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1 Introduction

Component middleware technologies are playing an increasingly important role in the development of dis-

tributed real-time and embedded (DRE) systems, in a variety of application domains ranging from military

shipboard computing [1] to commercial inventory tracking [2]. The challenges of designing, implementing,

and evaluating component middleware that can meet the needs of such diverse DRE systems have motivated

several important advances in the state-of-the-art. This chapter summarizes those advances and uses exam-

ples from several application domains to show how these resulting technologies can be applied to meet the

needs of DRE systems.

Section 2 surveys R&D challenges for DRE systems. Section 3 describes other middleware paradigms

for DRE systems to motivate our work on quality of service (QoS)-enabled component middleware for

DRE systems. Section 4 describes how we developed the Component-Integrated ACE ORB (CIAO) and

the Deployment And Configuration Engine (DAnCE) QoS-enabled component middleware to address key

challenges for DRE systems described in Section 2. Section 5 describes three application domains in which

CIAO has been applied: avionics mission computing [3], shipboard computing [1], and inventory tracking [2].

Section 6 surveys related work on middleware for DRE systems, and Section 7 presents concluding remarks.
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2 R&D Challenges for DRE Systems

Some of the most challenging R&D problems are those associated with producing software for DRE systems

where computer processors control physical devices for sensing and actuation. Examples of such systems

include avionics mission computing systems which help pilots plan and execute airborne missions, shipboard

computing systems which help crews maintain situational awareness of the ship and its surroundings, and

inventory tracking system that help to maintain an up-to-date picture of the location and status of parts and

products needed by complex and dynamic supply chains. Despite advances in standards-based commercial-

off-the-shelf (COTS) middleware technologies, several challenges must be addressed before COTS software

can be used to build mission-critical DRE systems effectively and productively. In particular, as DRE

systems have increased in scale and complexity over the past decade, a tension has arisen between stringent

performance requirements and the ease with which systems can be developed, deployed, and configured to

meet those requirements.

DRE systems require different forms of configuration–both at design-time and at run-time–to allow cus-

tomization of reusable components to meet QoS requirements for applications being developed. In addition

to being configured individually, components must be assembled to form a complete application and deployed

across a set of endsystems upon which the applications will run. Characteristics of the components, their

interdependencies when assembled, the endsystems onto which components are deployed, and the networks

over which they communicate can vary statically (e.g., due to different hardware/software platforms used in

a product-line architecture) and dynamically (e.g., due to damage, changes in mission modes of the system,

or due to differences in the real vs. expected behavior of applications during actual operation). When these

variabilities are combined with the complex requirements of many DRE systems and the dynamic operating

environments in which they operate, it becomes tedious and error-prone to configure operational characteris-

tics of these systems, particularly when components are deployed manually or using middleware technologies

that do not provide appropriate configuration support.

Developers of complex DRE systems therefore need middleware technologies that offer (1) explicit con-

figurability of policies and mechanisms for QoS aspects such as priorities, rates of invocation, and other

real-time properties, so that developers can meet the stringent requirements of modern DRE systems, (2)
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a component model that explicitly separates QoS aspects from application functionality so developers can

untangle code that manages QoS and functional aspects, resulting in systems that are less brittle and costly

to develop, maintain, and extend and (3) configuration capabilities that can customize functional and QoS

aspects of each DRE system, flexibly, efficiently at different stages of the system lifecycle.

3 Comparison of Middleware Paradigms

This section examines previous approaches to middleware for DRE systems and explains why only QoS-

enabled component middleware addresses all the challenges described in Section 2.

Conventional DOC middleware. Standards-based COTS middleware technologies for distributed ob-

ject computing (DOC), such as The Object Management Group (OMG)’s Common Object Request Broker

Architecture (CORBA) [4] and Sun’s Java RMI [5], shield application developers from low-level platform

details, provide standard higher-level interfaces to manage system resources, and help to amortize sys-

tem development costs through reusable software frameworks. These technologies significantly reduce the

complexity of writing client programs by providing an object-oriented programming model that decouples

application-level code from the system-level code that handles sockets, threads, and other network program-

ming mechanisms. Conventional DOC middleware standards, however, have the following limitations for

DRE systems [6]:

• Only functional and not QoS concerns are addressed. DOC middleware addresses functional

aspects, such as how to define and integrate object interfaces and implementations, but does not

address crucial QoS aspects, such as how to define and enforce deadlines for method execution. The

code that manages these QoS aspects often becomes entangled with application code, making DRE

systems brittle and hard to evolve.

• Lack of functional boundaries. Application developers must explicitly program the connections

among interdependent services and object interfaces, which can make it difficult to reuse objects

developed for one application in a different context.
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• Lack of generic server standards. Server implementations are ad hoc and often overly coupled

with the objects they support, which further reduces the reusability and flexibility of applications and

their components.

• Lack of deployment and configuration standards. The absence of a standard way to distribute

and start up implementations remotely results in applications that are hard to maintain and even

harder to reuse.

QoS-enabled DOC middleware. New middleware standards, such as Real-time CORBA (RTCORBA) [7]

and the Real-Time Specification for Java (RTSJ) [8], have emerged to address the limitations of conventional

DOC middleware standards described above. These technologies support explicit configuration of QoS as-

pects, such as the priorities of threads invoking object methods. They do not support generic server envi-

ronments or component deployment and configuration, however, which can lead to tangling of application

logic with system concerns, similar to the problems seen with conventional DOC middleware.

For example, although Real-time CORBA provides mechanisms to configure and control resource alloca-

tions of the underlying endsystem to meet real-time requirements, it lacks the flexible higher level abstractions

that component middleware provides to separate real-time policy configurations from application function-

ality. Manually integrating real-time aspects within Real-time CORBA application code is unduly time

consuming, tedious, and error-prone [3]. It is hard, therefore, for developers to configure, validate, modify,

and evolve complex DRE systems consistently using conventional QoS-enabled DOC middleware.

Conventional component middleware. Component middleware technologies, such as the CORBA

Component Model (CCM) [9] and Enterprise JavaBeans [10], have evolved to address the limitations of

conventional DOC middleware in addressing the functional concerns of DRE systems, by (1) separating ap-

plication components so that they interact with each other only through well-defined interfaces, (2) defining

standard mechanisms for configuring and executing components within generic containers and component

servers that divide system development concerns into separate aspects, such as implementing application

functionality vs. configuring resource management policies, and (3) providing tools for deploying and con-

figuring assemblies of components.
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In CCM, for example, components interact with other components through a limited set of well defined

interface called ports. CCM ports include (1) facets, which provide named interfaces that service method

invocations from other components, (2) receptacles, which provide named connection points to facets provided

by other components, (3) event sources which indicate a willingness to send events to other components, and

(4) event sinks which indicate a willingness to receive events from other components. Components can also

have attributes that specify named parameters. which are configurable at various points in an application’s

lifecycle.

Components are implementation entities that can be installed and instantiated independently in standard

component server runtime environments stipulated by the CCM specification. For each type of component,

a home interface provides lifecycle management services. A container provides the server runtime environ-

ment for component implementations, and handles common concerns such as persistence, event notification,

transaction, security, and load balancing.

These component middleware features ease the burden of developing, deploying, and maintaining complex

large-scale systems by freeing developers from connecting and configuring numerous distributed subsystems

manually. Conventional component middleware, however, is designed more for the needs of enterprise busi-

ness systems, rather than for the more complex QoS provisioning needs of DRE systems. Developers are

therefore often forced to configure and control these mechanisms imperatively within their component im-

plementations.

While it is possible for component developers to embed QoS provisioning code directly within a component

implementation, doing so often prematurely commits each implementation to a specific QoS provisioning

strategy, making component implementations harder to reuse. Moreover, many QoS capabilities, such as

end-to-end provisioning of shared resources and configuring connections between components, cannot be

implemented solely within a component because the concerns they address span multiple components.

QoS-enabled component middleware. Due to the limitations described above, it is necessary to extend

standard middleware specifications so that they provide better abstractions for controlling and managing

both functional and QoS aspects of DRE systems. In particular, what is needed is QoS-enabled compo-

nent middleware that preserves existing support for heterogeneity in standard component middleware, yet



3 COMPARISON OF MIDDLEWARE PARADIGMS 6

also provides multiple dimensions of QoS provisioning and enforcement and offers alternative configura-

tion strategies to meet system-specific QoS requirements across the diverse operating environments of DRE

systems.

The remainder of this chapter describes how we have extended the standard Lightweight CCM specifica-

tion to support QoS-enabled component middleware that can more effectively compose real-time behaviors

into DRE systems and help make it easier to develop, verify, and evolve applications in these systems.

Specifically, we cover:

• How real-time CORBA policies can be composed into Lightweight CCM applications during their

development lifecycle, using an XML-based metadata format for describing how real-time policies can

be coupled with existing CCM metadata that define application assemblies.

• How the Deployment And Configuration Engine (DAnCE) framework we developed can translate an

XML-metadata specification into the deployment and configuration actions needed by an application,

and how static configuration optimizations we developed for DAnCE optimize that capability to support

applications with constraints on configuration times or on real-time operating system features.

• How these added capabilities can be used to develop DRE systems via examples from several application

domains.

• How extending various CCM metadata to document behavioral characteristics of components and

applications can help streamline the optimization of DRE systems.

As we describe in Section 4, the vehicles for our R&D activities on QoS-enabled component middleware

are (1) the Component-Integrated ACE ORB (CIAO), the Deployment And Configuration Engine (DAnCE),

which are based on the OMG’s Lightweight CORBA Component Model (LCCM) specification [11], and

(2) the Component Synthesis of Model Integrated Computing (CoSMIC) [12], which is a Model-Driven

Engineering (MDE) [13] tool chain.
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4 Achieving QoS-enabled Component Middleware: CIAO, DAnCE,

CoSMIC

This section presents the design of CIAO and DAnCE, which are open-source QoS-enabled component

middleware developed at Washington University and Vanderbilt University atop The ACE ORB (TAO) [14].

TAO in turn is open-source Real-time CORBA DOC middleware that implements key patterns [15] for DRE

systems. CIAO and DAnCE enhance TAO to simplify the development of applications in DRE systems by

enabling developers to provision QoS policies declaratively end-to-end when deploying and configuring DRE

systems using CCM components. We also describe how the CoSMIC MDE tools support the deployment,

configuration, and validation of component-based DRE systems developed using CIAO and DAnCE.

4.1 Integration of Real-time CORBA and Lightweight CCM Capabilities in

CIAO

CIAO supports Lightweight CCM mechanisms that enable the specification, validation, packaging, config-

uration, and deployment of component assemblies and integrates these mechanisms with TAO’s Real-time

CORBA features, such as thread-pools, lanes, and client-propagated and server-declared policies. The archi-

tecture of CIAO is shown in Figure 1.1. CIAO extends the notion of Lightweight CCM component assembly
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Figure 1.1: The Architecture of CIAO

to include both client-side and server-side QoS provisioning and enables the declarative configuration of QoS

features of endsystem ORBs, such as prioritized thread pools [16], via XML metadata. It also allows QoS
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provisioning at the component-connection level, e.g., to configure thread pools with priority lanes.

To support the composition of real-time behaviors, CIAO allows developers of DRE systems to specify

the desired real-time QoS policies and associate them with components or component assemblies. For

example, application components can be configured to support different priorities and rates of invocation of

methods among components. These configurations are declaratively specified via metadata, and once they

are deployed, the properties of CIAO’s real-time component server and container runtime environment will

be automatically initialized based on the definition of QoS mechanism plug-ins. In particular, this metadata

can configure CIAO’s QoS-aware containers, which provide common interfaces for managing components’

QoS policies and for interacting with the mechanisms that enforce those QoS policies.

To support the configuration of QoS aspects in its component servers and containers, CIAO defines a new

file format – known as the CIAO server resource descriptor (CSR) – and adds it to the set of XML descriptors

that can can be used to configure an application assembly. A CSR file defines policy sets that specify policies

for setting key QoS behaviors such as real-time thread priorities, and configure resources to enforce them.

The resources and policies defined in CIAO’s CSR files can be specified for individual component instances.

System developers then can use deployment and configuration tools, such as the DAnCE middleware and

CoSMIC MDE tools described in Section 4.1, to deploy the resulting application assembly onto platforms

that support the specified real-time requirements. The middleware and MDE tools can also configure the

component run-time infrastructure that will enforce these requirements.

4.2 The Design of DAnCE

DAnCE is a middleware framework we developed for CIAO based on the OMG’s Deployment and Configu-

ration (D&C) specification [17], which is part of the Lightweight CCM specification [11]. This specification

standardizes many deployment and configuration aspects of component-based distributed applications, in-

cluding component configuration, assembly, and packaging; package configuration and deployment; and

resource configuration and management. These aspects are handled via a data model and a runtime model.

The data model can be used to define/generate XML schemas for storing and interchanging metadata that

describes component assemblies and their deployment and configuration attributes, such as resource require-
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ments. The runtime model defines a set of services/managers that process the metadata described in the

data model to deploy, execute, and control application components in a distributed manner.

DAnCE implements a data model that describes (1) the DRE system component instances to deploy, (2)

how the components are connected to form component assemblies, (3) how these components and component

assemblies should be initialized, and (4) how middleware services are configured for the component assemblies.

In addition, DAnCE implements a spec-compliant runtime model as a set of runtime entities.

The architecture of DAnCE is shown in Figure 1.2. The various entities of DAnCE are implemented as
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Figure 1.2: The Architecture of DAnCE

CORBA objects1 that collaborate as follows. By default, DAnCE runs an ExecutionManager as a daemon

to manage the deployment process for one or more domains, which are target environments consisting

of nodes, interconnects, bridges, and resources. An ExecutionManager manages a set of DomainAppli-

cationManagers, which in turn manage the deployment of components within a single domain. A Domain-

ApplicationManager splits a deployment plan into multiple sub-plans, one for each node in a domain. A

NodeManager runs as a daemon on each node and manages the deployment of all components that reside

on that node, irrespective of the particular application with which they are associated. The NodeManager

creates the NodeApplicationManager, which in turn creates the NodeApplication component servers that
1The DAnCE deployment infrastructure is implemented as CORBA objects to avoid the circular dependencies that would

ensue if it was implemented as components, which would have to be deployed by DAnCE itself!
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host application-specific containers and components.

To support additional D&C concerns not addressed by the OMG D&C specification, but which are

essential for QoS-enabled DRE systems, we enhanced the specification-defined data model by describing

additional deployment concerns, which include fine-grained system resource allocation and configuration. To

enforce real-time QoS requirements, DAnCE extends the standards-based data model by explicitly defining

(1) component server resource configuration as a set of policies, and (2) how components bind to these

policies, which influence end-to-end QoS behavior.

Figure 1.3 shows the policies for server configurations that can be specified using the DAnCE server

resources XML schema. With such enhancements, the DAnCE data model allows DRE system developers
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Figure 1.3: Specifying RT-QoS requirements

to configure and control processor resources via thread pools, priority mechanisms, intra-process mutexes,

and a global scheduling service; communication resources via protocol properties and explicit bindings; and

memory resources via buffering requests in queues and bounding the size of thread pools.

DAnCE’s metadata-driven resource configuration mechanisms help ensure efficient, scalable, and pre-

dictable behavior end-to-end for DRE systems. Likewise, DAnCE helps enhance reuse since component QoS

configuration can be performed at a much later phase, i.e., just before the components are deployed into the

target environment. Server resource specifications can be set via the following options: (1) ORB command-

line options, which control TAO’s connection management models, protocol selection, and optimized request

processing, and (2) ORB service configuration options, which specify ORB resource factories that control

server concurrency and demultiplexing models. Using this XML schema, a system deployer can specify the
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designated ORB configurations. The ORB configurations defined by the data model are used to configure

NodeApplication runtime entities that host components, thereby providing the necessary resources for the

components to operate.

To fulfill the QoS requirements defined by the data model, DAnCE extends the standards-based runtime

model as follows. An XMLConfigurationHandler parses the deployment plan and stores the information

as IDL data structures that can transfer information between processes efficiently and enables the rest of

DAnCE to avoid the runtime overhead of parsing XML files repeatedly. The IDL data structure output of

the XMLConfigurationHandler is input to the ExecutionManager, which propagates the information to the

DomainApplicationManager and NodeApplicationManager. The NodeApplicationManager uses the server

resource configuration options in the deployment plan to customize the containers in the NodeApplication

it creates. These containers then use other options in the deployment plan to configure TAO’s Real-time

CORBA support, including thread pool configurations, priority propagation models, and connection models.

4.3 Optimizing Static Configuration in DAnCE

To extend our QoS-enable component middleware to a wider range of applications and platforms, we have

implemented static techniques and mechanisms for deployment and configuration where as much of the

configuration lifecycle as possible is performed off-line. This approach is especially important for systems

where availability of platform features or stringent constraints on configuration times would otherwise limit

our ability to support component deployment and configuration services. The fundamental intuition in

understanding our static configuration approach is that stages of the overall DRE system configuration

lifecycle similar to those in the dynamic approach must still be supported. In our static approach, however,

several stages of the lifecycle are compressed into the compile-time and system-initialization phases so that

(1) the set of components in an application can be identified and analyzed before run-time and (2) the

overheads for run-time operation following initialization are minimized and made predictable.

Due to the nuances of the platforms traditionally used for deploying DRE systems, not all features

of conventional platforms are available or usable. In particular, dynamically linked libraries and on-line

XML parsing are often either unavailable or too costly in terms of performance. We therefore move several
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configuration phases earlier in the configuration lifecycle. We also ensure that our approach can be real-

ized on highly constrained real-time operating systems, such as VxWorks or LynxOS, by re-factoring the

configuration mechanisms to use only mechanisms that are available and efficient.

In CIAO’s static configuration approach, the same automated build processes that manage compilation

of the application and middleware code first insert a code generation step just before compilation. In this

step, CIAO’s XML configuration files (.cdp, .csr) are translated into C++ header files that are then compiled

into efficient run-time configuration drivers, which in turn are linked statically with the main application.

These run-time drivers are invoked during application (re)initialization at run-time, and rapidly complete

the remaining on-line system configuration actions at that point.

With CIAO’s static configuration approach, all XML parsing is moved before run-time to the off-line

build process, and all remaining information and executable code needed to complete configuration is linked

statically into the application itself. Each endsystem can then be booted and initialized within a single

address space, and there is no need for inter-process communication to create and assemble components.

An important trade-off with this approach is that the allocation of component implementations and

configuration information to specific endsystems must be determined in advance. In effect, this trade-off

shifts support for run-time flexibility away from the deployment steps and towards the configuration steps

of the system lifecycle. Our static configuration approach in CIAO thus maintains a reasonable degree of

configuration flexibility, while reducing the run-time cost of configuration.

4.4 Model-Driven Deployment and Configuration with CoSMIC

Although DAnCE provides mechanisms that make component-based DRE systems more flexible and easier

to develop and deploy, other complexities still exist. For example, using XML descriptors to configure the

QoS properties of the system reduces the amount of code written imperatively. XML also introduces new

complexities, however, such as verbose syntax, lack of readability at scale, and a high degree of accidental

complexity and fallibility.

To simplify the development of applications based on Lightweight CCM and to avoid the complexities

of handcrafting XML, we developed CoSMIC, which is an open-source MDE tool chain that supports the
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deployment, configuration, and validation of component-based DRE systems. A key capability supported by

CoSMIC is the definition and implementation of domain-specific modeling languages (DSMLs). DSMLs use

concrete and abstract syntax to define the concepts, relationships, and constraints used to express domain

entities [18]. One particularly relevant DSML in CoSMIC is the Quality of Service Policy Modeling Lan-

guage (QoSPML) [19], which configures real-time QoS properties of components and component assemblies.

QoSPML enables graphical manipulation of modeling elements and performs various types of generative

actions, such as synthesizing XML-based data model descriptors defined in the OMG D&C specification

and the enhanced data model defined in DAnCE. It also enables developers of DRE systems to specify

and control the QoS policies via visual models, including models that capture the syntax and semantics of

priority propagation model, thread pool model and connection model. QoSPML’s model interpreter then

automatically generates the XML configuration files, which allows developers to avoid writing applications

that use the convoluted XML descriptors explicitly, while still providing control over QoS policies.

5 Applications of CIAO, DAnCE, and CoSMIC

This section describes our experiences using CIAO, DAnCE, and CoSMIC in several application domains,

including avionics mission computing, shipboard computing, and inventory tracking. It also summarizes our

lessons learned from these experiences.

5.1 Avionics Mission Computing Applications

Avionics mission computing applications [20] have two important characteristics that affect how components

are deployed and configured in those systems. First, components are often hosted on embedded single-board

computers within an aircraft, which are interconnected via a high speed backplane such as a VME-bus.

Second, interacting components deployed on different aircraft must communicate via a low-and-variable

bandwidth wireless communication link, such as Link-16. Figure 1.4 illustrates how image selection, down-

load, and display components may be deployed in an avionics mission computing system.

The timing of the interactions between components within an aircraft is bound by access to the CPU,

so that configuring the rates and priorities at which components invoke operations on other components is
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Figure 1.4: Component Interactions Within and Between Aircraft
crucial. Component connections involving receptacles that make prioritized calls to facets can be configured

as standard Real-time CORBA calls in CIAO, which maps those configuration options directly onto TAO

features, as described in Section 4.1. Moreover, since components are deployed statically in these systems,

the static deployment and configuration techniques described in Section 4.3 are applicable to these systems.

In fact, they are often necessary due to stringent constraints on system initialization times and limitations

on platform features, e.g., the absence of dynamic library support on some real-time operating systems.

Even within an aircraft, however, it is often appropriate to use more dynamic forms of resource manage-

ment, such as using hybrid static/dynamic scheduling to add non-critical processing to the system without

violating deadlines for critical processing [21]. These more dynamic forms of resource management require

configuration of more sophisticated interconnection services between component ports, such as TAO’s Real-

Time Event Channel [22]. We are currently expanding the configuration options exposed by CIAO to include

attributes of the event channel and scheduling services provided by TAO.

Applications whose component interactions span multiple aircraft mandate even more dynamic forms of

resource management, such as using adaptive scheduling together with adaptive control to manage quality

of service (QoS) properties of application data transmission and processing [23, 20] across a low-and-variable

wireless communication link. We are currently adding configurable adaptive resource management capabili-

ties to CIAO so system developers can configure QoS properties end-to-end in DRE systems.
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5.2 Shipboard Computing Applications

Modern shipboard computing environments consist of a grid of computers that manage many aspects of a

ship’s power, navigation, command and control, and tactical operations that support multiple simultaneous

QoS requirements, such as survivability, predictability, security, and efficient resource utilization. To meet

these QoS requirements, dynamic resource management (DRM) [24, 25] can be applied to optimize and

(re)configure the resources available in the system to meet the changing needs of applications at runtime.

The primary goal of DRM is to ensure that enterprise DRE systems can adapt dependably in response

to dynamically changing conditions (e.g., evolving multi-mission priorities) to ensure that computing and

networking resources are best aligned to meet critical mission requirements. A key assumption in DRM

technologies is that the levels of service in one dimension can be coordinated with and/or traded off against

the levels of service in other dimensions to meet mission needs, e.g., the security and dependability of message

transmission may need to be traded off against latency and predictability.

In the DARPA’s Adaptive and Reflective Middleware Systems (ARMS) program DRM technologies were

developed and applied to coordinate a computing grid that manages and automates many aspects of ship-

board computing. As shown in Figure 1.5, the ARMS DRM architecture integrates resource management
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Figure 1.5: DRM Layered Architecture in a Shipboard Computing Environment

and control algorithms enabled by standards-based component middleware infrastructure, and is modeled as

a layered architecture comprising components at different levels of abstraction, including the DRM Services

layer, the Resource Pool layer, and the Physical Resources layer. The top level DRM Services layer is

responsible for satisfying global shipboard computing missions, such as mission mode changes. It then de-
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composes global mission requests into a coordinated set of requests on resource pools within the Resource

Pool layer, which is an abstraction for a set of computer nodes managed by a local resource manager. The

Physical Resources layer deals with specific instances of resources within a single node in the system.

To simplify development and enhance reusability, all the three layers of the ARMS DRM infrastructure

are implemented using CIAO, DAnCE and CoSMIC, which simplifies and automates the (re)deployment and

(re)configuration of DRE and application components in a shipboard computing environment. The ARMS

DRM system has hundreds of different types and instances of infrastructure components written in ∼300,000

lines of C++ code and residing in ∼750 files developed by different teams from different organizations. ARMS

DRM research and experiments [26] show that DRM using standards-based middleware technologies is not

only feasible, but can (1) handle dynamic resource allocations across a wide array of configurations and

capacities, (2) provide continuous availability for critical functionalities–even in the presence of node and

pool failures–through reconfiguration and redeployment, and (3) provide QoS for critical operations even in

overload conditions and resource-constrained environments.

5.3 Inventory Tracking Applications

An inventory tracking system (ITS) is a warehouse management infrastructure that monitors and controls

the flow of items and assets within a storage facility. Users of an ITS include couriers (such as UPS, DHL,

and Fedex), airport baggage handling systems, and retailers (such as Walmart and Target). An ITS provides

mechanisms for managing the storage and movement of items in a timely and reliable manner. For example,

an ITS should enable human operators to configure warehouse storage organization criteria, maintain the

inventory throughout a highly distributed system (which may span organizational boundaries), and track

warehouse assets using decentralized operator consoles. In conjunction with colleagues at Siemens [2], we

have developed and deployed an ITS using CIAO, DAnCE, and CoSMIC.

Successful ITS deployments must meet both the functional and QoS requirements. Like many other

DRE systems, an ITS is assembled from many independently developed reusable components. As shown

in Figure 1.6, some ITS components (such as an OperatorConsole) expose interfaces to end users, i.e.,

ITS operators. Other components (such as a TransportUnit) represent hardware entities, such as cranes,
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Figure 1.6: The Architecture of an Inventory Tracking System
forklifts, and belts. Database management components (such as ItemRepository and StorageFacility)

expose interfaces to manage external backend databases (such as those tracking items inventory and storage

facilities). Finally, the sequences of events within the ITS is coordinated by control flow components (such

as the WorkflowManager and StorageManager). Our QoS-enabled component middleware and MDE tools

allow ITS components to be developed independently.

After individual components are developed, there are still a number of crosscutting concerns that must

be addressed when assembling and configuring an ITS, including (1) identifying dependencies between com-

ponent implementation artifacts, such as the OperatorConsole component having dependencies on other

ITS components (e.g., a WorkflowManager component) and other third-party libraries (e.g., the QT library,

which is a cross-platform C++ GUI library compatible with the Embedded Linux OS), (2) specifying the

interaction behavior among ITS components, (3) specifying components to configure and control various

resources, including processor resources, communication resources, and memory resources, and (4) mapping

ITS components and connections to the appropriate nodes and networks in the target environment where

the ITS will be deployed. We used the CoSMIC MDE tool chain to simplify the assembly of ITS components

and then used DAnCE to deploy and configure them.

QoS requirements (such as latency and jitter) are important considerations of an ITS. For instance, in

an ITS, whenever a hardware unit (such as a conveyor belt) fails, the component that controls and monitors

this hardware unit must notify another ITS component (such as a WorkflowManager component) in real-

time to avoid system damage and to minimize overall warehouse delay. Likewise, other components that
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monitor the location of items, such as an ItemLocationSensor, must have stringent QoS requirements

since they handle real-time item delivery activities. To satisfy these real-time QoS requirements, the CIAO

NodeApplications hosting ItemLocationSensor components can be configured declaratively with a server-

declared priority model at the highest CORBA priority, with thread pools having preset static threads, and

with priority-banded connections.

5.4 Lessons Learned

The following are our lessons learned from applying CIAO, DAnCE, and CoSMIC to the three kinds of DRE

systems described above:

• Developing complex DRE systems require a sophisticated and integrated engineering paradigm.

While modern DRE systems are increasing in size and complexity, creating stove-piped one-of-a-kind applica-

tions is unsatisfying, although that has been the state-of-the-practice until recently. Component middleware

is designed to enhance the quality and productivity of software developers by elevating the level of abstrac-

tion used to develop distributed systems. Conventional component middleware, however, lacks mechanisms

to separate QoS concerns from component functional aspects, and it also lacks mechanisms to handle de-

ployment and configuration for such concerns in DRE systems. We therefore designed and integrated CIAO,

DAnCE, and CoSMIC based on advanced software principles, such as separation of concerns, metaprogram-

ming, component-based software engineering, and model-driven engineering. We incorporated these concepts

as key design principles underlying these technologies and used them to develop representative applications

in a variety of DRE system domains.

• Model-Driven Engineering (MDE) tools alleviate complexities associated with component

middleware. Although component middleware elevates the abstraction level of middleware to enhance

software developer quality and productivity, it also introduces new complexities. For example, the OMG

Lightweight CCM and D&C specifications have a large number of configuration points. To alleviate these

complexities we designed and applied the CoSMIC MDE tools. Our experiences in applying CIAO and

DAnCE to various application domains showed that when component deployment plans are incomplete
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or must change, the effort required is significantly less than using the raw component middleware without

MDE tool support since applications can evolve from the existing domain models. Likewise, if the component

assemblies are the primary changing concerns in the system, little new application code must be written, yet

the complexity of the MDE tool remains manageable due to the limited number of well-defined configuration

“hot spots” exposed by the underlying infrastructure.

• Automated MDE tools are needed to configure and deploy DRE systems effectively. Despite

the fact that CIAO and DAnCE component middleware facilitate the configuration of complex DRE systems

based on Real-time CORBA and Lightweight CCM, developers are still faced with the question of what

constitutes a “good” configuration. Moreover, they are still ultimately responsible for determining the

appropriate configurations. We observed that scheduling analysis and verification tools tools would be

helpful in performing this evaluation and should be integrated into MDE toolsuite to help system designers

address such challenges. In addition, despite the benefits of using visual MDE tools to describe different

aspects of the large scale DRE systems, it is still tedious and error-prone to manually show the details for

all the components in large-scale DRE systems. This observation motivates the need for further research in

automating the synthesis of large-scale DRE systems based on the different types of meta-information about

assembly units, such as high-level design intention or service requirements.

6 Related Work

This section compares our work on CIAO and DAnCE with other related work on middleware for DRE

systems. In particular, we compare two different categories of middleware for DRE systems: QoS-enabled

DOC middleware and QoS-enabled component middleware.

QoS-enabled DOC middleware. The Quality Objects (QuO) framework [27, 28] uses aspect-oriented

software development [29] techniques to separate the concerns of QoS programming from application logic in

DRE systems. It allows application developers to explicitly declare system QoS characteristics, and then use

a specialized compiler to generate code that integrates those characteristics into the system implementation.

It therefore provides a high-level QoS abstraction on top of conventional DOC middleware technologies such
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as CORBA and Java RMI.

The dynamicTAO [30] project applies reflective techniques to reconfigure ORB components at runtime.

Similar to dynamicTAO, the Open ORB project [31] also aims at highly configurable and dynamically

reconfigurable middleware platforms to support applications with dynamic requirements. This approach may

not be suitable for some DRE systems, however, since dynamic loading and unloading of ORB components

can incur unpredictable overheads and thus prevent the ORB from meeting application deadlines. Our work

on CIAO allows MDE tools, such as Cadena [32] and QoSPML [19], to analyze the required ORB components

and their configurations and ensure that a component server contains only the required ORB components.

Proactive [33] is a distributed programming model for deploying object-oriented grid applications and is

similar to CIAO and DAnCE since it also separately describes the target environment using XML descriptors,

but CIAO goes further to allow application to be explicitly composed with a number of components, and

CIAO and DAnCE together ensure end-to-end system QoS at deployment time.

QoS-enabled component middleware. The container architecture in component middleware provides

a vehicle for applying meta-programming techniques for QoS assurance control in component middleware.

Containers can also help apply aspect-oriented software development techniques to plug in different systemic

behaviors [34]. This approach is similar to CIAO in that it provides mechanisms to inject aspects into

applications at the middleware level.

[35] further develops the state of the art in QoS-enabled containers by extending a QoS EJB container

interface to support a QoSContext interface that allows the exchange of QoS-related information among

component instances. To take advantage of the QoS-container, a component must implement QoSBean and

QoSNegotiation interfaces. This requirement, however, adds an unnecessary dependency to component

implementations.

The QoS Enabled Distributed Objects (Qedo) project [36] is another effort to make QoS support an

integral part of CCM. Qedo’s extensions to the CCM container interface and Component Implementation

Framework (CIF) require component implementations to interact with the container QoS interface and nego-

tiate the level of QoS contract directly. While this approach is suitable for certain applications where QoS is

part of the functional requirements, it inevitably tightly couples the QoS provisioning and adaptation behav-
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iors into the component implementation, and thus hampers the reusability of the component. In comparison,

CIAO explicitly avoids this coupling and composes the QoS aspects into applications declaratively.

The OpenCCM [37] project is a Java-based CCM implementation. The OpenCCM Distributed Com-

puting Infrastructure (DCI) federates a set of distributed services to form a unified distributed deployment

domain for CCM applications. OpenCCM and its DCI infrastructure, however, do not support key QoS

aspects for DRE systems, including real-time QoS policy configuration and resource management.

7 Concluding Remarks

This chapter has described how the CIAO and DAnCE QoS-enabled component middleware and CoSMIC

MDE tools have been applied to address key challenges when developing DRE systems for various application

domains. Reusability and composability are particularly important requirements for developing large-scale

DRE systems. With QoS-enabled DOC middleware, such as Real-time CORBA and Real-time Java, config-

urations are made imperatively via calls to programmatic configuration interfaces with which the component

code is thus tightly coupled. In contrast, QoS-enabled component middleware allows developers to specify

configuration choices declaratively through metaprogramming techniques (such as XML descriptor files),

thus enhancing reusability and composability.

Our future work will focus on (1) developing a computational model to support configuration and dy-

namic reconfiguration of DRE systems at different levels of granularity to improve both system manageability

and reconfiguration performance, and developing a platform model to execute the computational model pre-

dictably and scalably, (2) applying specialization techniques (such as partial evaluation and generative pro-

gramming) to optimize DRE systems using metadata contained in component assemblies, and (3) enhancing

DAnCE to provide state synchronization and component recovery support for a fault-tolerant middleware

infrastructure, such as MEAD [38].

TAO, CIAO, and DAnCE are available for download at deuce.doc.wustl.edu/Downlad.html, and CoS-

MIC is available for download at www.dre.vanderbilt.edu/cosmic.
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