
CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments

Steve Vinoski
vinoski@ch.hp.com

Hewlett-Packard Company
300 Apollo Drive

Chelmsford, MA USA 01824

Copyright c
1996 Stephen B. Vinoski. All Rights Reserved.

This paper will appear in the feature topic issue of the
IEEE Communications Magazine, Vol. 14, No. 2, February
1997.

1 Introduction

An important characteristic of large computer networks such
as the Internet, the World Wide Web (WWW), and corpo-
rate intranets is that they are heterogeneous. For example, a
corporate intranet might be made up of mainframes, UNIX
workstations and servers, PC systems running various fla-
vors of Microsoft Windows or IBM OS/2, and perhaps even
devices such as telephone switches, robotic arms, or manu-
facturing testbeds. The networks and protocols underlying
and connecting these systems might be just as diverse: Eth-
ernet, FDDI, ATM, TCP/IP, Novell Netware, and various
remote procedure call (RPC) [1] systems, for example. Fun-
damentally, the rapidly-increasing extents of these networks
are due to the need to share information and resources within
and across diverse computing enterprises.

Heterogeneity in such computing systems is the result of
several factors:

�Engineering tradeoffs: There is rarely only a single right
solution to complex engineering problems. As a result, dif-
ferent people across an enterprise often choose different so-
lutions to similar problems.

�Cost effectiveness: Vendors vary in their abilities to pro-
vide the “best” systems at the lowest cost. Though there
is some amount of “brand name loyalty,” many consumers
tend to buy the systems that best fulfill their requirements,
regardless of who makes them.

� Legacy investments: Over time, purchasing decisions
accumulate. For example, a group of software developers
might decide to purchase new PC systems featuring 200
MHz Pentium processors running Windows NT. However,
this does not mean that they can throw out their HP systems
running UNIX that they bought two years ago since the bulk
of their revenue comes from the software they ship for the
HP platform. They have no choice but to make the UNIX
systems and the PC systems work together since they will
be using both on a day-to-day basis well into the foreseeable
future.

In the best case, heterogeneity and open systems enable
us to use the best combination of hardware and software
components for each portion of an enterprise. When the right
standards for interoperability and portability between these
components are in place, the integration of the components
yields a system that is coherent and operational.

Unfortunately, dealing with heterogeneity in distributed
computing enterprises is rarely easy. In particular, the devel-
opment of software applications and components that sup-
port and make efficient use of heterogeneous networked sys-
tems very challenging. Many programming interfaces and
packages currently exist to help ease the burden of devel-
oping software for a given platform. However, few help
deal with the integration of separately-developed systems in
a distributed heterogeneous environment.

In recognition of these problems, the Object Manage-
ment Group (OMG)1 was formed in 1989 to develop, adopt,
and promote standards for the development and deployment
of applications in distributed heterogeneous environments.
Since that time, the OMG has grown to become the largest
software consortium in the world, with nearly 700 develop-
ers and end users on its membership roster. These members
contribute technology and ideas in response to Requests For
Proposals (RFPs) issued by the OMG. Through responses
to these RFPs, the OMG adopts specifications based on
commercially-available object technology.

This article describes the OMG’s Object Management Ar-
chitecture (OMA) [2] and focuses on one of its key com-
ponents, the Common Object Request Broker Architecture
(CORBA) specification [3]. First a brief high-level overview
of the OMA is provided, followed by a detailed outline of
CORBA and each of its subcomponents. The summary sec-
tion lists some of the OMG’s current and future plans for
further promoting distributed object technology.

1OMG and Object Management are registered trademarks of the Ob-
ject Management Group. CORBA, OMG Interface Definition Language,
CORBAmed, and CORBAnet are trademarks of the Object Management
Group.

1

Object Request Broker

Application
Interfaces

Common
Facilities

Object
Services

Domain
Interfaces

Figure 1: OMA Reference Model Interface Categories

2 The Object Management Architec-
ture (OMA)

The OMA is composed of an Object Model and a Refer-
ence Model. The Object Model defines how objects dis-
tributed across a heterogeneous environment can be de-
scribed, while the Reference Model characterizes interac-
tions between those objects. The OMG RFP process is used
to adopt technology specifications that fit into the Object
Model and the Reference Model and work with the other
previously-adopted specifications. Through adherence to the
OMA, these specifications allow for the development and
deployment of interoperable distributed object systems in
heterogeneous environments.

In the OMA Object Model, an object is an encapsulated
entity with a distinct immutable identity whose services can
be accessed only through well-defined interfaces. Clients
issue requests to objects to perform services on their behalf.
The implementation and location of the object are hidden
from the requesting client.

Figure 1 shows the components of the OMA Reference
Model. The Object Request Broker (ORB) component is
mainly responsible for facilitating communication between
clients and objects. Utilizing the ORB component are four
object interface categories:

� Object Services: These are domain-independent inter-
faces that are used by many distributed object programs. For
example, a service providing for the discovery of other avail-
able services is almost always necessary regardless of the
application domain. Two examples of Object Services that
fulfill this role are:

� The Naming Service – which allows clients to find ob-
jects by name;

� The Trading Service – which allows clients to find ob-
jects based on their properties.

AI=Application Interfaces

DI=Domain Interfaces

CF=Common Facilities

OS=Object Services

OS OS

AI

OS
DI

CF

DI

OS CF

CF

OS

Object
Framework

ORB

Figure 2: OMA Reference Model Interface Usage

There are also Object Service specifications for lifecycle
management, security, transactions, and event notification,
as well as many others [4].

� Common Facilities: Like Object Service interfaces,
these interfaces are also horizontally-oriented, but unlike
Object Services they are oriented towards end-user appli-
cations. An example of such a facility is the Distributed
Document Component Facility (DDCF) [5], a compound
document Common Facility based on OpenDoc.2 DDCF
allows for the presentation and interchange of objects based
on a document model, for example, facilitating the linking of
a spreadsheet object into a report document.

�Domain Interfaces: These interfaces fill roles similar to
Object Services and Common Facilities but are oriented to-
wards specific application domains. For example, one of the
first OMG RFPs issued for Domain Interfaces is for Prod-
uct Data Management (PDM) Enablers3 for the manufactur-
ing domain [6]. Other OMG RFPs will soon be issued in
the telecommunications, medical, and financial domains. In
Figure 1, multiple boxes are shown for Domain Interfaces to
indicate the existence of many separate application domains.

� Application Interfaces: These are interfaces developed
specifically for a given application. Because they are
application-specific, and because the OMG does not develop
applications (only specifications), these interfaces are not
standardized. However, if over time it appears that certain
broadly useful services emerge out of a particular applica-
tion domain, they might become candidates for future OMG
standardization.

Figure 2 illustrates the other part of the OMA Refer-
ence Model, the concept of Object Frameworks. These are

2OpenDoc is a trademark of Apple Computer, Inc.
3“Enabler” is a term derived from Total Quality Management principles.

It is simply defined as any entity, such as a computer program or human
activity, that providesor supports an abstract businessprocess, e.g., handling
engineering change orders.

2

domain-specific groups of objects that interact to provide a
customizable solution within that application domain. These
frameworks are typically oriented towards domains such as
telecommunications, medical systems, finance, and manu-
facturing. In Figure 2, each circle represents a component
that uses the ORB to communicate with other components.
The interfaces supported by each component are indicated
on its outer circle. As the figure shows, some components
support application-specific interfaces as well as domain in-
terfaces, common facilities interfaces, and object services.
Other components support only a subset of these interfaces.

Within an object framework like the one shown in figure 2,
each component communicates with others on a peer-to-peer
basis. That is, each component is both a client of other
services and a server for the services it provides. In CORBA,
the terms “client” and “server” are merely roles that are filled
on a per-request basis. It is very often the case that a client
for one request is the server for another.

Throughout most of its existence, much of the OMG’s
attention was focused on the ORB component of the OMA.
This was necessary because everything else in the OMA
depends on it. The rest of this article will focus on the ORB,
its components, and how it is used to support distributed
object systems. For more information about the upper layers
of the OMA, see [7] or visit the OMG home page on the
WWW at http://www.omg.org/.

3 The Common Object Request Broker
Architecture (CORBA)

One of the first specifications to be adopted by the OMG
was the CORBA specification. It details the interfaces and
characteristics of the ORB component of the OMA. As of this
writing, the last major update of the CORBA specification
was in mid-1995 when the OMG released CORBA 2.0. The
main features of CORBA 2.0 are:

� ORB Core

� OMG Interface Definition Language (OMG IDL)

� Interface Repository

� Language Mappings

� Stubs and Skeletons

� Dynamic Invocation and Dispatch

� Object Adapters

� Inter-ORB Protocols

Most of these are illustrated in Figure 3, which shows
how the components of CORBA relate to one another. Each
component is described in detail below.

3.1 ORB Core

As mentioned above, the ORB delivers requests to objects
and returns any responses to the clients making the requests.

The object that a client wishes the ORB to direct a request
to is called the target object. The key feature of the ORB is
the transparency of how it facilitates client/object communi-
cation. Ordinarily, the ORB hides:

� Object location: The client does not know where the
target object resides.

� Object implementation: The client does not know how
the target object is implemented, what programming or script-
ing language(s) it was written in, nor the operating system (if
any) and hardware it executes on.

� Object execution state: When it makes a request on a
target object, the client does not need to know whether that
object is currently activated (i.e., in an executing process)
and ready to accept requests. The ORB transparently starts
the object if necessary before delivering the request to it.

� Object communication mechanisms: The client does
not know what communication mechanisms the ORB uses to
deliver the request to the object and return the response to
the client.

These ORB features allow application developers to worry
more about their own application domain issues and less
about distributed system programming issues.

To make a request, the client specifies the target object by
using an object reference. When a CORBA object is cre-
ated, an object reference for it is also created. When used
by a client, an object reference always refers to the same
object for which it was created, for as long as that object still
exists. In other words, an object reference only ever refers
to one single object. Object references are both immutable
and opaque, so a client can’t “reach into” the object refer-
ence and modify it. Only an ORB knows what’s “inside”
an object reference. Object references can have standard-
ized formats, such as those for the OMG standard Internet
Inter-ORB Protocol and DistributedComputingEnvironment
Common Inter-ORB Protocol (both of which are described
in Section 10), or they can have proprietary formats.

3.1.1 Obtaining Object References

Clients can obtain object references in several different ways:

�Convert to string and back: An object reference can be
turned into a string by the ORB, and this string can be stored
intoa file or a database. Later, the string can be retrieved from
persistent storage and turned back into an object reference by
the ORB. Even after being stringified and destringified in this
manner, it can still be used to make requests on the object as
long as the object still exists.

�Object creation: A client can create a new object in order
to get an object reference. Note that CORBA has no special
client operations for object creation – making objects is done
by invoking creation requests on other objects called factory
objects. A creation request returns an object reference for
the newly-created object to the client.

3

Same for all ORBs

Interface-specific
stubs and skeletons

There may be multiple
object adapters
ORB-private
interface

client

ORB Core

object implementation

Dynamic
Invocation

IDL
Stub

ORB
Intf

IDL
Skel Object

Adapter

DSI

Figure 3: Common Object Request Broker Architecture

� Directory service: A client can invoke a lookup ser-
vice of some kind in order to obtain object references. Two
Object Services mentioned above, the Naming Service and
the Trader Service, allow clients to obtain object references
by name or by properties of the object, respectively. Un-
like factory objects, these services do not create new objects.
They store object references and associated information (e.g.,
names and properties) for existing objects, and supply them
upon request.

CORBA has no special object creation operations, so ob-
ject references are always obtained by making requests on
other objects. This begs the question of how an application
can bootstrap itself and obtain an initial object reference.
Not surprisingly, the ORB provides a small, simple “naming
service” of its own to provide applications with object refer-
ences of more general directory services like Naming and the
Trader. For example, by passing the string “NameService” to
the ORB’s resolve initial references operation,
an application can obtain an object reference for the Naming
Service that is known to that ORB.

The fact that CORBA has no special object creation func-
tions or built-indirectory services is indicative of a key theme
of CORBA: Keep the ORB as simple as possible, and push
as much functionality as possible to other OMA components
such as Object Services and Common Facilities.4 The job
of the ORB is to simply provide the communication and
activation infrastructure for distributed object applications.

4 OMG Interface Definition Language
(OMG IDL)

Before a client can make requests on an object, it must know
the types of operations supported by the object. An object’s

4This theme of “separating components” occurs again later in the discus-
sion of other ORB components such as the Object Adapter.

interface specifies the operations and types that the object
supports and thus defines the requests that can be made on
the object. Interfaces for objects are defined in the OMG
Interface Definition Language (OMG IDL). Interfaces are
similar to classes in C++ and interfaces in Java. An example
OMG IDL interface definition is shown below:

// OMG IDL
interface Factory {

Object create();
};

This definition specifies an interface named Factory that
supports one operation, create. The create operation
takes no parameters and returns an object reference of type
Object. Given an object reference for an object of type
Factory, a client could invoke it to create a new CORBA
object. This interface might be supported by one of the
factory objects mentioned above, for example.

OMG IDL provides basic types such as long, double,
and boolean, constructed types such as struct and dis-
criminated union, and template types such as sequence
and string. Types are used to specify the parameter types
and return types for operations. As seen in the example
above, operations are used within interfaces to spec-
ify the services provided by those objects that support that
particular interface type. To define exceptional conditions
that may arise during the course of an operation, OMG IDL
provides exception definitions. Like structs, OMG IDL
exceptions may have one or more data members of any
OMG IDL type. The OMG IDL module construct allows
for scoping of definition names to prevent name clashes.

4.1 Built-in Types

OMG IDL supports the following built-in types:

� long (signed and unsigned) – 32-bit arithmetic
types

� long long (signed andunsigned) – 64-bit arith-
metic types

� short (signed and unsigned) – 16-bit arithmetic
types

� float, double, and long double – IEEE 754-
1985 floating point types

� char and wchar – character and wide character types

� boolean – Boolean type

� octet – 8-bit value5

� enum – enumerated type

� any – a tagged type that can hold a value of any OMG
IDL type, including built-in types as well as user-defined
types

The CORBA specification precisely defines the sizes of all the
basic types to ensure interoperability across heterogeneous
hardware platforms.

5An octet is guaranteed not to undergo conversions when transmitted
over a network by the ORB.

4

4.2 Constructed Types

OMG IDL also supports constructed types:

� struct – data aggregation construct (similar to structs
in C/C++)

� discriminated union – a type composed of a
type discriminator and a value of one of several pos-
sible OMG IDL types that are specified in the union
definition. OMG IDL unions are similar to unions in
C/C++, but with the addition of the discriminator.

4.3 Template Types

In addition, OMG IDL supports template types whose exact
characteristics are defined at declaration time:

� string and wstring – string and wide-character
string types. Both unbounded strings/wstrings
and bounded strings/wstrings can be declared.
For example, a string with a maximum length of 10
characters requires angle brackets to specify the bound:
string<10>. An unbounded string is simply speci-
fied as string with no angle brackets or bound num-
bers.

� sequence – a dynamic-length linear container whose
maximum length and element type can be specified in
angle brackets. For example, sequence<Factory>
defines an unbounded sequence of Factory object
references, while sequence<string,10> defines
a bounded sequence of no more than 10 strings.

� fixed – a fixed-point decimal value with no more than
31 significant digits. For example, fixed<5,2> has
a precision of 5 digits and a scale of 2, which might
be used to represent a monetary value in dollars, up to
$999.99, with accuracy to 1 cent.

4.4 Object Reference Types

OMG IDL object reference types can simply be declared by
naming the desired interface type. For example:

// OMG IDL
interface FactoryFinder {

// define a sequence of Factory
// object references
typedef sequence<Factory> FactorySeq;

FactorySeq find_factories(
in string interface_name

);
};

This OMG IDL specification defines an interface named
FactoryFinder6 that contains the definition of a type

6The notion of a “factory finder” comes from the OMG Common Object
Services Lifecycle Specification. It is a directory service object for factories
that helps applications control the locations at which they create objects.
The FactoryFinder interface shown here is not the same as the standard
interface defined in the Lifecycle Specification.

named FactorySeq. The FactorySeq type is de-
fined as an unbounded sequence of Factory object ref-
erences. The find factories operation takes an un-
bounded string type as an input argument and returns a
sequence of Factory object references as its result.

4.5 Interface Inheritance

An important feature of OMG IDL interfaces is that they can
inherit from one or more other interfaces. This makes it pos-
sible to reuse existing interfaces when defining new services.
For example, given the following OMG IDL specification:

// same as OMG IDL example above
interface Factory {

Object create();
};

// forward declaration of Spreadsheet
// interface (full definition not shown)
interface Spreadsheet;

// SpreadsheetFactory derives from Factory
interface SpreadsheetFactory : Factory {

Spreadsheet create_spreadsheet();
};

In this example, the SpreadsheetFactory interface in-
herits from the Factory interface, so an object supporting
theSpreadsheetFactory interface provides two opera-
tions: the create operation inherited from Factory, and
the create spreadsheet operation defined directly in
the SpreadsheetFactory interface.

Interface inheritance is very important in CORBA. It al-
lows the system to be open for extension while keeping it
closed for modification, which is called the Open-Closed
Principle [8]. Since a derived interface inherits all opera-
tions defined in all of its base interfaces, objects supporting
the derived interface must also support all inherited opera-
tions. This allows object references for derived interfaces to
be substituted anywhere object references for base interfaces
are allowed.

For example, a SpreadsheetFactory object refer-
ence can be used anywhere that a Factory object refer-
ence is expected because a SpreadsheetFactory sup-
ports all Factory operations. The new capabilities of
SpreadsheetFactory objects can therefore be added to
the system without requiring changes to either existing appli-
cations that use the Factory interface, or to the Factory
interface itself.

OMG IDL has one special case of interface inheritance:
all interfaces are implicitly derived from the Object inter-
face defined in the CORBA module. It’s as if each interface
definition were written as follows:

// CORBA::Object is the base interface
// for all interfaces
interface Factory : Object { ... };

Since this inheritance fromCORBA::Object7 is automatic
for every OMG IDL interface, it need not be explicitly de-
clared as shown here.

7Within an IDL specification, the keyword Object is used to mean
CORBA::Object – use of the fully-scoped name is not necessary.

5

The OMG IDL type system is sufficient for most dis-
tributed applications, yet at the same time it is minimal and
will be kept that way. Keeping OMG IDL as simple as possi-
ble means that it can be used with many more programming
languages (e.g., ranging from COBOL to C++) than it could
if it contained types that couldn’t be realized in some popular
programming languages. Given the inevitable heterogeneity
of distributed object systems, the simplicity of OMG IDL is
critical to the success of CORBA as an integration technol-
ogy.

5 Language Mappings

OMG IDL is just a declarative language, not a full-fledged
programming language. As such, it does not provide features
like control constructs, nor is it directly used to implement
distributed applications. Instead, language mappings deter-
mine how OMG IDL features are mapped to the facilities of
a given programming language.

At the time of this writing, the OMG has standardized lan-
guage mappings for C, C++, Smalltalk, and Ada 95. Like-
wise, mappings for the UNIX Bourne shell and for COBOL
are nearing completion. A mapping for the Java language
is just beginning, but is slated to finish quickly to keep up
with the high demand for Java/CORBA integration. Lan-
guage mappings for other languages such as Perl, Eiffel, and
Modula-3 have also been written by various interested par-
ties, but have not been submitted to the OMG for approval.

To understand what a language mapping contains, consider
the mapping for the C++ language. Not surprisingly, OMG
IDL interfaces map to C++ classes, with operations mapping
to member functions of those classes. Object references map
to objects that support the operator-> function (i.e., ei-
ther a normal C++ pointer to an interface class or an object
instance with an overloaded operator->). Modules map
to C++ namespaces (or to nested classes for C++ com-
pilers that do not yet support namespaces). Mappings for
the rest of the OMG IDL types are shown in Table 1.

Another important aspect of an OMG IDL language map-
ping is how it maps the ORB interface and other pseudo-
objects that are found in the CORBA specification. Pseudo-
objects are ORB interfaces that are not implicitly derived
from CORBA::Object, such as the ORB itself.8 In other
words, pseudo-objects are not real CORBA objects, but spec-
ifying such interfaces just like normal object interfaces are
specified allows applications to manipulate the ORB much
like they manipulate normal objects.

A third important part of any language mapping specifi-
cation is how CORBA objects are implemented in the lan-
guage. In object-oriented languages such as Java, Smalltalk,

8For some of the pseudo-objects in the CORBA 2.0 Specification, an-
other differentiating characteristic is that they are defined using non-IDL
expressions. Some people consider this a feature, while others consider it a
defect in the specification. The Object Model Subcommittee of the OMG
Architecture Board is currently working to solidify the definition of the term
“pseudo-object.”

OMG IDL Type C++ Mapping Type

long, short long, short
float, double float, double

enum enum
char char

boolean bool
octet unsigned char
any Any class

struct struct
union class
string char*
wstring wchar t*
sequence class
fixed Fixed template class

object reference pointer or object
interface class

Table 1: C++ Mappings for OMG IDL Types

and C++, for example, CORBA objects are implemented as
programming language objects. In C, objects are written as
abstract data types. For instance, a typical implementation
consists of a struct that holds the state of the object and
a group of C functions (which correspond to the OMG IDL
operations supported by the object) to manipulate that state.

OMG IDL language mappings are where the abstractions
and concepts specified in CORBA meet the “real world” of
implementation. Thus, their importance for CORBA appli-
cations cannot be overstated. A poor or incomplete mapping
specification for a given language results in programmers
being unable to effectively utilize CORBA technology in
that language. Language mapping specifications are there-
fore always undergoing improvement in order to incorporate
evolution of programming languages, as well as to add fea-
tures that fulfill new requirements discovered by writing new
applications.

6 Interface Repository

Every CORBA-based application requires access to the OMG
IDL type system when it is executing. This is necessary
because the application must know the types of values to
be passed as request arguments. In addition, the application
must know the types of interfaces supported by the objects
being used.

Many applications only require static knowledge of the
OMG IDL type system. Typically, an OMG IDL specifica-
tion is compiled or translated into code for the application’s
programming language by following the translation rules for
that language, as defined by its language mapping. Then, this
generated code is built directly into the application. With this
approach, the application’s knowledge of the OMG IDL type
system is fixed when it is built. If the type system of the

6

rest of the distributed system ever changes in a way that is
incompatible with the type system built into the application,
the application must be rebuilt. For example, if a client appli-
cation depends on the Factory interface, and the name of
the create operation in the Factory interface is changed
to create object, the client application will have to be
rebuilt before it can make requests on any Factory objects.

There are some applications, however, for which static
knowledge of the OMG IDL type system is impractical. For
example, consider a gateway process that allows applications
in a foreign object system (such as Microsoft COM applica-
tions) to access CORBA objects. Having to recompile and
rebuild the gateway every time someone added a new OMG
IDL interface type to the system would result in a very dif-
ficult management and maintenance problem. Instead, it
would be much better if the gateway could dynamically dis-
cover and utilize type information as needed.

The CORBA Interface Repository (IR) allows the OMG
IDL type system to be accessed and written programmatically
at runtime. The IR is itself a CORBA object whose operations
can be invoked just like any other CORBA object. Using the
IR interface, applications can traverse the entire hierarchy
of OMG IDL information. For example, an application can
start at the top-level scope of the IR and iterate over all
of the module definitions defined there. When the desired
module is found, it can open it and iterate in a similar manner
over all the definitions inside it. This hierarchical traversal
approach can be used to examine all the information stored
within an IR.

Another way to access IR information, perhaps more
efficiently, is to obtain an InterfaceDef object refer-
ence from the get interface operation defined in the
CORBA::Object interface. Since all interfaces are de-
rived from CORBA::Object, every object supports the
get interface operation. Thus, an InterfaceDef
object reference can be obtained for every object without
having to know the derived types of interfaces supported by
that object.

The real utility of the IR lies in its support of CORBA
dynamic invocation (described in Section 8). Imagine an in-
teractive graphical user interface (GUI) builder that uses an
IR to determine the interfaces of drawable GUI components
[9]. Such a system might display to the user the interfaces
and available operations for the drawable GUI components,
allowing them to select operations to be invoked and to sup-
ply the argument values necessary for those operations. The
GUI builder would use the IR to determine a component’s in-
terface and then use CORBA dynamic invocationcapabilities
to invoke the component’s operations. If the IR and dynamic
invocation capabilities were not provided, the GUI builder
would have to be rebuilt every time someone developed a
new drawable component interface, which is impractical.

The information stored in an IR can also be used to generate
static support code for applications, as described in the next
section, since the definitions in the IR are equivalent to those
written in an OMG IDL file.

7 Stubs and Skeletons

In addition to generating programming language types, OMG
IDL language compilers and translators also generate client-
side stubs and server-side skeletons. A stub is a mechanism
that effectively creates and issues a request on behalf of a
client, while a skeleton is a mechanism that delivers the
request to the CORBA object. Since they are translated
directly from OMG IDL specifications, stubs and skeletons
are normally interface-specific.

Dispatching through stubs and skeletons is often called
static invocation. OMG IDL stubs and skeletons are built
directly into the client application and the object implemen-
tation. Therefore, they both have complete a priori knowl-
edge of the OMG IDL interface of the CORBA object being
invoked.

Language mappings usually map operation invocation to
the equivalent of a function call in the programming language.
For example, given a Factory object reference in C++, the
client code to issue a request looks like this:

// C++
Factory_var factory_objref;

// Initialize factory_objref using Naming or
// Trader Service (not shown), then issue request
Object_var objref = factory_objref->create();

This code makes the invocation of the operation on the
target object appear as a regular C++ member function call.
However, what this call is really doing is invoking a stub.
Because the stub essentially is a stand-in in the local process
for the actual (possibly remote) target object, stubs are some-
times called surrogates or proxies. The stub works directly
with the client ORB to marshal the request. That is, the stub
converts the request from its representation in the program-
ming language to one that is suitable for transmission over
the connection to the target object.

Once the request arrives at the target object, the server ORB
and the skeleton cooperate to demarshal the request (convert
it from its transmissible form to a programming language
form) and dispatch it to the object. Once the object com-
pletes the request, any response is sent back the way it came:
through the skeleton, the server ORB, over the connection,
and then back through the client ORB and stub, before finally
being returned to the client application. Figure 3 shows the
positions of the stub and skeleton in relation to the client
application, the ORB, and the object implementation.

This description shows that stubs and skeletons play im-
portant roles in connecting the programming language world
to the underlying ORB. In this sense they are each a form
of the Adapter and Proxy patterns [10]. The stub adapts the
function call style of its language mapping to the request
invocation mechanism of the ORB. The skeleton adapts the
request dispatchingmechanism of the ORB to the upcall form
expected by the object implementation.

7

8 Dynamic Invocation and Dispatch

In addition to static invocation via stubs and skeletons,
CORBA supports two interfaces for dynamic invocation:

� Dynamic Invocation Interface (DII)

� Dynamic Skeleton Interface (DSI)

The DII supports dynamic client request invocation,while the
DSI provides dynamic dispatch to objects. The DII and the
DSI can be viewed as a generic stub and generic skeleton,
respectively. Each is an interface provided directly by the
ORB, and neither is dependent upon the OMG IDL interfaces
of the objects being invoked.

8.1 Dynamic Invocation Interface

Using the DII, a client application can invoke requests on
any object without having compile-time knowledge of the
object’s interfaces. For example, consider the foreign object
gateway described above. When an invocation is received
from the foreign object system, the gateway must turn that
invocation into a request dispatch to the desired CORBA
object. Recompiling the gateway program to include new
static stubs every time a new CORBA object is created is
impractical. Instead, the gateway can simply use the DII to
invoke requests on any CORBA object.

It is through the create request operation provided
by the CORBA::Object interface that applications create
Request pseudo-objects. Since every OMG IDL interface
is derived from CORBA::Object, every object automati-
cally supportscreate request. By calling this operation
on an object reference for the target object, an application
can create a dynamic request for that object. Before the re-
quest can be invoked, argument values must be provided for
the request by invoking operations directly on the Request
pseudo-object. The types of the arguments can be determined
using the Interface Repository.

Once a Request pseudo-object has been created and ar-
gument values have been added to it, it can be invoked in one
of three ways:

� Synchronous Invocation – The client invokes the re-
quest, and then blocks waiting for the response. From the
client’s perspective, this is essentially equivalent in behavior
to an RPC.

�Deferred Synchronous Invocation – The client invokes
the request, continues processing while the request is dis-
patched, and later collects the response. This is useful if the
client has to invoke a number of independent long-running
services. Rather than invoking each one serially and block-
ing for each response, each request can be issued in parallel,
and responses can be collected as they arrive.

�Oneway Invocation – The client invokes the request and
then continues processing; there is no response. This form is
sometimes called “fire and forget” because the only way the
client can tell that the request is received is by some other

means, e.g., having the object invoke a separate callback
request when the first request completes successfully.

The DII is useful for programs such as browsers that can
interact with users to obtain the values necessary for the
arguments for the object’s operations. Since applications
using the DII do not usually have compile-time knowledge
of the interfaces and operations of their target objects, the
use of the Interface Repository to dynamically discover such
information is critical in these types of programs.

Currently, CORBA applications that require the ability to
invoke requests using something other than a synchronous or
oneway model must use the DII. This is because the deferred
synchronous request invocation capability is currently only
provided by the DII. However, this restriction will soon be
removed. Recently, the OMG issued an RFP for an Asyn-
chronous Messaging Service that should result in the adoption
of technology for higher-level communications models, such
as store-and-forward services for the ORB. This RFP also
requests technology for supporting deferred synchronous re-
quest invocation via static stubs.

Another use for the DII is an implementation approach that
might be called runtime type parameterization. Since the
DII can be used without having static knowledge of OMG
IDL types, it allows applications to invoke operations on
object references regardless of their interface types. For
example, the GUI builder application described above might
want to invoke a draw operation on components that are to
be displayed to the user. One way to do this is to force all
drawable components to inherit from aDrawable interface:
// OMG IDL
interface Drawable {

void draw();
};

Unfortunately, requiring this inheritance relationship for all
components makes it difficult to incorporate components
from outside sources into the GUI builder. Instead, the GUI
builder can simply require that all drawable components sup-
port a draw operation, making no assumptions about where
the operation is inherited from. All the GUI builder needs
to know to create a request for a target drawable object is
the name of the operation, draw. It does not need to know
anything more about the interface of the object. This capa-
bility of the DII adds much flexibility and offers a chance for
objects from a variety of sources to be integrated.

While the DII offers more flexibilitythan static stubs, users
of the DII should also be sure they are aware of its hidden
costs [11]. In particular, creating a DII request may cause
the ORB to transparently access the IR in order to obtain in-
formation about the types of the arguments and return value.
Since the IR is itself a CORBA object, each transparent IR
request made by the ORB could in fact be a remote invoca-
tion. Thus, the creation and invocation of a single DII request
could in fact require several actual remote invocations, mak-
ing a DII request several times more costly than an equivalent
static invocation. Static invocations do not suffer from the
overhead of accessing the IR since they rely on information
already compiled into the application.

8

Caller Object
Object

Adapter

interface A interface X

Caller expects
interface A

Object provides
interface X

Object Adapter adapts
interface X to interface A

Figure 4: Role of an Object Adapter

8.2 Dynamic Skeleton Interface

Analogous to the DII is the server-side Dynamic Skeleton In-
terface (DSI). Just as the DII allows clients to invoke requests
without having access to static stubs, the DSI allows servers
to be written without having skeletons for the objects being
invoked compiled statically into the program.

Unlike most of the other CORBA subcomponents, which
were part of the initial CORBA specification, the DSI was
only introduced at CORBA 2.0. The main reason for its in-
troduction was to support the implementation of gateways
between ORBs utilizing different communications proto-
cols. Because inter-ORB protocols were also introduced
at CORBA 2.0, it was thought by some at the time that
gateways would become the method of choice for ORB in-
teroperation. Given that most commercially-available ORB
systems already support the standard Internet Inter-ORB Pro-
tocol (IIOP) (which is described below in Section 10), this
prediction does not appear to have come true. Still, the DSI
is a useful feature for a certain class of applications, espe-
cially for bridges between ORBs and for applications that
serve to bridge CORBA systems to non-CORBA services
and implementations.

9 Object Adapters

The final subcomponent of CORBA, the Object Adapter
(OA), serves as the glue between CORBA object implemen-
tations and the ORB itself. As described by the Adapter
pattern [10], an object adapter is an object that adapts the in-
terface of another object to the interface expected by a caller.
In other words, it is an interposed object that allows a caller
to invoke requests on an object even though the caller does
not know that object’s true interface. Figure 4 illustrates the
role of an object adapter.

Object adapters represent another aspect of the effort to

keep the ORB as simple as possible. Responsibilities of
object adapters include:

� Object registration – OAs supply operations that allow
programming language entities to be registered as im-
plementations for CORBA objects. Details of exactly
what is registered and how the registration is accom-
plished depends on the programming language.

� Object reference generation – OAs generate object ref-
erences for CORBA objects.

� Server process activation – If necessary, OAs start up
server processes in which objects can be activated.

� Object activation – OAs activate objects if they are not
already active when requests arrive for them.

� Object upcalls – OAs dispatch requests to registered
objects.

Without object adapters, the ability of CORBA to support
diverse object implementation styles would be severely com-
promised. The lack of an object adapter would mean that
object implementations would connect themselves directly
to the ORB in order to receive requests. Having a standard
set of just a few object upcall interfaces would mean that
only a few styles of object implementation could ever be
supported. Alternatively, standardizing many object upcall
interfaces would add unnecessary size and complexity to the
ORB itself.

CORBA, therefore, allows for multiple object adapters (as
shown in Figure 3). A different object adapter is normally
necessary for each different programming language. For ex-
ample, an object implemented in C would register itself with
the object adapter by providing a pointer to a struct holding
its state along with a set of function pointers corresponding
to the CORBA operations it supports. Contrast that with a
C++ object adapter, which would allow an object implemen-
tation to be derived from a standardized object adapter base
class that provided the upcall interface. Using the C language
object adapter for C++ object implementations or vice-versa
would be unnatural to programmers in either language.

Though CORBA states that multiple object adapters are
allowed, it currently only provides one: the Basic Object
Adapter (BOA). When it was first specified, it was hoped
that the BOA would suffice for the majority of object im-
plementations, and that other object adapters would only fill
niche roles. What the BOA designers failed to realize was
that object adapters tend to be very language-specific due to
their close proximity to programming language objects. As
a result of the goal to make the BOA support multiple lan-
guages, the BOA specification had to be made quite vague in
certain areas, such as how to register programming language
objects as CORBA objects. This in turn has resulted in non-
trivial portability problems between BOA implementations
because each ORB vendor has filled in the missing pieces
with proprietary solutions.

Fortunately, the OMG has recognized this problem and is
currently actively working to solve it. It recently issued a

9

Portability Enhancement RFP that will result in the adop-
tion of specifications for standard portable object adapters.
The OMG should complete its work on the RFP around mid-
1997, meaning that portable object adapters should be com-
mercially available by the end of 1997.

10 Inter-ORB Protocols

Before CORBA 2.0, one of the biggest complaints about com-
mercial ORB products is that they did not interoperate. Lack
of interoperability was caused by the fact that the CORBA
specification did not mandate any particular data formats or
protocols for ORB communications. The main reason that
CORBA did not specify ORB protocols prior to CORBA 2.0
was simply that interoperability was not a focus of the OMG
at that time.

CORBA 2.0 introduced a general ORB interoperability
architecture that provides for direct ORB-to-ORB interop-
erability and for bridge-based interoperability. Direct in-
teroperability is possible when two ORBs reside in the same
domain – in other words, they understand the same object ref-
erences, the same OMG IDL type system, and perhaps share
the same security information. Bridge-based interoperability
is necessary when ORBs from separate domains must com-
municate. The role of the bridge is to map ORB-specific
information from one ORB domain to the other.

The general ORB interoperability architecture is based
on the General Inter-ORB Protocol (GIOP), which speci-
fies transfer syntax and a standard set of message formats for
ORB interoperation over any connection-oriented transport.
GIOP is designed to be simple and easy to implement while
still allowing for reasonable scalability and performance.

The Internet Inter-ORB Protocol (IIOP) specifies how
GIOP is built over TCP/IP transports. In a way, the rela-
tionship between IIOP and GIOP is somewhat like the rela-
tionship between an object’s OMG IDL interface definition
and its implementation. GIOP specifies protocol, just as an
OMG IDL interface effectively defines the protocol between
an object and its clients. IIOP, on the other hand, determines
how the GIOP protocol can be implemented using TCP/IP,
just as an object implementation determines how an object’s
interface protocol is realized. For a CORBA 2.0 ORB, sup-
port for GIOP and IIOP is mandatory.

The ORB interoperability architecture also provides for
other environment-specific inter-ORB protocols (ESIOPs).
ESIOPs allow ORBs to be built for special situations in which
certain distributed computing infrastructures are already in
use. The first ESIOP, which utilizes the Distributed Com-
puting Environment (DCE) [12], is called the DCE Common
Inter-ORB Protocol (DCE-CIOP). It can be used by ORBs in
environments where DCE is already installed. This allows
the ORB to leverage existingDCE functions, and it allows for
easier integrationof CORBA and DCE applications. Support
for DCE-CIOP or any other ESIOP by a CORBA 2.0 ORB
is optional.

Most commercially-available ORB products already sup-

port IIOP and have been tested to ensure interoperability.
Interoperability testing is currently done directly between
ORB vendors rather than by an independent conformance-
testing body. One interesting exception to this rule is an
interoperability testbed called CORBAnet [13], which was
established by the OMG to help facilitate ORB interop-
erability testing and prove commercial viability. COR-
BAnet is an interactive meeting room booking system im-
plemented over a number of interoperating commercial
ORB products on a variety of hardware platforms. It
can be used interactively via a Web browser by accessing
http://corbanet.dstc.edu.au/.

11 OMG Activities and Future Plans

With nearly 700 members, the OMG is a very active consor-
tium. Its many task forces and special interest groups cover
nearly the entire spectrum of topics related to distributed com-
puting, including real-time computing, Internet, telecommu-
nications, financial systems, medical systems, object analysis
and design, electronic commerce, security, database systems,
and programming languages. RFPs and technology adop-
tions in almost all of these areas have either already occured
or soon will.

When there were fewer OMG members and CORBA was
still under development, most of the OMG’s technical ac-
tivities were focused within its ORB Task Force, which is
where the CORBA specification was created. This effec-
tively gave ORB vendors in the ORB Task Force a fair bit of
clout when it came to determining the technical direction of
the OMG, which tended to keep the technical focus directed
at the CORBA component.

In early 1996 the OMG reorganized itself to give users of
the CORBA component the power to set their own technical
directions. Part of this reorganization involved splitting the
OMG Technical Committee into two parts:

�Domain Technical Committee (DTC): Focuses on tech-
nologies that are vertically-oriented (i.e., domain-specific).
Task Forces chartered under the DTC include Financial, Man-
ufacturing, Medical, Business, and Telecommunications.

� Platform Technical Committee (PTC): Focuses on
technologies that are horizontally-oriented (i.e., domain-
independent). Task Forces chartered under the PTC include
ORB/Object Services (ORBOS) and Common Facilities.

This split has resulted in a shift in the OMG focus from the
CORBA component to the other higher-level components
of the OMA. Such a shift is precisely what should occur
as an architecture like the OMA matures. Separating the
DTC groups from the domain-independent groups has made
it easier for them to issue their own RFPs and adopt suitable
domain-specific technology.

To ensure the continued integrity of the OMA even with
two technical committees, the OMG also created, as part of
the same reorganization, an Architecture Board (AB). The

10

AB, which is composed of ten elected members and a chair-
person, has the power to reject RFPs and technology that do
not fit into the OMA. The AB is also charged with finding
and defining answers for broad technical issues related to the
OMA, such as clarifications of the OMA object model.

Areas that are currently being investigated by OMG task
forces include:

�Medical: Master Patient Indexing – Patient identification
can be surprisingly difficult, due to multiple people with the
same name, illegal use of identification numbers, etc. The
CORBAmed Medical Task Force is currently investigating
the propects of issuing an RFP for technology related to the
identification of patients.

� Telecommunications: Isochronous Streams – Data
streams for audio and video have special quality of service
requirements due to their isochronous nature. The CORBA-
tel Telecommunications Task Force recently issued an RFP
seeking technology for the management and manipulation of
isochronous streams.

� Business: Business Objects – Portions of many business
processes are very similar, and thus can be abstracted out into
frameworks. The Business Objects Task Force will soon be-
gin evaluating responses to its Business Objects RFP, which
seeks object frameworks to support business processes.

� ORBOS: Objects by value – CORBA currently allows
object references to be passed as arguments and return values,
but it does not allow objects to be passed by value. This
makes the use of encapsulated data types (e.g., linked lists)
difficult to use from languages such as C++. The ORBOS
Task Force will soon begin evaluating responses to its Objects
By Value RFP, which will describe technology for passing
objects by value between CORBA applications.

One special area of interest of the ORBOS Task Force is
providing specifications that allow for the bidirectional inter-
operation of Microsoft COM and DCOM applications with
CORBA applications. A specification for COM/CORBA
interoperability has already been approved, while work on
DCOM/CORBA interworking has just begun. The OMG
does not view COM or DCOM as CORBA competitors;
rather, it sees them as another set of technologies that can
be integrated under the CORBA umbrella.

The end goal of the development of standard OMG speci-
fications is the realization of a true commercial off-the-shelf
(COTS) software component marketplace. The OMG will
continue working to help create a market in which buying
and using software components in distributed heterogeneous
environments is a reality. Fortunately, many OMG member
companies have devoted some of their “best and brightest”
experts to the OMG to assist with the development of prac-
tical, complete, and relevant standards. The OMG is also in-
terested in establishing an OMA compliance “branding” pro-
gram that would prove whether or not an OMA-based product
complies properly with the appropriate OMG specifications.
Such branding will be necessary to ensure that OMA-based
components interoperate and cooperate correctly.

Of particular importance to the OMG community is a re-
cent press release by Netscape Corporation stating that they
had decided to build IIOP and an ORB into future releases of
their Navigator web browser software [14]. Because of the
popularity of Netscape Navigator, this decision effectively
brings CORBA to 40 million desktops around the world.
Moreover, it unifies Web technology with distributed object
technology, allowing the strengths of each to enhance the
other. The deployment of these unified technologies will
finally provide the beginnings of a software component mar-
ketplace infrastructure.

12 Conclusion

This article has described the Common Object Request Bro-
ker Architecture (CORBA) portion of the OMG Object
Model Architecture (OMA). CORBA provides a flexible
communication and activation substrate for distributed het-
erogeneous object-oriented computing environments. The
strengths of CORBA include:

� Legacy integration: A well-designed ORB does not re-
quire that components and technologies already in use be
abandoned. Instead, the CORBA specification is flexible
enough to allow ORBs to incorporate and integrate existing
protocols and applications, rather than replace them.

� Heterogeneity: The use of OMG IDL to define object
interfaces allows these interfaces to be used from a variety of
programming languages and computing platforms. The fact
that CORBA systems have already been written in such di-
verse programming languages as C, C++, Smalltalk, Ada’95,
Java, COBOL, Modula-3, Perl, and Python, and successfully
deployed across everything from mainframes to test and mea-
surement equipment, is strong evidence that CORBA can be
used to implement real-life heterogeneous distributed appli-
cations.

� Object-oriented approach: CORBA itself and applica-
tions built on top of it are best designed using object-oriented
(OO) software development principles. For example, the
fact that object interfaces must be defined in OMG IDL helps
guide developers towards thinkingabout their applications in
terms of interacting reusable components. The management
of complexity afforded by OO software development tech-
niques is very important for the practical implementation and
deployment of CORBA applications.

Both the Web and corporate intranets will inevitably re-
main heterogeneous. Having to deal with the integration of
diverse applications, as well as having to manage their asso-
ciated complexities, are absolute requirements for our ever-
growing networked systems. The on-going work to unify
the World Wide Web with CORBA, as well as the fact that
CORBA can already serve as an access and integration point
for Microsoft COM/DCOM applications, will soon have far-
reaching implications. With the capabilities and flexibilityof
CORBA serving to unify the infrastructure, distributedobject
applications and components will soon be accessed and used

11

daily by millions of people across corporate intranets and the
WWW.

Acknowledgements

Thanks to Doug Schmidt for encouraging me to write this ar-
ticle, for his patience while waiting for me to complete it, and
for his excellent suggestions on how to improve it. Thanks
also to Cindy Buhner and Bart Hanlon for their reviews of
early drafts of this article.

References
[1] A. D. Birrell and B. J. Nelson, “Implementing Remote Proce-

dure Calls,” ACM Transactions on Computer Systems, vol. 2,
pp. 39–59, February 1984.

[2] Object Management Group, Description of New OMA Refer-
ence Model, Draft 1, OMG Document ab/96-05-02 ed., May
1996.

[3] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.0 ed., July 1995.

[4] Object Management Group, CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 95-3-31 ed., Mar.
1995.

[5] Apple Computer, Inc., Component Integration Laboratories,
Inc., International Business Machines Corporation, Novell,
Incorporated, Compound Presentation and Compound Inter-
change Facilities, Part I, OMG Document 95-12-30 ed., De-
cember 1995.

[6] Object Management Group, Product Data Management En-
ablers Request For Proposals, OMG Document mfg/96-08-
01 ed., August 1996.

[7] Richard Mark Soley, Ph.D., ed., Object Management Archi-
tecture Guide. John Wiley & Sons, Inc., Third ed., 1995.

[8] R. C. Martin, “The Open-Closed Principle,” C++ Report,
vol. 8, Jan. 1996.

[9] S. Vinoski, “Distributed Object Computing with CORBA,”
C++ Report, vol. 5, July/August 1993.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[11] A. Gokhale and D. C. Schmidt, “Performance of the CORBA
Dynamic Invocation Interface and Internet Inter-ORB Pro-
tocol over High-Speed ATM Networks,” in Proceedings of
GLOBECOM ’96, (London, England), IEEE, November 1996.

[12] W. Rosenberry, D. Kenney, and G. Fischer, Understanding
DCE. O’Reilly and Associates, Inc., 1992.

[13] Object Management Group, OMG Unveils CORBAnet
Initiative, May 13, 1996. Press release. URL:
http://www.omg.org/pr96/corbanet.htm.

[14] Netscape Communications Corporation, New Netscape
ONE Platform Brings Distributed Objects To the Inter-
net and Intranets, July 29, 1996. Press release. URL:
http://home.netscape.com/newsref/pr/newsrelease199.html.

12

