for each object
key.

Active demultiplexing The fourth demultiplexing strategy
is calledactive demultiplexing(shown in Figure 30(D)). In

this strategy, the client includes a handle to the servant in the
servant map and the operation table in the CORBA request
header. This handle is configured into the client when the ser-
vant reference is registered with a Naming service or Trading
service. On the receiving side, the Object Adapter uses the
handle supplied in the CORBA request header to locate the
servant and its associated operation in a single step. It is pos-
sible to implement active demultiplexing in a de-layered man-
ner, so only oneO(1) table lookup is required to associate the
incoming request with its servant operation.

5.3.1 Parameter Settings for Demultiplexing Experi-
ments

This section describes the parameter settings for analyzing the
behavior of each demultiplexing scheme described above.

Number of servants Increasing the number of servants on
the server increases the demultiplexing effort required to dis-
patch the incoming request to the appropriate servant. To pin-
point this demultiplexing overhead and to evaluate the effi-
ciency of different demultiplexing strategies, we benchmarked
various numbers of servants on the server, ranging from 1, 100,
200, 300, 400, to 500.

Number of operations defined by the interface In addition
to the number of servants, demultiplexing overhead increases
with the number of operations defined in an interface. To mea-
sure this demultiplexing overhead, our experiments defined
a range of operations (1, 10, and 100) in the IDL interface.
Since our experiments measured the overhead of demultiplex-
ing, these operations defined no parameters, thereby eliminat-
ing the overhead of presentation layer conversions. Section 5.4
describes our latency optimizations that reduce the overhead of
presentation layer conversions.

5.3.2 Performance Results

Figures 31 and 32 illustrate the performance of the four demul-
tiplexing strategies for the random and worst-case invocation
strategies described in Sections 3.7.3 and 3.7.4, respectively.
These figures reveal that in both cases, the active demultiplex-
ing and perfect hash-based demultiplexing strategies substan-
tially outperform the linear-search strategy and the dynamic
hashing strategy. Moreover, the worst-case performance over-
head of the linear-search strategy for 500 servants and 100 op-
erations is�1.87 times greater than random invocation, which
illustrates the non-scalability of linear search as a demultiplex-
ing strategy.

In addition, the figures reveal that both the active demulti-
plexing and perfect hash-based demultiplexing perform quite
efficiently and predictably regardless of the invocation strate-
gies. The active demultiplexing strategy performs slightly bet-
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Figure 31: Demultiplexing Overhead for the random invoca-
tion Strategy
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Figure 32: Demultiplexing Overhead for the worst-case invo-
cation Strategy

ter than the perfect hash-based strategy for both invocation
strategies.

5.3.3 Analysis of the Demultiplexing Strategies

The performance results and analysis presented in Sec-
tions 5.3.2 reveals that to provide low-latency and predictable
real-time support, a CORBA Object Adapter must use de-
multiplexing strategies based on active demultiplexing or per-
fect hashing rather than strategies such as linear-search (which
does not scale) and dynamic hashing (which has high over-
head).

The perfect hashing strategy is applicable when the object
keys are knowna priori. The number of operations are al-
ways knowna priori since they are defined in an IDL interface.
Thus, an IDL compiler can generate stubs and skeletons that
use perfect hashing for operation lookup. However, servants
implementing an interface can be created dynamically. In this
case, the perfect hashing strategy cannot generally be used for
servant lookup.6 In this situation, more dynamic forms of
hashing can be used as long as they provide predictable col-
lision resolution strategies. In many hard real-time environ-
ments it is possible to configure the systema priori. In this
situation, however, perfect hashing-based demultiplexing can
be used.

Our results show that active demultiplexing outperforms the
other demultiplexing strategies. However, it requires the client
to possess a handle for each servant and its associated opera-
tions in a servant map and operation map, respectively. There-
fore, active demultiplexing requires either (1) preconfiguring
the client with this knowledge or (2) defining a protocol for dy-
namically managing handles to add and remove servants cor-
rectly and securely.7

For hard real-time systems, this preconfiguration is typically
feasible and beneficial. For this reason, we are using the per-
fect hashing demultiplexing strategy in the TAO ORB we are
building for real-time avionics applications [22, 4].

5.4 Reducing ORB Latency with IIOP Opti-
mizations

To expedite the research goals of the TAO project, and to avoid
re-inventing existing components, we based TAO on SunSoft
IIOP, which is a freely available reference implementation of
the Internet Inter-ORB Protocol (IIOP). SunSoft IIOP is writ-
ten in C++ and provides many features of a CORBA 2.0 ORB.
However, it performs poorly over high-speed networks [8].

6It is possible to add new servants at run-time using dynamic linking,
though this is generally disparaged in hard real-time environments.

7We assume that the security implications of using active demultiplexing
are addressed via the CORBA security service.
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The source of overhead in SunSoft IIOP include many fac-
tors reported in Section 4. In particular, it has (1) high invo-
cation overhead for small, frequently called methods, (2) re-
peated computation of invariant values, (3) excessive memory
management and data copying overhead, and (4) inefficient,
large functions that overflow the process cache. To alleviate
this overhead, we applied a set ofprinciple-based optimiza-
tions[36] to SunSoft IIOP in order to improve the performance
of TAO.

Table 3 summarizes the optimization principles used in
TAO. These principles include:(1) optimizing for the common
case, (2) eliminating gratuitous waste, (3) replacing general-
purpose methods with efficient special-purpose ones, (4) pre-
computing values, if possible, (5) storing redundant state to
speed up expensive operations, (6) passing information be-
tween layers, (7) optimizing for processor cache affinity, and
(8) optimizing demultiplexing strategies. The results of apply-
ing these optimization principles to SunSoft IIOP improved
its latency substantially for all data types by alleviating the
following source of overhead:

� High invocation overhead for small, frequently called
methods TAO IIOP solves this problem using aggressive in-
lining based oninline functions andmacros. This optimization
uses the principle ofoptimizing for the common case.

� Repeated computation of values that do not change
TAO IIOP solves this problem by computing the values once
and storing them in additional storage. This optimization is
based on the principles ofprecomputingandusing additional
storage.

� Wasteful memory management The implementation of
the memory management system in SunSoft IIOP is overly
generic. This causes it to interpretively deallocate primitive
types, which instead can be freed wholesale. TAO IIOP reme-
dies this problem by not interpreting buffers holding primitive
data types. This optimization is based on the principle ofelim-
inating gratuitous waste.

� Inefficient, large functions that overflow the process
cache TAO IIOP streamlines the inefficient, large, and
generic functions in SunSoft IIOP into smaller, efficient, and
special-purpose functions. This optimizationimproves cache
affinity.

Figures 33 and 34 indicate that the latency for the optimized
IIOP version improves as the size of data transferred increases.
For 1,024 units of data sent, the optimized IIOP version per-

forms�1.5 to 2.0 times better that the non-optimized IIOP
version for all the primitive data types. ForBinStructs ,
TAO’s latency is�4 times lower that the original SunSoft IIOP
version.
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The optimized TAO implementation of IIOP is now compet-
itive with existing commercial ORBs using CORBA’s static in-
vocation interface. Moreover, TAO’s dynamic invocation im-
plementation is 2 to 4.5 times (depending on the data type)
faster than commercial ORBs.

6 Related Work

Existing research on measuring latency in high performance
networking has focused extensively on enhancements to
TCP/IP. None of the systems described below are explicitly
targeted for the requirements and constraints of communica-
tion middleware like CORBA. In general, less attention has
been paid to integrating the following topics related to com-
munication middleware:

6.1 Transport Protocol Performance over ATM
Networks

The underlying transport protocols used by the ORB must be
flexible and possess the necessary hooks to tune different pa-
rameters of the underlying transport protocol. [14, 15, 16]
present results on performance of TCP/IP (and UDP/IP [14])
on ATM networks by varying a number of parameters (such as
TCP window size, socket queue size, and user data size). This
work indicates that in addition to the host architecture and host
network interface, parameters configurable in software (like
TCP window size, socket queue size, and user data size) sig-
nificantly affect throughput. [14] shows that UDP performs
better than TCP over ATM networks, which is attributed to
redundant TCP processing overhead on highly-reliable ATM
links. [14] also describes techniques to tune TCP to be a less
bulky protocol so that its performance can be comparable to
UDP. They also show that the TCP delay characteristics are
predictable and that it varies with the throughput.

[37] present detailed measurements of various categories of
processing overhead times of TCP/IP and UDP/IP. The au-
thors conclude that whenever a realistic distribution of mes-
sage sizes is considered, the aggregate costs of non-data touch-
ing overheads (such as network buffer manipulation) consume
a majority of the software processing time (84% for TCP and
60% for UDP). The authors show that most messages sent are
short (less than 200 bytes). They claim that these overheads
are hard to eliminate and techniques such as integrated layer
processing can be used to reduce the overhead. [38] presents
performance results of the SunOS 4.x IPC and TCP/IP im-
plementations. They show that increasing the socket buffer
sizes improves the IPC performance. They also show that the
socket layer overhead is more significant on the receiver side.
[39] discusses theTCP NODELAYoption, which allows TCP
to send small packets as soon as possible to reduce latency.

Earlier work [5, 6] using untyped data and typed data in
a similar CORBA/ATM testbed as the one in this paper re-
veal that the low-level C socket version and the C++ socket
wrapper versions of TTCP are nearly equivalent for a given
socket queue size. Likewise, the performance of Orbix for
sequences of scalar data types is almost the same as that re-
ported for untyped data sequences. However, the performance
of transferring sequences of CORBAstructs for 64 K and
8 K socket queue sizes was much worse than those for the
scalars. This overhead arises from the amount of time the
CORBA ORBs spend performing presentation layer conver-
sions and data copying.

6.2 Presentation Layer and Data Copying

The presentation layer is a major bottleneck in high-
performance communication subsystems [1]. This layer trans-
forms typed data from higher-level representations to lower-
level representations (marshaling) and vice versa (demarshal-
ing). In both RPC toolkits and CORBA, this transformation
process is performed by client-side stubs and server-side skele-
tons that are generated by interface definition language (IDL)
compilers. IDL compilers translate interfaces written in an
description language to other forms such as a network wire
format.

Eliminating the overhead of presentation layer conversions
requires highly optimized stub compilers (e.g., Universal Stub
Compiler [24]) and the Flick IDL compiler [10]. The gener-
ated stub code must make an optimal tradeoff between com-
piled code (which is efficient, but large in size) and interpreted
code (which is slow, but compact) [32].

Our earlier results [5, 6] have presented detailed measure-
ments of presentation layer overhead for transmitting richly-
typed data. Our results for sendingstructs reveal that with
increasing sender buffer sizes, the marshaling overhead in-
creases, thereby increasing the latency. We are designing an
IDL compiler that will adapt according to the run-time access
characteristics of various data types and operations. The run-
time usage of a operation or data type can be used to dynam-
ically link in either the compiled or an interpreted version of
marshaling code.

6.3 Application Level Framing and Integrated
Layer Processing on Communication Sub-
systems

Conventional layered protocol stacks and distributed object
middleware lack the flexibility and efficiency required to meet
the quality of service requirements of diverse applications run-
ning over high-speed networks. One proposed remedy for this
problem is to useApplication Level Framing(ALF) [1, 40, 41]
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andIntegrated Layer Processing(ILP) [1, 42, 43].
ILP ensures that lower layer protocols deal with data in units

specified by the application. ILP provides the implementor
with the option of performing all data manipulations in one or
two integrated processing loops, rather than manipulating the
data sequentially. [44] have shown that although ILP reduces
the number of memory accesses, it does not reduce the num-
ber of cache misses compared to a carefully designed non-ILP
implementation.

As shown by our results, CORBA ORBs suffer from a num-
ber of overheads that includes the many layers of software and
large chain of function calls. We plan to use integrated layer
processing to minimize the overhead of the various software
layers. We are developing a factory of ILP basedinline
functions that are targeted to perform different functions. This
allows us to dynamically link required functionality as the re-
quirements change and yet have an ILP-based implementation.

6.4 Demultiplexing

Demultiplexing routes messages between different levels of
functionality in layered communication protocol stacks. Most
conventional communication models (such as the Internet
model or the ISO/OSI reference model) require some form
of multiplexing to support interoperability with existing op-
erating systems and protocol stacks. In addition, conventional
CORBA ORBs utilize several extra levels of demultiplexing at
the application layer to associate incoming client requests with
the appropriate servant and operation (as shown in Figure 4).
Layered multiplexing and demultiplexing is generally dispar-
aged for high-performance communication systems [18] due
to the additional overhead incurred at each layer.[23] describes
a fast and flexible message demultiplexing strategy based on
dynamic code generation. [21] evaluates the performance of
alternative demultiplexing strategies for real-time CORBA.

Our results for latency measurements have shown that with
increasing number of servants, the latency increases. This is
partly due to the additional overhead of demultiplexing the re-
quest to the appropriate operation of the appropriate servant.
TAO uses a de-layered demultiplexing architecture [21] that
can select optimal demultiplexing strategies based on compile-
time and run-time analysis of CORBA IDL interfaces.

7 Concluding Remarks

An important class of applications (such as avionics, dis-
tributed interactive simulation, and telecommunication sys-
tems) require scalable, low-latency communication. However,
the results in this paper indicate that conventional ORBs do
not yet support latency-sensitive applications and servers that
support a large number of servants. The chief sources of ORB

latency and scalability overhead arise from (1) long chains of
intra-ORB function calls, (2) excessive presentation layer con-
versions and data copying, (3) non-optimized buffering algo-
rithms used for network reads and writes, (4) inefficient server
demultiplexing techniques, and (5) lack of integration with OS
and network features.

Our goal in precisely pinpointing the sources of overhead
for CORBA is to optimize the performance of TAO [22] TAO
is a high-performance, real-time ORB endsystem designed to
meet the QoS requirements of bandwidth- and delay-sensitive
applications. Our development strategy for TAO is guided
by applyingprinciple-driven performance optimizations[8],
such as optimizing for the common case; eliminating gratu-
itous waste; replacing general purpose methods with special-
ized, efficient ones; precomputing values, if possible; storing
redundant state to speed up expensive operations; passing in-
formation between layers; optimizing for the processor cache;
and optimizing demultiplexing strategies.

Applying these optimizations to TAO reduced its latency
by a factor of�1.5 to 2.0 times for primitive data types and
around 4 times for richly-typed data such asBinStruct .
The performance of TAO is now equal to, or better than, com-
mercial ORBs using static invocation. Moreover, TAO’s dy-
namic invocation implementation is 2 to 4.5 times faster than
commercial ORBs, depending on the data types.

The source code for the TAO ORB and the bench-
marking tests reported in this paper are available at
www.cs.wustl.edu/ �schmidt/TAO.html .
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sium, Montréal, Canada, June 1997.

[28] Douglas C. Schmidt, “GPERF: A Perfect Hash Function Gen-
erator,” inProceedings of the2nd C++ Conference, San Fran-
cisco, California, April 1990, USENIX, pp. 87–102.

[29] Zubin D. Dittia, Guru M. Parulkar, and Jr. Jerome R. Cox, “The
APIC Approach to High Performance Network Interface De-
sign: Protected DMA and Other Techniques,” inProceedings
of INFOCOM ’97, Kobe, Japan, April 1997, IEEE.

[30] Douglas C. Schmidt and Tatsuya Suda, “An Object-
Oriented Framework for Dynamically Configuring Extensible

25



Distributed Communication Systems,”IEE/BCS Distributed
Systems Engineering Journal (Special Issue on Configurable
Distributed Systems), vol. 2, pp. 280–293, December 1994.

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides,Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

[32] Phillip Hoschka and Christian Huitema, “Automatic Generation
of Optimized Code for Marshalling Routines,” inIFIP Confer-
ence of Upper Layer Protocols, Architectures and Applications
ULPAA’94, Barcelona, Spain, 1994, IFIP.

[33] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante, “Automatic
Construction of Sparse Data Flow Evaluation Graphs,” inCon-
ference Record of the Eighteenth Annual ACE Symposium on
Principles of Programming Languages. ACM, January 1991.

[34] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck, “Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph,”
in ACM Transactions on Programming Languages and Systems.
ACM, October 1991.

[35] Douglas C. Schmidt and Chris Cleeland, “Applying Patterns to
Develop Extensible ORB Middleware,”Submitted to the IEEE
Communications Magazine, 1998.

[36] George Varghese, “Algorithmic Techniques for Efficient Pro-
tocol Implementations ,” inSIGCOMM ’96 Tutorial, Stanford,
CA, August 1996, ACM.

[37] Jonathan Kay and Joseph Pasquale, “The Importance of Non-
Data Touching Processing Overheads in TCP/IP,” inProceed-
ings of SIGCOMM ’93, San Francisco, CA, September 1993,
ACM, pp. 259–269.

[38] Christos Papadopoulos and Gurudatta Parulkar, “Experimental
Evaluation of SUNOS IPC and TCP/IP Protocol Implementa-
tion,” IEEE/ACM Transactions on Networking, vol. 1, no. 2,
pp. 199–216, April 1993.

[39] S. J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman,
The Design and Implementation of the 4.3BSD UNIX Operating
System, Addison-Wesley, 1989.

[40] Isabelle Chrisment, “Impact of ALF on Communication Sub-
systems Design and Performance,” inFirst International Work-
shop on High Performance Protocol Architectures, HIPPARCH
’94, Sophia Antipolis, France, December 1994, INRIA France.

[41] Atanu Ghosh, Jon Crowcroft, Michael Fry, and Mark Hand-
ley, “Integrated Layer Video Decoding and Application Layer
Framed Secure Login: General Lessons from Two or Three
Very Different Applications,” inFirst International Workshop
on High Performance Protocol Architectures, HIPPARCH ’94,
Sophia Antipolis, France, December 1994, INRIA France.

[42] M. Abbott and L. Peterson, “Increasing Network Throughput
by Integrating Protocol Layers,”ACM Transactions on Net-
working, vol. 1, no. 5, October 1993.

[43] Antony Richards, Ranil De Silva, Anne Fladenmuller, Aruna
Seneviratne, and Michael Fry, “The Application of ILP/ALF
to Configurable Protocols,” inFirst International Workshop
on High Performance Protocol Architectures, HIPPARCH ’94,
Sophia Antipolis, France, December 1994, INRIA France.

[44] Torsten Braun and Christophe Diot, “Protocol Implementation
Using Integrated Layer Processnig,” inProceedings of the Sym-
posium on Communications Architectures and Protocols (SIG-
COMM). ACM, September 1995.

26


