Developing Next-generation Distributed
Applications with QoS-enabled DPE Middleware

Douglas C. Schmidt Vishal Kachroo, Yamuna Krishnamurthy
and Fred Kuhns
schmidt@uci.edu {vishal,yamuna,fredk@cs.wustl.edu
Electrical & Computer Department of Computer Science
Engineering Department Washington University
University of California, Irvine, USA St. Louis, MO, USA

This paper appeared in the IEEE Communications magai: Providing scalable high-performance core networking

zine, edited by Abdi ..., 2000. technologies, such as Gigabit Ethernet and terabit IP/ATM
routers.
2. Defining network protocols and endsystem operating
Abstract system (OS) architectures that enforce QoS specifications pro-

This paper describes how recent advances in distributed (\)/bo_led by apphcgﬂons. o)
¢3: Developing QoS-enabled distributed object comput-

ject computing (DOC) middleware are enabling the creation o . ’ it g
common quality-of-service (QoS) interfaces that support nekd (POC) middleware, which simplifies and coordinates
generation distributed applications. DOC middleware he|§§pllcatlon-level services to leverage the advances in networks
to simplify and coordinate applications in order to leveragdnd €ndsystems from end-to-end.

the underlying network and endsystem QoS architectures mor®ther articles in this special issue focus on TINA, Megaco,
effectively. This paper also describes a QoS-enabled mid@&, H.323, and NGN control. This article describes R&D
ware framework used to customize the CORBA Audio/Videgivities on QoS-enabled DOC middleware frameworks for
Streaming Service for applications on multiple operating sysext-generation distributed applications. DOC middleware is
tem platforms. distributed processing environment (DPE) software that re-
Os_ides between applications and the underlying operating sys-
tems, protocol stacks, and hardware devices to simplify and
coordinate how these components are connected and interop-
erate. As shown in Figure 1, DOC middleware is commonly

Keywords: Distributed object computing, QoS-enabled Mi
dleware, CORBA-based Multimedia Streaming

1 Introduction - N
CurrentR&D trends: The successful commercialization of \APPLICATIONS =/
today’s Internet is motivating new R&D on hardware and soft- SDFQEI\QZ/I\IIZII\IC_: @s)
ware jnfrastructure support for next-generation distributed ap- SERVICES ——
plications, such as e-commerce, autonomous vehicle control, " COMMON — A
and global event notification systems. Many R&D activities MIDDLEWARE
are focusing on how to scale the Internet to accommodate traf- N SERVICES — — —
fic from advanced applications requiring a wide range of capa- 1 1 N :
bilities that support various quality-of-service (QoS) require- L
B
ments, such as predictable performance, secure communica- e ;
. INFRASTRUCTURE
tions, and fault tolerance. There are also efforts to develop MIDDLEWARE

adaptive applications, such as Internet telephony and stream-

ing video, that require QoS guarantees, but can adjust dynam- g\?SE'II?I'EA\I;I/I—g\I%L

ically to changing user demands and available resources [1]. PROTOCOLS
In recent years, R&D efforts have progressed along the fol- HARDWARE DEVICES
*Th?s work was supported in part by ATD, BBN, Boeing, Cisco, DARPA .

contract 9701516, Motorola Commercial Government and Industrial SoftlGure 1: Layers of Distributed Object Computing (DOC)
tions Sector, Motorola Laboratories, Siemens, and Sprint. Middleware

decomposed into the following layers: 3. Open standards: They provide a standard [3] set of
« Infrastructure middleware: This layer encapsulatesSOftware components that help to direct the focus of develop-
: g towards higher-level software application architecture and

core OS communication and concurrency services to elimin f ign concems, such as the reuse of suitable security, QoS
many tedious, error-prone, and non-portable aspects of deV&R'Y ’ 4

oping and maintaining distributed applications via low-levEf>OUrce management, and fault tolerance services and com-
network programming mechanisms, such as sockets. Widgl())/[]ems'

used examples of infrastructure middleware include Java virBy providing these benefits, DOC middleware helps to min-
tual machines (JVMs) and the ADAPTIVE Communicatiojnize the impact of vexing inherent and accidental complex-
Environment (ACE) [2]. ities [4], such as partial failures, distributed deadlock, and

o Distribution middleware: This layer builds upon non-portable programming APlIs, that have historically com-

lower-level infrastructure middleware and allows clients to ift/icated the development of distributed applications. An in-
voke operations on distributed objects without concern for J€asingly important role is being played by “commercial-off-
ject location, programming language, OS platform, comnifie-shelf” (COTS) DOC middleware, such as CORBA and
nication protocols and interconnects, and hardware [3]. #8va& which is readily available for purchase or open-source
the heart of distribution middleware a@bject Request Bro- acquisition. COTS middleware has become essential in to-

kers(ORBs), such as the OMG's CORBA, Microsoft's DConay’s software development organizations, which face many
(DCOM), and Sun’s Java RMI. time- and effort-related constraints arising from global com-

.) . petitive pressures.
e Common middleware services: This layer augmentthe

distribution middleware by defining domain-independent s@aper organization: The remainder of this paper is orga-
vices, such as event notifications, logging, multimedia streamized as follows: Section 2 outlines key properties of next-
ing, persistence, security, transactions, fault tolerance, and gisaeration distributed applications to illustrate the require-
tributed concurrency control. Applications can reuse these saents being addressed by R&D on QoS-enabled DOC mid-
vices to perform common distribution tasks that would othefleware, endsystems, and networks; Section 3 outlines the
wise be implemented manually. QoS-related aspects of CORBA 3.0, which is emerging as the
d- industry standard of choice for QoS-enabled distributed ap-
ations; Section 4 describes the object-oriented design of a
rtable QoS API; Section 5 presents a case study that shows
Qw this QoS API is used to provide QoS in multimedia ser-
g_;gs; and Section 6 summarizes concluding remarks.

e Domain-specific services: Unlike the other three mi)
dleware layers, domain-specific services are not generzﬁ’l'l
reusable, but instead are tailored to the requirements of
ticular domains, such as telecommunications, e-comme
health-care, or process automation. Domain-specific servit
are the least mature of the middleware layers today. Since
they embody domain-specific knowledge, however, they have

the most potential to increase system quality and decreaseghe Key Properties of Next-generation
cycle-time and effort required to develop particular types of

distributed applications. Distributed Applications

Together, these DOC middleware layers provide the follo

ing benefits: \f\\’lext-generatlon distributed applications will require end-to-

end QoS support where network and system resources must

1. Strategic focus: They elevate application developer fobe managed both prior to and during run-time. For example,
cus away from a preoccupation with low-level operating syigr mission-critical systems in domains such as telecommuni-
tem mechanisms and networking protocols. While it is ingations, global trading, distributed electronic medical imag-
portant to have a solid grasp of these topics, they are reay, and aviation collision avoidance, failure to meet certain
tively tactical in scope. Therefore, these protocols and megeadlines can result in significant loss of property or even loss
anisms should be placed in the proper strategic context witbilife. These types of systems must therefore be analyzed
a broader software architecture. and monitored off-lin@ndon-line to ensure that the resources

2. Effective reuse: They amortize software life-cycle ef-they require are allocated and managed properly.
fort by leveraging previous development expertise and reifying/n this section, we first present a scenario that motivates key
implementations of key patterns [4, 5] into reusable middi@pplication requirements that must be addressed by R&D on
ware frameworks [2]. Most distributed applications in the fi&Q0S-enabled DOC middleware. We then generalize from this
ture will be built by integrating and scripting domain-specifigcenario and summarize the QoS-related challenges associated
and common “pluggable” middleware service componentgth supporting next-generation distributed applications.
rather than being programmed entirely from scratch.

2.1 Tele-immersion Application Scenarios

[Requirement |

Description |

Some of the most demanding types of next-generation Qq
enabled distributed applications involiede-immersiomwhich
combines tele-conferencing, tele-presence, and virtual reg|
Tele-immersion places stringent demands at multiple levg

Piverse
inputs
ity.

Next-generation applications must simultaneously
use diverse sources of information, such as raw
sensor data, command & control policies, and

along the end-to-end path of distributed applications, such

the following:
e Endsystems: Tele-immersion requires real-time ref

sponse and predictable behavior from endsystems to (1) in
act with the physical world within specific delay bounds an

At
e

(2) presentimages or other stimuli to users in real-time.
e Networks:

tributed across the Internet or intranets. Thus, applications
quire predictableetworkperformance to provide low-latency

Tele-immersion end-users may be dig-

and high-bandwidth to applications end-to-end.

Applying tele-immersion to health care: Intensive care
medicine is a domain where tele-immersion applications ¢
provide significant benefits. For instance, emergency ted

2ls operator input, while sustaining real-time behavior
abBiverse Many next-generation applications must concurrent
outputs produce diverse outputs, such as filtered sensor d
mechanical device commands, and imagery, whos
er- resolution quality and timeliness is crucial to other
d systems and users with whom they interact.
Shared Application-critical and/or time-critical operations
resources must share resources effectively end-to-end with
re- operations that possess less stringent timing
or criticality constraints.
Critical QoS management for next-generation application$
operations with hard timing constraints for certain critical
Erinns operations must insulate these operations from

the competing demands of non-critical operations,

responding to natural disasters or urban terrorism must ma"‘ﬁﬁgh

critical decisions based on information emerging from a

riety of sources at an accelerated tempo. Consultations wit

remote experts, modeling of physiological processes, and ir

"’,"ﬂvailability

The system infrastructure must react to hardware
failures, network topology changes, and feature
upgrades, and restore correct real-time operation

gration of both existing and emerging information often m

be performed while in close proximity to patients. To sup-
port this scenario, it is essential that networking and compjut-

ing technologies perform and adapt in real-time to changi
situational requirements, while still maintaining QoS guard

t?' within a bounded interval after failures/changes.
‘Diverse There must be a balance between different and
resource sometimes competing resource management goa

management

ng_boals

tees for critical operations, such as tele-radiology or even tele-

involving different kinds of resources, such as
maximizing utilization of the CPU or sharing
link bandwidth fairly between threads at the
same priority.

192]

surgery.

The ability of tele-immersion systems to preserve the négc-

essary application QoS end-to-end will translate directly in
users’ perceived worth of next-generation applications

End-to-end
requirements

Many next-generation applications may operate
in heterogeneous environments and must manage
distributed and layered resources to enforce

their supporting services.

system routinely delays the delivery of packets, it will prg-

vide relatively low perceived value to its users. Supportil
the demanding tele-immersion applications outlined abo

For example, if a tele-medicine

KL end-to-end QoS requirements.
m"System Developers of next-generation applications must
configuration | be able to control the internal concurrency,
resource management, and resource utilization
g configurations throughout networks, endsystems,

therefore, requires a range of QoS support from network and

teg

middleware and applications, to provide the
end-to-end QoS to applications.

endsystem elements, and the DOC middleware that integrat

these elements end-to-end.

2.2 Synopsis of QoS-related Challenges for
Next-generation Distributed Applications

Many research challenges arise when attempting to supg

the stringent QoS requirements of next-generation distribu&

applications, such as the tele-immersion scenarios present
in Section 2.1. Table 1 characterizes the key challenges

System Next-generation middleware frameworks and
adaptation applications must be able to (1) autonomously
reflect upon situational factors as they arise in
their run-time environment and (2) adapt to these
factors while preserving the integrity of key
" mission-critical activities.
uEevelopment The time and effort expended to develop, validate,
H1e & cost optimize, deploy, maintain, and upgrade next-
Ny anagement generation distributed applications must be

sociated with developing QoS-enabled middleware for ne

t

amortized across product families.

generation distributed applications. In general, solutions thable 1: QoS-related Challenges for Next-generation Dis-
are emerging to meet the QoS-related challenges outlinedributed Applications

Table 1 possess the following capabilities:

e They offer applications the ability to flexibly configframeworks for QoS-enabled middleware have occurred re-
ure layered resource management mechanisms needegtdly. For instance, research conducted in the DARPA Quo-
control their QoS end-to-end; rum program [1, 8] has identified key design and optimization

e They automatically protect resources needed by cert I%tterns [4], which have been mstantla.ted Into hlgh-quallt.y

T " o rameworks [2] for QoS-enabled DOC middleware and appli-
application-critical operations; . . .
cations. These patterns and frameworks are now being applied

e They promote autonomous or semi-autonomous behawigdely in COTS DOC middleware products.
to respond adaptively and reflectively to changing situa- The maturation of DOC middleware standards: The

tional aspects in their run-time environment. OMG'’s suite of CORBA standards has matured considerably

The following section summarizes recent advances in DEYE' the last several years, particularly with respect to the spec-

middleware that provide COTS-based implementations ifigation of QoS-enabled components and capabilities. For in-
some of these capabilities. stance, the forthcoming CORBA 3.0 [3] standard includes the

Messaging [7] and Real-time specifications [6]. The CORBA
Messaging specification defines asynchronous operation mod-
3 Recent Advances in QoS-enabIe(gS and gllpws applicatigns to contr.ol many enq-to-end ORB
. oS policies, such as timeouts, priority queueing order, and
DOC Middleware message reliability semantics. The Real-time CORBA speci-
fication defines standard interfaces and policies for managing
Significant R&D efforts have focused on DOC middlewar®RB processing, communication, and memory resources.
during the past decade. These efforts have yielded open starks shown in Figure 2, CORBA 3.0 ORB endsystems con-
dards, such as OMG CORBA [3], as well as popular propri-
etary solutions, such as Microsoft’s Distributed Component END-TO-END PRIORITY

Object Model (DCOM) and Sun’s Remote Method Invocation PROPAGATION
(RMI). Thus, DOC middleware is now available off-the-shelf in args
that allows clients to invoke operations on objects without con- operation() OBJECT

out args +return value

cern for object location, programming language, OS platform,
communication protocols and interconnects, or hardware [3].

This section outlines the QoS-related aspects of CORBA STANDARD
3.0, which is emerging as the industry standard for distributed EXPLICIT =~ SYNCHRONIZERS
applications that possess a wide range of QoS requirerhents. BINDING > OBJECT ADAPTER

In addition, we outline the key open R&D issues related to
QoS-enabled DOC middleware. [

@’ ,

PROTOCOL
3.1 Overview of CORBA 3.0 QoS Capabilities IR PROPERTIES s—

0S 1/0 SUBSYSTEM

>

First-generation DOC middleware was not targeted for ap-{ os 1/o sussystem]
plications with stringent QoS requirements. Not surpris-
ingly, its efficiency, predictability, scalability, and depend-
ability was problematic. Over the past several years, how-
ever, the use of CORBA-based [3] DOC middleware has inigure 2: QoS-enabled ORB Endsystem Capabilities in
creased significantly in aerospace, telecommunications, me&RBA 3.0

ical systems, and distributed interactive simulation domains. ¢ Ki ; . /O sub
These domains are characterized by applications with hi fpt Of network interfaces, operating system subsystems

performance and real-time QoS requirements. The increa @8 communication protocols,_ and CORBA'CO”?p"ar?‘. mid-
adoption of CORBA middleware in these domains ste ware components and services. CORBA 3.0 identifies ca-
largely from the following two factors: pabilities that can beertically (i.e., network interface— ap-

. . plication layer) andhorizontally(i.e., peer-to-peer) integrated
1. The maturation of DOC middleware patterns and 5,4 managed by ORB endsystems to ensure end-to-end pre-

frameworks: A number of notable advances in patterns angl.aple behavior for operations exchanged between CORBA

1The complete CORBA 3.0 standard should be available in 2001. Ho(v:vl-lents and servers.

ever, many key components [6, 7, 3] are already specified and available i,BeIow,.we outline the QoS-related capabil'ities in CO'RBA
COTS ORBs. 3.0, starting from the lowest level of abstraction and building

NETWORK ADAPTERS,

NETWORK

up to higher-level common services and applications. These services augment ORBs to provide mechanisms that

Communication infrastructure resource management: A support the specification and enforcement of end-to-end oper-
CORBA 3.0 endsystem must leverage policies and mecB#Hon timing, stream synchronization, and dependability. De-
nisms in the communication infrastructure that support féelopers can structure their applications to exploit the reusable
source guarantees. This support can range from (1) deterrifabilities exported by QoS-enabled ORBs and their associ-
ing which connection to use for a particular invocation to (2f€d higher-level common services.

exploiting advanced protocol properties, such as controlling

the cell pacing rate of ATM virtual circuits. 3.2 Open R&D Issues

OS scheduling mechanisms: ORBs exploit OS mecha- _ . o

nisms to schedule application-level activities end-to-end. TH€ting the QoS requirements of next-generation distributed
CORBA 3.0 specification targets fixed-priority real-time Sygpphcat_mns requires an integrated framework architecture that
tems, where thread priorities are set by applications and of@p deliver end-to-end QoS support at multiple levels of ab-
changed by the ORB endsystem to enforce priority inheritaridgaction. While DOC middleware based on CORBA 3.0 of-
or priority ceiling policies. Thus, these mechanisms corr@-rs solutions to certain resource'management chal[enges fac-
spond to managing OS thread scheduling priorities. CORE}9 researchers and developers, it does not yet provide a com-
3.0 focuses on operating systems that allow applicationsPigte solution for all types of distributed applications. In
specify thread scheduling priorities and policies. For exakarticular, the CORBA specification does not define st.andard
ple, the real-time extensions in IEEE POSIX 1003.1c defif@MPonents, protocols, or APIs that support the following ca-

a static priority FIFO thread scheduling policy that meets tHigbilities: _ _
requirement. Dynamic resource management: The real-time support in

ORB endsystem: ORBs are responsible for communicatin ORBA.3'0 targets appllce}tlons designed using f|xgd-pr|or|ty
Fedulmg. However, an important class of real-time appli-

requests between clients and servers transparently. An ilons encounter dynamic load conditions that can vary sig-
endsystem must therefore provide standard interfaces thaf gl Ty) - . y sig
icantly at run-time, particularly in interactive telecommu-

low applications to specify their resource requirements to . .
PP pecify 9 Ication systems and open-loop control platforms. It is hard

ORB. The policy framework defined in CORBA 3.0 define devel fth ¢ f svst i determine the pri
standard interfaces and QoS policies that allow applicationscfE{. EVEIOpers of these Types of Systems to determine the pri-
configure and control the following resources: orities of various operatiorss priori without significantly un-

) T derutilizing various resources, such as the CPU and network
e Processor resourcesia thread pools, priority mecha-p5nqwidth.

nisms, and intra-process mutexes, To address these issues, the OMG is attempting to
e Communication resourcesa protocol properties and ex-standardize dynamic CORBA scheduling [12] techniques,
plicit bindings with non-multiplexed connections; such as deadline-based [13], value-based [14], and hybrid

Memory resourcesia buffering requests in queues anﬁtatic/dynamic [9] scheduling. Dynamic scheduling offers re-
¢ ry urcesia putlernng requ N queu ief from certain limitations of static scheduling, such as re-
bounding the size of thread pools.

source underutilization. It often has a higher run-time cost,
Common middleware services: Having a QoS-enabledhowever, because certain scheduling operations must be per-
ORB that manages endsystem and communication resoufé@®ed on-line. Moreover, operations can be scheduled dy-
does not provide a complete end-to-end solution. Therefaigmically that may never be dispatched. Therefore, additional
ORBs must also preserve QoS properties for higher-level cqR&D is necessary to determine the most suitable ways to inte-
mon services and application components, such as the follgwate dynamic scheduling into DOC middleware.
ing defined in CORBA 3.0: Portable networking QoS APIs: Many network-oriented
« A global Scheduling Service [6, 8, 9] that distributed a§20S technologies, such as integrated services (IntServ), dif-
plications can use to manage and schedule distributedfggentiated services (DiffServ), multi-protocol label switch-
sources via fixed-priority analysis and scheduling tectg (MPLS), common open policy service (COPS), and band-
niques. width brokers (BB), have been defined to enable network-level
. . . QoS. Most existing approaches are highly platform/protocol-
¢ An Audio/Video (NV) Streamlng Service [10]_that fa’s ecific, however. This tight coupling makes it hard to develop
cilitates the creation of d?ta' V|.deo, and audio strea d deployportable applications that use these networking
between two or more media devices. QoS capabilities effectively.
¢ A Fault Tolerance service [11] that defines a standard seSome work has been done to provide developers with stan-
of interfaces, policies, and components to provide robukstrd programming interfaces [15] that can leverage advances
support for applications requiring high availability. in underlying network technology to provide application-level

QoS guarantees. However, standard DOC middleware, suckas AQOSAZ a Common Middleware-
CORBA 3.0, only defines limited protocol property APIs and ;

cannot yet handle sophisticated network-level QoS capabili- centric QOS API

ties, such as IntServ and DiffServ. Section 4 describes aric ei Motivation

QoS API that can be integrated with CORBA or other DOC’

middleware so that applications can both (1) benefit from midls network-level QoS protocols and mechanisms mature, de-
dleware capabilities and (2) utilize network-level QoS supp@#lopers increasingly require a common interface for (1) spec-
via portable middleware-centric APIs. ifying the QoS requirements of their distributed applications
and (2) receiving notifications from the underlying network
and QoS infrastructure when QoS-related conditions change.
Multiple QoS property integration: While emerging This common application QoS API is motivated by the follow-
network-level QoS mechanisms are essential enabling teicly-needs:
nologies, they are insufficient in isolation because they onlye Enhanced portability: To adapt more readily to new
manage network-level QoS. Likewise, although some operarket opportunities and technology innovations, applications
ating systems now support real-time scheduling of CPU reust be shielded from non-portable platform- and protocol-
sources, they do not provide integrated end-to-end solutiospecific details, such as representations of QoS parameters and
In general, conventional QoS solutions tend to focus eittreechanisms for detecting changes in the network-level QoS.
on specific network signaling and enforcement mechanisms o# Higher-level QoS specification: Although network-
single endsystem resource allocation techniques. While thiesel QoS protocols provide mechanisms for allocating re-
research activities are important building blocks, they oftsnurces between endsystems, they do not address the trans-
yield point solutions that emphasize relatively fixed, lowelation from application-level QoS parameters to network-level
level policies and mechanisms. QoS parameters.

Introducing application-level awareness of changes to ex Increased adaptivity: QoS-enabled distributed appli-

pected and delivered QoS is a new direction for inserting adglatlons and higher-level middieware must be notified when

tive behavior into distributed applications. Adaptation can Oagallable resources change so that they can re-negotiate their

. : : 0S specifications.
cur at any and all of the various system layers, including cus-
tomized approaches in the application itself and standard ser-
vice (re)configurations within the supporting middleware a®l2 Solution Approach — a Common
network infrastructure, such as the following examples: Middleware-centric QoS API

All these considerations motivate the need for a common
platform- and protocol-independent QoS API that can expose

¢ Application-level adaptation: This type of adaptation derlvi k-level 00S | licati :
might involve moving from full-motion video over high-spee 1€ underlying networ -level QoS protoco s_to app Ications via
gher-level DOC middleware, as shown in Figure 3. The

links to audio and still imagery or even text-only interactio
over low-speed links.

HOST A DL DL HOST B
STUBS ORB QoS SKELETON
(wrermnce) e
(PORTABLE OBJECTADAPTER,

COPS

EDGE EDGE
SOUIER NETWORK
B

e Service-level adaptation: This type of adaptation
might involve acquiring additional bandwidth by preempting
a low-priority application or automatically instantiating addi
tional resource replicas when others become unreachable.

/) QosAPI

NETWORK
A

NETWORK

We believe the key to success in these adaptations lies i
developing translucent paths throuqh system Iayers that GERSVP-ENABLED QOS —//—DIFFSERV-ENABLED QOS——//—RSVP-ENABLED QOS —/
integrate multiple QoS properties effectively. These properties
must encompass boplerformance measurgsuch as latency Figure 3: End-to-end QoS Architecture
and throughput, anahission-critical aspectsuch as real-time
constraints, dependability, and security. A key R&D challengad-to-end QoS architecture shown in Figure 3 allows ap-
is to provide maximum utility to applications and end-usepdications to obtain network-level QoS guarantees via stan-
while minimizing interference that can result from a series déard distribution middleware and middleware services, such as
independent or transparent actions [1]. CORBA ORBs and the CORBA A/V Streaming Service [10].

Moreover, this architecture simultaneously leverages other 4h3 Overview of the ACE QoS API (AQ0SA)

portant middleware benefits, such as platform- and protocol- . i . . .
independence. In addition, a middleware-centric QoS API (AROSA was designed by (1) inductively identifying common

provide additional functionality, such as coordinating the bingattérns [4, 5] used to program to existing QoS APIs and (2)
ing of QoS to designated application media streams and tr veloping components that reified these patterns. Below, we

lating standard QoS flow requirements to network-level QG§SCribe how our AQOSA implementation addresses key de-
properties. sign requirements.

We have designed a common QoS API based on the araﬂlftab”ity: AQOSA encapsulates applications from the de-
tecture shown in Figure 3 and implemented it within ACE [2}3!'S of platform-dependent GQOS and RAPI IntServ imple-

ACE is a widely-used open-source infrastructure middlh'lemations in the underlying endsystem platform. AQOSA

ware framework that implements key patterns [4] for higlef_ncapsulates the functions, data structures, and macros used

performance and real-time communication systems. AGE to represent various QoS parameters in these two IntServ im-

QoS API(AQOSA) provides a portable C++ encapsulation $i€mentations. Thus, applications and higher-level DOC mid-
two separate implementations of the IntServ resource regé‘?warle can access IntServ capfabllmes via a convenient and
vation setup protocol (RSVP): tH8QoSimplementation on POrtable QoS programming interface.

Windows 2000 and thRSVP AP(RAPI) implementation on EXtensibility: AQoSA enables new network- and
UNIX. endsystem-level QoS mechanisms to be integrated without

Besdious refactoring of its public API%.qg, it is straightfor-
ward to extend AQOSA to support other QoS models, such as
DiffServ. To accomplish this, AQ0OSA extends the existing
framework components by introducing new capabilities
tla?t allow applications and underlying DOC middleware to
manage QoS multicast or unicast sessions. Moreover, AQOSA
applies several patterns to ensure that new network-level QoS
Igpplementations can be easily integrated without changing
gppliations that uses its API.
For example, AQOSA uses the Factory Method pattern [5],
which decouples the creation of an object from its use, to re-
e Socket characteristics: GQoS closely couples eacHieve applications from managing the lifetime of QoS session
QoS session to a socket endpoint by passing QoS sessiorppgects. Once created, the QoS session object is added to a list
rameters to the socket calls. Conversely, RAPI handles tHeession objects to which a socket has subscribed. AQoSA
QoS specification separately from sockets, so that a QoS seakes it possible to accommodate new QoS mechanisms via
sion can be specified independently of a socket. subclassing. To ensure that new mechanisms conform to ex-
. . . isting interfaces, AQoSA uses the Adapter pattern [5], which
~ * Operating system and event integration: The RAPI 1,5 interoperability between components that were not de-
|mp:c.ementat|on|.run§ in afsepeérateI pr(zjcess addrgss sp?\lcles d to work together initially.
38:'71';?] Es‘rc;cizf 'C‘:"I_tﬁr; Othgoapgﬁcigoneﬁlgf I}/slfler? clJJn i 0S Event Notification: AQ0SA provides applications
' ’ th a platform-independent API for receiving notifications

socket, as well as its usual data-mode sockets. Conversvt\al an the underlying network QoS changes. ACE applica-

GQoSis integrated into the Windows 2000 kernel and doesH s often use an event handling model based on the Reactor

e e e g e[Whh allows e o decoupleoven g
Q0S and other events at the socket level plgxmg/dspatchmg from their application-specific event han-
' dling. Thus, AQoSA's event notification mechanisms support
Given these differences, it is hard to develop portable appfiis common usage.
cations that are programmed directly using GQoS and RAPIIn addition, AQoSA applies the Decorator pattern [5],
Yet, developers can benefit greatly if changing their QoS invhich extends an object dynamically by attaching new respon-
plementation does not entail changing their application debilities transparently. AQo0SA uses this pattern to enhance
sign and implementation. To allow developers to create QdBe existing ACE event handler functionality izoS decora-
enabled applications that are independent of the undetign. For example, as described in Section 4.2, the native RAPI
ing endsystem platform or IntServ protocol implementatioAP| requires an application to listen on two sockets, whereas
therefore, AQOSA factors out common functionality and exae GQoS API requires just one. The AQOSA QoS decorators
ports an infrastructure middleware API. allow applications to “QoS-enable” themselves dynamically,

RSVP is designed for IntServ networks and provides Q
for particular flows via three major componentgacket clas-
sifier, anadmission controllgrand apacket scheduleThese
QoS components facilitate the creation and managemen
distributed reservation state across a variety of multicast
unicast delivery paths. RSVP define®aS sessioas a flow
with a particular destination and transport-layer protocol.

Unfortunately, the APIs provided by the GQoS and RA
IntServ implementations are non-portable and differ along v
ious dimensions, such as the following:

without requiring any changes to the existing ACE reactile Case Study: Applying AQoSA to the
event handling model. CORBA Audio/Video Streaming Ser-

vice

Advanced QoS capabilities: AQOSA binds multicast or

unicast flows to reservations via a uniform and portable coms shown in Section 4.3, AQoSA shields applications from
ponent called @QoS sessian A QoS session represents thehe non-portable aspects of the underlying operating system
application’s notion of the underlying network-level QoSnd network-level QoS implementations. The infrastructure
Though modeled originally using IntServ RSVP sessionsddleware abstractions provided by AQoSA are sufficient for
AQOSA QoS session can also accommodate other QoS meghtain types of applications, such as controlling and manag-
anisms, such as DiffServ. ing network switch and router elements [15]. Other types of

An AQOSA QoS session explicitly separates QoS propgpplications, however, can benefit from higher-level middle-
ties of its sessions from lower-level socket data transfer &€ programming models that supports a broader range of
pects. Internally, the ACE QoS socket maintains an assoetocols and common middleware services.
tion between QoS sessions to which an application has su=0" €xample, the TAO open-source real-time CORBA

scribed. This separation of concerns also facilitates more B [8] provides an implementation of the CORBA AV
vanced QoS functionality, such as QoS event notification. Stréaming Service [10], which supports multimedia applica-
tions, such as video-on-demand and tele-immersion. The QoS

The AQOSA components allow applications to specify apgdy irements of these types of applications depend on the fol-
query for the QoS configured currently for a particularly “nfbwing factors:

cast or a multicast session. The UML diagram also shows, application class,such as interactive vs. non-interactive.
how AQOSA uses the Bridge pattern [S], which provides @teractive applications require real-time response and hence
uniform interface for different mechanisms |mplementat|o edictable delivery of application data with bounded end-to-
such as RAPI and GQoS. New QoS mechanisms can be a latencies. In contrast, non-interactive applications have

by su.bclassing implementations of thi.s interface. In additiqpgg stringent response requirements, but often possess higher
the diagram shows how AQO0SA applies the Factory Methﬂﬁoughputdemands.

pattern [5] to create and manage the lifetime of QoS sessiog Application media types, such as audio and video. De-
objects subscribed to by applications. pending on the media type, different performance criteria may
apply. For example, audio delivery is sensitive to delay, loss,

N licati higher-level middl and bandwidth, and hence needs guaranteed QoS. In contrast,
Adaptivity: - Applications or higher-level middleware mus;jo, can often be best-effort since it is less sensitive to delay,

be notified.\./vhen chan'ges. to the state of their QoS 0CqYEs, and bandwidth. Therefore, it can be adapted more readily
AQOSA notifies an application when (1) a particular QoS staleihe available network QoS.

is establisheq for its specified flows and (2)_w_hen QoS state ig Application adaptation policies, which may require im-
updatede.g, if there are changes to the existing set of resgjjicit or explicit adaptations to changes in delivered QoS. Im-
vations for a particular session. In RSVP, these nOtIflcatIOBﬁCit adaptation is transparent to the application layeg,
are carried irRSVP events dropping selected portions of a video stream at the transport
AQOSA receives and handles RSVP events uniformly f@yer. Conversely, explicit adaptation, such as changing quan-
different network-level QoS implementations via the Reactiization coefficients or application coding algorithms, is not
pattern [4]. In this pattern, synchronous event demultiplexetransparent to applications.
such aselect or WaitForMultipleObjects ,handles 1o provide acceptable QoS to multimedia applications de-
event demultiplexing and an associated reactor notifies RFéfoped using TAO, we therefore developed a QOS-enabled
viously registered application-specific event handlers so thﬁiblementation of the CORBA A/V Streaming Service using
can adapt to QoS state change events. AQOSA, as described in this section.
Applications may choose not to obtain the QoS immediately
after a QoS event occurs. Instead, they may deferitand hgv¢ Overview of the CORBA A/V Streaming
it dispatched at a later point in the program. They can also run Service
the event handling mechanism in a different thread of control
and obtain QoS noatifications synchronously. This latter modé¢ie CORBA A/V Streaming Service controls and manages the
is motivated by the Half-Sync/Half-Async pattern [4], whickreation of streams between two or more media devices. Al-
decouples synchronous from asynchronous processing in ¢bough the original intent of this service was to transmit audio
current systems. and video streams, it can be used to send any type of data.

Applications control and manage A/V streams using the Aferface that encapsulates QoS-specific details within the TAO
Streaming Service components shown in Figure 4. Streafi§ Streaming Service, rather than in the multimedia appli-

cations. To obtain end-to-end QoS therefore, application de-
MMDevice
Controller
Stream Stream
MMDevice @ @

velopers simply specify the QoS they require for each flow in
their streams. These specifications are translated, enforced,
and modified transparently by the AQoSA-enabled TAO AV
Streaming Service.

5.2.1 Components in TAO's A/V Streaming Service

— [C]uimedia Framework
Supplier
- [One per device TAO'’s A/V Streaming Service framework comprises three
Consumer > One per stream main components, which are shown in Figure 5 and outlined

Figure 4: A/V Streaming Service Components

Application
are terminated by endpoints that can be distributed across net- -
works and are controlled by a stream control interface, which
manages the behavior of each stream.

The CORBA A/V Streaming Service combines (1) the flex- @ Qos ’
ibility and portability of the CORBA object-oriented program- ‘ Lontomng/ N Ceveney
ming model with (2) the efficiency of lower-level transport
protocols. The stream connection establishment and manage
ment is performed via conventional CORBA operations. In

contrast, data transfer can be performed directly via more effi- ‘ QoS-Based Transport AP ’
. . Network bandwidth
cient lower-level protocols, such as ATM, UDP, TCP, and RTP, | "
?

Perceptual QOS

0S Mappin
eg. Good Quality Video Q S

Application QoS
eg. video frame-rate

A 4

This separation of concerns addresses the needs of develo
ers who want to leverage the language and platform flexibil- 88:[@
ity of CORBA, without incurring the overhead of transferring . i i
data via the standard CORBA interoperable inter-ORB pro%q'—qure 5. QoS Components in the TAO A/V Streaming Ser-
col (IIOP) operation path through the ORB. vice Framework

The CORBA A/V Streaming Service specification defings

. . o . elow.
interfaces and policies to allow applications to specify end-tp- QoS mapping: TAO's QoS mapping component trans-
end QoS parameters, such as video frame rate or audio sa

L o) QoS parameters between the application-level and
rate, for individual flows within a stream. It also defines Retwork-level. QoS mapping can be performed both during

mandatory set of network-level QoS parameters, such as{Qs, rce allocation and during renegotiations. This translation

ken bucket, peak-bandwidth, and token rate. These QO0S Byass allows application developers to specify QoS as per-
rameters are specified as hame/value pairs using the CO

X) , e ual qualitiese.g, the video quality can be specified by
Property Service. Multimedia applications and A/V Streanfza frame rate for a video flow. The QoS mapping component

ing Service implementations use these name/value pairs t0.{l},oy responsible for translating the frame rate into network
negotiate QoS between two peer media devices and (2) mogify, jvidih requirements.

the QoS if there is a violation in the initial QoS or if the spech QoS monitoring and adaptation: These two compo-

fied QoS cannot be met due to run-time environment changgsnts support applications that require QoS guarantees, but

are flexible in their needs.g, they can adapt to changing

5.2 Implementing the TAO A/V Streaming Ser- resource availability within specified QoS bounds. The QoS
vice with AQOSA monitoring component, which consists of AQoSA and the

higher-level TAO middleware framework, measures end-to-
Thoughthe CORBA A/V Streaming Servispecificatiorpro- end QoS of application flows over a finite period of time. If
vides interfaces to specify and modify QoS, it is the respongiere are violations in the reserved QoS the monitoring compo-
bility of implementationgo enforce the negotiated QoS. Fonent natifies the application of actual resources available cur-
TAQO's A/V Streaming Service implementation, we designedrantly. TAO's CORBA A/V service QoS midleware can then
framework based upon the ACE QoS API (AQoSA) describdédcide if the available QoS is sufficient to meet the require-
in Section 4.3. This framework provides a middleware iments specified by an application.

If the available QoS is insufficient, TAO’s A/V Streaminderns [4, 5] used to program to existing QoS APIs and (2) de-
Service natifies the application, which in turn can renegotiateloping a framework that reified these patterns. Below, we
the QoS or adapt to the available QoS. Adaptation can occud@scribe our TAO'’s A/V Streaming Service framework imple-
various levels of abstraction, ranging from the transpad,(mentation addressed key design requirements.
flow control), to the applicatione{g, MPEG-II coding rate Generic and extensible QoS mapping: The CORBA A/V
adaptation), to middleware signaling §, QoS renegotiation). Streaming specification allows application developers to spec-
Due to the extensible design of TAO’s QoS adaptation compfy-the QoS for any data stream via perceptual quality param-
nent, various adaptation algorithms can be configured. TA@trs. These parameters characterize application performance
QoS adaptation component is accessible by (1) the appliaad provide a convenient configuration model for developers.
tion, which performs application-level adaptation and (2) ti® enforce the specified QoS, however, the application-level
distribution middleware, which coordinates the transport-lev@bS parameters must be translated to network-level QoS that
adaptation. are used to transport the flows. Hence, a QoS translation com-
3. QoS-Based transport API: This component is providedponent is required. The key design challenges involve (1) pro-
by AQoSA, which enforces end-to-end QoS by reserving netding a generic application-level Qos to network-level QoS
work resources in accordance with application-level requifgarameter mapping that is independent of the codec and net-
ments. As shown in Figure 6, the CORBA A/V Streamingork and (2) making it easy to change mapping schemes.

To address these challenges for video streams, we identi-
fied a set of application-level QOS parametesfiarpness
CORBA A/V Service color, andrate. The sharpness of the video stream resolution
is mapped to luminance quality; color is mapped to the color

depth; and rate is mapped to frame rate where luminance, color
TAO ORB depth, and frame rate are network-level QoS parameters for a
AQOSA video stream. A single quality factor in the range [0..1] is used

to specify the required quality of the displayed video, where 0
C A) C GQ°S) is the best and 1 is the worst quality. The relative preference
of these perceptual quality parameters can also be specified by
assigning them weights.
TAO’s A/V Streaming Service defines generic mapping
Figure 6: QoS-based Transport API functions to map application-level quality factors and relative
weights specified by application developers into the network-
Service is layered atop TAO and ACE, which handle flow colevel QoS parameters, such as the peak bandwidth of the video.
trol processing and media transfer, respectively. The CORBAe specified mappings from perceptual quality to system and
AV service uses AQOSA for network-level QoS provisiometwork parameters are independent of the codec and net-
ing, renegotiation and violation notification control, and medigork. However, the values of the relative weights may vary
transfer. Likewise, application-level end-to-end QoS is across codecs. TAO's A/V Streaming Service uses wavelet
1. Translated from application-level to network-level pé[ansformations to engode vidgo streams. Alternative m'apping
rameters via TAO's QoS mapping component and sch_emes can_be cqnflgured via $maategy1?attern [5], which
) defines a family of interchangeable algorithms.
2. Passed through the portable AQOSA interfaces tR@§ecific QoS parameter monitoring: After applications
portably encapsulate the GQoS and RAPI APIs. specify their required QoS, AQOSA uses reservations to help

AQOSA uses the underlying network-level QoS capabilities @force these specifications. At the time of the reservation the
provision the specified QoS to individual application flows. ﬁ,ppllcatlon may receive the deswed. QosS. If qetwork condi-
addition, AQoSA provides mechanisms that are used by TAB&1S change over time and the desired QoS is no longer be
QoS monitoring and adaptation components to detect QoS®/@ilable, however, application performance may be affected
olations and to notify the A/V Streaming Service middlewafgversely. Hence, multimedia applications must be notified

so it can renegotiate QoS between peer media devices and}tn the current QoS changes so that appropriate steps can be
plication endpoints. taken to either modify the QoS requirements or terminate the

flows.

As described in Section 4.3, AQOSA propagates certain
network-level QoS state changes to higher-level middleware
As with AQoSA, TAO's A/V Streaming Service frameworkand applications. However, other types of QoS changes are
was designed by (1) inductively identifying common panot detected by AQoSA. For example, certain QoS parameters,

5.2.2 Meeting Design Requirements

10

such as late frames, are not detected by the AQoSA netwdploS requirements. For example, video streams encoded us-
level QoS event naotifier. Likewise, if a receiver adapts to avaiflg wavelet transforms can drop low frequency image frames
able QoS resources it must be notified when changes occuwben the specified QoS does not require high resolution.
specific QoS parameters, such as jitter, so it can then selecFo facilitate the selection and addition of filters, TAO’s A/V
tively accept or reject the sender’s data. To facilitate specitreaming Service applies the Chain of Responsibility Pat-
receiver adaptations we have added the following monitoritegn [5]. This pattern avoids the coupling of the sender of a
components to TAO'’s A/V Streaming Service: request from the receiver by giving more than one object a

e Bandwidth monitor: This component uses AQogp;schance to handle the request. TAO’s QoS Adaptors and Fil-
notification mechanisms to determine changes in the balfis are the receiving objects and they pass the request along
width over a period of time. Applications can then adapt affi€ chain until one of them handles it as dictated by the QoS
propriately by scaling the flows either up or down. policy. N . . _

e Late frame monitor: This component checks the ar: To facilitate the select’|on of the appr.opnate a}daptatl_on and
rival times of the packets to determine if they are delayed t;' fer componepts, TAO's A/V.Stream!ng .Serwce defines a
yond an expected time and should therefore be dropped. OS.POI'Cy ObjefCt through V\.'h.'Ch application 'developers. can

))) specify the required QoS policies, such as which adaptation(s)
o Jitter mo'nlt(')r: ' This component measures packet dﬁhd filter(s) to apply. The QoS policy helps the receiving ob-
lays that are indicative of a congested network. If congesti@Rys in the chain of adaptors and filters decide if they must

is detected, the receiver can notify the sender to decreas&iess the data or forward it to the next receiving object in
frame rate. the chain.

All three monitors use the Reactor pattern [4] and TAO's
internal reactor instance to notify the application of changes in .
the corresponding QoS parameters. Applications can regi€er Concluding Remarks
event handlers with TAO’s reactor for these monitor events.

Media flow adaptation: Network conditions may Ch&mgeAdvances in core hardware technologies and protocols are en-

over time. Thus, applications may no longer receive the Qggling the convergence of data and voice networks into a single

they specified originally. AQoSA's QoS notification mechac_ommunica}tion infrastructure that provides a range qf multi-
Y sp 9 y. AQ Q ggdla services. The success of the Internet has motivated the

nisms can inform the application of changes to the curren) o L
available QOS. Applications can decide to terminate the ¢ velopment of next-generation distributed applications that
i/l use the emerging communication infrastructure to provide

responding flow(s), modify their QoS requirements, or ad . . . i . :
to the available QoS. To modify QoS requirements, the ap IQvel tele-immersion functionality, such as distance learning,

cations can then use AQOSA to renegotiate their QoS parattﬁéq-medicine, and even remotely controlled medical surgical
ters, within the bounds of the available QoS procedures. These advanced applications and communication

infrastructures will enable the concentration of R&D expertise

. Applications may require either implicit or exphqt adaptay reduce development effort, while expanding the services de-
tion, where the former is transparent to the application and {he

. . vered to geographically distributed locations.
latter is not. Both types of adaptations must be supported fo‘n theory it will be possible to develop these next-

effective dynamic QoS management. Appropriate filter and) S o .
adaptor selection mechanisms are also required. generation appll'catlons by writing directly to low-level net-
To address these requirements, TAO's A/V Streaming SWOrk programming APIs, such as sockets. However, con-

r- . N .
. . A mporar nomic and organizational constrain well
vice containsQoS Adaptorand QoS Filter components that{ae porary economic a d orga 'a'lto aico st'a s, as we
o . . as competitive pressures, make it increasingly implausible to

enable applications to adapt to changes in available QoS

48%oin practice Thus, distributed object computing (DOC)
follows: .)
middleware has emerged as an enabling technology that al-
e QoS Adaptors: These components provide expliCifows researchers and developers to compete more effectively
adaptation by manipulating the codec or changing the vid@omarkets where deregulation and global competition moti-
playout time. vate the need for increased software productivity, quality, and
e QoS Filters: These components are present both @ust-effectiveness.
senders and receivers and reside between the application afthe maturation of the QoS-enabled DOC middleware de-
the network and provide implicit adaptation. Senders useribed in this paper is helping to decrease the cycle-time and
shaping filterso tune the data flow in accordance with avaikffort required to develop high-quality systems. Distributed
able network resources, such as buffers or packet transrajgplications are increasingly being composed out of flexible
sion rates. Receivers uselection filterso deliver parts of and modular reusable software components and services, in-
the data stream to the application as dictated by applicatgiead of being programmed entirely from scratch via lower-

11

level, proprietary tools. Moreover, standards-based DOC mith] Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time
dleware, such as CORBA 3.0 and the Java virtual machine, gggle_‘%‘i‘r'r']ggsigg‘;‘g’osr%"pf)hseilpprZDA'éTZUgSF"fSEE’”; emel IEEE
enables appllcatlons to run portably on multiple configurati Ql E. D. Jensen, “Eliminating the Hard/Soft Real-Time Dichotomy,”
and operating platforms. Thus, they can be adapted more read-Embedded Systems Programmiugl. 7, Oct. 1994.
ily to new market opportunities, technology innovations, ang) c. Aurrecoechea, A. T. Campbell, and L. Hauw, “A Survey of QoS
dynamic changes n their un-fime environments. - Adiiecuies ACMopTger g Wlineds Sysens ool
The case study described in Section 5 is representative of
the emerging class of multimedia applications whose resource
requirements can vary dynamically at run-time. The QoS-
enabled CORBA ORB and Audio/Video Streaming Service
middleware developed using ACE and TAO help to simplify
and coordinate such applications. These capabilities provide
a cost-effective strategy for improving the quality of service
received by end-users. This, in turn, helps to reduce deci-
sion/action times for time-critical applications and generally
improves overall system response in dynamically changing en-
vironments.
ACE, AQoSA, TAO, and TAO's A/V Streaming Service
have been applied to a range of real-time applications, in-
cluding many telecommunication systems, aerospace Sys-
tems, financial systems, medical systems, and manufactur-
ing process control systems. The source code and docu-
mentation for ACE and TAO are freely available from URL
www.cs.wustl.edu/ ~schmidt/TAO.html

References

[1] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, 1997.

[2] D.C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,"Handbook of
Programming Language@®. Salus, ed.), MacMillan Computer
Publishing, 1997.

[3] S. Vinoski, “New Features for CORBA 3.0Communications of the
ACM, vol. 41, pp. 44-52, October 1998.

[4] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume 2ew York, NY: Wiley & Sons, 2000.

[5] E.Gamma, R. Helm, R. Johnson, and J. Vlissid#esign Patterns:
Elements of Reusable Object-Oriented Softw&eading, MA:
Addison-Wesley, 1995.

[6] Object Management GrouRealtime CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

[7] Object Management Grou@ORBA Messaging SpecificaticdMG
Document orbos/98-05-05 ed., May 1998.

[8] D.C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeZaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

[9] C.D.Gill,D.L.Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Servitag
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middlewar® appear 2000.

[10] Object Management Grou@ontrol and Management of Audio/Video
Streams: OMG RFP Submissjdh2 ed., Mar. 1997.

[11] Object Management Groupault Tolerant CORBA Specificatipn
OMG Document orbos/99-12-08 ed., December 1999.

[12] Object Management Groupynamic SchedulingOMG Document
orbos/99-03-32 ed., March 1999.

12

