GPERF
A Perfect Hash Function Generator

Douglas C. Schmidt
schmidt@cs.wustl.edu
http://www.cs.wustl.edutschmidt/
Department of Computer Science
Washington University, St. Louis 63130

1 Introduction a sample input keyfile; Section 4 highlights design patterns
and implementation strategies used to devejpprf ; Sec-
Perfect hash functions are a time and space efficient implen 5 shows the results from empirical benchmarks between
mentation ofstatic search setsA static search set is an abgperf -generated recognizers and other popular techniques
stract data type (ADT) with operationsitialize, insert and for reserved word lookup; Section 6 outlines the limita-
retrieve Static search sets are common in system softwéitshs with gperf and potential enhancements; and Section 7
applications. Typical static search sets include compiler gh@sents concluding remarks.
interpreter reserved words, assembler instruction mnemonics,
shell interpreter built-in commands, and CORBA IDL compil-
ers. Search set elements are calkegiwords Keywords are 2 Static Search Set |mp|ementations
inserted into the set once, usually off-line at compile-time.
gperf is a freely available perfect hash function generatphere are numerous implementations of static search sets.
written in C++ that automatically constructs perfect hash foGommon examp|es include sorted and unsorted arrays and
tions from a user-supplied list of keywords. It was designed|iAked lists, AVL trees, optimal binary search trees, digital
the spirit of utilities likelex [1] andyacc [2] to remove the search tries, deterministic finite-state automata, and various
drudgery associated with constructing time and space efficiggsh table schemes, such as open addressing and bucket chain-
keyword recognizers manually. ing [5].
gperf translates am element list of user-specified key- pifferent static search structure implementations offer
words, called théeyfilg into source code containingkaele- trade-offs between memory utilization and search time effi-
ment lookup table and the following pair of functions: ciency and predictability. For example, anelement sorted
array is space efficient. However, the average- and worst-case
time complexity for retrieval operations using binary search
on a sorted array is proportional élog n) [5].
.) In contrast, chained hash table implementations locate a ta-
e in word set useshash to determine whether a pare entry in constant,e, O(1), time on the average. However,
ticular string of characters occurs in tkeyfile using at paghing typically incurs additional memory overhead for link
most one string comparison in the common case. pointers and/or unused hash table buckets. In addition, hash-

. > € A

gperf is designed to run quickly for keyfiles containindd €xhibitsO(n®) worst-case performance [5]. ,
several thousand keywordgperf generates efficient ANS| A minimal perfect hash functids a static search setimple-
and K&R C and C++ source code as output. It has been usef@tation defined by the following two properties:

generate reserved keyword recognizers in lexical analyzers{#gg, perfect property: Locating a table entry require®(1)

several production and research compilers and language Rz i e, at mostone string comparison is required to perform
cessing tools, including GNU C/C++ [3] and the TAO CORBAgy\yord recognition within the static search set.

IDL compiler [4].

This paper is organized as follows: Section 2 outlind$ie minimal property: The memory allocated to store the
alternative static search set implementations and comp&egnords is precisely large enough for the keyword setramd
them withgperf -generated hash tables; Section 3 presetdgyer.

¢ hash uniquely maps keywords in thkeyfile onto the
range 0k — 1, wherek > n. If k = n hash is con-
sidered aninimalperfect hash function.

Minimal perfect hash functions provide a theoretically o&%ﬂclude <stdio.h>

timal time and space efficient solution for static search se¢tslude <string.h>

[5]. However, they are hard to generate efficiently due to tﬁec_ocm'_gar_‘g"'_ﬂe_f?go[‘jszl X 23
extremely large search space of potential perfect hashing func~N is_month */ ’

tions. Therefore, the following variations are often more aﬁ-r}uct months {
propriate for many practical hashing applications, especiallythar *name;

those involving thousands of keywords: :ﬂi ggyst.’e”
Non-minimal perfect hash functions: These functions do, int leap_days:

not possess the minimal property since they return a rangé&f

. ary, 1, 31, 31
hash values larger than the total number of keywords in {2, A
table. However, theylo possess the perfect property sinosarch, 3, 31, 31
at most one string comparison is required to determine |ﬂ1’§; 4 5 30'31 3031
string is in the table. There are two reasons for generatjong, 6, 30, 30
s . july, 7, 31, 31
non-minimal hash functions: august, 8, 31, 31
september, 9, 30, 30
1. Generation efficiency It is usually much faster to generﬁgtloebrgger 1%1 3%6 3§0
ate non-minimal perfect functions than to generatei- gecember. 12, 31 31
mal perfecthash functions [6, 7]. %%

/* Auxiliary code goes here... */

2. Run-time efficiency- Non-minimal perfect hash func-ﬁ:fd‘;ﬁaaEgu{G
tions may also execute faster than minimal ones whefhar bufBUFSIZ];
searching for elements that amet in the table because Whlslteru(cgeﬁog?ﬁg))*{ _ is_month (buf, stren (buf):
the “null” entry will be located more frequently. This sit- prinf ("%s is%sp a month\n", ’ ’
uation often occurs when recognizing programming lan- p ? p->name : buf, p ? ™ : " not");
guage reserved words in a compiler [8]. }

#endif

Near-perfect hash functions: Near-perfect hash functions

do not possess the perfect property since they allow non- Figure 1: An Example Keyfile for Months of the Year
unigue keyword hash values [9] (they may or may not possess

the minimal property, however). This technique is a compro-

mise that trades increaseenerated-code-execution-tife month, as well as the months’ ordinal numbess, january =
decreasedunction-generation-timeNear-perfect hash func-1, february = 2, ..., écember = 12.

tions are useful when main memory is at a premium since thegperf ’s input format is similar to the UNIX utilitieex
tend to produce much smaller lookup tables than non-mininaaidyacc . It uses the following input format:

perfect hash functions. _ _ _
declarations and text inclusions

gperf can generate minimal perfect, non-minimal perfe¢% _ _
. - eywords and optional attributes
and near-perfect hash functions, as described below. %%

auxiliary code

3 Interacting with GPERF A pair of consecutivéssymbols in the first column sepa-
rate declarations from the list of keywords and their optional

This section explains how end-users can interact gitrf . attributes. C or C++ source code and comments are included

By default,gperf reads a keyword list and optionassoci- verbatim into the generated output file by enclosing the text in-

ated attributedrom the standard inpleyfile . Keywords side%{ %]} delimiters, which are stripped off when the output

are specified as arbitrary character strings delimited by a usiée-is generateds.qg:

specified field separator that defaults,to . Thus, keywords

may contain spaces and any other ASCII characters. Assdei- .

ated attributes can be any C literals. For example, keyword ﬁ Clﬂgg :giﬂ'ﬁgh@

Figure 1 represent months of the year. Associated attribute& ifcommand-line options:

this figure correspond to fields struct months . They in- Gpamtodl k23

clude the number of leap year and non-leap year days in eggh -

An optional user-suppliedtruct declaration may be however, describe the design and implementation of a general-
placed at the end of the declaration section, just beforéa¥tepurpose perfect hashing generator tool in detail. This section
separator. This feature enables “typed attribute” initializatioshescribes the data structures, algorithms, output format, and
For example, in Figure dtruct months is defined to have reusable components gperf .
four fields that correspond to the initializer values given for thegperf is written in~4,000 lines of C++ source code. C++

month names and their respective associated vadugs, was chosen as the implementation language since it supports
struct months { data abstraction better than C, while maintaining C’s efficiency
char *name; and expressiveness [16].
:2% gg%k_)er; gperf ’s three main phases for generating a perfect or near-
int leap_days; perfect hash function are shown in Figure 2: Figure 6 illus-

5% tratesgperf ’s overall program structure. and described be-
Lines containing keywords and associated attributes appaarYFILE GPERF c/c++ CODE
in the keywords and optional attributesection of the keyfile.
The first field of each line always contains the keyword itsg
left-justified against the first column and without surroun|
ing quotation marks. Additional attribute fields can follo\ december Asso Values J o
the keyword. Attributes are separated from the keyword aha
from each other by field separators, and they continue up to the
“end-of-line marker,” which is the newline charactén(”) by
default. low:
Attribute field values are used to initialize components ot

the user-suppliedtruct ~ appearing at the end of the decla- 1, Process command-line options, read keywords and at-

janua : int hash
erbrugy Koy List (const char *str,

unsigned int len)

Figure 2:gperf 's Processing Phases

ration sectiong.g: tributes (the input format is described in Section 3), and
january, 1, 31, 31 initialize internal objects (described in Section 4.1).
february, 2, 28, 29

march, 3, 31, 31 2. Perform a non-backtracking, heuristically guided search
for a perfect hash function (described in Section 4.2.1 and

As with lex andyacc , it is legal to omit the initial dec- Section 4.2.2).
laration section entirely. In this case, the keyfile begins with3. Generate formatted C or C++ code according to the
the first non-comment line (lines beginning withi#' char- command-line options (output format is described in Sec-
acter are treated as comments and ignored). This format style tion 4.3).
is useful for building keyword set recognizers that possess no-

associated attributes. For example, a perfect hash function forhe following section outlinegperf ’s perfect hash func-
L . p'€, a perte . tion generation algorithms and internal objects, examines its
frequently occurring English wordsan efficiently filter out

uninformative words. such as “the ” “as.” and “this” from Congenerated source che output, describes several reqsgblg class
ideration in &e -wc;rd—in—conteﬁt;dexiﬁ a Iicaiion 5] components, and discusses the program'’s current limitations
sideration In &ey 19 appiica ., and future enhancements.
Again, as withlex andyacc , all text in the optional third
auxiliary codesection is included verbatim into the generated

output file, starting immediately after the firt4band extend- 4.1 Internal Objects

ing to thﬁ en?} Of. the keé/file(.j It.is thlgduser's responsibrillity %perf 's implementation centers around two internal objects:
ensure that the inserted code is valid C or C++. In the Fige, \ovivord signaturesist (Key List) and theassociated

ure 1 example, this auxiliary code provides a test driver thab@luesarray @sso values), both of which are described
conditionally included if the DEBUG symbol is enabled wheg B ’

" elow.
compiling the generated C or C++ code.

4.1.1 The Keyword Signatures List
4 DeSIQn and Implementatlon Strate- Every user-specified keyword and its attributes are read from

gies the keyfile and stored in a node on a linked list, called
Key_List . gperf only considers a subset of each key-
Many articles describe perfect hashing [10, 7, 11, 12] and nwmerds’ characters while it searches for a perfect hash function.
imal perfect hashing algorithms [8, 13, 6, 14, 15]. Few articleBhe subset is called the “keyword signature keysig

The keysig represents the particular subset of charactersh_value =
used by the automatically generated recognition function toissa‘;g‘éa'\‘j;ﬁ[é‘gr((‘gordg?%ﬂ]
compute a keyword's hash value. Keysigs are created and asso_values[keyword[length - 1]]
cached in each node in ti@y _List when the keyfile is ini- ~ * length;

tially processed bgperf . .
yp 2p Developers can control the generated hash function’s con-

tents using thé-k" option to explicitly specify the keyword
index positions used as keysig elementgperf . The de-
Theassociated valueasrray,asso _values , is an object that faultis™k 1,$" , where the$’ represents the keyword's

is closely related to keysigs. In fact, it is indexed by keysfial character. _

characters. The array is constructed internallgpgrf and Table 1 shows the keywords, keysigs, and hash value for
referenced frequently whilgperf searches for a perfect hasi§ach month shown in the Figure 1 keyfile. These keysigs were
function.

4.1.2 Associated Values Array

During the C/C++ code generation phasegpierf , an .Keyword Keysig | Hash value
ASCII representation of the associated array is output in the january an 3
. . . february be 9
generated hash function astatic local array. This array march ar 4
is declared asi_int asso _values[MAX _ASCIl _SIZE] . april pr 2
When searching for a perfect hash functigperf repeatedly may ay 8
reassigns different values to certaisso _values elements june nu 1
specified by keysig entries. At every step during the search july lu 6
for the perfect hash function solution, theso _values ar- august gu 7
ray’s contents represent the current associated vatoedig- september|| ep 0
uration. october ct 10
When configured to produce minimal perfect hash functions november || ov 1
(which is the default)gperf searches for an associated val- december] ce 5

ues configuration that maps allkeysigs onto non-duplicated

hash values. A perfect hash functionis produced vgpemf Taple 1: Keywords, Keysigs, and Hash Values for the Months
finds a configuration that assigns each keysig to a unique |OE§ampIe

tion within the generated lookup table. The resulting perfect

hash function returns amsigned int value in the range produced using th&2,3 option.

0..(k—1), wherek = (mazimum keyword hashvalue+1). Keysigs aremultisetssince they may contain multiple oc-
Whenk = n aminimal perfect hash function is producedeyrences of certain characters. This approach differs from
For k larger thann, the lookup table'sload factoris 3 other perfect hash function generation techniques [8] that only
(rumber of keywords) consider first/last charactetslength when computing a key-

A keyword'’s hash value is typically computed by combirword’s hash value.
ing the associated values of its keysig with its lenftiy The hash function generated lgperf properly handles
default, the hash function adds the associated value of a K@ywords shorter than a specified index position by skipping
word’s first index position plus the associated value of its lagiaracters that exceed the keyword’s length. In addition, users
index position to its lengthi,e.. can instrucgperf to includeall of a keyword’s characters in

its keysig via thé'-k*" option.

hash_value =
asso_values[keyword[0

[
0 %sns;tﬁ\;/alues eywordflength - 1]] 4.2 Generating Perfect Hash Functions

Other combinations are often necessary in practice. For ex%@itisounbssecuon describes hgperf generates perfect hash
ple, using the default hash function for C++ reserved words '

causes a collision betweelelete anddouble . To resolve

this collision and generate a perfect hash function for C++ fe2-1 Main Algorithm

served words, an additional character must be added to éB@rf

, iterates sequentially through the list bkeywords,
keysig, as follows:

1 < i < n, wheren equals the total number of keywords.
1The"n" option instructgperf not include the length of the keyword Du_rmg each iteratiorgperf attempts to eXte'nd the set of
when computing the hash function. uniguely hashed keywords by 1. It succeeds if the hash value

computed for keyworddoes not collide with the previods- 1 collision betweenjanuary and march by incrementing

uniquely hashed keywords. Figure 3 outlines the algorithmasso _value['n’] by 1. As shown in Table 2, this is its
final value.
for i « 1tonloop Keysig | Associated| Frequency of
if hash (i*" key) collides with anyhash (15¢ key... (i — 1)°¢ key) Characters Values Occurrence
then ‘a’ 2 3
modify disjoint union of associated values to resolve collisions b’ 9 1
based upon certain collision resolution heuristics o 5 2
end if 1A
end loo| € 0 3
P g 7 1
T 6 1
Figure 3: Gperf's Main Algorithm n 1 2
0’ 1 1
The algorithm terminates and generates a perfect hash func- p (2) 3
tion when: = n and no unresolved hash collisions remain. i 5 1
Thus, thebest-casasymptotic time-complexity for this algo- w 0 3
rithm is linear in the number of keywordseg., Q2(n). > 0 1
Y 6 1

4.2.2 Collision Resolution Strategies

As outlined in Figure 3gperf attempts to resolve keywordTable 2: Associated Values and Occurrences for Keysig Char-

hash collisions by incrementing certain associated values. Haters

following discusses the strategiggerf uses to speedup col-

lision resolution. Search heuristics: gperf uses several search heuristics to
reduce the time required to generate a perfect hash function.

Disjoint union: To avoid performing unnecessary workfor instance, characters in the disjoint union are sorted by in-

gperf is selective when changing associated values. In péiieasing frequency of occurrence, so that less frequently used

ticular, it only considers characters comprising thisjoint characters are incremented before more frequently used char-

union of the colliding keywords’ keysigs. The disjoint unior@cters. This strategy is based on the assumption that incre-

of two keysigs{ A} and{ B} is defined a§ AUB} — { AnB}. Mmenting infrequently used charactéirst decreases the nega-

To illustrate the use of disjoint unions, consider the keljve impact on keywords that are already uniquely hashed with
words january and march from Figure 1. These key-respectto each other. Table 2 shows the associated values and

words have the keysig&n” and“ar” , respectively, frequency of occurrences for all the keysig characters in the
as shown in Table 1. Thus, wheasso values[a’] , months example.
asso _values['n’ , andasso _values['r'] all equal

0, & collision will occur duringgperf ’s executlorf. Tore- gperf generates a perfect hash function if increments to
solve this collisiongperf only considers changing the asge associated values configuration shown in Figure 3 and de-
sociated values fon' and/or'r’ . Changinga’ by any gcrined above eliminate all keyword collisions when the end
increment cannot possibly' resoI.ve the coIIisipn sitace oc- theKey _List is reached. Theorst-casesymptotic time-
curs the same number of times in each keysig. complexity for this algorithm i€)(n>1), wherel is the number

By default, allasso _values are initialized to 0. When a 4 characters in the largest disjoint union between colliding
collision is detectedperf increases the corresponding asSReyword keysigs. After experimenting wigperf on many
ciated value by a “jump increment.” The command-line optiqiyfiles it appears that such worst-case behavior occurs rarely
"j" can be used to increase the jump increment by a fixgd actice.
or random amount. In general, selecting a smaller jump inCrép;any herfect hash function generation algorithms [6, 7] are
ment.e.g,"™ 1" decreases the size of the generated haglygijtive to the order in which keywords are considered. To
table, though it may increaggperf ’s execution time. mitigate the effect of orderingperf will optionally reorder
_In the months example in Figure 1, tg 1" 0P- yevwords in theKey List if the -0" command-line op-
tion was used. Thereforegperf quickly resolves the yjon is enabled. This reordering is done in a two-stage pre-

2Note that since th&n" option is used in the months example, the difPaSS (8] befpreg;perf iankes t.he main algorithm Shown in
ferent keyword lengths are not considered in the resulting hash function. Figure 3. First, theKey_List is sorted by decreasing fre-

guency of keysig characters occurrence. The second reorder- _
ing pass then reorders th@y _List so that keysigs whosengude Zg{ﬂ'r?ghé

values are “already determined” appear earlier in the list. /* Q%m[nar_lg-li?]e_toggOf!S:l K 23
These two heuristics help to prune the search space by-N ig_month */) ’

handling inevitable collisions early in the generation proce§§‘_éﬁgrm,9nrgﬂfe;{

gperf will run faster on many keyword sets, and often de- IRE gumt}er;

crease the perfect hash function range, if it can resolve thea'at |e?§_‘days;

collisions quickly by changing the appropriate associated V&l-

ues. However, if the number of keywords is large and the useum {
; ; : OTAL_KEYWORDS = 12,
wishes to generate a near-perfect hash function, this reordeﬁnN WORD LENGTH = 3

in metimesncr rf 's ex iontime. Ther n MAX WORD_LENGTH =9,
g sometimesncreasegperf 's execution time. The reaso CMIN_HASH_VALUE o,
for this apparent anomaly is that collisions begin earlier andwAX HASH VALUE = 11,

: : HASH VALUE_RANGE = 12,
frequently persist throughout the remainder of keyword pro-gj3, /caTeS = 0

cessing [8, 9]. h

ﬁtatiﬁ: (unsigne(g] int gned int len)
as| const char *str, unsigned int len
4.3 Generated Output Format

static const unsigned char asso_values[] =
Figure 4 de_pipts the C code produ_ced from Ig]me_rf - { 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
generated minimal perfect hash function corresponding to the 1%, 12, 12, 12, 12, 12, 12, 12, 12, 12,
keyfile depicted in Figure 1. Execution time was negligible 12 12) 12, 12, 12, 12, 12, 12, 12, 12.
on a Sun SPARC 20 workstatione., 0.0 user and 0.0 sys- 12 12, 12,12, 12, 12, 12, 12, 12, 12,

) ! : : : 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
tem time. The following section uses portions of this code as 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,

. . .) 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
a working example to illustrate various aspectggperf ’s 12 120 120 120 120 120 12 12 12, 12
generated output format. 12,12, 12,12, 12,12, 12 2 % .5

1, 0 2 5
. 12, 6, 12, 12, 12, 12, 12, 12,
4.3.1 Generated Symbolic Constants ;
return asso_values|[str[2]] + asso_values[str[1]];

gperf s output contains the following seven symbolic con-
stants that summarize the results of applying the algorithneamst struct months *

. . . Is_month (const char *str, unsigned int len
Figure 3 to the keyfile in Figure 1: - (g)
static const struct months wordlist[] =

enum { " "

TOTAL KEYWORDS = 12, pembers & 30 30

MIN_WORD LENGTH = 3, “april”. 4,30, '30},

MAX_WORD_LENGTH = 9, “anuary”, 1, 31, 31},

MIN HASH_VALUE = 0, “march”, 3, 31, 31},

MAX HASH VALUE = 11, "december”, 12, 31, 31},

HASH_VALUE_RANGE = 12, duly, 7,31, 313,

DUPLICATES = 0 ‘august’, 8, 31, 31},
} may", 5, 31, 31},
! "february”, 2, 28, 29},

::october", .10, 31, 31},

gperf produces aminimal perfecthash function when november®, 11, 30, 30},
HASH_VALUE _RANGE = TOTAL_KEYWORDS and DUPLI- if (Ier:&gle MA)S_V'\\A/RIR[J\TS%GLTENGTH
CATES = 0. A non-minimal perfecthash function oc- int keyeg hash (sfr, len); ~)
curs whenbuPLICATES = 0 and HASH_VALUE _RANGE > if (keg(&<ieyi>i_|;\|/ﬁﬁHHAéhU\EALUE) (
TOTAL_KEYWORDS. Finally, a near-perfecthash function %har *s = wordlist[key].name;

if (*str == *s
occurs whenbUPLICATES > 0 and DUPLICATES < TO- O st (str + 1, s + 1))
TAL _KEYWORDS. return &wordlist[key];
return O;

4.3.2 The Generated Lookup Table }

By default, whengperf is given a keyfile as input it at-

tempts to generate a perfect hash function that uses at nmgire 4: Minimal Perfect Hash Function Generated
one string comparison to recognize keywords in the lookup ggperf

ble. gperf can implement the lookup table either an array or

aswitch statement, as described below.

by

. {
asso .values array lookup table: gperf generates an® congt struct months *rw;
array by default, emphasizing run-time speed over minimal
memory utilization. This array is calle@isso values , as $Wich (key)

shown in thehash function in Figure 4. Thasso _values case 0: rw = &wordlist[0]; break
; ; case 1: rw = &wordlist[1 break
array is used by the two generated functions that compute hash 225 5. " Z 2 oot preak
values and perform table lookup. case 3: rw = &wordlist[3]; break
: ; : case 4: rw = &wordlist[4]; break
gperf also provides command-line options that allowde- oo & w - awordlist5]. break.
velopers to select trade-offs between memory size and execu- case 6: rw = &wordlist[6]; break
; ; ; case 7: rw = &wordlist[7]; break
tion time. For example, expanding the range of hgsh values 8 rw - &wordlistlsl break
produces a sparser lookup table. This generally yields faster case 9: rw = &wordlist[9]; break
i iti case 10: rw = &wordlist[10]; break
keyword searches but requires additional memory. case 11 w = &wordiistfli] break.
The array-basedsso _values scheme works best when default: return 0;
the HASH_VALUE _RANGE is not considerably larger than the ;ff (*str == *rw->name
TOTAL_KEYWORDS. When there are a large number of key- && Istrcmp (str + 1, rw->name + 1))

words, and an even larger range of hash values, however, tf}gurﬁ;“'g_ w;
wordlist array inis _-month function in Figure 4 may be-} '
come extremely large. Several problems arise in this case:

e The time to compile the sparsely populated array is ex- Figure 5: Theswitch -based Lookup Table

cessive;

« The array size may be too large to store in main memofyy3-3 The Generated Functions

o Alarge array may lead to increased “thrashing” of virtu@PerT generates a hash function and a lookup function. By
memory in the OS. default, they are callelash andin _word _set , although

a different name may be given for _word _set using the
"-N" command-line option. Both functions require two ar-

Switch-based lookup table: To handle the problems de_guments, a pointer to a NUL-terminatet0() array of

: : characters,const char *str , and a length parameter,
scribed abovegyperf can also generate one or makeitch . X
statements to implement the lookup table. Depending on ane&gned it len
underlying compiler'switch optimization capabilities, the The generated hash function ltash): Figure 4 shows the
switch -based method may produce smalledfaster code, hash function generated from the input keyfile shown in Fig-
compared with the large, sparsely filled array. Figure 5 show 1. The command-line optidsk 2,3" was enabled for
how theswitch statement code appears if the months exathis test. This instructiash to return anunsigned int
ple is generated witgperf 's"-S 1" option. hash value that is computed by using the ASCII values of the
Since the months example is somewhat contrived, the tra@el and37¢ characters from itstr argument into the local
off between the array armvitch approachis not particularlystatic ~ arrayasso _values .2 The two resulting numbers
obvious. However, good C++ compilers generate assemafg added to calculagr ’s hash value.
code implementing a “binary-search-of-labels” scheme if theTheasso _values array is generated lyperf using the
switch statement'sase labels are sparse compared to thalgorithm in Section 4.1.2. This array maps the user-defined
range between the smallest and largeste labels [3]. This keywords onto unique hash values. Also _values array
technique can save a great deal of space by not emitting entries with values greater thamx _HASH_VALUE (i.e., all
necessary empty array locations or jump-table slots. The exhet“12's” in theasso _values array in Figure 4) represent
time and space savings of this approach varies according toAl11 characters that do not occur as either the second or third
underlying compiler’s optimization strategy. characters in the months of the year. Themonth function
gperf generates source code that constructs the arraynofigure 4 uses this information to quickly eliminate input
switch ~ statement lookup table abmpile-time Therefore, Strings that cannot possibly be month names.

initializing the keywords and any associated attributes requiggg,arated lookup function (n word set): The
little additional execution-time overhead when the recogniqﬁr word _set function is the entry p_oint ir;to thé perfect

function is run. The ' |n|F|aI|za}t|on is automatlcally.pe_r—hash lookup function. In contrast, theash function is
formed as the program’s binary image is loaded from disk into

main memory. SNote that C arrays start at 0, su[1] s actually the second character.

declaredstatic ~ and cannot be invoked by application —~ =<

_—— N

. . . — ~ \
programs directly. If the function’s first parametehar) 2/.)
*str , is a valid user-define keywordy _word _set returns r Asso 7/ GEN |

a pointer to the corresponding record containing each keyword, VALUES (_\ | PERF \
and its associated attributes; otherwise, a NULL pointer is ~ ~—=~ _~_——_ \ B
returned.] Y T~_

Figure 4 shows how th&én _word _set function can be § KEy //
renamed tos _month using the"-N" command-line op- GPERF v LIST
tion. Note howgperf checks thelen parameter and COMPONENTS ~_ -
resulting hash function return value against the symbolic =
constants forMAX _WORD_LENGTH, MIN_WORD_LENGTH, ACE \
MA.X _HAS'H_YALUE, and MIN_HASH_VALUE. This check COMPONENTS T ‘i
quickly eliminates many non-month names from further con- - ~_ _—— . /_—: BooL
sideration. If users know in advance that all input strings are /‘ RE \, "HASH [| ARRAY :
valid keywordsgperf will suppress this addition checking AD ¢ // pre b —— < —
with the"-O" option. \BUFFER,/ \ TABLE , \\ SINGLETON /

If gperf is instructed to generate an array-based lookup \\\ L \\\\//’ N I
table the generated code is quite concige, once it is deter- = S—
mined that the hash value lies within the proper range the code))
is simply: Figure 6:gperf 's Software Architecture

ﬁchi(i*rs *gzz*g\tlpfd”St[kGY]: This one functionGen_Perf::affects _previous , de-

&& Istremp (str + 1, s + 1)) termines how changes to associated values affect previously
return s; hashed keywords. In particular, it identifies duplicate hash val-

ues that occur during program execution.

The*s == *str expression quickly detects when the Since this function is called so frequently, it is im-

computed hash value indexes into a “null” table slot sitece portant to minimize its execution overhead. Therefore,

) R : . perf employs a novel boolean array component called
is the NUL character\0') in this case. This checkis usefupACEBool Array to expedite this process. The C++ inter-

when searching a sparse keyword lookup table, where ther%ése for theACEBool Array class is depicted in Figure 7
a higher probability of locating a null entry. If a null entry iSSince only one copy is requireBOOLARRAYis typedef 'd ’
located, there is no need to perform a full string comparisor%b be a Singleton using thCESingleton adapter. This
Since the months’ example generates a minimal perfect ’

. . X plate automatically transforms a class into a Singleton us-
hash function null enties never appear. The check is s,lrﬁf“the Singleton and Adapter patterns [18].

useful, however, since it avoids calling the string compariso hei ¢ thod efficiently detects duplicate k d
function when thestr s first letter does not match any of th% €in set metnod etliciently cetects duplicate keywor
ash values for a given associated values configuration. It re-

keywords in the lookup table. . . .
yw P turns non-zero if a value is already in the set and zero other-
wise. Whenever a duplicate is detected, thget method
4.4 Reusable Components and Patterns is called to reset all the array elements back to “empty” for

. .) . ensuing iterations of the search process.
Figure 6 illustrates the key components usedgjerf 's

: . If many hash collisions occur, theset method is exe-
software architecturegperf - is constructed from reusablecuted frequently during the duplicate detection and elimina-
components from the ACE framework [17]. Each comp q y g P

fon phase ofgperf 's algorithm. Processing large keyfiles,

nent evolved “bottom-up” from special-purpose utilities |nt8bgiJé containing more than 1,000 keywords, tends to require

reusable software components. Several noteworthy reusa . .
: .) a maximum hash valugé that is oftenmuchlarger thann,
classes include the following components:

the total number of keywords. Due to the large range, it be-
ACE_Bool Array: Earlier versions ofyperf were instru- comes expensive to explicitly reset all elementsainy _
mented with a run-time code profiler on large input keyack to empty, especially when the number of keywords actu-
files that evoke many collisions. The results showed trty checked for duplicate hash values is comparatively small.
gperf spent approximately 90 to 99 percent of its time in To address this issugperf uses a pattern callegener-
a single function when performing the algorithm in Figure &tion numberingwhich optimizes the search process by not

class ACE_Bool_Array

{

public:
/I Constructor.
ACE_Bool_Array (void);

/I Returns dynamic memory to free store.

“"ACE_Bool_Array (void);

/I Allocate a k element dynamic array.
init (u_int K);

unsigned short integer, which occurs infrequently in
practice.

A design strategy employed throughaygerf 's imple-
mentation is “first determine a clean set of operations and in-
terfaces, then successively tune the implementation.” In the
case of generation numbering, this policy of optimizing per-

formance, without compromising program clarity, decreased
gperf s execution-time by an average of 25 percent for large
keyfiles, compared with the previous method that explicitly
“zeroed out” the entire boolean array’s contents on every
reset

/I Checks if <value> is a duplicate.
int in_set (u_int value);

/I Reinitializes all set elements to FALSE.
void reset (void);

private:
/I Current generation count. ACE_ReadBuffer: Each line ingperf ’s input contains
u_short generation_number_; a single keyword followed by any optional associated at-

/I Dynamically allocated storage buffer. tributes, ending with a newline characteAn(”). The

u_short *array_; Read_Buffer::read member function copies an arbitrar-
/I Length of dynamically allocated array. ily long "\n -terminated string of characters from the input
) u_int size_; into a dynamically allocated buffer. A recursive auxiliary
' function,Read_Buffer::rec _read , ensures only one call
/I Create a Singleton. i i i i
ypedet ACE Singleton <ACE. Bool Array, is made to thenew opeator for ea;h input line reade._, there _
ACE_Null_Mutex> is no need to reallocate and resize buffers dynamically. This
BOOL_ARRAY; class has been incorporated into the GNU libgstream li-
brary [19] and the ACE network programming tookit [17].
Figure 7: The ACE Boolean Array Component ACE_Hash Table: This class provides a search set imple-

mented via double hashing [5]. During program initialization

explicitly reinitializing the entire array. Generation numbegperf uses an instance of this class to detect keyfile entries
ing operates as follows: that are guaranteed to produce duplicate hash values. These

o . duplicates occur whenever keywords possess both identical
1: TheBool Array init method dynamically allocatesyeysigs and identical lengthe,g, thedouble anddelete
space fork unsigned short integers and pointarray - collision described in Section 4.1.2. Unless the user speci-
at the allocated memory. Al array elements irrray - fies that a near-perfect hash function is desired, attempting to
are initially assigned 0 (representing “empty”) and thgenerate a perfect hash function for keywords with duplicate
generation _number _counter is set to 1. keysigs and identical lengths is an exercise in futility!

2. gperf uses then _set method is used to detect du-
plicate keyword hash values. If the number stored at tBe Empirical Results
hash(keyword) index position inarray _ is not equal to

the current generation number, then that hash value is n(n);l?

regdy n Fhe set. I_n this case, the current generation nu @éring perspective since they reduce development time and
'S immediately asspngd o trhmsh(key\./vpr.d) array loca- o creage the likelyhood of development errors. However, they
tion, thereby mar'klng tasa dyphcgte it itis referenced subsgz, o necessarily advantageous for production applications
quently during this particular iteration of the search ProceSYniess the resulting executable code speed is competitive with

3: If array _[hash(keyword)] is equal to the gener_typical alternative implementations. In fact, it has been ar-
ation number, a duplicate exists and the algorithm must §4€d that there areo circumstances where perfect hashing

modifying certain associated values to resolve the collisionPToves worthwhile, compared with other common static search
set methods [20].

4. If a duplicate is detected, tharay _elements are reset To compare the efficacy of thgperf -generated perfect

to empty for subsequent iterations of the search process. iash functions against other common static search set imple-
reset method simply incrementgeneration _number_ mentations, seven test programs were developed and executed
by 1. The entire k array locations are only reinitializedn six large input files. Each test program implemented the
to 0 when the generation number exceeds the range ofsame function: a recognizer for the reserved words in GNU

I(')I—generated recognizers are useful from a software engi-

Executable Input File

Program ET++.in NIH.in g++.n idraw.in cfront.in libg++.in

control.exe 38.8/1.00 | 15.4|1.00 | 15.2|1.00 8.9/ 1.00 5.7|1.00 45| 1.00
trie.exe 59.1/1.52 | 23.8|1.54 | 23.8|/1.56 | 13.7|1.53 8.6| 1.50 7.0/ 1.55
flex.exe 60.5|1.55 | 23.9|1.55| 23.9|1.57| 13.8|1.55 8.9]1.56 7.1|1.57
gperf.exe 64.6|1.66 | 26.0|1.68 | 25.1|1.65 | 14.6|1.64 9.7]1.70 7.711.71

chash.exe 69.2|1.78 | 27.5|1.78 | 27.1|1.78 | 15.8|1.77 10.1| 1.77 8.2|1.82
patricia.exe 71.7/1.84| 28.9|1.87 | 27.8|/1.82 | 16.3|1.83 10.8| 1.89 8.7]1.93
binary.exe 725|186 | 29.3/1.90 | 28.,5|/1.87 | 16.4|1.84 10.8|1.89 8.8 1.95
comp-flex.exe|| 80.1]|2.06 | 31.0| 2.01 | 32.6|2.14 | 18.2|2.04 11.6| 2.03 9.2]2.04

Table 3: Raw and Normalized CPU Processing Time

g++ . The function returns 1 if a given input string is identautomata (DFA)-based recognizers. Not using compaction

fied as a reserved word and 0 otherwise. maximizes speed in the generated recognizer, at the ex-
The seven test programs are described below. They pe@se of much larger tables. For example, the uncompacted

listed by increasing order of execution time, as shown in Tiéex.exe program is almost 5 times larger than the com-

ble 3. The input files used for the test programs are descrilpadtedccomp-flex.exe programj.e., 117,808 bytes versus

in Table 4. Table 5 shows the number of bytes for each t84t416 bytes.

Input File Identifiers | Keywords Total gperf.exe: agperf -generated recognizer created with the
ET++.in 624.156| 350,466 | 974.622 “a-D-S1-k1%" options. These options mean
NIH.in 209,488 181,919 391,407 “generate ANSI C prototypes-&"), handle duplicate key-
g++.in 278.319 88,169 | 366,488 words (-D"), via a single switch statemerit§ 1"), and
idraw.in 146,881 74,744 | 221,625 make the keysig be the first and last character of each key-
cfront.in 98,335 51,235 | 149,570 word.”

libg++.in 69,375 50,656 | 120,031

chash.exe: a dynamic chained hash table lookup function
Table 4: Total Identifiers and Keywords for Each Input F"esimilar to the one that recognizes reserved words for AT&T’s
cfront 3.0 C++ compiler. The table’s load factor is 0.39, the
program’s compiled object file, listed by increasing size (bo?ﬁme asitisimfront 3.0.
patricia.o andchash.o use dynamic memory, so theilpatricia.exe: a PATRICIA trie recognizer, where PATRICIA
overall memory usage depends upon the underlying free stet#gnds for “Practical Algorithm to Retrieve Information Coded
mechanism). in Alphanumeric.” A complete PATRICA trie implementation
is available in the GNU libg++ class library distribution [19].

Object Byte Count)))

File text data bss | dynamic total || binary.exe: a carefully coded binary search function that
control.o 88 0 0 0 88 || minimizes the number of complete string comparisons.
binary.o 1,008 288 0 0 1,296

gperf.o 2,672 0 0 0 2,672 || comp-flex.exe: a flex -generated recognizer created with
chash.o 1608 | 304 8 1,704 | 3,624 | the default"-cem" options, providing the highest degree
patricia.o 3,936 0 0 2,212 | 6,208 || 4t taple compression. Note the obvious time/space trade-
comp-flex.o 7,920 56 | 16,440 0 24,416 . .

Te.o 79.472 0 0 o 79472 Off between the uncompactetex.exe (which is .fast_er
flex.o 3,264 | 98,104 | 16,440 0 | 117,808 and larger) and the compactedmp-flex.exe (which is

smaller and much slower).

Table 5: Size of Object Files in Bytes . .
In addition to these seven test programs, a simple C++ pro-

) i gram calledcontrol.exe measures and controls for I/O
trie.exe: a program based upon an automatically generai®brheadi.e.:

table-driven search trie created by thHe-gen utility included

with the GNU libg++ distribution. int main (voitﬁl} é
char buf[BUFSIZ];

flex.exe: a flex -generated recognizer created with the
"f* (no table compaction) option. Note that both the Whgﬁngfge(ggm é.t?’“f%)uf);
flex.exe and trie.exe are uncompacted, deterministic finjite

10

All of the above reserved word recognizer programs wepéer. It is more difficult, on the other hand, to partially in-
compiled by the GNU g++ 2.7.2 compiler with tHe02 tegrateflex or lex into a lexical analyzer since they are

-finline-functions" options enabled. They were themgenerally used in an “all or nothing” fashion. Furthermore,
tested on an otherwise idle SPARCstation 20 model 712 witbitherflex norlex are capable of generating recognizers
128 megabytes of RAM. extremely large keyfiles because the size of the state machine

All six input files used for the tests contained a largs too big for their internal DFA state tables.
number of words, both user-defined identifiers and g++ re-
served words, organized with one word per line. This for-
mate was automatically created by running thdIX com- 6 Current Limitations and Future
mand"tr -cs A-Za-z_ 012" on the preprocessed
source code for several large C++ systems, including the Work

ET++ windowing toolkit ET++.in), the NIH class library o]
(NIH.in), the GNU g++ 2.7.2 C++ compileg¢-+.in), the gperf has been freely distributed for many years along with

idraw figure drawing utility from the InterViews 2.6 distri-th€ GNU libg++ library and the ACE network programming
bution (draw.in), the AT&T cfront 3.0 C++ compiler toolkit at www.cs.wustl.edu/"schmidt/ACE.htm|

(cfront.in), and the GNU libg++ 2.8 C++ class "braryAIthough gperf has proven to be quite useful in practice,
(libg++.in). Table 4 shows the relative number of iderfhere are several limitations. This section describes the trade-

tifiers and keywords for the test input files. offs and compromises with its current algorithms and outlines

Table 3 depicts the amount of time each search set impl@Y it can be improved. Sincgperf is open source soft-

mentation spent executing the test programs, listed by incré¥&r€; however, itis straightforward to add enhancements and
ing execution time. The first number in each column rep/@Xtensions.

sents the user-time CPU seconds for each recognizer. The sec-
ond number is “normalized execution timé&g., the ratio of 6.1 T ;

: - : . radeoffs and Compromises
user-time CPU seconds divided by tbentrol.exe pro- P
gram execution time. The normalized execution time for eagBveral other hash function generation algorithms utilize some
technique is very consistent across the input test file suite firm of backtracking when searching for a perfect or minimal
lustrating that the timing results are representative for differggrfect solution [6, 8, 9]. For example, Cichelli’s [8] algorithm

source code inputs: - recursively attempts to find an associated values configuration
Several conclusions result from these empirical benghat uniquely maps alb keywords to distinct integers in the
marks: rangel..n. In his scheme, the algorithm “backs up” if com-

Time/space tradeoffs are common: The uncompacted puting the current keyword'’s hash value exceeds the minimal
b ' P 'perfect table size constraint at any point during program exe-

2Zﬁ£2§§§2 ;rr'g tg'gt'ﬁ);Ee fezs?gsdt 2% (tlﬁg'?;re est) iLTﬁfr;]ecya{[on. Cichelli’'s algorithm then proceeds by undoing selected
. . . . g P H5h table entries, reassigning different associated values, and
tions, illustrating the time/space trade-off dichotomy. Appli-

: A) continuing to search for a solution.
cations where saving time is more important than conservqunf rtunatelv. the exponential arowth rat iated with
space may benefit from these approaches. ortunately, tne exponential gro ate associate

the backtracking search process is simply too time consum-
gperf can provide the best of both worlds: While the ing for large keyfiles. Even “intelligently-guided” exhaustive
tric.exe andflex.exe recognizers allow programmersearch quickly becomes impractical for more than several hun-
to trade-off space for time, thgperf -generated perfect hastdred keywords.

function gperf.exe is comparatively timeand space ef- To simplify the algorithm in Figure 3, and to improve
ficient. Empirical support for this claim can be calculateaverage-case performangmerf does not backtrack when
from the data for the programs that did not allocate dieyword hash collisions occur. Thugperf may process the
namic memoryj.e, trie.exe |, flex.exe , gperf.exe , entire keyfile inputwithoutfinding a unique associated values
binary.exe ,andcomp-flex.exe . The number of iden- configuration for every keyword, even if one exists. If a unique
tifiers scanned per-second, per-byte of executable progmnfiguration is not found, users have two choices:

overhead was 5.6 fogperf.exe , but less than 1.0 for

trie.exe ,flex.exe ,andcomp-flex.exe . 1. They can rumperf again, enabling different options in

. . o search of a perfect hash function; or
Sincegperf generates a stand-alone recognizer, it is eas-

ily incorporated into an otherwise hand-coded lexical analyze2. They canguaranteea solution by instructingperf to
such as the ones found in the GNU C and GNU C++ com- generate anear-perfechash function.

11

Near-perfect hash functions perngiperf to operate on and secondary keys. In the latter case, if the primary keywords
keyword sets that it otherwise could not handdgy, if the are distinguishable only via secondary key comparisons, the
keyfile contains duplicates or there are a very large numbeuser may edit the generated code by hand or via an automated
keywords. Although the resulting hash function is no longscript to completely disambiguate the search key.

“perfect,” it handles keyword membership queries efficiently
since only asmall number of du'plicates usually renfain. 6.2 Enhancements and Extensions

Both duplicate keyword entries and unresolved keyword
collisions are handled by generalizing tsaitch -based Fully automating the perfect hash function generation process
scheme described in Section 3gperf treats duplicate is gperf 's most significant unfinished extension. One ap-
keywords as members of agquivalence classnd gener- proach is to replacgperf ’s current algorithm with more ex-
atesswitch statement code containing cascadirglse haustive approaches [9, 7]. Duedperf ’s object-oriented
comparisons within @ase label to handle non-unique key-program design, such modifications will not disrupt the overall
word hash values. program structure. The perfect hash function generation mod-

For example, igperf is run with the default keysig selec-ule, class Gen _Perf , is independent from other program
tion command-line optiori-k 1,$" on a keyfile contain- components; it represents only about 10 percemjpeif 's
ing C++ reserved words, a hash collision occurs between twerall lines of source code.
delete anddouble keywords, thereby preventing a perfect A more comprehensive, albeit computationally expensive,
hash function. Using theD" option produces a near-perfecapproach could switch over to a backtracking strategy when
hash function, that allows at most one string comparison tbe initial, computationally less expensive, non-backtracking
all keywords exceptiouble , which is recognized after twofirst pass fails to generate a perfect hash function. For many
comparisons. Figure 8 shows the relevant fragment of the geommon uses, where the search sets are relatively small, the
erated near-perfect hash function code. program will run successfully without incurring backtracking

overhead. In practice, the utility of these proposed modifica-
{ char *rw: tions remains an open question.
Another potentially worthwhile feature is enhancing
gperf to automatically select the keyword index positions.
This would assist users in generating time or space efficient

switch (hash (str, len)) {

case 46:
rw = "delete";

that hash to the same location.

if (*str == *rw
&& lstremp (str + 1, rw + 1, len - 1))
return rw;
rw = "double";
if (*str == *rw
&& lstremp (str + 1, rw + 1, len - 1))
return rw;
return O;
case 47:
rw = "default"; break;
case 49:
rw = "void"; break;

if (*str == *rw
&& lstrcmp (str + 1, rw + 1, len - 1))
return rw;
return 0O;

Figure 8: The Near-Perfect Lookup Table Fragment

hash functions quickly and easily. Currently, the user must
use the default behavior or explicitly select these positions via
command-line arguments. Finallyperf s output functions
can be extended to generate code for other languagegs,
Java, Ada, Smalltalk, Module 3, Eiffel, etc.

7 Concluding Remarks

gperf was originally designed to automate the construction
of keyword recognizers for compilers and interpreter reserved
word sets. The various features described in this paper en-
able it to achieve its goal, as evidenced by its use in the GNU
compilers. In additiongperf has been used in the following
applications:

e The TAO CORBA IDL compiler [4] usegperf to gen-

A simple linear search is performed on duplicate keywords erate the operation dispatching tables [21] used by server-

Linear search is effective side skeletons.

since most keywords still require only one string comparison., A hash function for 15,400 “Medical Subject Headings”
Support for duplicate hash values is useful in several circum- <o4 1o index journal article citations in MEDLINE, a

stances, such as large input keyfilegy(dictionaries), highly

large bibliographic database of the biomedical literature

similar keyword setsg(.g, assembler instruction mnemonics), qintained by the National Library of Medicine. Gener-

4The exact number depend on the keyword set and the command-line op- ating this hash function takes approximately 10 minutes
tions.

of CPU time on a SPARC 20 workstation.

12

e The GNUindent C code reformatting program, wherg12] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heid,

the inclusion of perfect hashing sped up the program by H. Rohnert, and R. Jagi:m“?y”amlic Foortect Hashing: Up-
an average of 10 percent. D e Ten o ournal of Computingrol. 25,
' g ' p ' . pp. 738-761, Aug. 1994.
* A public domain program converting double precisiof 3 . jaeschke, “Reciprocal Hashing: A Method for Generating
FORTRAN source code to/from single precision uses \inimal Perfect Hashing FunctionsCommunications of the

gperf to modify function names that depend on the ACM, vol. 24, pp. 829-833, Dec. 1981.

types Of their argumentss.g, replacingsgefa with [14] T. sager, “A Polynomial Time Generator for Minimal Per-
dgefa in the LINPACK benchmark. Each name cor- fect Hash Functions,Communications of the ACMol. 28,

responding to a function is recognized \gperf and pp. 523-532, Dec. 1985.
substituted with the version for the appropriate precisiqas] C. C. Chang, “A Scheme for Constructing Ordered Minimal

« A speech synthesizer system, where there is a cache be- Perfect Hashing Functionsnformation Sciencesvol. 39,

. . 7 pp. 187-195, 1986.
tween the synthesizer and a larger, disk-based dlctlonarg. _) _
Aword is hashed usingperf , and if the word is already [16] Bjarne StroustrupThe C++ Programming Language, 3 Edi-

in the cache it is not looked up in the dictionary. tion. Addlson.-WesIey, 1991.) _
[17] D. C. Schmidt, “ACE: an Object-Oriented Framework for

Since automatic static search set generators perform well in g%vﬂggrl:ﬁxlaci:sﬂb#teecdh rﬁé’;‘"&fﬁgﬁgﬂg?gﬁi‘:;gé; OI\fA;Ze

practice and are widely and freely available, there seems little sachusetts), USENIX Association, April 1994.

incentive to code keyword recognition functions manually for L

most applications [18] E. Gamma, R. Helm, R. Johnson, and J. Vlissi@eEsign Pat-
’ terns: Elements of Reusable Object-Oriented Softw&ead-

ing, MA: Addison-Wesley, 1995.

References [19] D. Lea, “libg++, the GNU C++ Library,” irProceedings of the
1°t C++ Conference (Denver, CO), pp. 243-256, USENIX,
[1] M. Lesk and E. Schmidt,EX - A Lexical Analyzer Generator Oct. 1988.

Bell Laboratories, Murray Hill, N.J., Unix Programmers Mang20] J. Kegler, “A Polynomial Time Generator for Minimal Perfect
ual ed. Hash Functions,Communications of the ACMol. 29, no. 6,

[2] S. JohnsonYACC - Yet another Compiler CompileBell Lab- pp. 556-557, 1986.
oratories, Murray Hill, N.J., Unix Programmers Manual ed. [21] A. Gokhale and D. C. Schmidt, “Evaluating the Performance
[3] R. M. Stallman,Using and Porting GNU CC Free Software of Demultiplexing Strategies for Real-time CORBA,” Rro-
Foundation, GCC 2.7.2 ed. ceedings of GLOBECOM '9Phoenix, AZ), IEEE, November

1997.
[4] A. Gokhale, D. C. Schmidt, and S. Moyer, “Tools for Automat-

ing the Migration from DCE to CORBA," ifProceedings of ISS
97: World Telecommunications Congreg¢$oronto, Canada),
IEEE Communications Society, September 1997.

[5] D.E.Knuth,The Art of Computer Programmingol. 1: Search-
ing and Sorting. Reading, MA: Addison Wesley, 1973.

[6] C. R. Cook and R. R. Oldehoeft, “A Letter Oriented Minimal
Perfect Hashing Function3IGPLAN Noticesvol. 17, pp. 18—
27, Sept. 1982.

[7] A. Tharp and M. Brain, “Using Tries to Eliminate Pattern Col-
lisions in Perfect Hashing [EEE Transactions on Knowledge
and Data Engineeringvol. 6, no. 2, pp. 329-347, 1994.

[8] R.J. Cichelli, “Minimal Perfect Hash Functions Made Simple,”
Communications of the ACMol. 21, no. 1, pp. 17-19, 1980.

[9] M. Brain and A. Tharp, “Near-perfect Hashing of Large Word
Sets,” Software — Practice and Experienceol. 19, no. 10,
pp. 967-978, 1989.

[10] R. Sprugnoli, “Perfect hashing functions: A single probe re-
trieving method for static setsCommunications of the ACM
pp. 841-850, Nov. 1977.

[11] G. V. Cormack, R. Horspool, and M. Kaiserwerth, “Practical
Perfect Hashing,Computer Journalvol. 28, pp. 54-58, Jan.
1985.

13

