
1

An Introduction to Design Patterns

Douglas C. Schmidt
Vanderbilt University

www.dre.vanderbilt.edu/~schmidt/gof.ppt
schmidt@dre.vanderbilt.edu
Based on material produced by John Vlissides

2

Overview

Part I: Motivation & Concept
the issue
what design patterns are
what they’re good for
how we develop & categorize them

3

Overview (cont’d)

Part II: Application
use patterns to design a document editor
demonstrate usage & benefits

Part III: Wrap-Up
observations, caveats, & conclusion

4

Part I: Motivation & Concept
OOD methods emphasize design notations

Fine for specification, documentation

But OOD is more than just drawing diagrams
Good draftsmen good designers

Good OO designers rely on lots of experience
At least as important as syntax

Most powerful reuse is design reuse
Match problem to design experience

5

Part I: Motivation & Concept (cont’d)

Recurring Design Structures

OO systems exhibit recurring structures that
promote

abstraction
flexibility
modularity
elegance

Therein lies valuable design knowledge

Problem:
capturing, communicating, & applying this
knowledge

6

Part I: Motivation & Concept (cont’d)

A Design Pattern…

• abstracts a recurring design structure
• comprises class and/or object

dependencies
structures
interactions
conventions

• names & specifies the design structure explicitly
• distills design experience

7

Part I: Motivation & Concept (cont’d)

Four Basic Parts

1. Name
2. Problem (including “forces”)
3. Solution
4. Consequences & trade-offs of application

Language- & implementation-independent
A “micro-architecture”
Adjunct to existing methodologies (RUP, Fusion, SCRUM,

etc.)

8

Part I: Motivation & Concept (cont’d)

Example: OBSERVER

9

Part I: Motivation & Concept (cont’d)

Goals
Codify good design

distill & generalize experience
aid to novices & experts alike

Give design structures explicit names
common vocabulary
reduced complexity
greater expressiveness

Capture & preserve design information
articulate design decisions succinctly
improve documentation

Facilitate restructuring/refactoring
patterns are interrelated
additional flexibility

10

Part I: Motivation & Concept (cont’d)

Design Space for GoF Patterns

Scope: domain over which a pattern applies
Purpose: reflects what a pattern does

11

Part I: Motivation & Concept (cont’d)

Design Pattern Template (1st half)
NAME scope purpose

Intent
short description of the pattern & its purpose

Also Known As
Any aliases this pattern is known by

Motivation
motivating scenario demonstrating pattern’s use

Applicability
circumstances in which pattern applies

Structure
graphical representation of the pattern using modified UML notation

Participants
participating classes and/or objects & their responsibilities

12

Part I: Motivation & Concept (cont’d)

Design Pattern Template (2nd half)
...

Collaborations
how participants cooperate to carry out their responsibilities

Consequences
the results of application, benefits, liabilities

Implementation
pitfalls, hints, techniques, plus language-dependent issues

Sample Code
sample implementations in C++, Java, C#, Smalltalk, C, etc.

Known Uses
examples drawn from existing systems

Related Patterns
discussion of other patterns that relate to this one

13

Part I: Motivation & Concept (cont’d)

Modified UML/OMT Notation

14

Motivation & Concept (cont’d)

OBSERVER object behavioral

Intent
define a one-to-many dependency between objects so that when one

object changes state, all dependents are notified & updated

Applicability
an abstraction has two aspects, one dependent on the other
a change to one object requires changing untold others
an object should notify unknown other objects

Structure

15

Motivation & Concept (cont’d)

OBSERVER object behavioral

class ProxyPushConsumer : public // …
virtual void push (const CORBA::Any &event) {

for (std::vector<PushConsumer>::iterator i
(consumers.begin ()); i != consumers.end (); i++)

(*i).push (event);
}

CORBA Notification Service
example using C++

Standard Template Library
(STL) iterators (which is an

example of the Iterator
pattern from GoF)

class MyPushConsumer : public // ….
virtual void push
(const CORBA::Any &event) { /* consume the event. */ }

16

Motivation & Concept (cont’d)

OBSERVER (cont’d) object behavioral

Consequences
+ modularity: subject & observers may vary independently
+ extensibility: can define & add any number of observers
+ customizability: different observers offer different views of subject
– unexpected updates: observers don’t know about each other
– update overhead: might need hints or filtering

Implementation
subject-observer mapping
dangling references
update protocols: the push & pull models
registering modifications of interest explicitly

Known Uses
Smalltalk Model-View-Controller (MVC)
InterViews (Subjects & Views, Observer/Observable)
Andrew (Data Objects & Views)
Pub/sub middleware (e.g., CORBA Notification Service, Java Message Service)
Mailing lists

17

Part I: Motivation & Concept (cont’d)

Benefits of Patterns

• Design reuse
• Uniform design vocabulary
• Enhance understanding, restructuring, &

team communication
• Basis for automation
• Transcends language-centric biases/myopia
• Abstracts away from many unimportant

details

18

Part I: Motivation & Concept (cont’d)

Liabilities of Patterns

• Require significant tedious & error-prone
human effort to handcraft pattern
implementations design reuse

• Can be deceptively simple uniform design
vocabulary

• May limit design options

• Leaves some important details unresolved

19

Part II: Application: Document
Editor (Lexi)

1. Document structure

2. Formatting

3. Embellishment

4. Multiple look & feels

5. Multiple window systems

6. User operations

7. Spelling checking &
hyphenation

7 Design Problems

Note that none of these patterns are restricted to document editors…

20

Document Structure

Goals:
present document’s visual aspects
drawing, hit detection, alignment
support physical structure
(e.g., lines, columns)

Constraints/forces:
treat text & graphics uniformly
no distinction between one & many

21

Document Structure (cont’d)

Solution: Recursive Composition

22

Document Structure (cont’d)

Object Structure

23

Document Structure (cont’d)

Glyph

Base class for composable graphical objects

void insert(Glyph)
void remove(Glyph)
Glyph child(int n)
Glyph parent()

structure

boolean intersects(Coord, Coord)hit detection

void draw(Window)appearance

OperationsTask

Basic interface:

Subclasses: Character, Image, Space, Row, Column

24

Document Structure (cont’d)

Glyph Hierarchy

Note the inherent recursion in this hierarchy
i.e., a Row is a Glyph & a Row also has Glyphs!

25

Document Structure (cont’d)

COMPOSITE object structural

Intent
treat individual objects & multiple, recursively-composed

objects uniformly

Applicability
objects must be composed recursively,
and no distinction between individual & composed elements,
and objects in structure can be treated uniformly

Structure e.g., Glyph

e.g., Row,
Column

e.g., Character,
Rectangle, etc.

26

Document Structure (cont’d)

COMPOSITE object structural
class Glyph {
public:

virtual void
draw (const Drawing_Region &) = 0;

// ...
virtual void add_child (Glyph *) {}

protected:
int x_, y_;
// Coordinate position.

};

class Character : public Glyph {
public:

Character
(const std::string &name);

// ...
virtual void
draw (const Drawing_Region &c)

{ c.draw_text (x_, y_, name_); }
private:

std::string name_;
};

class Row : public Glyph {
public:

Row (std::vector<Glyph*> children);
// ...
virtual void
draw (const Drawing_Region &c){
for (std::vector<Glyph*>::iterator

i (children_);
i != children_.end ();
i++)

(*i)->draw (c);
}
// ...
virtual void add_child (Glyph *g) {
children_.push_back (g);

}
private:

std::vector<Glyph*> children_;
// ...

};

Component

Composite

Leaf

27

Document Structure (cont’d)

COMPOSITE object structural

CORBA Naming Service example using
CosNaming::BindingIterator (which is an example of
the “Batch Iterator” pattern compound from POSA5)

Composite
Node

Leaf Node

28

Document Structure (cont’d)

COMPOSITE object structural

void show_chunk (const CosNaming::BindingList_ptr &bl, // Helper function
CosNaming::NamingContext_ptr nc) {

for (CORBA::ULong i = 0; i < bl.length (); ++i) {
cout << bl[i].binding_name[0].id << "." << bl[i].binding_name[0].kind;

if (bl[i].binding_type == CosNaming::ncontext) {
cout << ": context" << endl;
CORBA::Object_var obj = nc->resolve (bl[i].binding_name);
list_context (CosNaming::NamingContext::_narrow (obj));

}
else cout << ": reference" << endl;

}
}

void list_context (CosNaming::NamingContext_ptr nc) {
CosNaming::BindingIterator_var it; // Iterator reference
CosNaming::BindingList_var bl; // Binding list
const CORBA::ULong CHUNK = 100; // Chunk size

nc->list (CHUNK, bl, it); // Get first chunk
show_chunk (bl, nc); // Print first chunk
if (!CORBA::is_nil(it)) { // More bindings?
while (it->next_n(CHUNK, bl)) // Get next chunk
show_chunk (bl, nc); // Print chunk

it->destroy(); // Clean up
}

}

Handle
Composite

Node

Handle
Leaf Node

29

Document Structure (cont’d)

COMPOSITE (cont’d) object structural
Consequences
+ uniformity: treat components the same regardless of complexity
+ extensibility: new Component subclasses work wherever old ones do
– overhead: might need prohibitive numbers of objects
– Awkward designs: may need to treat leaves as lobotomized composites

Implementation
do Components know their parents?
uniform interface for both leaves & composites?
don’t allocate storage for children in Component base class
responsibility for deleting children

Known Uses
ET++ Vobjects
InterViews Glyphs, Styles
Unidraw Components, MacroCommands
Directory structures on UNIX & Windows
Naming Contexts in CORBA
MIME types in SOAP

30

Formatting

Goals:
automatic linebreaking, justification

Constraints/forces:
support multiple linebreaking algorithms
don’t tightly couple these algorithms with
the document structure

31

Formatting (cont’d)

Solution: Encapsulate Linebreaking Strategy

Compositor
base class abstracts linebreaking algorithm
subclasses for specialized algorithms,
e.g., SimpleCompositor, TeXCompositor

Composition
composite glyph (typically representing a column)
supplied a compositor & leaf glyphs
creates row-column structure as directed by
compositor

32

Formatting (cont’d)

New Object Structure

Generated in accordance with
compositor strategies & do not
affect contents of leaf glyphs

33

Formatting (cont’d)

STRATEGY object behavioral

Intent
define a family of algorithms, encapsulate each one, & make them

interchangeable to let clients & algorithms vary independently

Applicability
when an object should be configurable with one of many algorithms,
and all algorithms can be encapsulated,
and one interface covers all encapsulations

Structure

34

Formatting (cont’d)

STRATEGY object behavioral

class TexCompositor
: public Compositor {

public:
virtual void compose ()
{ /* ... */}

};

Simple
algorithm

Complex
algorithm

class SimpleCompositor
: public Compositor {

public:
virtual void compose ()
{ /* ... */}

};

class Composition : public Glyph {
public:

void perform_composition
(const Compositor &compositor,
const std::vector<Glyphs*> &leaf_glyphs)

{
compositor.set_context (*this);
for (std::vector<Glyph*>::iterator

i (leaf_glyphs);
i != leaf_glyphs.end ();
i++) {

this->insert (*i);
compositor.compose ();

}
}

private:
// Data structures for composition.

};

Composition comp;
TexCompositor tc;
comp.perform_composition (tc, leaf_glyphs);

SimpleCompositor sc;
comp.perform_composition (sc, leaf_glyphs);

class Compositor {
public:

void set_context
(Composition &context);

virtual void compose () = 0;
// ...

};

Creates
row-column
structure as
directed by
compositor

Strategy can be
changed dynamically!

35

Formatting (cont’d)

STRATEGY object behavioral

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

Strategy can also be applied in distributed systems (e.g., middleware)

36

Formatting (cont’d)

STRATEGY (cont’d) object behavioral
Consequences

+ greater flexibility, reuse
+ can change algorithms dynamically
– strategy creation & communication overhead
– inflexible Strategy interface
– semantic incompatibility of multiple strategies used together

Implementation
exchanging information between a Strategy & its context
static strategy selection via parameterized types

Known Uses
InterViews text formatting
RTL register allocation & scheduling strategies
ET++SwapsManager calculation engines
The ACE ORB (TAO) Real-time CORBA middleware

See Also
Bridge pattern (object structural)

37

Formatting (cont’d)

Template Method (cont’d) class behavioral
Intent

Provide a skeleton of an algorithm in a method, deferring some steps to
subclasses

class Composition : public Glyph {
public:

// Template Method.
void perform_composition (const std::vector<Glyphs*> &leaf_glyphs) {
set_context (*this);
for (std::vector<Glyph*>::iterator i (leaf_glyphs);

i != leaf_glyphs.end (); i++) {
insert (*i);
compose ();

}
}
virtual void compose () = 0; // Hook Method

protected:
// Data structures for composition.

};

class Simple_Composition : public Composition {
virtual void compose () { /* ... */ }

};

class Tex_Composition : public Composition {
virtual void compose () { /* ... */ }

};

38

Formatting (cont’d)

Template Method (cont’d) class behavioral
Intent

Provide a skeleton of an algorithm in a method, deferring some steps to
subclasses

class Base_Class {
public:

// Template Method.
void template_method (void) {

hook_method_1 ();
hook_method_2 ();
// ...

}
protected:

virtual void hook_method_1 () = 0;
virtual void hook_method_2 () = 0;

};

class Derived_Class_1 : public Base_Class {
virtual void hook_method_2 () { /* ... */ }

};

class Derived_Class_2 : public Base_Class {
virtual void hook_method_1 () { /* ... */ }
virtual void hook_method_2 () { /* ... */ }

};

39

Embellishment

Goals:
add a frame around text composition
add scrolling capability

Constraints/forces:
embellishments should be reusable without
subclassing, i.e., so they can be added
dynamically at runtime
should go unnoticed by clients

40

Embellishment (cont’d)

Solution: “Transparent” Enclosure

Monoglyph
base class for glyphs having one child
operations on MonoGlyph (ultimately) pass
through to child

MonoGlyph subclasses:
Frame: adds a border of specified width
Scroller: scrolls/clips child, adds scrollbars

41

Embellishment (cont’d)

MonoGlyph Hierarchy

Class MonoGlyph : public Glyph {
public:
MonoGlyph (Glyph *g):
component (g) {}

void MonoGlyph::draw (Window &w)
{ component->draw (w); }

private:
Glyph *component;

};

void Frame::draw (Window &w) {
// Order may be important!
MonoGlyph::draw (w);
drawFrame (w);

}

42

Embellishment (cont’d)

New Object Structure

43

Embellishment (cont’d)

DECORATOR object structural

Intent
Transparently augment objects with new responsibilities dynamically

Applicability
when extension by subclassing is impractical
for responsibilities that can be added & withdrawn dynamically

Structure

44

Embellishment (cont’d)

DECORATOR object structural
size_t request_count;

void *worker_task (void *) {
request_count++;

// ... process the request
}

ACE_Thread_Mutex m;
size_t request_count;

void *worker_task (void *) {
m.acquire ();
request_count++;
m.release ();

// ... process the request
}

ACE_Thread_Mutex m;
size_t request_count;

void *worker_task (void *) {
{
ACE_Guard <ACE_Thread_Mutex> g (m);
request_count++;

}

// ... process the request
}

45

Embellishment (cont’d)

DECORATOR object structural
Atomic_Op<size_t, ACE_Thread_Mutex> request_count;

void *worker_task (void *) {
request_count++;

// ... process the request
}

template <typename T, typename LOCK>
class Atomic_Op {
public:

void operator++ () {
ACE_Guard <LOCK> g (m_);
count_++;

// ...
}

private:
T count_;
LOCK m_;

};

46

Embellishment (cont’d)

DECORATOR (cont’d) object structural

Consequences
+ responsibilities can be added/removed at run-time
+ avoids subclass explosion
+ recursive nesting allows multiple responsibilities
– interface occlusion
– identity crisis
– composition of decorators is hard if there are side-effects

Implementation
interface conformance
use a lightweight, abstract base class for Decorator
heavyweight base classes make Strategy more attractive

Known Uses
embellishment objects from most OO-GUI toolkits
ParcPlace PassivityWrapper
InterViews DebuggingGlyph
Java I/O classes
ACE_Atomic_Op

47

Multiple Look & Feels

Goals:
support multiple look & feel standards
generic, Motif, Swing, PM, Macintosh,
Windows, ...
extensible for future standards

Constraints/forces:
don’t recode existing widgets or clients
switch look & feel without recompiling

48

Multiple Look & Feels (cont’d)

Solution: Abstract Object Creation

Instead of
MotifScrollbar *sb = new MotifScrollbar();

use
Scrollbar *sb = factory->createScrollbar();

where factory is an instance of MotifFactory or
anything else that makes sense wrt our look & feel
requirements

• BTW, this begs the question of who created the factory!

49

Multiple Look & Feels (cont’d)

Factory Interface

• defines “manufacturing interface”
• subclasses produce specific products
• subclass instance chosen at run-time

// This class is essentially a Java interface
class GUIFactory {
public:

virtual Scrollbar *createScrollbar() = 0;
virtual Menu *createMenu() = 0;
...

};

50

Multiple Look & Feels (cont’d)

Factory Structure

Scrollbar *MotifFactory::createScrollBar () {
return new MotifScrollbar();

}
Scrollbar *PMFactory::createScrollBar () {

return new PMScrollbar();
}

51

Multiple Look & Feels (cont’d)

ABSTRACT FACTORY object creational

Intent
create families of related objects without specifying subclass names

Applicability
when clients cannot anticipate groups of classes to instantiate

Structure

52

Multiple Look & Feels (cont’d)

ABSTRACT FACTORY object creational

class TexCompositor
: public Compositor {

public:
virtual void compose ()
{ /* ... */}

};

class SimpleCompositor
: public Compositor {

public:
virtual void compose ()
{ /* ... */}

};

class Compositor {
public:

void set_context
(Composition &context);

virtual void compose () = 0;
// ...

};

class CompositionFactory {
public:

virtual Compositor *create_compositor() =
0;

// ...
};

class TexCompositionFactory :
public CompositionFactory {

{
public:

virtual Compositor *create_compositor() {
return new TexCompositor;

}
};

CompositionFactory *
create_composition_factory

(const std::string &factory)
{

if (factory == “TexCompositor”)
return new TexCompositionFactory;

else
...

}

53

Multiple Look & Feels (cont’d)

ABSTRACT FACTORY object creational

Concrete factories create groups of strategies

54

Multiple Look & Feels (cont’d)

ABSTRACT FACTORY (cont’d) object creational

Consequences
+ flexibility: removes type (i.e., subclass) dependencies from clients
+ abstraction & semantic checking: hides product’s composition
– hard to extend factory interface to create new products

Implementation
parameterization as a way of controlling interface size
configuration with Prototypes, i.e., determines who creates the
factories
abstract factories are essentially groups of factory methods

Known Uses
InterViews Kits
ET++ WindowSystem
AWT Toolkit
The ACE ORB (TAO)

55

Multiple Window Systems

Goals:
make composition appear in a window
support multiple window systems

Constraints/forces:
minimize window system dependencies in
application & framework code

56

Multiple Window Systems (cont’d)
Solution: Encapsulate Implementation Dependencies

Window
user-level window abstraction
displays a glyph (structure)
window system-independent
task-related subclasses
(e.g., IconWindow, PopupWindow)

57

class Window {
public:

...
void iconify(); // window-management
void raise();
...
void drawLine(...); // device-independent
void drawText(...); // graphics interface
...

};

Multiple Window Systems (cont’d)

Window Interface

58

Multiple Window Systems (cont’d)

Window uses a WindowRep

• abstract implementation interface

• encapsulates window system dependencies

• window systems-specific subclasses
(e.g., XWindowRep, SunWindowRep)

An Abstract Factory can produce
the right WindowRep!

59

Multiple Window Systems (cont’d)

Window/WindowRep Structure

void Character::draw (Window &w) {
w.drawText(...);

}

void Window::drawText (...) {
rep->deviceText(...);

}

void XWindowRep::deviceText (...) {
XText(...);

}

60

Multiple Window Systems (cont’d)

New Object Structure

Note the decoupling
between the logical

structure of the contents
in a window from the

physical rendering of the
contents in the window

61

Multiple Window Systems (cont’d)

BRIDGE object structural

Intent
separate a (logical) abstraction interface from its (physical)

implementation(s)

Applicability
when interface & implementation should vary independently

require a uniform interface to interchangeable class hierarchies

Structure

62

Multiple Window Systems (cont’d)

BRIDGE (cont’d) object structural

Consequences
+ abstraction interface & implementation are independent
+ implementations can vary dynamically
– one-size-fits-all Abstraction & Implementor interfaces

Implementation
sharing Implementors & reference counting
creating the right Implementor (often use factories)

Known Uses
ET++ Window/WindowPort
libg++ Set/{LinkedList, HashTable}
AWT Component/ComponentPeer

63

User Operations

Goals:
support execution of user operations
support unlimited-level undo/redo

Constraints/forces:
scattered operation implementations
must store undo state
not all operations are undoable

64

User Operations (cont’d)

Solution: Encapsulate Each Request

A Command encapsulates

Command may
implement the operations itself, or
delegate them to other object(s)

an operation (execute())
an inverse operation (unexecute())
a operation for testing reversibility
(boolean reversible())
state for (un)doing the operation

65

User Operations (cont’d)

Command Hierarchy

void MenuItem::clicked ()
{

command->execute();
}

void PasteCommand::execute ()
{

// do the paste
}
void CopyCommand::execute ()
{

// do the copy
}

66futurepast

cmd

execute()

cmd

unexecute()

past future

User Operations (cont’d)

List of Commands = Execution History

Undo: Redo:

cmd

unexecute()

cmd

unexecute()

67

User Operations (cont’d)

COMMAND object behavioral

Intent
encapsulate the request for a service

Applicability
to parameterize objects with an action to perform
to specify, queue, & execute requests at different times
for multilevel undo/redo

Structure

68

User Operations (cont’d)

COMMAND (cont’d) object behavioral

Consequences
+ abstracts executor of a service
+ supports arbitrary-level undo-redo
+ composition yields macro-commands
– might result in lots of trivial command subclasses

Implementation
copying a command before putting it on a history list
handling hysteresis
supporting transactions

Known Uses
InterViews Actions
MacApp, Unidraw Commands
JDK’s UndoableEdit, AccessibleAction
Emacs

69

Spelling Checking & Hyphenation

Goals:
analyze text for spelling errors
introduce potential hyphenation sites

Constraints/forces:
support multiple algorithms
don’t tightly couple algorithms with
document structure

70

Spelling Checking & Hyphenation (cont’d)

Solution: Encapsulate Traversal

Iterator
encapsulates a
traversal algorithm
without exposing
representation
details to callers
uses Glyph’s child
enumeration
operation
This is an example
of a “preorder
iterator”

71

Spelling Checking & Hyphenation (cont’d)

ITERATOR object behavioral

Intent
access elements of a container without exposing its representation

Applicability
require multiple traversal algorithms over a container
require a uniform traversal interface over different containers
when container classes & traversal algorithm must vary
independently

Structure

72

Spelling Checking & Hyphenation (cont’d)

ITERATOR (cont’d) object behavioral

int main (int argc, char *argv[]) {
vector<string> args;
for (int i = 0; i < argc; i++)

args.push_back (string (argv[i]));
for (vector<string>::iterator i (args.begin ());

i != args.end ();
i++)

cout << *i;
cout << endl;
return 0;

}

Iterators are used heavily in the C++ Standard
Template Library (STL)

The same iterator pattern can be
applied to any STL container!

for (Glyph::iterator i = composition.begin ();
i != composition.end ();
i++)

...

73

Spelling Checking & Hyphenation (cont’d)

ITERATOR (cont’d) object behavioral

Consequences
+ flexibility: aggregate & traversal are independent
+ multiple iterators & multiple traversal algorithms
– additional communication overhead between iterator & aggregate

Implementation
internal versus external iterators
violating the object structure’s encapsulation
robust iterators
synchronization overhead in multi-threaded programs
batching in distributed & concurrent programs

Known Uses
C++ STL iterators
JDK Enumeration, Iterator
Unidraw Iterator

74

Spelling Checking & Hyphenation (cont’d)

Visitor
• defines action(s) at each step of traversal
• avoids wiring action(s) into Glyphs
• iterator calls glyph’s accept(Visitor) at each node
• accept() calls back on visitor (a form of “static

polymorphism” based on method overloading by type)

void Character::accept (Visitor &v) { v.visit (*this); }

class Visitor {
public:

virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
// etc. for all relevant Glyph subclasses

};

75

Spelling Checking & Hyphenation (cont’d)

SpellingCheckerVisitor
• gets character code from each character glyph

Can define getCharCode() operation just on
Character() class

• checks words accumulated from character glyphs
• combine with PreorderIterator traversal algorithm

class SpellCheckerVisitor : public Visitor {
public:

virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
// etc. for all relevant Glyph subclasses

Private:
std::string accumulator_;

};

76

Spelling Checking & Hyphenation (cont’d)

Accumulating Words

Spelling check
performed when a
nonalphabetic
character it reached

77

Spelling Checking & Hyphenation (cont’d)

Interaction Diagram
• The iterator controls the order in which accept() is called on each

glyph in the composition
• accept() then “visits” the glyph to perform the desired action
• The Visitor can be subclassed to implement various desired actions

78

Spelling Checking & Hyphenation (cont’d)

HyphenationVisitor

• gets character code from each character glyph

• examines words accumulated from character glyphs

• at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {
public:

void visit (Character &);
void visit (Rectangle &);
void visit (Row &);
// etc. for all relevant Glyph subclasses

};

79

Spelling Checking & Hyphenation (cont’d)

Discretionary Glyph
• looks like a hyphen when at end of a line
• has no appearance otherwise
• Compositor considers its presence when determining

linebreaks

80

Spelling Checking & Hyphenation (cont’d)

VISITOR object behavioral
Intent

centralize operations on an object structure so that they can
vary independently but still behave polymorphically

Applicability
when classes define many unrelated operations
class relationships of objects in the structure rarely change,
but the operations on them change often
algorithms keep state that’s updated during traversal

Structure

81

Spelling Checking & Hyphenation (cont’d)

VISITOR (cont’d) object behavioral

SpellCheckerVisitor spell_check_visitor;

for (Glyph::iterator i = composition.begin ();
i != composition.end ();
i++) {

(*i)->accept (spell_check_visitor);
}

HyphenationVisitor hyphenation_visitor;

for (Glyph::iterator i = composition.begin ();
i != composition.end ();
i++) {

(*i)->accept (hyphenation_visitor);
}

82

Spelling Checking & Hyphenation (cont’d)

VISITOR (cont’d) object behavioral

Consequences
+ flexibility: visitor & object structure are independent
+ localized functionality
– circular dependency between Visitor & Element interfaces
– Visitor brittle to new ConcreteElement classes

Implementation
double dispatch
general interface to elements of object structure

Known Uses
ProgramNodeEnumerator in Smalltalk-80 compiler
IRIS Inventor scene rendering
TAO IDL compiler to handle different backends

83

Part III: Wrap-Up
Observations

Patterns are applicable in all stages of the OO lifecycle
analysis, design, & reviews
realization & documentation
reuse & refactoring

Patterns permit design at a more abstract level
treat many class/object interactions as a unit
often beneficial after initial design
targets for class refactorings

Variation-oriented design
consider what design aspects are variable
identify applicable pattern(s)
vary patterns to evaluate tradeoffs
repeat

84

Part III: Wrap-Up (cont’d)

But…

Pattern design even harder than OO design!

Don’t apply them blindly
Added indirection can yield increased complexity,

cost

Resist branding everything a pattern
Articulate specific benefits
Demonstrate wide applicability
Find at least three existing examples from code

other than your own!

85

Part III: Wrap-Up (cont’d)

Concluding Remarks

• design reuse
• uniform design vocabulary
• understanding, restructuring, & team

communication
• provides the basis for automation
• a “new” way to think about design

86

Pattern References
Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,
0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,
0-470-05902-8

Pattern-Oriented Software Architecture, Vol. 5, Buschmann, et al.,
0-471-48648-5

87

Pattern References (cont’d)
More Books

Analysis Patterns, Fowler; 0-201-89542-0

Concurrent Programming in Java, 2nd ed., Lea, 0-201-31009-0

Pattern Languages of Program Design
Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds., 0-201-89527-7
Vol. 3, Martin, et al., eds., 0-201-31011-2
Vol. 4, Harrison, et al., eds., 0-201-43304-4

Vol. 5, Manolescu, et al., eds., 0-321-32194-4

AntiPatterns, Brown, et al., 0-471-19713-0

Applying UML & Patterns, 2nd ed., Larman, 0-13-092569-1

Pattern Hatching, Vlissides, 0-201-43293-5

The Pattern Almanac 2000, Rising, 0-201-61567-3

88

Pattern References (cont’d)
Even More Books
Small Memory Software, Noble & Weir, 0-201-59607-5
Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-31957-7
Smalltalk Best Practice Patterns, Beck; 0-13-476904-X
The Design Patterns Smalltalk Companion, Alpert, et al.,

0-201-18462-1
Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5
Building Parsers with Java, Metsker, 0-201-71962-2
Core J2EE Patterns, Alur, et al., 0-130-64884-1
Design Patterns Explained, Shalloway & Trott, 0-201-71594-5
The Joy of Patterns, Goldfedder, 0-201-65759-7
The Manager Pool, Olson & Stimmel, 0-201-72583-5

89

Pattern References (cont’d)
Early Papers
“Object-Oriented Patterns,” P. Coad; Comm. of the ACM, 9/92
“Documenting Frameworks using Patterns,” R. Johnson; OOPSLA ’92
“Design Patterns: Abstraction & Reuse of Object-Oriented Design,”

Gamma, Helm, Johnson, Vlissides, ECOOP ’93

Articles
Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,

Java Developers Journal, C++ Report

90

Pattern-Oriented Conferences

PLoP 2007: Pattern Languages of Programs
October 2007, Collocated with OOPSLA

EuroPLoP 2008, July 2008, Kloster Irsee,
Germany

…

See hillside.net/conferences/ for
up-to-the-minute info.

91

Mailing Lists
patterns@cs.uiuc.edu: present & refine patterns
patterns-discussion@cs.uiuc.edu: general discussion
gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns
siemens-patterns@cs.uiuc.edu: discussion on

Pattern-Oriented Software Architecture
ui-patterns@cs.uiuc.edu: discussion on user interface patterns
business-patterns@cs.uiuc.edu: discussion on patterns for

business processes
ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed

systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

