
Developing Next-generation Distributed
Applications with QoS-enabled DPE Middleware

Douglas C. Schmidt Vishal Kachroo, Yamuna Krishnamurthy
and Fred Kuhns

schmidt@uci.edu fvishal,yamuna,fredkg@cs.wustl.edu
Electrical & Computer Department of Computer Science

Engineering Department Washington University
University of California, Irvine, USA St. Louis, MO, USA�

This paper appeared in the IEEE Communications maga-
zine, edited by Abdi ..., 2000.

Abstract

This paper describes how recent advances in distributed ob-
ject computing (DOC) middleware are enabling the creation of
common quality-of-service (QoS) interfaces that support next-
generation distributed applications. DOC middleware helps
to simplify and coordinate applications in order to leverage
the underlying network and endsystem QoS architectures more
effectively. This paper also describes a QoS-enabled middle-
ware framework used to customize the CORBA Audio/Video
Streaming Service for applications on multiple operating sys-
tem platforms.

Keywords: Distributed object computing, QoS-enabled Mid-
dleware, CORBA-based Multimedia Streaming

1 Introduction

Current R&D trends: The successful commercialization of
today’s Internet is motivating new R&D on hardware and soft-
ware infrastructure support for next-generation distributed ap-
plications, such as e-commerce, autonomous vehicle control,
and global event notification systems. Many R&D activities
are focusing on how to scale the Internet to accommodate traf-
fic from advanced applications requiring a wide range of capa-
bilities that support various quality-of-service (QoS) require-
ments, such as predictable performance, secure communica-
tions, and fault tolerance. There are also efforts to develop
adaptive applications, such as Internet telephony and stream-
ing video, that require QoS guarantees, but can adjust dynam-
ically to changing user demands and available resources [1].

In recent years, R&D efforts have progressed along the fol-
lowing dimensions:

�This work was supported in part by ATD, BBN, Boeing, Cisco, DARPA
contract 9701516, Motorola Commercial Government and Industrial Solu-
tions Sector, Motorola Laboratories, Siemens, and Sprint.

1: Providing scalable high-performance core networking
technologies, such as Gigabit Ethernet and terabit IP/ATM
routers.

2: Defining network protocols and endsystem operating
system (OS) architectures that enforce QoS specifications pro-
vided by applications.

3: Developing QoS-enabled distributed object comput-
ing (DOC) middleware, which simplifies and coordinates
application-level services to leverage the advances in networks
and endsystems from end-to-end.

Other articles in this special issue focus on TINA, Megaco,
SIP, H.323, and NGN control. This article describes R&D
activities on QoS-enabled DOC middleware frameworks for
next-generation distributed applications. DOC middleware is
distributed processing environment (DPE) software that re-
sides between applications and the underlying operating sys-
tems, protocol stacks, and hardware devices to simplify and
coordinate how these components are connected and interop-
erate. As shown in Figure 1, DOC middleware is commonly

INFRASTRUCTURE
MIDDLEWARE

DISTRIBUTION
MIDDLEWARE

COMMON
MIDDLEWARE

SERVICES

APPLICATIONS

EVENT
CHANNEL

OPERATING
SYSTEMS &
PROTOCOLS

HARDWARE DEVICES

WTS
HUD

Nav

DOMAIN-
SPECIFIC
SERVICES

Cons
Cons

Cons

REPLICATION
SERVICE

Figure 1: Layers of Distributed Object Computing (DOC)
Middleware

1

decomposed into the following layers:

� Infrastructure middleware: This layer encapsulates
core OS communication and concurrency services to eliminate
many tedious, error-prone, and non-portable aspects of devel-
oping and maintaining distributed applications via low-level
network programming mechanisms, such as sockets. Widely-
used examples of infrastructure middleware include Java vir-
tual machines (JVMs) and the ADAPTIVE Communication
Environment (ACE) [2].

� Distribution middleware: This layer builds upon
lower-level infrastructure middleware and allows clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [3]. At
the heart of distribution middleware areObject Request Bro-
kers(ORBs), such as the OMG’s CORBA, Microsoft’s DCOM
(DCOM), and Sun’s Java RMI.

�Common middleware services: This layer augment the
distribution middleware by defining domain-independent ser-
vices, such as event notifications, logging, multimedia stream-
ing, persistence, security, transactions, fault tolerance, and dis-
tributed concurrency control. Applications can reuse these ser-
vices to perform common distribution tasks that would other-
wise be implemented manually.

� Domain-specific services: Unlike the other three mid-
dleware layers, domain-specific services are not generally
reusable, but instead are tailored to the requirements of par-
ticular domains, such as telecommunications, e-commerce,
health-care, or process automation. Domain-specific services
are the least mature of the middleware layers today. Since
they embody domain-specific knowledge, however, they have
the most potential to increase system quality and decrease the
cycle-time and effort required to develop particular types of
distributed applications.

Together, these DOC middleware layers provide the follow-
ing benefits:

1. Strategic focus: They elevate application developer fo-
cus away from a preoccupation with low-level operating sys-
tem mechanisms and networking protocols. While it is im-
portant to have a solid grasp of these topics, they are rela-
tively tactical in scope. Therefore, these protocols and mech-
anisms should be placed in the proper strategic context within
a broader software architecture.

2. Effective reuse: They amortize software life-cycle ef-
fort by leveraging previous development expertise and reifying
implementations of key patterns [4, 5] into reusable middle-
ware frameworks [2]. Most distributed applications in the fu-
ture will be built by integrating and scripting domain-specific
and common “pluggable” middleware service components,
rather than being programmed entirely from scratch.

3. Open standards: They provide a standard [3] set of
software components that help to direct the focus of develop-
ers towards higher-level software application architecture and
design concerns, such as the reuse of suitable security, QoS
resource management, and fault tolerance services and com-
ponents.

By providing these benefits, DOC middleware helps to min-
imize the impact of vexing inherent and accidental complex-
ities [4], such as partial failures, distributed deadlock, and
non-portable programming APIs, that have historically com-
plicated the development of distributed applications. An in-
creasingly important role is being played by “commercial-off-
the-shelf” (COTS) DOC middleware, such as CORBA and
Java, which is readily available for purchase or open-source
acquisition. COTS middleware has become essential in to-
day’s software development organizations, which face many
time- and effort-related constraints arising from global com-
petitive pressures.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 outlines key properties of next-
generation distributed applications to illustrate the require-
ments being addressed by R&D on QoS-enabled DOC mid-
dleware, endsystems, and networks; Section 3 outlines the
QoS-related aspects of CORBA 3.0, which is emerging as the
industry standard of choice for QoS-enabled distributed ap-
plications; Section 4 describes the object-oriented design of a
portable QoS API; Section 5 presents a case study that shows
how this QoS API is used to provide QoS in multimedia ser-
vices; and Section 6 summarizes concluding remarks.

2 Key Properties of Next-generation
Distributed Applications

Next-generation distributed applications will require end-to-
end QoS support where network and system resources must
be managed both prior to and during run-time. For example,
in mission-critical systems in domains such as telecommuni-
cations, global trading, distributed electronic medical imag-
ing, and aviation collision avoidance, failure to meet certain
deadlines can result in significant loss of property or even loss
of life. These types of systems must therefore be analyzed
and monitored off-lineandon-line to ensure that the resources
they require are allocated and managed properly.

In this section, we first present a scenario that motivates key
application requirements that must be addressed by R&D on
QoS-enabled DOC middleware. We then generalize from this
scenario and summarize the QoS-related challenges associated
with supporting next-generation distributed applications.

2

2.1 Tele-immersion Application Scenarios

Some of the most demanding types of next-generation QoS-
enabled distributed applications involvetele-immersionwhich
combines tele-conferencing, tele-presence, and virtual reality.
Tele-immersion places stringent demands at multiple levels
along the end-to-end path of distributed applications, such as
the following:
� Endsystems: Tele-immersion requires real-time re-

sponse and predictable behavior from endsystems to (1) inter-
act with the physical world within specific delay bounds and
(2) present images or other stimuli to users in real-time.
� Networks: Tele-immersion end-users may be dis-

tributed across the Internet or intranets. Thus, applications re-
quire predictablenetworkperformance to provide low-latency
and high-bandwidth to applications end-to-end.
Applying tele-immersion to health care: Intensive care
medicine is a domain where tele-immersion applications can
provide significant benefits. For instance, emergency teams
responding to natural disasters or urban terrorism must make
critical decisions based on information emerging from a va-
riety of sources at an accelerated tempo. Consultations with
remote experts, modeling of physiological processes, and inte-
gration of both existing and emerging information often must
be performed while in close proximity to patients. To sup-
port this scenario, it is essential that networking and comput-
ing technologies perform and adapt in real-time to changing
situational requirements, while still maintaining QoS guaran-
tees for critical operations, such as tele-radiology or even tele-
surgery.

The ability of tele-immersion systems to preserve the nec-
essary application QoS end-to-end will translate directly into
users’ perceived worth of next-generation applications and
their supporting services. For example, if a tele-medicine
system routinely delays the delivery of packets, it will pro-
vide relatively low perceived value to its users. Supporting
the demanding tele-immersion applications outlined above,
therefore, requires a range of QoS support from network and
endsystem elements, and the DOC middleware that integrates
these elements end-to-end.

2.2 Synopsis of QoS-related Challenges for
Next-generation Distributed Applications

Many research challenges arise when attempting to support
the stringent QoS requirements of next-generation distributed
applications, such as the tele-immersion scenarios presented
in Section 2.1. Table 1 characterizes the key challenges as-
sociated with developing QoS-enabled middleware for next-
generation distributed applications. In general, solutions that
are emerging to meet the QoS-related challenges outlined in
Table 1 possess the following capabilities:

Requirement Description
Diverse Next-generation applications must simultaneously
inputs use diverse sources of information, such as raw

sensor data, command & control policies, and
operator input, while sustaining real-time behavior.

Diverse Many next-generation applications must concurrently
outputs produce diverse outputs, such as filtered sensor data,

mechanical device commands, and imagery, whose
resolution quality and timeliness is crucial to other
systems and users with whom they interact.

Shared Application-critical and/or time-critical operations
resources must share resources effectively end-to-end with

operations that possess less stringent timing
or criticality constraints.

Critical QoS management for next-generation applications
operations with hard timing constraints for certain critical

operations must insulate these operations from
the competing demands of non-critical operations.

High The system infrastructure must react to hardware
availability failures, network topology changes, and feature

upgrades, and restore correct real-time operation
within a bounded interval after failures/changes.

Diverse There must be a balance between different and
resource sometimes competing resource management goals
management involving different kinds of resources, such as
goals maximizing utilization of the CPU or sharing

link bandwidth fairly between threads at the
same priority.

End-to-end Many next-generation applications may operate
requirements in heterogeneous environments and must manage

distributed and layered resources to enforce
end-to-end QoS requirements.

System Developers of next-generation applications must
configuration be able to control the internal concurrency,

resource management, and resource utilization
configurations throughout networks, endsystems,
middleware and applications, to provide the
end-to-end QoS to applications.

System Next-generation middleware frameworks and
adaptation applications must be able to (1) autonomously

reflect upon situational factors as they arise in
their run-time environment and (2) adapt to these
factors while preserving the integrity of key
mission-critical activities.

Development The time and effort expended to develop, validate,
time & cost optimize, deploy, maintain, and upgrade next-
management generation distributed applications must be

amortized across product families.

Table 1: QoS-related Challenges for Next-generation Dis-
tributed Applications

3

� They offer applications the ability to flexibly config-
ure layered resource management mechanisms needed to
control their QoS end-to-end;

� They automatically protect resources needed by certain
application-critical operations;

� They promote autonomous or semi-autonomous behavior
to respond adaptively and reflectively to changing situa-
tional aspects in their run-time environment.

The following section summarizes recent advances in DOC
middleware that provide COTS-based implementations of
some of these capabilities.

3 Recent Advances in QoS-enabled
DOC Middleware

Significant R&D efforts have focused on DOC middleware
during the past decade. These efforts have yielded open stan-
dards, such as OMG CORBA [3], as well as popular propri-
etary solutions, such as Microsoft’s Distributed Component
Object Model (DCOM) and Sun’s Remote Method Invocation
(RMI). Thus, DOC middleware is now available off-the-shelf
that allows clients to invoke operations on objects without con-
cern for object location, programming language, OS platform,
communication protocols and interconnects, or hardware [3].

This section outlines the QoS-related aspects of CORBA
3.0, which is emerging as the industry standard for distributed
applications that possess a wide range of QoS requirements.1

In addition, we outline the key open R&D issues related to
QoS-enabled DOC middleware.

3.1 Overview of CORBA 3.0 QoS Capabilities

First-generation DOC middleware was not targeted for ap-
plications with stringent QoS requirements. Not surpris-
ingly, its efficiency, predictability, scalability, and depend-
ability was problematic. Over the past several years, how-
ever, the use of CORBA-based [3] DOC middleware has in-
creased significantly in aerospace, telecommunications, med-
ical systems, and distributed interactive simulation domains.
These domains are characterized by applications with high-
performance and real-time QoS requirements. The increased
adoption of CORBA middleware in these domains stems
largely from the following two factors:

1. The maturation of DOC middleware patterns and
frameworks: A number of notable advances in patterns and

1The complete CORBA 3.0 standard should be available in 2001. How-
ever, many key components [6, 7, 3] are already specified and available in
COTS ORBs.

frameworks for QoS-enabled middleware have occurred re-
cently. For instance, research conducted in the DARPA Quo-
rum program [1, 8] has identified key design and optimization
patterns [4], which have been instantiated into high-quality
frameworks [2] for QoS-enabled DOC middleware and appli-
cations. These patterns and frameworks are now being applied
widely in COTS DOC middleware products.
2. The maturation of DOC middleware standards: The
OMG’s suite of CORBA standards has matured considerably
over the last several years, particularly with respect to the spec-
ification of QoS-enabled components and capabilities. For in-
stance, the forthcoming CORBA 3.0 [3] standard includes the
Messaging [7] and Real-time specifications [6]. The CORBA
Messaging specification defines asynchronous operation mod-
els and allows applications to control many end-to-end ORB
QoS policies, such as timeouts, priority queueing order, and
message reliability semantics. The Real-time CORBA speci-
fication defines standard interfaces and policies for managing
ORB processing, communication, and memory resources.

As shown in Figure 2, CORBA 3.0 ORB endsystems con-

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB CORE

OBJECT ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

operation()

out args + return value

in args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Figure 2: QoS-enabled ORB Endsystem Capabilities in
CORBA 3.0

sist of network interfaces, operating system I/O subsystems
and communication protocols, and CORBA-compliant mid-
dleware components and services. CORBA 3.0 identifies ca-
pabilities that can bevertically (i.e., network interface$ ap-
plication layer) andhorizontally(i.e., peer-to-peer) integrated
and managed by ORB endsystems to ensure end-to-end pre-
dictable behavior for operations exchanged between CORBA
clients and servers.

Below, we outline the QoS-related capabilities in CORBA
3.0, starting from the lowest level of abstraction and building

4

up to higher-level common services and applications.
Communication infrastructure resource management: A
CORBA 3.0 endsystem must leverage policies and mecha-
nisms in the communication infrastructure that support re-
source guarantees. This support can range from (1) determin-
ing which connection to use for a particular invocation to (2)
exploiting advanced protocol properties, such as controlling
the cell pacing rate of ATM virtual circuits.
OS scheduling mechanisms: ORBs exploit OS mecha-
nisms to schedule application-level activities end-to-end. The
CORBA 3.0 specification targets fixed-priority real-time sys-
tems, where thread priorities are set by applications and only
changed by the ORB endsystem to enforce priority inheritance
or priority ceiling policies. Thus, these mechanisms corre-
spond to managing OS thread scheduling priorities. CORBA
3.0 focuses on operating systems that allow applications to
specify thread scheduling priorities and policies. For exam-
ple, the real-time extensions in IEEE POSIX 1003.1c define
a static priority FIFO thread scheduling policy that meets this
requirement.
ORB endsystem: ORBs are responsible for communicating
requests between clients and servers transparently. An ORB
endsystem must therefore provide standard interfaces that al-
low applications to specify their resource requirements to an
ORB. The policy framework defined in CORBA 3.0 defines
standard interfaces and QoS policies that allow applications to
configure and control the following resources:

� Processor resourcesvia thread pools, priority mecha-
nisms, and intra-process mutexes;

� Communication resourcesvia protocol properties and ex-
plicit bindings with non-multiplexed connections;

� Memory resourcesvia buffering requests in queues and
bounding the size of thread pools.

Common middleware services: Having a QoS-enabled
ORB that manages endsystem and communication resources
does not provide a complete end-to-end solution. Therefore,
ORBs must also preserve QoS properties for higher-level com-
mon services and application components, such as the follow-
ing defined in CORBA 3.0:

� A global Scheduling Service [6, 8, 9] that distributed ap-
plications can use to manage and schedule distributed re-
sources via fixed-priority analysis and scheduling tech-
niques.

� An Audio/Video (A/V) Streaming Service [10] that fa-
cilitates the creation of data, video, and audio streams
between two or more media devices.

� A Fault Tolerance service [11] that defines a standard set
of interfaces, policies, and components to provide robust
support for applications requiring high availability.

These services augment ORBs to provide mechanisms that
support the specification and enforcement of end-to-end oper-
ation timing, stream synchronization, and dependability. De-
velopers can structure their applications to exploit the reusable
capabilities exported by QoS-enabled ORBs and their associ-
ated higher-level common services.

3.2 Open R&D Issues

Meeting the QoS requirements of next-generation distributed
applications requires an integrated framework architecture that
can deliver end-to-end QoS support at multiple levels of ab-
straction. While DOC middleware based on CORBA 3.0 of-
fers solutions to certain resource management challenges fac-
ing researchers and developers, it does not yet provide a com-
plete solution for all types of distributed applications. In
particular, the CORBA specification does not define standard
components, protocols, or APIs that support the following ca-
pabilities:
Dynamic resource management: The real-time support in
CORBA 3.0 targets applications designed using fixed-priority
scheduling. However, an important class of real-time appli-
cations encounter dynamic load conditions that can vary sig-
nificantly at run-time, particularly in interactive telecommu-
nication systems and open-loop control platforms. It is hard
for developers of these types of systems to determine the pri-
orities of various operationsa priori without significantly un-
derutilizing various resources, such as the CPU and network
bandwidth.

To address these issues, the OMG is attempting to
standardize dynamic CORBA scheduling [12] techniques,
such as deadline-based [13], value-based [14], and hybrid
static/dynamic [9] scheduling. Dynamic scheduling offers re-
lief from certain limitations of static scheduling, such as re-
source underutilization. It often has a higher run-time cost,
however, because certain scheduling operations must be per-
formed on-line. Moreover, operations can be scheduled dy-
namically that may never be dispatched. Therefore, additional
R&D is necessary to determine the most suitable ways to inte-
grate dynamic scheduling into DOC middleware.
Portable networking QoS APIs: Many network-oriented
QoS technologies, such as integrated services (IntServ), dif-
ferentiated services (DiffServ), multi-protocol label switch-
ing (MPLS), common open policy service (COPS), and band-
width brokers (BB), have been defined to enable network-level
QoS. Most existing approaches are highly platform/protocol-
specific, however. This tight coupling makes it hard to develop
and deployportable applications that use these networking
QoS capabilities effectively.

Some work has been done to provide developers with stan-
dard programming interfaces [15] that can leverage advances
in underlying network technology to provide application-level

5

QoS guarantees. However, standard DOC middleware, such as
CORBA 3.0, only defines limited protocol property APIs and
cannot yet handle sophisticated network-level QoS capabili-
ties, such as IntServ and DiffServ. Section 4 describes a richer
QoS API that can be integrated with CORBA or other DOC
middleware so that applications can both (1) benefit from mid-
dleware capabilities and (2) utilize network-level QoS support
via portable middleware-centric APIs.

Multiple QoS property integration: While emerging
network-level QoS mechanisms are essential enabling tech-
nologies, they are insufficient in isolation because they only
manage network-level QoS. Likewise, although some oper-
ating systems now support real-time scheduling of CPU re-
sources, they do not provide integrated end-to-end solutions.
In general, conventional QoS solutions tend to focus either
on specific network signaling and enforcement mechanisms or
single endsystem resource allocation techniques. While these
research activities are important building blocks, they often
yield point solutions that emphasize relatively fixed, lower-
level policies and mechanisms.

Introducing application-level awareness of changes to ex-
pected and delivered QoS is a new direction for inserting adap-
tive behavior into distributed applications. Adaptation can oc-
cur at any and all of the various system layers, including cus-
tomized approaches in the application itself and standard ser-
vice (re)configurations within the supporting middleware and
network infrastructure, such as the following examples:

� Application-level adaptation: This type of adaptation
might involve moving from full-motion video over high-speed
links to audio and still imagery or even text-only interactions
over low-speed links.

� Service-level adaptation: This type of adaptation
might involve acquiring additional bandwidth by preempting
a low-priority application or automatically instantiating addi-
tional resource replicas when others become unreachable.

We believe the key to success in these adaptations lies in
developing translucent paths through system layers that can
integrate multiple QoS properties effectively. These properties
must encompass bothperformance measures, such as latency
and throughput, andmission-critical aspects, such as real-time
constraints, dependability, and security. A key R&D challenge
is to provide maximum utility to applications and end-users
while minimizing interference that can result from a series of
independent or transparent actions [1].

4 AQoSA: a Common Middleware-
centric QoS API

4.1 Motivation

As network-level QoS protocols and mechanisms mature, de-
velopers increasingly require a common interface for (1) spec-
ifying the QoS requirements of their distributed applications
and (2) receiving notifications from the underlying network
and QoS infrastructure when QoS-related conditions change.
This common application QoS API is motivated by the follow-
ing needs:
� Enhanced portability: To adapt more readily to new

market opportunities and technology innovations, applications
must be shielded from non-portable platform- and protocol-
specific details, such as representations of QoS parameters and
mechanisms for detecting changes in the network-level QoS.
� Higher-level QoS specification: Although network-

level QoS protocols provide mechanisms for allocating re-
sources between endsystems, they do not address the trans-
lation from application-level QoS parameters to network-level
QoS parameters.
� Increased adaptivity: QoS-enabled distributed appli-

cations and higher-level middleware must be notified when
available resources change so that they can re-negotiate their
QoS specifications.

4.2 Solution Approach ! a Common
Middleware-centric QoS API

All these considerations motivate the need for a common
platform- and protocol-independent QoS API that can expose
the underlying network-level QoS protocols to applications via
higher-level DOC middleware, as shown in Figure 3. The

RSVP-ENABLED QOSDIFFSERV-ENABLED QOSRSVP-ENABLED QOS

EDGE

ROUTER

EDGE

ROUTER

HOST A HOST BIDL
STUBS

REAL-TIME ORB COREIOP IOP

ORB QoS
INTERFACE

REAL-TIME
PORTABLE OBJECT ADAPTER

IDL
SKELETON

S

EDGE

ROUTER
EDGE

NETWORK

A

CORE

NETWORK

COPS COPS
BB BB BB

EDGE

ROUTER
EDGE

NETWORK

B

QOS API

Figure 3: End-to-end QoS Architecture

end-to-end QoS architecture shown in Figure 3 allows ap-
plications to obtain network-level QoS guarantees via stan-
dard distribution middleware and middleware services, such as
CORBA ORBs and the CORBA A/V Streaming Service [10].

6

Moreover, this architecture simultaneously leverages other im-
portant middleware benefits, such as platform- and protocol-
independence. In addition, a middleware-centric QoS API can
provide additional functionality, such as coordinating the bind-
ing of QoS to designated application media streams and trans-
lating standard QoS flow requirements to network-level QoS
properties.

We have designed a common QoS API based on the archi-
tecture shown in Figure 3 and implemented it within ACE [2].
ACE is a widely-used open-source infrastructure middle-
ware framework that implements key patterns [4] for high-
performance and real-time communication systems. TheACE
QoS API(AQoSA) provides a portable C++ encapsulation of
two separate implementations of the IntServ resource reser-
vation setup protocol (RSVP): theGQoSimplementation on
Windows 2000 and theRSVP API(RAPI) implementation on
UNIX.

RSVP is designed for IntServ networks and provides QoS
for particular flows via three major components: apacket clas-
sifier, anadmission controller, and apacket scheduler. These
QoS components facilitate the creation and management of
distributed reservation state across a variety of multicast or
unicast delivery paths. RSVP defines aQoS sessionas a flow
with a particular destination and transport-layer protocol.

Unfortunately, the APIs provided by the GQoS and RAPI
IntServ implementations are non-portable and differ along var-
ious dimensions, such as the following:

� Socket characteristics: GQoS closely couples each
QoS session to a socket endpoint by passing QoS session pa-
rameters to the socket calls. Conversely, RAPI handles the
QoS specification separately from sockets, so that a QoS ses-
sion can be specified independently of a socket.

� Operating system and event integration: The RAPI
implementation runs in a separate process address space and
notifies an application of QoS-related events via a UNIX-
domain socket. Thus, the application must listen on this
socket, as well as its usual data-mode sockets. Conversely,
GQoS is integrated into the Windows 2000 kernel and does not
require an application to listen on a different socket. Instead,
it supports QoS event notifications that distinguish between a
QoS and other events at the socket level.

Given these differences, it is hard to develop portable appli-
cations that are programmed directly using GQoS and RAPI.
Yet, developers can benefit greatly if changing their QoS im-
plementation does not entail changing their application de-
sign and implementation. To allow developers to create QoS-
enabled applications that are independent of the underly-
ing endsystem platform or IntServ protocol implementation,
therefore, AQoSA factors out common functionality and ex-
ports an infrastructure middleware API.

4.3 Overview of the ACE QoS API (AQoSA)

AQoSA was designed by (1) inductively identifying common
patterns [4, 5] used to program to existing QoS APIs and (2)
developing components that reified these patterns. Below, we
describe how our AQoSA implementation addresses key de-
sign requirements.
Portability: AQoSA encapsulates applications from the de-
tails of platform-dependent GQoS and RAPI IntServ imple-
mentations in the underlying endsystem platform. AQoSA
encapsulates the functions, data structures, and macros used
to represent various QoS parameters in these two IntServ im-
plementations. Thus, applications and higher-level DOC mid-
dleware can access IntServ capabilities via a convenient and
portable QoS programming interface.
Extensibility: AQoSA enables new network- and
endsystem-level QoS mechanisms to be integrated without
tedious refactoring of its public APIs,e.g., it is straightfor-
ward to extend AQoSA to support other QoS models, such as
DiffServ. To accomplish this, AQoSA extends the existing
ACE framework components by introducing new capabilities
that allow applications and underlying DOC middleware to
manage QoS multicast or unicast sessions. Moreover, AQoSA
applies several patterns to ensure that new network-level QoS
implementations can be easily integrated without changing
appliations that uses its API.

For example, AQoSA uses the Factory Method pattern [5],
which decouples the creation of an object from its use, to re-
lieve applications from managing the lifetime of QoS session
objects. Once created, the QoS session object is added to a list
of session objects to which a socket has subscribed. AQoSA
makes it possible to accommodate new QoS mechanisms via
subclassing. To ensure that new mechanisms conform to ex-
isting interfaces, AQoSA uses the Adapter pattern [5], which
allows interoperability between components that were not de-
signed to work together initially.
QoS Event Notification: AQoSA provides applications
with a platform-independent API for receiving notifications
when the underlying network QoS changes. ACE applica-
tions often use an event handling model based on the Reactor
pattern [4], which allows servers to decouple event demulti-
plexing/dispatching from their application-specific event han-
dling. Thus, AQoSA’s event notification mechanisms support
this common usage.

In addition, AQoSA applies the Decorator pattern [5],
which extends an object dynamically by attaching new respon-
sibilities transparently. AQoSA uses this pattern to enhance
the existing ACE event handler functionality viaQoS decora-
tion. For example, as described in Section 4.2, the native RAPI
API requires an application to listen on two sockets, whereas
the GQoS API requires just one. The AQoSA QoS decorators
allow applications to “QoS-enable” themselves dynamically,

7

without requiring any changes to the existing ACE reactive
event handling model.

Advanced QoS capabilities: AQoSA binds multicast or
unicast flows to reservations via a uniform and portable com-
ponent called aQoS session. A QoS session represents the
application’s notion of the underlying network-level QoS.
Though modeled originally using IntServ RSVP sessions, a
AQoSA QoS session can also accommodate other QoS mech-
anisms, such as DiffServ.

An AQoSA QoS session explicitly separates QoS proper-
ties of its sessions from lower-level socket data transfer as-
pects. Internally, the ACE QoS socket maintains an associa-
tion between QoS sessions to which an application has sub-
scribed. This separation of concerns also facilitates more ad-
vanced QoS functionality, such as QoS event notification.

The AQoSA components allow applications to specify and
query for the QoS configured currently for a particularly uni-
cast or a multicast session. The UML diagram also shows
how AQoSA uses the Bridge pattern [5], which provides a
uniform interface for different mechanisms implementations,
such as RAPI and GQoS. New QoS mechanisms can be added
by subclassing implementations of this interface. In addition,
the diagram shows how AQoSA applies the Factory Method
pattern [5] to create and manage the lifetime of QoS session
objects subscribed to by applications.

Adaptivity: Applications or higher-level middleware must
be notified when changes to the state of their QoS occur.
AQoSA notifies an application when (1) a particular QoS state
is established for its specified flows and (2) when QoS state is
updated,e.g., if there are changes to the existing set of reser-
vations for a particular session. In RSVP, these notifications
are carried inRSVP events.

AQoSA receives and handles RSVP events uniformly for
different network-level QoS implementations via the Reactor
pattern [4]. In this pattern, asynchronous event demultiplexer,
such asselect or WaitForMultipleObjects , handles
event demultiplexing and an associated reactor notifies pre-
viously registered application-specific event handlers so they
can adapt to QoS state change events.

Applications may choose not to obtain the QoS immediately
after a QoS event occurs. Instead, they may defer it and have
it dispatched at a later point in the program. They can also run
the event handling mechanism in a different thread of control
and obtain QoS notifications synchronously. This latter model
is motivated by the Half-Sync/Half-Async pattern [4], which
decouples synchronous from asynchronous processing in con-
current systems.

5 Case Study: Applying AQoSA to the
CORBA Audio/Video Streaming Ser-
vice

As shown in Section 4.3, AQoSA shields applications from
the non-portable aspects of the underlying operating system
and network-level QoS implementations. The infrastructure
middleware abstractions provided by AQoSA are sufficient for
certain types of applications, such as controlling and manag-
ing network switch and router elements [15]. Other types of
applications, however, can benefit from higher-level middle-
ware programming models that supports a broader range of
protocols and common middleware services.

For example, the TAO open-source real-time CORBA
ORB [8] provides an implementation of the CORBA A/V
Streaming Service [10], which supports multimedia applica-
tions, such as video-on-demand and tele-immersion. The QoS
requirements of these types of applications depend on the fol-
lowing factors:
� Application class,such as interactive vs. non-interactive.

Interactive applications require real-time response and hence
predictable delivery of application data with bounded end-to-
end latencies. In contrast, non-interactive applications have
less stringent response requirements, but often possess higher
throughput demands.
� Application media types,such as audio and video. De-

pending on the media type, different performance criteria may
apply. For example, audio delivery is sensitive to delay, loss,
and bandwidth, and hence needs guaranteed QoS. In contrast,
video can often be best-effort since it is less sensitive to delay,
loss, and bandwidth. Therefore, it can be adapted more readily
to the available network QoS.
� Application adaptation policies,which may require im-

plicit or explicit adaptations to changes in delivered QoS. Im-
plicit adaptation is transparent to the application layer,e.g.,
dropping selected portions of a video stream at the transport
layer. Conversely, explicit adaptation, such as changing quan-
tization coefficients or application coding algorithms, is not
transparent to applications.

To provide acceptable QoS to multimedia applications de-
veloped using TAO, we therefore developed a QOS-enabled
implementation of the CORBA A/V Streaming Service using
AQoSA, as described in this section.

5.1 Overview of the CORBA A/V Streaming
Service

The CORBA A/V Streaming Service controls and manages the
creation of streams between two or more media devices. Al-
though the original intent of this service was to transmit audio
and video streams, it can be used to send any type of data.

8

Applications control and manage A/V streams using the A/V
Streaming Service components shown in Figure 4. Streams

MMDevice

MediaCtrl

Controller
Stream
EndPoint

Stream

VDev VDevVDevMMDevice

Stream

MediaCtrl

Stream
Controller

EndPoint

One per device
One per stream
One per device
One per stream

VDev

EndPoint
Stream

MMDevice

Multimedia
Stream
Multimedia
Stream

Supplier

Consumer

Figure 4: A/V Streaming Service Components

are terminated by endpoints that can be distributed across net-
works and are controlled by a stream control interface, which
manages the behavior of each stream.

The CORBA A/V Streaming Service combines (1) the flex-
ibility and portability of the CORBA object-oriented program-
ming model with (2) the efficiency of lower-level transport
protocols. The stream connection establishment and manage-
ment is performed via conventional CORBA operations. In
contrast, data transfer can be performed directly via more effi-
cient lower-level protocols, such as ATM, UDP, TCP, and RTP.
This separation of concerns addresses the needs of develop-
ers who want to leverage the language and platform flexibil-
ity of CORBA, without incurring the overhead of transferring
data via the standard CORBA interoperable inter-ORB proto-
col (IIOP) operation path through the ORB.

The CORBA A/V Streaming Service specification defines
interfaces and policies to allow applications to specify end-to-
end QoS parameters, such as video frame rate or audio sample
rate, for individual flows within a stream. It also defines a
mandatory set of network-level QoS parameters, such as to-
ken bucket, peak-bandwidth, and token rate. These QoS pa-
rameters are specified as name/value pairs using the CORBA
Property Service. Multimedia applications and A/V Stream-
ing Service implementations use these name/value pairs to (1)
negotiate QoS between two peer media devices and (2) modify
the QoS if there is a violation in the initial QoS or if the speci-
fied QoS cannot be met due to run-time environment changes.

5.2 Implementing the TAO A/V Streaming Ser-
vice with AQoSA

Though the CORBA A/V Streaming Servicespecificationpro-
vides interfaces to specify and modify QoS, it is the responsi-
bility of implementationsto enforce the negotiated QoS. For
TAO’s A/V Streaming Service implementation, we designed a
framework based upon the ACE QoS API (AQoSA) described
in Section 4.3. This framework provides a middleware in-

terface that encapsulates QoS-specific details within the TAO
A/V Streaming Service, rather than in the multimedia appli-
cations. To obtain end-to-end QoS therefore, application de-
velopers simply specify the QoS they require for each flow in
their streams. These specifications are translated, enforced,
and modified transparently by the AQoSA-enabled TAO A/V
Streaming Service.

5.2.1 Components in TAO’s A/V Streaming Service
Framework

TAO’s A/V Streaming Service framework comprises three
main components, which are shown in Figure 5 and outlined

Perceptual QOS
eg. Good Quality Video

Application QoS
eg. video frame-rate

Network QoS
eg. Network bandwidth

Application

QoS Mapping QoS
Monitoring

QoS
Adaptation

QoS-Based Transport API

Figure 5: QoS Components in the TAO A/V Streaming Ser-
vice Framework

below.
1. QoS mapping: TAO’s QoS mapping component trans-
lates QoS parameters between the application-level and
network-level. QoS mapping can be performed both during
resource allocation and during renegotiations. This translation
process allows application developers to specify QoS as per-
ceptual qualities,e.g., the video quality can be specified by
the frame rate for a video flow. The QoS mapping component
is then responsible for translating the frame rate into network
bandwidth requirements.
2. QoS monitoring and adaptation: These two compo-
nents support applications that require QoS guarantees, but
are flexible in their needs,e.g., they can adapt to changing
resource availability within specified QoS bounds. The QoS
monitoring component, which consists of AQoSA and the
higher-level TAO middleware framework, measures end-to-
end QoS of application flows over a finite period of time. If
there are violations in the reserved QoS the monitoring compo-
nent notifies the application of actual resources available cur-
rently. TAO’s CORBA A/V service QoS midleware can then
decide if the available QoS is sufficient to meet the require-
ments specified by an application.

9

If the available QoS is insufficient, TAO’s A/V Streaming
Service notifies the application, which in turn can renegotiate
the QoS or adapt to the available QoS. Adaptation can occur at
various levels of abstraction, ranging from the transport (e.g.,
flow control), to the application (e.g., MPEG-II coding rate
adaptation), to middleware signaling (e.g., QoS renegotiation).
Due to the extensible design of TAO’s QoS adaptation compo-
nent, various adaptation algorithms can be configured. TAO’s
QoS adaptation component is accessible by (1) the applica-
tion, which performs application-level adaptation and (2) the
distribution middleware, which coordinates the transport-level
adaptation.
3. QoS-Based transport API: This component is provided
by AQoSA, which enforces end-to-end QoS by reserving net-
work resources in accordance with application-level require-
ments. As shown in Figure 6, the CORBA A/V Streaming

CORBA A/V SERVICE

TAO ORB

AQOSA

RAPI GQOS

Figure 6: QoS-based Transport API

Service is layered atop TAO and ACE, which handle flow con-
trol processing and media transfer, respectively. The CORBA
A/V service uses AQoSA for network-level QoS provision-
ing, renegotiation and violation notification control, and media
transfer. Likewise, application-level end-to-end QoS is

1. Translated from application-level to network-level pa-
rameters via TAO’s QoS mapping component and

2. Passed through the portable AQoSA interfaces that
portably encapsulate the GQoS and RAPI APIs.

AQoSA uses the underlying network-level QoS capabilities to
provision the specified QoS to individual application flows. In
addition, AQoSA provides mechanisms that are used by TAO’s
QoS monitoring and adaptation components to detect QoS vi-
olations and to notify the A/V Streaming Service middleware
so it can renegotiate QoS between peer media devices and ap-
plication endpoints.

5.2.2 Meeting Design Requirements

As with AQoSA, TAO’s A/V Streaming Service framework
was designed by (1) inductively identifying common pat-

terns [4, 5] used to program to existing QoS APIs and (2) de-
veloping a framework that reified these patterns. Below, we
describe our TAO’s A/V Streaming Service framework imple-
mentation addressed key design requirements.
Generic and extensible QoS mapping: The CORBA A/V
Streaming specification allows application developers to spec-
ify the QoS for any data stream via perceptual quality param-
eters. These parameters characterize application performance
and provide a convenient configuration model for developers.
To enforce the specified QoS, however, the application-level
QoS parameters must be translated to network-level QoS that
are used to transport the flows. Hence, a QoS translation com-
ponent is required. The key design challenges involve (1) pro-
viding a generic application-level Qos to network-level QoS
parameter mapping that is independent of the codec and net-
work and (2) making it easy to change mapping schemes.

To address these challenges for video streams, we identi-
fied a set of application-level QOS parameters:sharpness,
color, andrate. The sharpness of the video stream resolution
is mapped to luminance quality; color is mapped to the color
depth; and rate is mapped to frame rate where luminance, color
depth, and frame rate are network-level QoS parameters for a
video stream. A single quality factor in the range [0..1] is used
to specify the required quality of the displayed video, where 0
is the best and 1 is the worst quality. The relative preference
of these perceptual quality parameters can also be specified by
assigning them weights.

TAO’s A/V Streaming Service defines generic mapping
functions to map application-level quality factors and relative
weights specified by application developers into the network-
level QoS parameters, such as the peak bandwidth of the video.
The specified mappings from perceptual quality to system and
network parameters are independent of the codec and net-
work. However, the values of the relative weights may vary
across codecs. TAO’s A/V Streaming Service uses wavelet
transformations to encode video streams. Alternative mapping
schemes can be configured via theStrategyPattern [5], which
defines a family of interchangeable algorithms.
Specific QoS parameter monitoring: After applications
specify their required QoS, AQoSA uses reservations to help
enforce these specifications. At the time of the reservation the
application may receive the desired QoS. If network condi-
tions change over time and the desired QoS is no longer be
available, however, application performance may be affected
adversely. Hence, multimedia applications must be notified
when the current QoS changes so that appropriate steps can be
taken to either modify the QoS requirements or terminate the
flows.

As described in Section 4.3, AQoSA propagates certain
network-level QoS state changes to higher-level middleware
and applications. However, other types of QoS changes are
not detected by AQoSA. For example, certain QoS parameters,

10

such as late frames, are not detected by the AQoSA network-
level QoS event notifier. Likewise, if a receiver adapts to avail-
able QoS resources it must be notified when changes occur to
specific QoS parameters, such as jitter, so it can then selec-
tively accept or reject the sender’s data. To facilitate specific
receiver adaptations we have added the following monitoring
components to TAO’s A/V Streaming Service:

� Bandwidth monitor: This component uses AQoSA’s
notification mechanisms to determine changes in the band-
width over a period of time. Applications can then adapt ap-
propriately by scaling the flows either up or down.

� Late frame monitor: This component checks the ar-
rival times of the packets to determine if they are delayed be-
yond an expected time and should therefore be dropped.

� Jitter monitor: This component measures packet de-
lays that are indicative of a congested network. If congestion
is detected, the receiver can notify the sender to decrease the
frame rate.

All three monitors use the Reactor pattern [4] and TAO’s
internal reactor instance to notify the application of changes in
the corresponding QoS parameters. Applications can register
event handlers with TAO’s reactor for these monitor events.

Media flow adaptation: Network conditions may change
over time. Thus, applications may no longer receive the QoS
they specified originally. AQoSA’s QoS notification mecha-
nisms can inform the application of changes to the currently
available QOS. Applications can decide to terminate the cor-
responding flow(s), modify their QoS requirements, or adapt
to the available QoS. To modify QoS requirements, the appli-
cations can then use AQoSA to renegotiate their QoS parame-
ters, within the bounds of the available QoS.

Applications may require either implicit or explicit adapta-
tion, where the former is transparent to the application and the
latter is not. Both types of adaptations must be supported for
effective dynamic QoS management. Appropriate filter and
adaptor selection mechanisms are also required.

To address these requirements, TAO’s A/V Streaming Ser-
vice containsQoS Adaptorand QoS Filter components that
enable applications to adapt to changes in available QoS, as
follows:

� QoS Adaptors: These components provide explicit
adaptation by manipulating the codec or changing the video
playout time.

� QoS Filters: These components are present both at
senders and receivers and reside between the application and
the network and provide implicit adaptation. Senders use
shaping filtersto tune the data flow in accordance with avail-
able network resources, such as buffers or packet transmis-
sion rates. Receivers useselection filtersto deliver parts of
the data stream to the application as dictated by application

QoS requirements. For example, video streams encoded us-
ing wavelet transforms can drop low frequency image frames
when the specified QoS does not require high resolution.

To facilitate the selection and addition of filters, TAO’s A/V
Streaming Service applies the Chain of Responsibility Pat-
tern [5]. This pattern avoids the coupling of the sender of a
request from the receiver by giving more than one object a
chance to handle the request. TAO’s QoS Adaptors and Fil-
ters are the receiving objects and they pass the request along
the chain until one of them handles it as dictated by the QoS
policy.

To facilitate the selection of the appropriate adaptation and
filter components, TAO’s A/V Streaming Service defines a
QoS Policy object through which application developers can
specify the required QoS policies, such as which adaptation(s)
and filter(s) to apply. The QoS policy helps the receiving ob-
jects in the chain of adaptors and filters decide if they must
process the data or forward it to the next receiving object in
the chain.

6 Concluding Remarks

Advances in core hardware technologies and protocols are en-
abling the convergence of data and voice networks into a single
communication infrastructure that provides a range of multi-
media services. The success of the Internet has motivated the
development of next-generation distributed applications that
will use the emerging communication infrastructure to provide
novel tele-immersion functionality, such as distance learning,
tele-medicine, and even remotely controlled medical surgical
procedures. These advanced applications and communication
infrastructures will enable the concentration of R&D expertise
to reduce development effort, while expanding the services de-
livered to geographically distributed locations.

In theory, it will be possible to develop these next-
generation applications by writing directly to low-level net-
work programming APIs, such as sockets. However, con-
temporary economic and organizational constraints, as well
as competitive pressures, make it increasingly implausible to
do soin practice. Thus, distributed object computing (DOC)
middleware has emerged as an enabling technology that al-
lows researchers and developers to compete more effectively
in markets where deregulation and global competition moti-
vate the need for increased software productivity, quality, and
cost-effectiveness.

The maturation of the QoS-enabled DOC middleware de-
scribed in this paper is helping to decrease the cycle-time and
effort required to develop high-quality systems. Distributed
applications are increasingly being composed out of flexible
and modular reusable software components and services, in-
stead of being programmed entirely from scratch via lower-

11

level, proprietary tools. Moreover, standards-based DOC mid-
dleware, such as CORBA 3.0 and the Java virtual machine,
enables applications to run portably on multiple configuration
and operating platforms. Thus, they can be adapted more read-
ily to new market opportunities, technology innovations, and
dynamic changes in their run-time environments.

The case study described in Section 5 is representative of
the emerging class of multimedia applications whose resource
requirements can vary dynamically at run-time. The QoS-
enabled CORBA ORB and Audio/Video Streaming Service
middleware developed using ACE and TAO help to simplify
and coordinate such applications. These capabilities provide
a cost-effective strategy for improving the quality of service
received by end-users. This, in turn, helps to reduce deci-
sion/action times for time-critical applications and generally
improves overall system response in dynamically changing en-
vironments.

ACE, AQoSA, TAO, and TAO’s A/V Streaming Service
have been applied to a range of real-time applications, in-
cluding many telecommunication systems, aerospace sys-
tems, financial systems, medical systems, and manufactur-
ing process control systems. The source code and docu-
mentation for ACE and TAO are freely available from URL
www.cs.wustl.edu/ �schmidt/TAO.html .

References
[1] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for

Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[2] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” inHandbook of
Programming Languages(P. Salus, ed.), MacMillan Computer
Publishing, 1997.

[3] S. Vinoski, “New Features for CORBA 3.0,”Communications of the
ACM, vol. 41, pp. 44–52, October 1998.

[4] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[6] Object Management Group,Realtime CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., March 1999.

[7] Object Management Group,CORBA Messaging Specification, OMG
Document orbos/98-05-05 ed., May 1998.

[8] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[9] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”The
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middleware, to appear 2000.

[10] Object Management Group,Control and Management of Audio/Video
Streams: OMG RFP Submission, 1.2 ed., Mar. 1997.

[11] Object Management Group,Fault Tolerant CORBA Specification,
OMG Document orbos/99-12-08 ed., December 1999.

[12] Object Management Group,Dynamic Scheduling, OMG Document
orbos/99-03-32 ed., March 1999.

[13] Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel,” inIEEE
Real-Time Systems Symposium, pp. 246–255, IEEE, December 1999.

[14] E. D. Jensen, “Eliminating the Hard/Soft Real-Time Dichotomy,”
Embedded Systems Programming, vol. 7, Oct. 1994.

[15] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A Survey of QoS
Architectures,”ACM/Springer Verlag Multimedia Systems Journal,
Special Issue on QoS Architecture, vol. 6, pp. 138–151, May 1998.

12

